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Abstract Growing evidence suggests that membrane
microdomains enriched in cholesterol and sphingomyelin
are sites for numerous cellular processes, including sig-
naling, vesicular transport, interaction with pathogens, and
viral infection, etc. Recently some members of the annexin
family of conserved calcium and membrane-binding pro-
teins have been recognized as cholesterol-interacting
molecules and suggested to play a role in the formation,
stabilization, and dynamics of membrane microdomains to
affect membrane lateral organization and to attract other
proteins and signaling molecules onto their territory. Fur-
thermore, annexins were implicated in the interactions
between cytosolic and membrane molecules, in the
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turnover and storage of cholesterol and in various signaling
pathways. In this review, we focus on the mechanisms of
interaction of annexins with lipid microdomains and the
role of annexins in membrane microdomains dynamics
including possible participation of the domain-associated
forms of annexins in the etiology of human lysosomal
storage disease called Niemann-Pick type C disease, rela-
ted to the abnormal storage of cholesterol in the lysosome-
like intracellular compartment. The involvement of
annexins and cholesterol/sphingomyelin-enriched mem-
brane microdomains in other pathologies including cardiac
dysfunctions, neurodegenerative diseases, obesity, diabetes
mellitus, and cancer is likely, but is not supported by
substantial experimental observations, and therefore awaits
further clarification.

Keywords Annexins - Membrane microdomains -
Cholesterol - Niemann-Pick type C disease

Annexins as calcium sensors and membrane structure
organizers

The role of cholesterol in signal transduction, immune
response, cell infection, and cell surface polarity has
recently been gaining the attention of many investigators
[1-3]. It has been proposed that misregulated cholesterol
trafficking and intracellular distribution appear to accom-
pany development and/or sustenance of various unrelated
pathologies such as neurodegenerative diseases (Alzhei-
mer’s disease, Parkinson’s disease), cardiac dysfunctions,
diabetes mellitus, diabetes and lysosome-storage diseases
such as the Niemann-Pick type A/B and type C diseases,
Gaucher type I disease, Krabbe disease, and perhaps other
lipidoses [4]. Moreover, many protein families were
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described as affecting cholesterol transport or as being
affected by cholesterol. An example is annexins, which
were found to co-localize with cholesterol at the plasma
membrane and to follow cholesterol trafficking throughout
the endocytic pathway [5, 6]. These proteins provide a link
between calcium signaling and cholesterol transport [5, 6]
and were suggested to participate in the formation of
cholesterol-rich membrane domains either in the plasma
membrane or membranes of the intracellular organelles
such as endoplasmic reticulum, endosomes, lysosomes, and
the Golgi apparatus [7-10].

As mentioned above, changes in intracellular [Ca®*] are
the most powerful factors regulating the function of pro-
teins and their interactions with biological membranes [11].
Eukaryotic cells contain a wide variety of Ca®'-sensing
proteins [12], including annexins [13], that participate, as
effectors, in mediating cellular responses to changes in
cytosolic Ca®" concentration ([Ca2+]c). These membrane-
interacting proteins are characterized by the presence of
globular domains allowing for specific binding to mem-
branes, e.g., pleckstrin homology domain, C2 domain, and
the annexin motif [14]. Understanding how these domains
are distributed, structured, and how they contribute to
membrane—protein interactions is crucial for understanding
the localization, function, and mechanism of action of
certain proteins.

The annexins are a family of calcium-dependent mem-
brane-binding proteins that are present in all eukaryotes.
There are currently 12 identified human annexins, all of
which contain unique calcium-binding sites, embedded in
the highly conserved annexin repeat motifs within the
C-terminal core [13, 15, 16]. In addition to the C-terminal,
core annexins contain a significantly more variable N-ter-
minal head. Annexins, due to their ability to bind biological
membranes in a calcium-dependent manner, provide a link
between calcium signaling and membrane-related cellular
functions, including various signaling pathways, cell dif-
ferentiation, and migration [13]. Members of the annexin
protein family are ubiquitously expressed and function as
intracellular Ca®" sensors. Most cells contain multiple
annexins. It is strongly believed that annexins exert their
biological function through influencing membrane
dynamics, promoting membrane segregation, and mem-
brane fusion [13]. Moreover, annexins were found to
participate in plasma membrane repair mechanisms by
reacting to the influx of extracellular Ca®* evoked by
mechanical stress, toxins, and pathogens, etc. [16]. The
combination of the presence of various annexins in a given
cell type together with their individual Ca**-sensitivity
allow for spatially confined, graded responses to membrane
injury [16].

