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Abstract4

The submarine part of the North Anatolian Fault (NAF) is a very significant hazard for the 125

million people living in Istanbul (Turkey). An accurate seismic risk assessment necessitates paleo-6

seismological data, which can be retrieved in the Marmara Sea by using sedimentary cores. Here a7

record of turbidites was obtained in five cores spanning the Tekirdağ Basin, the Western High and8

the Central Basin linked by the Tekirdağ Fault Segment. The turbidites are synchronous at differ-9

ent sites across the two basins and through the structural high pointing to shaking by earthquakes10

as a triggering mechanism. In particular the M=7.4 1912 Mürefte earthquake left a distinctive11

sedimentary imprint in all the studied cores. Radiocarbon dating implies a turbidite recurrence12

interval of about 300 years. The low number of seismoturbidites documented in the Central Basin13

compare to the Tekirdağ Basin suggests quasi-synchronous ruptures of the Tekirdağ Segment and14

the adjacent Central Segment of the NAF or a partial seismic slip on the Central Segment. Both15

scenarios have implications regarding seismic hazard. Finally though we obtained a paleoseismo-16

logical record of the ruptures along the Tekirdağ Segment, further chronological constraints are17

needed to better date the events and to confirm the completeness of the obtained record.18

Introduction19

Hazard risk assessment for populations living in tectonically active areas can be improved using pale-20

oseismology, by building an extended database of major earthquakes and earthquake recurrence time21

(Fraser et al., 2010). Even though most studies in this field of inquiry were historically based on22

on-land field work, e.g. in California, in Turkey, in Italy, in Himalayas, in Tibet (Dolan et al., 2003;23

Weldon et al., 2004; Galli et al., 2008; Kondo et al., 2008; Fraser et al., 2010; Klinger et al., 2011),24

recently interesting offshore studies appeared (Goldfinger et al., 2003a; Goldfinger, 2011). These stud-25

ies use the identification of mass-wasting deposits triggered by large earthquakes to obtain records of26

events over 1000s of years (McHugh et al., 2006; Beck et al., 2007). Mass-wasting deposits related27
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1 Settings

to earthquakes have a specific signature and can be distinguished from other deposits emplaced by28

hyperpycnal flow, wave storm loading among others (Gorsline et al., 2000; Nakajima and Kanai, 2000;29

Shiki et al., 2000; Beck et al., 2007). Earthquake triggered turbidites may mobilise 5 to 10 times30

the sediment volume of classical turbidites (Gorsline et al., 2000) and usually show liquefaction or31

flaser bedding structures (Beck et al., 2007). Their granulometric signature reflects a high energy32

transportation mechanism forming a mass flow and a very large suspension cloud (Shiki et al., 2000).33

As a result seismoturbidites have a sharp and wavy erosional base (Shiki et al., 2000), and can be34

divided into a basal sand sublayer and a thick silt sublayer characterized by a poor size grading and35

coeval deposition of sand, silt and clay particles (Nakajima and Kanai, 2000; Shiki et al., 2000).36

In this paper, we study the turbiditic sedimentation in the Marmara Sea, which is crossed by the37

North Anatolian Fault, a major active strike-slip fault rupturing in M≥7 earthquakes. The presence38

of the urban area of Istanbul on its shoulder, where about 12 M people live, makes this region a major39

spot for seismic hazard studies. We identified turbiditic deposits in five 3 to 4 m long cores which40

sample its different basins and highs. We then use global sedimentological changes to correlate the41

different cores and to characterize the general depositional pattern in the Marmara Sea. Radiogenic42

lead data allow us to discriminate the turbidites triggered by the 1912 earthquake. The granulometric43

characteristics of the other turbidites, their lateral extent and the synchronicity of proximal and distal44

deposits are used to infer a seismic trigger. Finally, we discuss the paleoseismological implication of45

the identified seismoturbidites.46

1 Settings47

1.1 Tectonic setting48

The North Anatolian Fault (NAF) is a 1500 km long dextral strike slip fault accommodating the49

westward extrusion of the Anatolian Plate (Barka and Kadinsky-Cade, 1988; Sengör et al., 2005). In50

the Marmara Sea area, the NAF separates into branches spreading out the deformation over a width51

of 130 km (Barka and Kadinsky-Cade, 1988). The northern branch of the NAF accommodates most52

of the deformation (McClusky et al., 2003) and runs across the 170 km long Marmara Sea.53

The Marmara Sea is composed of three aligned marine pull apart basins reaching a maximum water54

depth of 1250 m (Le Pichon et al., 2001; Armijo et al., 2002; Sarı and Çağatay, 2006). From West to55

East the basins are called Tekirdağ, Central and Çınarcık. They are respectively associated with the56

present active Tekirdağ, Central and Çınarcık Fault Segments (Fig. 1). The different faults segments57

- 2 -



1.2 The historical earthquake record

and the related basins have been imaged by seismic reflection and refraction profiles (Seeber et al.,58

2006; Carton et al., 2007; Bécel et al., 2009) and modelled (Hubert-Ferrari et al., 2000; Muller and59

Aydin, 2005). The basins are separated by two topographic ridges: the Western High and Central60

High with a respective water depth of 700 m and 900 m (Le Pichon et al., 2001; Armijo et al., 2005).61

The basins are sensitive to mass-wasting events triggered by major earthquakes rupturing the fault62

strand, which crosses them (McHugh et al., 2006; Sarı and Çağatay, 2006; Beck et al., 2007).63

64

1.2 The historical earthquake record65

The northern branch of the NAF in the Marmara Sea is a major active fault characterized by a GPS66

based right-lateral slip rate about 20 mm/yr (McClusky et al., 2003). The resulting accumulated67

stresses are episodically released by major and destructive earthquakes recorded in history over 200068

years (Ambraseys, 2002). During the 20th century, the 1912 M = 7.4 Mürefte earthquake ruptured the69

Ganos Segment located West of the Marmara Sea and probably also the offshore part of the Tekirdağ70

Segment (Armijo et al., 2005; Aksoy et al., 2010). In 1999, the M= 7.4 Izmit earthquake took place71

just east of the Marmara Sea (Hubert-Ferrari et al., 2000). Five other events with M>7 occurred72

during the period from 1509 to 1900 (1719, 1754, 1766 May, 1766 August, 1894) (Fig. 1, Ambraseys73

2002; Pondard et al. 2007). The historical record provides earthquake damage data restricted to the74

onland borders of the Marmara Sea and cannot be used alone to determine the epicenters and surface75

ruptures. Even recent earthquakes database do not provide routinely accurate earthquake epicenters76

and foci locations (Örgülü, 2011). Finally, submarine scarps associated with past recent ruptures in77

1912 and possibly in 1894 complement the seismological data set (Armijo et al., 2005; Pondard, 2006).78