On the basis of growing evidence it can be assumed that
annexins are indeed well suited to perform their specific

@ Springer

biological activities due to the presence of a unique
N-terminal domain that enables each annexin to perform
unique functions in a diverse range of cellular processes
including cytoskeleton regulation, membrane conductance,
and organization as well as exo- and endocytosis [17].
Given their involvement in such a variety of processes,
annexins have also been implicated in a range of patholo-
gies, such as the progression of cancer, diabetes, the
autoimmune disorder anti-phospholipid syndrome, and
others frequently related to dysregulated vesicular traffic
[18-20].

In this review, we will discuss the participation of
annexins in the formation, stabilization, and cell distribu-
tion of cholesterol, and sphingomyelin-enriched
microdomains. These lipid microdomains were identified
on the basis of their ability to remain insoluble in cold non-
ionic detergents such as Triton X-100. Their properties are
briefly described in the next paragraph. We will also
describe evidence suggesting that intracellular trafficking
of such domains and their presence not only in the plasma
membrane but also in membranes of the intracellular
organelles may accompany cholesterol-related pathologies
with the focus on the Niemann-Pick type C disease.

Lipid microdomains at plasma membrane
and membranes of intracellular organelles

Biological membranes are assumed to encompass a pleth-
ora of protein-lipid and protein—protein interactions that
compartmentalize the bilayer into temporarily formed
ordered structures called membrane microdomains. These
laterally organized entities are characterized by various
half-life times and chemical composition, and therefore
posses different biophysical and biochemical properties.
Lipid-based membrane domains, frequently called lipid
rafts, constitute an important group of structures of the
plasma membrane [21, 22]. These microdomains are
believed to be small (10-200 nm) and, under normal
conditions, cannot be resolved by light microscopy [23].
They are most often functionally identified by their resis-
tance to solubilization by cold non-ionic detergents; hence,
their alternate name is detergent-resistant membranes
(DRMs). Domain separation can be visualized microscop-
ically when the cellular cholesterol concentration is
experimentally lowered, leading to a coalescence of the
previously dispersed rafts [24]. Domains or rafts have also
been reported to exist in membranes of the intracellular
organelles. Among many microdomains identified so far,
some are enriched in specific lipids, such as cholesterol and
sphingolipids, as well as specific proteins, and were sug-
gested to be involved in the regulation of various cellular
processes [25, 26].
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Some investigators suggest that proteins, both peripheral
and transmembrane ones, postranslationally modified with
saturated lipids are recruited to DRMs while those with
short, unsaturated, and/or branched hydrocarbon chains are
not [27]. Indeed, a relatively large number of observations
support the association of glycophosphatidylinositol (GPI)-
anchored proteins, the most widely studied group of satu-
rated lipid-modified extracellular peripheral proteins, with
DRMs [28, 29]. Such preferential interactions between
specialized membrane domains and GPI-anchored proteins
were also shown using biomimetic membranes such as the
supported bilayers [30]. In the case of transmembrane and
peripheral membrane proteins, their DRM partitioning is
mediated via S-acylation with saturated fatty acids [31].

The mechanism of membrane microdomain formation is
not well understood. In fact, the whole concept of lipid-
based microdomains [26, 32] is still a matter of scientific
dispute. Uncertainty still exists as to the raft existence, but
also their size, mechanism of formation, stability, as well
participation in vital cellular functions [33, 34]. Further-
more, arguments are raised against the use of detergents to
isolate lipid rafts due to the possibility of creating experi-
mental artifacts. In relation to that, the detergent-free
methods are being developed to avoid the unwanted effects
of detergents on the membrane structure [35, 36]. In addi-
tion, the existence of membrane microdomains in the
cholesterol-poor membranes was reported, suggesting the
role of polyunsaturated fatty acid moieties of phospholipids
[37] or ceramides [38] in membrane microdomain forma-
tion. Finally, the role of electrostatic interactions in
sequestration of proteins into membrane local heterogene-
ities with different chemical composition, for example
enriched in phosphatidylinositol-4,5-bisphosphate, has been
reported [39] thus minimalizing the role of hydrophobic
interactions between lipids and/or lipids and proteins in the
formation and stability of membrane microdomains.