1.3 Previous sedimentological core studies in the Marmara Sea79

The Marmara Sea connects the Black Sea to the Aegean Sea through the Bosphorus and Dardanelles80

straits. Because of its particular geographic situation, it is highly sensitive to climatic and environ-81

mental changes and was the focus of multiple sedimentological investigations (Çağatay et al., 2000;82

Abrajano et al., 2002; Hiscott et al., 2002; Major et al., 2002; Mudie et al., 2002; Vidal et al., 2010).83

A key issue for these studies is the understanding of the nature of the reconnection between the Black84

Sea and the Mediterranean Sea (catastrophic Major et al. 2002; or progressive Çağatay et al. 2000;85

Hiscott et al. 2002) ∼ 9 kyr BP ago (Çağatay et al., 2000; Vidal et al., 2010).86

Recent environmental changes related to anthropogenic disturbances were also identified. In partic-87
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ular, pollen studies (Mudie et al., 2002) put forward the occurrence of a progressive deforestation88

starting 4 kyr ago in the watershed surrounding the Marmara Sea. During the Beyşehir Occupation89

Phase (ca. 1300 years BC to ca. AD 200–800 years; Eastwood et al. 1998) vegetation changes and land90

degradation have been documented in the Lakes Manyas and Ulabat (Kazanci et al., 2004). In both91

lakes, which are part of the Kocasu River, a major source of sediments for the Marmara Sea, higher92

rates of sedimentation started around 2 kyr BP. In parallel a progressive increase in sedimentation93

rate on the Marmara Southern Shelf occurred (Kazanci et al., 2004) at the same time as the formation94

of the most recent sapropel, 4750-3500 14C years BP ago (Çağatay et al., 2000). Eris et al. (2007) also95

suggested that the growth of the prodelta at the entrance of the Bosphorus was related to an increase96

in sediment supply triggered by the clearing of forests in watersheds.97

In addition to paleoclimatic investigations, paleoseismologic studies have recently used turbidites for98

deciphering the earthquake history (McHugh et al., 2006; Sarı and Çağatay, 2006; Beck et al., 2007).99

Multi-proxy analyses were performed on cores coming from Central Basin (McHugh et al., 2006; Beck100

et al., 2007) and Tekirdağ Basin (McHugh et al., 2006). Both authors conclude that: (1) significant101

turbiditic deposition directly related to earthquake shaking occurs in the Marmara Basin (McHugh102

et al., 2006; Beck et al., 2007), (2) basins’ filling is mainly controlled by active faults (Uçarkuş, 2010)103

and may document earthquake rupture along the associated fault segments (McHugh et al., 2006;104

Beck et al., 2007), (3) seismoturbidites are associated with oscillating bottom currents (seiche) with105

variable suspended load or bedload (Beck et al., 2007).106

2 Material107

The cores studied (Klg02 to Klg08) were collected in the Marmara Sea during the Marmascarps mission108

in 2002 shortly after the 1999 M=7.4 Izmit earthquake (Armijo et al., 2005). The coring sites are109

similar to locations of ROV short cores (Uçarkuş, 2010) and long cores studied in Beck et al. (2007),110

Londeix et al. (2009), Vidal et al. (2010). The seven Kullenberg cores are 3.5 m to 4.5 m long (Table111

1) and are distributed in specific areas along the fault (Fig. 1). They provide a link between very112

short interface cores (ROV) and the very long cores of the Marion Dufresne Cruise in which upper113

meters are often missing or strongly disturbed.114

The Klg05 and Klg08 cores are situated 6 km apart in the southern part of the Tekirdağ Basin, along115

the Tekirdağ Segment of the NAF, at the outlet of deep canyons (Fig. 1). Further east the Klg06116

core samples the intersection between the Western High and the Tekirdağ Basin, and the Klg07 core117

samples the intersection between the Central Basin and the Western High. These two cores lying 15118
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km apart are close to the Tekirdağ Segment. Klg02 is located in the inner part of the Central Basin119

pull apart (Armijo et al., 1999) between the Tekirdağ and the Central Segments of the NAF. Klg03120

and Klg04 sample the Çınarcık Basin. The paper focuses on the Klg02, Klg05, Klg06, Klg07 and121

Klg08 cores, but the XRF-data obtained for the Klg04 core is presented here because it highlights122

global sedimentary changes occurring across the whole Marmara Sea.123

3 Methods124

Core processing, imaging and physical properties The sedimentary facies observed in cores125

were described first to provide a basic core log. The visual core description was based on colour,126

bedding, sedimentary structures and disturbances, grain size distribution, texture, bioturbation and127

fossil content. This description was refined by using X-ray radiograms, granulometric data, magnetic128

susceptibility measurements and XRF-scanning data.129

In the X-ray pictures (EPOC scopix system in Bordeaux 1 University), the grey scale is proportional130

to the X-ray penetration into the core and to the sediment density, with sand being usually black and131

clay light grey (Migeon et al., 1999). The X-ray imagery was particularly useful to identify all possible132

sedimentary structures like laminated coarser episodes, low angle symmetric cross lamination, ball-133

and-pillow structures, water-escape structures, displacements previously interpreted in sedimentary134

cores sampling the Tekirdağ Basin as specific imprints of major earthquakes by Beck et al. (2007).135

The magnetic susceptibility measurements were performed on the split cores using a bartington MS2E136

sensor with 5 mm interval at room-temperature. The data provide a first-order identification of layers137

enriched in coarse detrital material (Fe, Mg, Ti) which can characterize the base of turbidites (Butler,138

1992; Tauxe, 2010). Microgranulometric analyses were performed on bulk sediment sub-samples from139

u-channels at 10 mm intervals using a Malvern mastersizer 2000s. Percentage of clay, silt and sand140

particles were computed as well as mode, median, mean, skewness and kurtosis indices (Folk, 1968).141

The data help to characterize turbidites in term of depositional process (Pettijohn et al., 1987; Sperazza142

et al., 2004).143

XRF XRF data collected by X-ray fluorescence on an Avaatech XRF core scanner were used to144

correlate cores between the basins and the Western High and to refine sedimentological and geochem-145

ical processes associated with turbiditic deposition. The split-core sections were measured every 5mm146

with energies of fluorescence radiation of 10 keV and 30 keV to reach a large spectra of elements147

comprising Al, Si, S, Cl, K, Ca, Ti, Mn, Fe, Br, Pb, Rb, Sr, Zr. The elemental distributions initially148
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expressed in counts per second, were standardized to get a better comparison of the variations of149

intensity through the different cores. As intensities are only a semi-quantitative measurement of the150

real elemental composition, we used ratios that provide the most easily interpretable signal of relative151

changes in chemical composition, and minimize the risk of drawing erroneous conclusions from XRF152

data (Palike et al., 2001; Vlag et al., 2004; Bahr et al., 2005). The Ca/Ti ratio was exploited because153

it represents autochthonous productivity in the Sea (Ca) with respect to terrigenous allochthonous154

input (Ti), and because it is considered as a reliable proxy in the nearby Black Sea environment (Bahr155

et al., 2005).156

Age dating AMS 14C dating was performed on foraminifers (planktonic and benthic), bulk sediment157

and on shells in AEON laboratories and ARTEMIS LMC14 laboratory in the LSCE, Orsay.158