Despite what is mentioned above, many investigators
agree that protein sorting and assembly during membrane
biogenesis is accompanied by the appearance of ordered
domains of lipids. Some of these microdomains are com-
posed of phospholipids, glycosphingolipids, and
cholesterol. It has been shown that cholesterol interacts
with sphingomyelin to form a liquid-ordered bilayer phase;
how other lipid molecules are participating in the formation
of rafts is, however, not well characterized. The observa-
tions accumulated recently suggest that the order created
by the quasicrystalline phase may provide an appropriate
scaffold for the organization and assembly of raft proteins
on both sides of the membrane [40]. Atomic-scale molec-
ular dynamics simulations revealed that ordering and the
associated packing effects in membranes largely result
from the unique features of the cholesterol molecule that
distinguish it from other sterols. Cholesterol molecules

prefer to be located in the second coordination shell,
avoiding direct cholesterol-cholesterol contacts, and form
a three-fold symmetric arrangement with the proximal
cholesterol molecules. At larger distances, the lateral three-
fold organization is broken by thermal fluctuations. For
other sterols, with less structural asymmetry, the three-fold
arrangement is considerably lost. In conclusion, cholesterol
molecules act collectively in lipid membranes. This is the
main reason why the liquid-ordered phase only emerges at
cholesterol concentrations well above 10 mol%, when the
collective self-organization of cholesterol molecules arises
spontaneously [41].

Concerning another important component of the lipid
rafts, i.e., sphingomyelin, systematic analysis of the effect
of the headgroup size on membrane properties and inter-
actions with cholesterol revealed that an increase in the
headgroup size resulted in a decrease in the main phase
transition. Atom-scale molecular-dynamic simulations
have shown that the molecular areas increased and the acyl
chain order decreased with increasing headgroup size.
Furthermore, the transition temperatures were constantly
higher for sphingomyelin headgroup analogs compared to
corresponding phosphatidylcholine headgroup analogs.
Analysis of the affinity of cholesterol for phospholipid
bilayers revealed that an increased headgroup size
increased sterol affinity for the bilayer, with a higher sterol
affinity for sphingomyelin analogs as compared to phos-
phatidylcholine analogs. Moreover, the size of the
headgroup affected the formation and composition of
cholesterol-containing ordered domains [42]. Other results
emphasized that the interfacial electrostatic interactions are
important for stabilizing cholesterol interactions with
sphingomyelins [43]. These processes were also studied
using giant unilamelar vesicles [44].

Furthermore, it has been reported that efficient depletion
of sphingolipids in two different cell lines did not abrogate
the ability to isolate DRMs from these cells, suggesting that
even extensive sphingolipid depletion does not affect lipid
raft integrity or the function of the lipid-raft-associated
proteins, as for example MRP1 [45]. Sphingolipids consti-
tute a diverse array of lipids in which fatty acids are linked
through amide bonds to a long-chain base and, structurally,
they form the building blocks of eukaryotic membranes.
Ceramide is the simplest one and serves as a precursor for the
synthesis of the three main types of complex sphingolipids:
sphingomyelins, glycosphingolipids, and gangliosides.
Sphingolipids are no longer considered as mere structural
spectators, but as bioactive molecules with functions beyond
providing a mechanically stable and chemically resistant
barrier to a diverse array of cellular processes.

Protein sorting into membrane lipid microdomains is
tightly regulated [46]. Furthermore, it has been evidenced
that the function of membrane proteins may depend on their
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residence at the lipid rafts. For example, in the case of Mrpl
(ABCC1), the disruption of cortical actin resulted in a loss
of Mrpl from DRMs and its internalization [47]. Locali-
zation of many proteins at lipid microdomains is considered
as an important factor regulating their biological activity, as
it was shown for adenosine receptors [48], NADPH oxidase
sub-units and related proteins [49], many types of ion
channels [50] including human ether-a-go—go-related gene
(HERG) potassium channels [51], calcium-activated chlo-
ride channels (CACCs) [52], peroxisomal membrane
proteins required for peroxisome biogenesis [53], human
herpesvirus-6 (a lipid raft-associated mechanism of entry
into cell [54]), protein complexes involved in calcium entry
Orail, TRPCs and STIM1 [55], caveolin 1 (Cav-1 may
contribute to persistent infection in macrophages [56]),
cadherins [57], and supervillin. The latter is an F-actin- and
myosin II-binding protein that tightly associates with sig-
naling proteins in cholesterol-rich domains [58].

Above we described evidence that lipid microdomains, as
revealed by existence of DRMs, predominantly reside in the
plasma membrane. However, they can be identified in the
intracellular compartments of the cellular secretory pathway
as well. In this pathway, the membranes of the Golgi complex
represent a transition stage between the cholesterol-poor
membranes of the endoplasmic reticulum and the cholesterol-
rich plasma membrane. DRMs isolated from HT29 cells were
characterized by the presence of the Golgi-resident SPCA1
Ca**/Mn** pump and the raft-resident, flotillin-2, while
SERCA2b was detergent-soluble. Furthermore, cholesterol
depletion of these cells resulted in redistribution of flotillin-2
and SPCA1d to the detergent-soluble fractions of the density
gradient and inhibited the activity of SPCA1d, while SER-
CAZ2b activity was not altered [59].

It is accepted that the endoplasmic reticulum is poor in
lipid rafts [46], and that these microdomains are present in
the lipid biosynthetic pathway in the Golgi [60]. The rea-
son for that is that although cholesterol and ceramide (the
precursor of sphingolipids) are both synthesized in the
endoplasmic reticulum, most of the head groups of the
sphingolipids are added only upon reaching the Golgi, and
then rafts can begin to form. It must be borne in mind that
some proteins characteristic for the DRM fraction were
also found in endoplasmic reticulum. Cholesterol and
sphingomyelin associate in membrane microdomains and
are metabolically co-regulated. Such coordinate regulation
occurs in the Golgi apparatus where oxysterol binding
protein (OSBP) mediates sterol-dependent activation of the
ceramide transport protein (CERT) and sphingomyelin
synthesis. CERT transfer activity is dependent on its
phosphatidylinositol 4  phosphate-specific  pleckstrin
homology domain [45, 61].

Several endoplasmic reticulum (ER) proteins including
the sigma-1 receptor chaperone were identified at lipid raft-
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like microdomains of the ER membrane. The sigma-1
receptor chaperone, which is highly expressed at a subdo-
main of the ER membrane directly apposing mitochondria,
known as the mitochondria-associated ER membrane or
MAM, has been shown to associate with steroids as well as
cholesterol. The sigma-1 receptor has been implicated in
ER lipid metabolism/transport, lipid raft reconstitution at
the plasma membrane, trophic factor signaling, cellular
differentiation, and cellular protection against beta-amy-
loid-induced neurotoxicity. Recent studies on the sigma-1
receptor chaperone and other ER proteins clearly suggest
that cholesterol may regulate several important functions of
the ER including folding, degradation, compartmentaliza-
tion, segregation of ER proteins, and the biosynthesis of
sphingolipids [62].

Annexins in organization and stabilization
of membrane microdomains enriched in cholesterol

One of the intriguing features of annexins is their ability to
participate in the lateral organization of artificial lipid
membranes. Thus, the question arises whether annexins
might act in a similar manner also in vivo, affecting lateral
organization of lipids, especially cholesterol, and of other
membrane components and to contribute, in this way, to
biogenesis, function and sustenance of cholesterol-enriched
microdomains. In other words, whether annexins may
contribute to the organization, stabilization, and dynamics
of lipid rafts by affecting their membrane lateral distribu-
tion. Furthermore, is this idea consistent with observations
that annexins are able to attract other proteins and signaling
molecules onto lipid rafts and, by influencing soluble
versus membrane protein interactions, may serve as regu-
latory molecules in various signaling pathways?

There is still some controversy among investigators as to
why several members of the annexin family, such as
AnxA2, AnxAS, AnxA6, and AnxA13, appear to be asso-
ciated with membrane microdomains, as evidenced by the
analysis of protein composition of DRMs, while others
seem to be excluded from the raft territory. The reason for
this could be related to the different calcium and pH sen-
sitivity of various annexins, their lipid specificity, as well
as phosphorylation [63, 64] and membrane partners with
whom annexins can interact [9, 10, 13, 15]. Nevertheless,
proteomic and immunochemical studies revealed the
presence of certain annexins at DRMs fractions enriched in
membrane lipid rafts [65-67], suggesting that annexins
may participate in biogenesis, stabilization, and dynamics
of these membrane microdomains.