Sediment accumulation rate for the last century was derived from profiles of excess 210Pb activity159

(210Pbxs). 210Pb and 226Ra activities were measured using a semi-planar γ detector at EPOC in the160

University of Bordeaux 1 (Schmidt et al., 2009). Activities are expressed in mBq.g−1 and errors are161

based on 1 standard deviation counting statistics. Excess 210Pb was calculated by subtracting the162

activity supported by its parent isotope, 226Ra, from the total 210Pb activity in the sediment. Errors163

in 210Pbxs were calculated by propagation of errors in the corresponding pair (210Pb and 226Ra).164

The sedimentation rates were calculated from 210Pbxs profiles using the constant flux - constant165

sedimentation model (Robbins, 1978):166

[210Pbxs]z = [210Pbxs]0exp(−z
λ

S
) (1)

where [210Pbxs]0,z, are the activities of excess 210Pb at surface, or the base of the mixed layer, and167

depth z, λ the decay constant of 210Pb (λ = 0.0311 yr−1), and S the sediment accumulation rate.168

4 Results169

4.1 Main features of sedimentation in the Marmara Sea170

Visual inspection shows that all cores have a very uniform silty-clay lithology with few sandy lamina-171

tions and rare gravelly layers containing numerous shells (indicated in red in the Figs. 4, 5, 6). The172

colour of the cores is predominantly olive green changing into dark grey with sandy laminations.173

X-ray imagery shows a succession of dark sub-layers that are progressively grading to greyer colour174

(Fig. 3 event e6 in Klg05) and in places to light grey colours (Fig. 3 event 4 in Klg02) defining what175
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4.1 Main features of sedimentation in the Marmara Sea

we call here a sedimentary event. The thickest dark layers correspond to sandy laminations and to176

gravelly layers identified during visual inspection. The dark grey, grey to light grey sequences show177

an important thickness range from 10 cm to more than 1 m thick. These sequences form about 80%178

of the sedimentary record of cores located in deep basins (Klg02, Klg05 and Klg08). X-ray pictures179

show detailed textural and structural changes in the three sublayers. Dark grey sublayers have a sharp180

basal surface (Fig. 2: 263 cm), which can be wavy indicating erosion (Figs. 2, 3) and associated with181

strong structural and cross disturbances (Figs. 2, 4). The overlying intermediate grey sublayer shows182

numerous thin parallel laminations in greater concentration near its base (Fig. 3 events e3 and e4183

in Klg02 and e6 in Klg05) that can be link to oscillating currents (Beck et al., 2007). The sequence184

is capped by a light-grey sublayer with possible traces of bioturbation (Figs. 2, 3-Klg05). Similar185

events were already described in the Marmara Sea by using X-ray images, and were interpreted as the186

sedimentary rework of major earthquakes (McHugh et al., 2006; Beck et al., 2007).187

Grain size measurements are similar for all cores with a dominance of silt-sized particles. Sieving shows188

that silt-sized particles are a mixture of mineral grains, different kind of shells including foraminifers,189

marine and terrestrial organic material among others. A systematic trend is observed in the upper190

part of cores characterized by a progressive increase in the percentage of silt-sized particles and a191

coeval decrease in the percentage of clay-sized particles (Fig. 2). All cores show multiple fine-grained192

sand deposits which systematically match with the dark sublayers identified in X-ray imagery and193

with high values in magnetic susceptibility, χ (Fig. 4, 5). In the overlying grey sublayer, silt usually194

reaches a maximum just above the sand layer and, slowly decreases upward to a minimum or stays195

nearly constant. The top light grey sublayer shows a relative increase in clay compared to silt. We196

thus interpret sedimentary events composed of (1) a basal sandy sublayer possibly erosive, (2) an197

intermediate laminated silt sublayer overlain by (3) an upper clayey silt sublayer with some bioturba-198

tion as major turbidites. We also identify in the cores very thin sand lamina that could correspond199

to minor turbidites. They typically have less than half of the volume of the smallest major turbidite200

identified in the same core.201

To constrain the depositional pattern of the major turbidites, their textural characteristics are ac-202

cessed by computing distribution parameters like mean, sorting, skewness, kurtosis (Folk 1968; Fig.203

3 e6-Klg05 and e4-Klg02). Major sandy turbidites have the following characteristics. (1) the basal204

layer of the turbidites often shows multiple pulses, (2) grain size change between the sand and the silt205

sublayers is abrupt, (3) change in grain size, sorting and skewness can also be abrupt in the silt and206

clayey silt sublayers, whereas the decrease in kurtosis is generally gradual. The top clay-rich part of207
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the turbidite is marked by a minima in sorting and a skewness around zero.208

The major turbidites have also a distinct XRF signature. They typically show a local increase in209

zirconium (Zr) content (Figs. 2-b, 4). The sand sublayers are characterized by a decrease in bromine210

(Br) content whereas a relative increase in titanium (Ti) is observed in both the underlying sandy and211

silt-rich sublayers. Manganese (Mn) shows a sharp increase just below the basal sandy sublayer. The212

transition to the hemipelagic sedimentation is marked by a rising until a maximum in K, Ca or in213

Ca/Ti ratio. These elements do occur in proportion in the hemipelagic sedimentation (Fig. 8). Minor214

turbidites do not have a noteworthy XRF signature.215

The stratigraphic logs of cores presented in Figs. 4, 5, 6 show the X-ray intensities, the magnetic216

susceptibility, the granulometric measurements and XRF data. The dark Zr enriched sand base, the217

laminated grey silt sublayer and the clayey silt top sublayers are shown with different grey scale218

colours, and labelled downward from the top of the core. Minor turbidites are not labelled.219