Experimental evidence along with the analysis of pri-
mary structures favors the idea that some annexins,
especially AnxA2, AnxA6, and AnxAl13 may resemble
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genuine cholesterol-interacting proteins, and that intracel-
lular localization and membrane binding of annexins at low
pH is determined by cholesterol (Fig. 1) [68-71]. Fur-
thermore, experimental data suggest that certain functions
of annexins may be regulated by cholesterol and, last but
not least, that annexins may participate in the cholesterol
traffic and storage. Factors were identified that play a role
in regulation of annexin-membrane interactions, including
calcium, pH, and membrane lipid composition. Growing
evidence, coming mostly from in vitro experiments, sug-
gests that cholesterol may affect the affinity constants of
annexins binding to artificial lipid membranes such as
liposomes of various chemical composition [72, 73] or
solid supported lipid membranes [74].

Below we summarize the evidence suggesting that
annexins residing at membrane microdomains enriched
with cholesterol may participate in various membrane
functions. We also provide supportive information coming
from in vitro experiments.

Annexins in lateral organization and function
of biological membranes

One of the annexins present in mammalian cells and tissue
that has been localized to the membrane lipid rafts is AnxA2
[75]. Moreover, it has been demonstrated that catechol-
amine-evoked formation of lipid rafts in the plasma
membrane, essential for exocytosis, can be attributed to the
AnxA2 tetramer. On the basis of this finding, it was pro-
posed that AnxA2 may act as a calcium-dependent
promoter of lipid microdomains required for structural and
spatial organization of the exocytotic machinery [76].
Furthermore, there is growing evidence suggesting that
cholesterol is a very important factor influencing AnxA2
interactions with membranes of cellular organelles [77, 78].
AnxA2 was shown to be associated with chromaffin gran-
ules in the presence of EGTA [79]. This bound AnxA2 was
released from the membranes by methyl-f-cyclodextrin
(MfCD), which depleted cholesterol from the membranes.
Restoration of the cholesterol content of chromaffin granule
membranes with cholesterol/MBCD complexes restored the
Ca*"-independent binding of AnxA2 [79]. The core domain
of AnxA2 was found to be responsible for the cholesterol-
mediated effects [77]. A similar phenomenon was previ-
ously described [7]. Even a low concentration of cholesterol
sequestering agents, such as filipin or digitonin, quantita-
tively released AnxA2 from the membranes of early
endosomes of BHK cells [77]. It is proposed that AnxA2
forms cholesterol-rich platforms that organize the mem-
branes of early endosomes [7, 8]. It was suggested that in
the presence of Ca®", AnxA2 binds to and possibly pro-
motes the lateral association of glycosphingolipid- and
cholesterol-rich lipid microdomains (lipid rafts) [9, 10, 80].

As for AnxA6, the largest member of the family of
annexins, it has been demonstrated that it is implicated in
processes related to vesicular transport such as endo- and
exo-cytosis, membrane aggregation, and membrane fusion
[78, 81-83]. Recently, for example, the experimental evi-
dence has been provided that AnxA6 may affect
localization and functioning of the target membrane SNAP
receptors (t-SNAREs), SNAP23 and syntaxin-4, along the
exocytic pathway [84].

AnxA6 has been shown to be predominantly associated
with membranes of the late endosome and prelysosomal
compartments of NRK fibroblasts, WIF-B hepatoma, and
rat kidney cells [78, 85, 86]. Although the majority of
AnxA6 is most likely targeted to membranes via Ca®'-
dependent binding to negatively charged phospholipids
[68], it was also demonstrated that its binding to the
membranes depends on the cholesterol content. In addition,
it has been shown that AnxA6 is a molecule linking cal-
cium signaling with cholesterol transport, working as a
scaffold/targeting protein for several signaling proteins [6].

Upon cell activation, AnxA6 was observed to be
recruited to the plasma membrane, endosomes, and mem-
brane rafts to interact with signaling proteins, the endocytic
machinery and actin cytoskeleton in order to inhibit epi-
dermal growth factor receptor and Ras signaling. In
addition, AnxA6 associated with late endosomes to regu-
late cholesterol export leading to reduced cytoplasmic
phospholipase A, activity and caveolae formation [5, 87].

Many researchers observed a Ca®'-dependent translo-
cation of AnxA6 to Triton-x 100 insoluble caveolin- and
cholesterol-enriched membrane fractions (DRMs). On the
basis of this and the above-mentioned evidence, it might be
assumed that AnxA®6 is implicated in the organization of
membrane domains, in particular in their association with
cytoskeleton in smooth muscle cells [9, 88]. Since AnxA6
can bind phospholipids, actin [89, 90], and signaling pro-
teins, it is also presumed that it could stabilize and regulate
the assembly of lipids and proteins during caveolae/mem-
brane raft formation [5, 87, 91].