4.2 Specific features of each site220

In the Tekirdağ Basin, the 350 cm long sedimentary record of the core Klg05 (Fig. 4) shows ten221

major turbidites. Sedimentary events are characterized by (1) a sharp sand sublayer with χ and/or Zr222

peaks overlain by lamina, (2) an increase in Ti content in the basal and silt sublayers, (3) a Mn peak223

beneath the basal sand. Standing alone thin sandy layers are interpreted as minor turbidites. The224

largest turbidites labelled e5 and e6 at 160 cm and 233 cm depth have a gravelly base and a respective225

thickness of 55 cm and 70 cm (zoom pictures on Fig. 4). To assess the depositional pattern of these226

turbidites, distribution parameters (mean, sorting, skewness, kurtosis) are calculated and divided in227

layers labelled I, II, III and IV (Fig. 3). Above the gravelly base event e5 shows successively two228

sandy peaks, an inverse grading in the silty sublayer (mean size in phi decreases in Fig. 3) followed by229

an abrupt change in mean-sorting indexes then by normal grading. In event e6 the two basal sandy230

peaks (I in Fig. 3) are overlain by a first fining upward sublayer with gradually increasing sorting and231

decreasing skewness (layer II). Layer II is capped by additional sublayers with nearly constant mean,232

skewness and sorting separated by an abrupt change (III and IV in Fig. 3). In the sorting–skewness233

diagram, grain size evolves gradually towards smaller skewness and better sorting values, but with dis-234

tinctive groups representing the different sublayers. The geochemical evolution of the two turbidites235

also show coeval changes with the granulometry (Fig. 3). K intensity shows a gradual evolution236

through the turbidite similar to the kurtosis index and might reflect a relative increase in illite in the237

grain assemblage. The characteristics of events 5 and 6, in particular non-gradual changes in grain238
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size and the two coarser basal pulses, are representative of other major turbidites recorded Klg05.239

In the inner part of the Central Basin, the core Klg02 shows eleven major turbidites (Fig. 5), which240

display a greater diversity regarding their geochemistry and textural patterns than in Klg05. The241

observed diversity may reflect a larger variability in the emplacement and in the sources of turbidites242

in the inner Central Basin compared to the Tekirdağ Basin. Our identification of major turbidites was243

based on disturbances identified in the X-Ray images combined with granulometric and geochemical244

data suggesting sudden detrital input. Like in Klg05 there are two large turbidites labelled e3 and e4245

occurring at 150 cm and 205 cm depth with a respective thickness of 70 cm and 50 cm. The shallowest246

e3 turbidite presents a gravelly base associated with a strong χ peak (layer I in Fig. 3 and Fig. 5). The247

overlying deposit shows a gradual decrease in χ with two distinct phases. The silty sublayer (labelled248

II in Fig. 3) shows small variations in mean and in sorting without trend except at the boundary of249

the overlying clayey-silt sublayer characterized by step changes in all parameters. This top layer (III250

in Fig. 3) is characterized by increasing sorting and a constant mean grain-size. The other large event251

e4 has a sandy base with multiple laminations (I in Fig. 3) and a strong χ peak. The overlying layers252

II and III present an atypical very low χ with very little geochemical changes (see Fe/Ca in Fig. 3)253

and are similar to homogenites documented by Bertrand et al. (2008). Above the basal laminated254

layer kurtosis and mean do not change significantly whereas skewness and sorting have similar but255

very gradual evolutions. In the sorting–skewness diagram, the data is similar to the e6 turbidite in256

Klg05 with a gradual evolution toward better sorting values and smaller skewness except at the top.257

In the Western High, the granulometric trends in Klg06 and Klg07 cores differ from the cores in the258

basins (Fig. 6). Sand size particles are less than 1% with few peaks. The major part of the signal259

comes from the silt-sized particles profile, which is between 94% and 90%. We focus on the top 80 cm260

of the cores in figure 6 but complete data are included in the Supplemental Data.261

In Klg06 we identified eight silt turbidites in the X-ray imagery that correspond to a punctual upward262

increase in grain size capped by a relative increase in clay (Fig. 6). The layers are associated with263

manganese peaks, and an increase in Ti/Al ratio. The two thickest and most distinctive silt turbidites264

labelled e5 and e7 are recorded at depth of 58 cm and 85 cm. The e5 turbidite has the largest sand265

peak and e7 is associated with the only distinct magnetic susceptibility peak in the core. Both tur-266

bidites have a strong XRF signature characterized by an increase in the Ti/Al ratio in the main body267

and a marked increase in manganese content beneath.268

In the core Klg07, ten fine grained turbidites were recognised. These turbidites are thin and are iden-269

tified based on faint disturbances in the X-ray imagery, grain-size changes, χ peaks and geochemical270
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spikes in Zr, Sr/Ca and Mn (Fig. 6). Four turbidites labelled e1, e5, e8 and e9 at 10 cm, 32 cm, 58271

cm and 69 cm in depth have a sandy base. Events e5 and e8 correspond to the largest events and272

show zirconium, manganese and magnetic susceptibility peaks.273

4.3 Age constraints274

4.3.1 Excess 210Pbxs activities275

The age of sediments in the first 20 to 50 cm of all cores was constrained by using unsupported276

lead data. Excess 210Pb activities for each core are consistent with the activities of the nearby ROV277

cores recovered during the same cruise (Fig. 7). In the first 10 cm of cores Klg05, Klg08 and Klg06,278

210Pbxs activities present an exponential decay with increasing depth with no evidence of reworking,279

as confirmed by X-ray imagery. The limited shift between ROV and Klg profiles indicates a moderate280

loss of surface sediment up to 6 cm for Klg08 during coring. The 210Pb derived sedimentation rates are281

0.23 cm.yr−1 for Tekirdağ Basin (Klg08 and Klg05), 0.12 cm.yr−1 for Western High (Klg06). These282

rates are interpreted to represent steady hemipelagic sedimentation rates.283

The uppermost section of the cores Klg02 and Klg07 shows constant 210Pbxs activities in an inferred284

mixed layer. In core Klg02, the 35 cm thick mixed layer is identical to the 210Pb trend in the nearby285

core C4 studied in McHugh et al. (2006) (Fig. 1) and is associated with two thin sandy turbidites286

visible in the X-ray imagery and in the granulometric data. We have no explanation for the origin of287

this mixed layer.288

In core Klg07, the mixed layer is only 5 cm thick. In the nearby 20 cm long core collected using a ROV,289

there is no mixed layer that suggests that it is a coring artefact. Below the mixed layer, 210Pb activity290

shows a rapid exponential decay with depth. The inferred background hemipelagic sedimentation rate291

is 0.15 cm.yr−1 in Klg02 (Central Basin) and is 0.10 cm.yr−1 in Klg07 (Western High) similar to the292

Klg06 rate.293

4.3.2 Radiocarbon age dating294

Radiocarbon age dating shows globally a large disparity depending on the material used (shells,295

bulk sediment and foraminifers) (Table 2). Ages calculated from shells in cores Klg05, Klg08 and296

Klg06 generally overestimate the expected age of the host sediment, and indicate significant reworking297

and external sedimentary supply from the shelf associated with turbiditic deposition. Ages of bulk298

sediments (TOC and TIC) are also too old and are not further discussed. Ages obtained from both299

planktonic and benthic foraminifers extracted on the top of turbiditic events are the most reliable and300
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thus form the basis for our chronology.301