Other annexins, like AnxA4, AnxA8, and AnxA13, due to
their cellular localization along the endocytic pathway or in
the membrane microdomains, and their sensibility to cho-
lesterol sequestering agents, are supposed to interact with
cholesterol. This is consistent with the existence in their
structure of cholesterol-binding motifs (Fig. 1). The impact
of these annexins on the organization of lipid rafts depends on
how their membrane association is determined by changes in
the cytosolic conditions (Ca®" or pH) and on the membrane
lipid content (cholesterol, acidic phospholipids) [15]. Other
annexins in particular AnxA13, much like AnxA2, may
define specific platforms on other cellular membranes [92].
AnxA13b has been assigned to raft-dependent and -inde-
pendent apical traffic in MDCK cells [93].
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Fig. 1 Sequence alignment of
different human annexins.
Sequences were retrieved from
the UniProt knowledgebase by a
sequence accession code for
each annexin. Multiple
sequence alignment was made
using the ClustalW algorithm.
The symbols: asterisk (*), colon
(:) and dot (.) indicate identity,
or strong or weak similarity of
residues, respectively. Three
regions of AnxA2 identified as
important in the annexin—
membrane interactions [77] are
in purple. Identical or similar
residues found in the
corresponding regions of other
annexins are in purple or blue,
respectively. Local similarity
calculations using the
BLOSUM matrix revealed that
the KELASALK motif of
AnxA?2 was found to be
conserved also in AnxA3,
AnxA6, AnxA8, AnxAll, and
AnxA13, while the
DLYDAGVKR motif was
conserved in AnxAl, AnxA4,
AnxA6, AnxAS8, and AnxAl3.
In the case of the SEFK motif of
AnxA2, it is too short to draw
any conclusions. It is worth
underlying that the
KELASALK and
DLYDAGVKR motifs were
identified by Lambert et al. [69]
as membrane-interacting
regions of AnxA2, by using a
hydrophobic probe,
3-(trifluoromethyl)-3-(m-
['*IJiodophenyl) diazirine
("I-TID), both at pH 4.5 in the
absence of calcium and at pH
7.0 in the presence of calcium.
The authors suggested that
calcium-independent
interactions of AnxA2 with
membranes at pH 4.5 are
mediated mostly by cholesterol.
The membrane-interacting
regions of AnxA2 are not
conserved within the whole
annexin family suggesting a
different impact of cholesterol
on the membrane binding of
each annexin type. However, it
is worth mentioning that similar
conclusions have been reached
concerning the molecular
mechanism of pH-dependent
interactions of AnxA6 with
artificial lipid membranes [68,
70]. Other explanations are in
the text
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AnxAl
AnxA2
AnxA3
AnxA4d
AnxA5
AnxA6
AnxA7
AnxA8
AnxA9
AnxAl0
AnxAll
AnxAl3

AnxAl
AnxA2
AnxA3
AnxA4d
AnxAS5
AnxA6
AnxA7
AnxA8
AnxA9
AnxAl0
AnxAll
AnxAl3

AnxAl
AnxA2
AnxA3
AnxA4
AnxA5
AnxA6
AnxA7
AnxA8
AnxA9
AnxAl0
AnxAll
AnxAl3

AnxAl
AnxA2
AnxA3
AnxA4
AnxA5
AnxAb6
AnxA7
AnxA8
AnxA9
AnxAl0
AnxAll
AnxAl3

AnxAl
AnxA2
AnxA3
AnxA4
AnxA5
AnxA6
AnxA7
AnxA8
AnxA9
AnxAl0
AnxAll
AnxAl3

EATIIDILTKRNNAQRQQIKAAYLOETGKP)
EVTIVNILTNRSNAQRQDIAFAYQRRTK
EKMLISILTERSNAQRQLIVKEYQAAYG
EDATIISVLAYRNTAQRQEIRTAYKSTIGRD
EESILTLLTSRSNAQRQEISAAFKTLFGRD
KEAILDIITSRSNRQRQEVCQSYKSLYGHD