Planktonic foraminifers were obtained in sufficient abundance to be dated only at a few locations, so302

benthic foraminifers were also dated. To further constrain our age model, we correlate our records303

with nearby published sedimentary cores. In the Western High, by comparing the Klg06 core to the304

core MD2430 studied by Vidal et al. (2010), the Younger Dryas transition would be below the core305

bottom which is in agreement with the obtained uncalibrated age of 6880 yr BP at the core bottom.306

The Klg07 core also in the Western High has magnetic susceptibility measurements similar to the core307

MD2430, and uncalibrated radiocarbon ages of 2500 yr BP at 61 cm depth, 4815 yr BP at 212 cm308

depth and 7875 yr BP at 297 cm depth compatible with the age model of the MD2430 core (Fig. 14309

in the appendices; Vidal et al. 2010). The Klg05 and Klg02 cores in the basins can be correlated to310

the C4 and C8 cores of McHugh et al. (2006). In Klg05, the uncalibrated ages of 1090 yr BP at 48311

cm depth, 1735 yr BP at 167 cm depth and 2185 yr BP at 250 cm depth agree with the 14C-age of312

1320 yr BP at 55 cm depth and 1460 yr BP at 65 cm depth in core C4 (Fig. 15 in the appendices;313

McHugh et al. 2006). The Klg08 core has 14-C ages of 2880 yr BP at 73 cm depth, 4670 yr BP at314

145 cm depth and 12770 yr BP at 335 cm depth (Fig. 11).315

The longest records spanning 6000 to 12000 years are reached in the Western High, and on the uplifted316

side of the NAF in the Tekirdağ Basin. In the Tekirdağ and Central Basins, we have a sedimentary317

record lasting 3000 to 4000 years.318

5 Interpretation319

5.1 Variations in sedimentation pattern in the Marmara Sea320

The correlation of the Klg02 to Klg08 cores across the whole Marmara Sea was done combining gran-321

ulometry, Ca/Ti ratio, Ti, Pb, Br and Sr intensities with the obtained chronological data. Marked322

geochemical and granulometric variations are used as chronological markers and are tentatively inter-323

preted as global changes in the sedimentation pattern of the Marmara Sea related to anthropogenic324

disturbances.325

The cores Klg07 and Klg08 covering the longest time frame show similar Ca/Ti variations (Fig. 8-part326

a). Based on radiocarbon dating and χ measurements the Klg07 core can also be related to the core327

MD2430 studied in Vidal et al. (2010) (Fig. 14 in the appendices). The base of Klg07 is characterized328

by high χ and was deposited at the end of the glacial period (Fig. 14 in the appendices). Between 2329

and 3 m depth, deposits in Klg07 characterized by relatively high calcium over titanium ratio corre-330
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spond to organic-rich deposits occurring from 11.5 kyr BP to 7 kyr BP (Çağatay et al., 2000; Vidal331

et al., 2010). We found a similar high Ca/Ti ratio in Klg08 at 1.6 m. At shallower depths, there332

is a distinctive thin layer marked by a minimum in Ca/Ti ratio in cores Klg08, Klg07, Klg06 and333

Klg04 (red layer in Fig. 8-part a). This layer has a particular geochemical signature characterized by334

an anomalous Rb peak in Klg08, Klg06 and Klg04, associated with high Zr and low Ca intensities.335

This anomalous marker present from the Tekirdağ Basin to the Çınarcık Basin is interpreted as a key336

correlation marker of unknown origin. At shallower depth there is another correlative layer with a337

high Ca/Ti ratio (yellow upper layer in Fig. 8-part a). In the uppermost part of the core section, the338

Ca/Ti curves still present high variations that are used to correlate laterally the different cores.339

Pb, Sr, Br and Ti intensities as well as grain size also show correlative downcore variations. These340

variations are illustrated in Fig. 8-part b using the core Klg04 in Çınarcık Basin and the cores Klg06341

and Klg07 in the Western High. The upper part of all granulometric profiles show an upward decrease342

in clay-sized particles coeval to an increase in silt-sized particles. The grain size increase is coeval with343

a step increase in lead and titanium. These recent sedimentological changes point to an increase in the344

allochthonous terrigenous input in the Marmara Sea. Radiocarbon dating indicates that this increase345

started around 1200 cal yr BC. These changes thus occurred during the so-called Beyşehir occupation346

phase (BOP, Eastwood et al. 1998), which was documented in Lake Manyas along the southern shore347

of the Marmara Sea (Kazanci et al., 2004). The phase is characterized by forest clearance, crop culti-348

vation and arboriculture (Van Zeist et al., 1975; Bottema and Woldring, 1994). These modifications349

in the vegetation cover have triggered high sedimentation rates in lakes and in the southern shelf of350

the Marmara Sea (Kazanci et al., 2004). Since that time the anthropogenic activity in the watershed351

of the Marmara Sea has continuously increased. Istanbul (Byzantium) and other major Roman Cities352

on the Marmara shores started developing around 600 BC and expanded when Byzantium became the353

Capital of the Roman Empire in 300 AD. The correlative geochemical and granulometric variations354

in Fig. 8-part b are interpreted as related to the anthropogenic modifications of Marmara watershed.355

An additional argument supporting this inference is that the observed changes are traceable in the356

three basins of the Marmara Sea as well as in the Western High.357

The correlation of cores Klg02 and Klg05 in deep depocenters with other cores is more difficult due to358

the occurrence of two thick turbidites layers which distort the signal. The step increase in lead related359

to the BOP can still be identified in both cores as well as correlable variations in Ca/Ti ratio, Br, Ti,360

Sr intensities (Fig. 8-part c).361

The correlable variations of Ca/Ti ratio, Pb , Br, Ti, Sr intensities and granulometry in different cores362
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are used as chronological markers and allow looking at the synchronicity of identified events. The363

correlation of the different cores based on XRF matching for all the studied cores is presented in Fig.364

10. This correlation is used to derive the results presented in the following sections.365

5.2 Depositional pattern and sedimentation rates in the different basins and high366

The correlation of the Klg cores spanning the two main sedimentary basins of the Marmara Sea and367

its Western High allows drawing conclusions regarding the depositional pattern.368

Radiogenic lead data provide a consistent picture of the rate of hemipelagic sedimentation in the east-369

ern and central part of the Marmara Sea. The rates are higher in the basins than on adjacent ridges.370

The highest value obtained in the Tekirdağ Basin is consistent with the rapid subsidence of the basin371

near the fault strand described in Seeber et al. (2004), and with specific locations of the cores Klg05372

and Klg08 near the basin margins providing continuous terrigenous input.373

The mean sedimentation rate can also be inferred since the beginning of the Beyşehir occupation374

phase marked by a step increase in lead at 1200 cal. yr BC, 2.85 m and 3 m of cumulated sediments375

have been deposited in the Tekirdağ Basin at the location of Klg05 and in the Central Basin at the376

location of Klg02. The average sedimentation is around 0.09 cm/yr and is dominated by turbiditic377

deposits representing about 80% of the sediments. The hemipelagic sedimentation rate cannot be378

extrapolated to obtain meaningful results by removing turbidite thickness. Most turbidites have an379

erosive base visible in the X-Ray images. Their emplacement in the basins is thus associated with380

efficient sedimentary remobilization characterized by sea floor erosion and incorporation of a signif-381

icant part of the contemporary sea floor. An extreme case is Klg08 core located at the foot of the382

Tekirdağ slope like Klg05 but on the hanging wall of the Tekirdağ Fault. The hemipelagic rates at the383

Klg08 and Klg05 sites are similar, but the mean sedimentation rate in Klg08 is more than three time384

lower than in Klg05. Turbidites are highly erosive at the Klg08 site and are deposited preferentially385

further north on the down-thrown side of the fault, a local topographic low repeatedly created by386

earthquake rupture along the Tekirdağ Fault. A similar conclusion was reached by Beck et al. (2007)387

in the Central Basin.388

In the Western High, the mean sedimentation rates of cores Klg06 and Klg07 are three times lower389

than in the Tekirdağ Basin during the period characterized by high lead intensities starting respec-390

tively at the depth of 1.2 m and 0.8 m (Fig. 8-part b). This is in agreement with the lower hemipelagic391

rate and the thin fine-grained turbidites deposits.392

Finally, the two consecutive thick turbidites recorded both in the Tekirdağ and the Central Basin393
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are anomalously large compare to the other turbidites identified and are reminiscent of the homogen-394

ites deposited in the lower (pre-Holocene) lacustrine sequence during a period of high terrigenous395

accumulation rates on the edges of the Marmara Sea (Beck et al., 2007). The occurrence of these396

thick turbidites suggests a temporary increase in terrigenous sediment supply that would occur after397

the Beyşehir occupation phase. Once a significant part of the forest cover has been removed and398

that large scale urbanisation started, erosion and increased sedimentary transport occurred in the399

Marmara watersheds. Sediment supply to the Marmara shelves thus increased and larger turbidites400

were deposited. As the watershed adjusted to the changed environment, sediment supply gradually401

decreased, and thinner turbidites were deposited. These inferences suggest that the thickness of tur-402

bidites in the Marmara Sea is controlled by the amount of cumulated unstable sediments on slopes403

between earthquakes as well as by the strength of earthquake shaking.404

5.3 Turbidites triggered by the 1912 historical earthquake405

The 210Pbxs data provide a chronology of the most recent sedimentary events and thus, allow charac-406

terizing turbidites triggered by the 1912 M=7.4 Mürefte earthquake.407

The rupture associated with the 1912 earthquake was documented onland west of the Marmara Sea408

(Rockwell et al., 2009; Aksoy et al., 2010) and offshore on the Tekirdağ Fault (Armijo et al., 2005;409

Aksoy et al., 2010). Figure 7 indicates that the most recent mass wasting event called e1 recorded410

in cores Klg02, Klg05, Klg08, Klg06, Klg07 occurs at a depth where 210Pbxs levels reach minimal411

meaningful values (10 to 20 mBq.g−1). Considering the interface 210Pbxs activities of nearby ROV412

(140 to 170 mBq.g−1), and its half-life of 22.3 years, the low values of 210Pbxs just above the level of413

the most recent mass-wasting event would occur 4-5 half-lives or 80 to 100 years. The most recent414

turbidites in the Tekirdağ Basin and in the Western High are thus interpreted to be related to the415

1912 earthquake.416

The 1912 turbidite in Klg05 and Klg08 cores has two basal sandy layers, which is a characteristic417

of turbidites deposited at the Klg05 site in the Tekirdağ Basin. The earthquake has also left a sedi-418

mentary imprint in the Central Basin, which suggests that the rupture of the Tekirdağ Segment can419

generate turbidites in the Central Basin. This implies that the two different depocenters of the Mar-420

mara Sea, which are the Tekirdağ and the Central Basins, may have the potential to record the same421

large magnitude earthquake.422
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5.4 Origin of turbidites423

The most recent turbidite in the studied cores have been generated by the 1912 earthquake, and one424

can wonder if other identified turbidites have a seismic origin. Sediment gravity flows can be produced425

by a wealth of other processes like storm, wave loading, tsunamis, and sediment loading (Adams, 1990;426

Goldfinger et al., 2003b). Seismoturbidites have often particular sedimentological imprints like multiple427

coarse bases indicating multiple sources (Nakajima and Kanai, 2000; Goldfinger et al., 2008), complex428

laminations (Shiki et al., 2000; McHugh et al., 2011), flaser beds which are tractive current-induced429

structures that can be related to seiche motion (Beck et al., 2007), erosional contacts, grain-size430

breaks and abrupt changes in sedimentary structure (Nakajima and Kanai, 2000; Shiki et al., 2000).431

They can also have a particular geochemical imprint (Nakajima and Kanai, 2000) with an increase in432

terrigenous sediment content (McHugh et al., 2011). These criteria are met for all turbidites in Klg05433

and most in Klg02 (see section 4.2). The two coarser basal pulses observed in majority of turbidites434

in Klg05 are probably related to flow through separate channels that amalgamate at the site located435

near the base of the basin slope. However, as stated by Masson et al. (2011) it is difficult based436

on sedimentological criteria alone to recognise without ambiguity seismically-generated turbidites.437

Another key test, commonly used in paleoseismology, is to check the synchronicity of the documented438

events at different sites within a given structural setting (Goldfinger, 2011). In the following, the439

synchronicity test is applied to the Kullenberg and the published cores. The test relies on the core440

correlation obtained by using lithological descriptions, χ, XRF, granulometric data, radiocarbon and441

210Pb dating.442

In the Tekirdağ Basin, Klg05 was compared to 1) the C8 core (McHugh et al., 2006) located 3 km443

north, 2) the Klg08 core located 6 km west, 3) the MAR97-02 (Hiscott et al., 2002) located 6.6 km444

north, and 4) the MD2432 located 6.7 km west (Fig. 1). The 110 cm long C8 core is too short to445

sample the deep thick turbidites, nevertheless there is still a tie between the cores (Fig. 15 in the446

appendices). The comparison between Klg05 and Klg08 is not straightforward because of the highly447

compressed sedimentary record of Klg08 (Fig. 11 and 15 in appendices), but there is still a clear448

correspondence between event 4 (56 cm) in Klg08 and event 4 (100 cm) in Klg05 and between event 2449