KALTGHLEEVVLALLKTPAQFDAD
SALSGHLETVILGLLKTPAQYDAS
GDLSGHFEHLMVALVTPPAVFDAK
SELSGNFEQVIVGMMTPTVLYDVQ
SELTGKFEKLIVALMKPSRLYDAY
YELTGKFERLIVGLMRPPAYCDAK
SELSGNMEELILALFMPPTYYDAW
EQATIDVLTKRSNTQRQQIAKSFKAQFGKD SELSGKFERLIVALMYPPYRYEAK
RSATVDVLTNRSREQRQLISRNFQERTQQD; OQAALSGNLERIVMALLQPTAQFDAQ
KDMLINILTQRCNAQRMMIAEAYQSMYGRDEIGDMREQLSDHFKDVMAGLMYPPPLYDAH
EQATIIDCLGSRSNKQRQQILLSFKTAYGEKD IKBISELSGNFEKTILALMKTPVLFDIY

EAATIIEILSGRTSDERQQIKQKYKATYG EE SELSGNFEKTALALLDRPSEYAAR
.. . * . . . * . PR .

EQATIVDVVANRSNDQRQKIKAAFKTSYGEKD

ELRAAMKGLGTDEDTLIEILASRTNKEIRDINRVYREELKRDLAKDITSDTSGDFRNALL
ELKASMKGLGTDEDSLIEIICSRTNQELQEINRVYKEMYKTDLEKDIISDTSGDFRKLMV
QLKKSMKGAGTNEDALIEILTTRTSROMKDISQAYYTVYKKSLGDDISSETSGDFRKALL
ELRRAMKGAGTDEGCLIEILASRTPEEIRRISQTYQQQYGRSLEDDIRSDTSFMFQRVLV
ELKHALKGAGTNEKVLTEITIASRTPEELRAIKQVYEEEYGSSLEDDVVGDTSGYYQRMLYV
EIKDAISGIGTDEKCLIEILASRTNEQMHQOLVAAYKDAYERDLEADIIGDTSGHFQKMLV
SLRKAMQGAGTQERVLIEILCTRTNQEIREIVRCYQSEFGRDLEKDIRSDTSGHFERLLV
ELHDAMKGLGTKEGVIIEILASRTKNQLREIMKAYEEDYGSSLEEDIQADTSGYLERILV
ELRTALKASDSAVDVAIEILATRTPPQLOECLAVYKHNFQVEAVDDITSETSGILODLLL
ELWHAMKGVGTDENCLIEILASRTNGEIFQMREAYCLQYSNNLQEDIYSETSGHFRDTLM
ETIKEAIKGVGTDEACLIEILASRSNEHIRELNRAYKAEFKKTLEEAIRSDTSGHFQRLLI
QLQKAMKGLGTDESVLIEVLCTRTNKEIIAIKEAYQRLFDRSLESDVKGDTSGNLKKILV

* oo . P Y . **

SLAKGDRSED-FGVNEDLADSDARA
ALAKGRRAEDGSVIDYELIDQDAR
TLADGRRD-ESLKVDEHLAKQDAQT
SLSAGGRD-EGNYLDDALVRQDAQ
VLLQANRD-PDAGIDEAQVEQDAQA
VLLQGTRE-EDDVVSEDLVQQDVQ
SMCQGNRD-ENQSINHQOMAQEDAQR|
CLLQGSRDDVSSFVDPGLALQDAQ)
ALAKGGRDSYSGIIDYNLAEQDVQA
NLVQGTRE--EGYTDPAMAAQDA
SLSQGNRD-ESTNVDMSLAQRDAQE,
SLLQANRN-EGDDVDKDLAGQDAK

* * * *
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Annexins as organizers in Niemann-Pick type C disease

Evidence from in vitro experiments: Various experimental
designs and techniques, including liposomes, monolayers,
supported lipid films, as well as atomic force microscopy,
polarization modulation infrared reflection adsorption spec-
troscopy, and Brewster angle microscopy have been used to
study annexin—membrane interactions. It was found for
example that membranes formed from palmitoyloleylpho-
sphatidylcholine/palmitoyloleylphosphatidylserine (POPC/
POPS) exhibit phase separation into POPC- or POPS-enriched
domainsina [Ca2+]-dependent manner. AnxA1 was found
to interact with these membranes in the presence of
calcium and to form irreversible complexes only with
POPS-enriched microdomains; the attachment of AnxAl
to POPC/POPS-enriched membrane regions was fully
reversible [94]. Appearance of microdomains has also been
observed when AnxA6 was interacting with PC/PS interfa-
cial monolayers deposited onto a calcium-containing
subphase [68].