(41 cm) in Klg08 and event 2 (48 cm) in Klg05 (Fig. 15). At greater depth, the two main amalgamated450

turbidites around 70 cm depth in the core Klg08 correspond to the two largest turbidites (events 5451

and 6) in Klg05. They show multiple pulses and erosional cut-outs that suggest seismic triggering452

(Nakajima and Kanai, 2000; Shiki et al., 2000). Due to the lack of high resolution data the comparison453

with MAR97-02 core (Hiscott and Aksu, 2002) is difficult. Nonetheless this core, located 6.5 km to454
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the north (Fig. 1), presents two coarser intervals at 70-110 cm and 140-185 cm depths that could455

correspond to the two large events e5 and e6 documented in Klg05 (Fig.15 in the appendices). In456

addition, radiocarbon ages dating are identical for the e5 turbidite and for the coarser layer at 70-110457

cm in the MAR97-02. Finally, the MD2432 core can be correlated to the Klg05 core based on the χ458

measurement. Density data also indicate turbiditic events that would correspond to events 3 to 6 in459

Klg05.460

In the Western High, fine-grained turbidites recorded in cores Klg06 and Klg07, 15 km apart, can be461

easily related because they have similar geochemical profiles (Fig. 8). In both cores, almost a one-to-462

one correspondence between turbidites is recorded. The two largest turbidites e5 and e8-e7 in Klg06463

and Klg07 are correlative and are marked by a distinctive strong terrigenous signature in sand, Zr, χ464

(Figs. 6 and 15). Silty turbidites in the Western High are dissimilar to the slump-induced turbidites465

present in the Tekirdağ and Central Basins, but they can have a common seismic origin. Indeed, M >7466

earthquakes on the Tekirdağ Segment can trigger sandy turbidity currents in the basin and a muddy467

suspension cloud, which would deposit a very fine-grained distal turbidite layer in the High (Inouchi468

et al., 1996; Shiki et al., 2000). So our final test is to look if sandy turbidites in the Tekirdağ Basin469

are synchronous with silty turbidites in the Western High (Fig. 10). The XRF correlation implies470

that the two largest turbidites e5 and e6 in Klg05 correspond to the distinctive distal turbidites e5471

and e8-e7 in Klg06 and in Klg07 on the Western High marked by sand, Zr, χ peaks. Furthermore, a472

similar number of turbidites are identified in cores above the time horizon underlined in red in Fig.10.473

Both observations suggest synchronicity of the turbidites in Tekirdağ and in the Western High. The474

suspension cloud responsible for the fine-grained turbidites must be at least 400 m thick as the Klg06475

site is about 400 m higher than the Klg05 site. Shiki et al. (2000) state that the plumes associated to476

earthquake triggered turbidites are higher and thicker that the usual suspension clouds derived from477

canyon flow turbidity currents. Furthermore McHugh et al. (2011) detected an unusual 600 m thick478

sediments plume still present almost 2 months after the M=7.0 Häıti earthquake. The occurrence479

of distal turbidites and their correlation with basinal proximal turbidites suggests that both types of480

turbidites have been uniquely generated by earthquake shaking in the Tekirdağ Basin and not by some481

other natural phenomenon.482

In the Central Basin, the Klg02 core is compared to core C4 (McHugh et al., 2006) and to core483

MD2429 (Beck et al., 2007). The two largest turbidites e3 and e4 recorded in Klg02 were documented484

at the same depth in the core C4 of McHugh et al. (2006) (Fig. 1). Additionally, two deeper organic485

rich layers in C4 can be correlated with the e6 and e7 events of Klg02 (Fig. 15). In the nearby core486
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MD2429 the magnetic susceptibility record of the first 6 metres (Beck et al., 2007) is identical to the487

magnetic susceptibility data of the Klg02 core with two peaks framing low values (Fig. 15). These488

two peaks correspond to the two main sandy layers forming the base of events e3 and e4. The relative489

low values match with the main body of the second homogenite (Fig. 5). The density data of MD2429490

core allows identifying other major turbidites in the cores which corresponds to events 5, 6 and 7 in491

Klg05. Turbidites in the Central Basin have thus significant lateral extension. We infer that they also492

have a seismic trigger.493

6 Paleoseismological implications494

The sedimentary cores studied provide a paleoseismological record of the Tekirdağ Fault ruptures.495

The 1912 Mürefte earthquake (event 1) is recorded in the Tekirdağ Basin and in the Western High as496

well as in Central Basin where it has a faint expression. Considering the 14C age of 2185 yr BP below497

event 6 in Klg05 with the reservoir correction of 340-460 years proposed by McHugh et al. (2006), the498

mean recurrence time of events along the Tekirdağ Fault would be about 300 years. Combining all499

radiocarbon ages dating obtained in cores from the Tekirdağ Basin and an average reservoir correction500

of 450 years, we can propose the following possible match between sedimentary events and historical501

earthquakes (Ambraseys, 2002): events 2 to 5 could correspond, respectively, to events occurring in502

1766, 1354 or 1343, 1063, 557 and 437. The obtained paleoseismological record might not be complete.503

The triggering of seismoturbidites also depends on the availability and volume of unstable sediments504

that accumulate on the basin slopes.505

The inner Central Basin (Klg02) located between the Tekirdağ and the Central Faults (Fig. 1) can506

also record mass-wasting events synchronous with the Tekirdağ Basin. The first example is the 1912507

disturbances triggered by the rupture of the Tekirdağ Fault. An other example is the top turbidite508

in the Central Basin (event 3-Klg02) which seems synchronous with the shallowest turbidite in the509

Tekirdağ Basin (event 5-Klg05; Figs. 8 and 10). The latter implies massive slope failures both in510

Tekirdağ and Central Basins. It might have been triggered by the Tekirdağ fault rupture alone, but511

was most probably triggered by the quasi-synchronous rupture of the Tekirdağ and Central Faults.512

Such rupture scenario may have happened during the M= 7.1 May 1766 and M=7.4 August 1766513

earthquake sequence as modelled in Pondard et al. (2007).514

Another noticeable paleoseismological result is the relatively low number of turbiditic events recorded515

in the Central Basin, which could record earthquakes rupturing the Tekirdağ and Central Segments.516

It might be a site effect as the Klg02 core is situated 14 km away from the basins slopes and only517
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large mass wasting events can be recorded. In addition, even if sediment supply on the shelf and slope518

of the Central Basin is similar to the Tekirdağ Basin, there might not be enough sediments available519

to trigger turbiditic mass flow in the inner basin each time there is a M>7 earthquake on the Central520

or Tekirdağ Faults. An other possible explanation would be frequent ruptures of the Central and521

Tekirdağ Segments in sequence or as a single through-going rupture. In these cases, we would have522

indistinguishable coeval turbiditic deposits in both basins. The last possibility would be a less frequent523

earthquake rupture of the Central Segment that would be related to partial creep along that specific524

segment. Partial creep would mean lower recurrence rate and maximum magnitude on the Central525

Segment than on the other NAF Segments. More sedimentary records from the Central Basin are526

needed to resolve that key question, which have fundamental consequences on earthquake recurrence527

rate and earthquake magnitude.528

529

Conclusions530

The combination of X-ray imagery, XRF scanning and high-resolution granulometric measurements531

performed on five cores has documented the cyclic occurrence of instantaneous sedimentary events532

deposited in the Marmara Sea as well as global sedimentation changes that can be used to relate the533

different records. Radiocarbon age dating suggests that about eight major turbiditic events occurred534

in the Tekirdağ Basin and seven in the Central Basin in the last 2500 years.535

Turbiditic events appear to be reliable paleoseismological indicators of ruptures of the Tekirdağ Fault.536

This interpretation is first based on (1) specific XRF and grain size characteristics, (2) synchronicity537

of turbiditic events identified in different cores and (3) correlative proximal sandy turbidites in the538

basins with distal fine-grained turbidites in the high. The most straightforward triggering mechanism539

for coeval distal and proximal events is shaking induced by earthquakes breaking the Tekirdağ Segment540

of the North Anatolian Fault. The relatively low number of turbidites documented in the Central Basin541

compared to the Tekirdağ Basin might be linked to ruptures in close sequence on the Tekirdağ and542

Central Segments like in 1766 (Pondard et al., 2007) or to creeping along the Central Segment. A link543

is also proposed between the first observed sedimentary event and the M=7.4 1912 Mürefte earthquake.544

This earthquake that last activated the Tekirdağ Fault left a distinct imprint in all cores. Finally,545

more effort must be achieved to obtain reliable age model of the sedimentary cores, which would allow546

a better understanding of the seismic cycle of the different NAF Segments crossing the Marmara Sea.547
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6 Paleoseismological implications

Figure 2: Typical examples of turbidites: granulometric and geochemical signatures as described in
Sec.4. Turbidites are composed of a basal sandy layer, an upper silty unit with frequent laminations
and a top light grey clayey unit. A : X-ray imagery and granulometry zooms of event 7 in Klg05. Yellow
label on the X-ray indicates the position of the event as in Fig. 4. B : X-ray imagery, granulometry
and geochemical profiles of event 1 in Klg05. Turbidites can have a positive signature in Zirconium
(pink curve), negative in bromine (green curve) and just below turbidites Manganese (blue curve)
typically shows a peak. Yellow names indicate events as referenced in Fig.4.
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6 Paleoseismological implications

Figure 3: Characteristics of the thickest turbidites in Klg02 and Klg05 cores by using X-ray, log, grain
size and geochemical parameters.
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6 Paleoseismological implications

Figure 6: Stratigraphic log for the first 80 cm of the klg06 and Klg07 cores situated in the Western High
Ridge obtained combining X-ray imagery, grain size, magnetic susceptibility data, Mn and Ti/Al or
Zr standardized intensities. Main events deposited are identified and labelled; event label is changing
according to their stratigraphic position, beginning with 1 at the top of the core. The complete
stratigraphic logs are presented in the appendices (Figs. 12 and 13)
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6 Paleoseismological implications

Figure 10: Correlation obtained from XRF data (Fig. 8) for the cores Klg08, Klg05, Klg06, Klg07 and
Klg02. Lines between cores represent the correlative sedimentary events identified in Figs. 4, 5, 9.
Uncalibrated radiocarbon ages (not calibrated) for shells (in red), planktonic foraminifers (in purple),
benthic foraminifers (in light rose) are presented in Table 2. The radiocarbon ages in green are from
McHugh et al. (2006).
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Table 2: AMS Radiocarbon dating results performed on bivalve shell fragments (sh), bulk sediment
(TOC+TIC) (bk), benthic (bf) and planktonic (plc) foraminifers. Sample name written in italic are
samples considered to be reworked and were not used for the interpretations. Analyses were performed
at Artemis LMC14 laboratory and AEON laboratories; 14C dating have not been calibrated and
corrected for reservoir effect.

Sample Type Age (yr BP) error (± yr)
Klg02, 180 cm bk 4830 20
Klg02, 185 cm bk 3430 20
Klg02, 352 cm bk 5060 20
Klg03, 114 cm plc 2380 15
Klg03, 114 cm bf 1630 30
Klg03, 158 cm sh 2370 30
Klg03, 161 cm plc 2370 60
Klg05, 48 cm bf 1090 15
Klg05, 94 cm bk 3070 20
Klg05, 102 cm bk 3110 20
Klg05, 103 cm bf 1845 15
Klg05, 146 cm bk 3870 20
Klg05, 152 cm sh 1945 30
Klg05, 167 cm bf 1735 30
Klg05, 178 cm sh 35790 330
Klg05, 217 cm bk 5180 20
Klg05, 220 cm sh 13700 45
Klg05, 229 cm sh 39480 490
Klg05, 234 cm sh 14390 50
Klg05, 250 cm plc 2185 20
Klg05, 250 cm bf 2445 25
Klg05, 261 cm bk 4180 20
Klg06, 278 cm sh 33870 270
Klg06, 366 cm plc 6880 120
Klg07, 61 cm plc 2500 30
Klg07, 212 cm plc 4815 45
Klg07, 255 cm sh 7390 30
Klg07, 297 cm sh 7875 35
Klg08, 73 cm sh 2880 30
Klg08, 90 cm sh 30200 180
Klg08, 117 cm sh 28880 150
Klg08, 124 cm sh 12850 40
Klg08, 145 cm sh 4670 30
Klg08, 150 cm sh 21380 80
Klg08, 220 cm sh 30160 180
Klg08, 326 cm sh 39820 510
Klg08, 355 cm sh 12770 45
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Aksoy, M., Meghraoui, M., Vallée, M., and Çakır, Z.: Rupture characteristics of the AD 1912 Mürefte567

(Ganos) earthquake segment of the North Anatolian fault (western Turkey), Geology, 38, 991, 2010.568

Ambraseys, N.: The seismic activity of the Marmara Sea region over the last 2000 years, Bulletin of569

the Seismological Society of America, 92, 2002.570

Armijo, R., Meyer, B., Hubert, A., and Barka, A.: Westward propagation of the North Anatolian571

fault into the northern Aegean: Timing and kinematics, Geology, 27, 267, 1999.572

Armijo, R., Meyer, B., Navarro, S., King, G., and Barka, A.: Asymmetric slip partitioning in the Sea573

of Marmara pull-apart: a clue to propagation processes of the North Anatolian Fault?, Terra Nova,574

14, 80–86, 2002.575
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