With the aid of the quartz crystal microbalance (QCM)
technique, in combination with solid-supported lipid
bilayers used to monitor the interaction of AnxAl with
lipid membranes, the affinity constants were determined for
the binding of AnxAl to lipid membranes of different
compositions. These experiments revealed that at low
calcium ion concentration, the presence of cholesterol
increases the binding affinity of AnxAl to lipid mem-
branes, stressing the fact that cholesterol might be
important for forming a high-affinity interface for the
attachment of the protein [74].

As for AnxA?2, its tetrameric form bound to liposomes
containing phosphatidylserine in the absence of Ca®", and
addition of cholesterol to these liposomes increased the
binding. Also, liposomes containing phosphatidylserine
and cholesterol were aggregated by the tetrameric form of
AnxA2 at submicromolar Ca>" concentrations [79]. In the
case of liposomes containing phosphatidic acid, supple-
mentation with cholesterol in the absence of Ca®"
increased AnxA2 binding and this binding was only mar-
ginally affected by MBCD [95]. These results are in
contrast with other studies [96] in which, using QCM with
dissipation monitoring (QCM-D) and liposome techniques,
it has been demonstrated that the AnxA2 heterotetramer
does not bind in a Ca?*-independent manner to cholesterol-
containing membranes. These contraries may be due to the
fact that the tests [96] were performed using AnxA2 het-
erotetramer purified from porcine intestine while the other
researchers used recombinant AnxA2. It is possible that a
specific membrane structure [97] facilitates localization of
AnxA2 at cholesterol-rich membranes in vivo.

Cholesterol seems to also play a regulatory role in inter-
actions of annexins with other lipid constituents of
membranes. Analysis performed in [76] revealed that in the
absence of Ca2+, AnxAS5 was unable to bind to

phosphatidylcholine/phosphatidylserine (PC/PS) (75/25 by
weight) or PC/PS/cholesterol (50/25/25, by weight) lipo-
somes, however, in the presence of calcium, the amount of
AnxA5 bound to liposomes was significantly higher for the
PC/PS/cholesterol than for the PC/PS liposomes at pH 7.4.
Other in vitro tests (including surface plasmon resonance
analysis) with AnxAS5, suggest that although phosphatidyl-
serine plays a dominant role in AnxAS5 binding to liposomal
membranes [98], the binding increased with an increase in
the cholesterol content. This suggests that cholesterol in the
liposomes may act as a “phospholipid arrangement factor”.
It was also shown that AnxAS5 can induce formation of large
PS domains, only in the presence of cholesterol [99]. It is
worth noting that in the absence of PS, cholesterol did not
exert the binding-enhancement effect. Stability of AnxAS
binding was significantly improved by the increase in cho-
lesterol content. In vitro experiments using reconstituted
systems confirmed that annexins may affect lipid phase
behavior and protein partitioning into giant liposomes, as in
the case of AnxAS5 [100].

In the absence of Ca”, AnxA6 was unable to associate
with liposomes made of PC/PS (75/25 by weight) or PC/
PS/cholesterol (50/25/25 by weight) [76]. However, in the
presence of Ca®", the amount of bound annexin was sig-
nificantly higher for the cholesterol-containing liposomes.
This demonstrates that cholesterol also stimulates binding
of AnxA6 to liposomes in vitro [76]. Recent findings using
membrane-mimicking systems (such as Langmuir mono-
layers or air—water interface imaging using Brewster angle
microscopy) also confirm the importance of cholesterol in
AnxA6-membrane interactions [101]. In the absence of
Ca2+, at pH 7.4, no insertion of AnxA6 to the monolayer
composed of dipalmitoylphosphatidylcholine (DPPC) was
observed. The addition of cholesterol promoted the inser-
tion of AnxA6 to the monolayer in a concentration-
dependent manner. At pH 5.0, insertion of AnxA®6 into the
monolayer composed of DPPC was observed, however, the
addition of cholesterol significantly increased AnxA6
incorporation. Interestingly, the replacement of cholesterol
by cholesteryl acetate significantly diminished AnxA6
incorporation, suggesting that the —OH group of cholesterol
is implicated in AnxA6—cholesterol interactions [101].

Annexins and membrane microdomains in etiology
of Niemann-Pick type C disease

Cholesterol and sphingomyelin-enriched microdomains at
the plasma membrane that probably coordinate and regu-
late a variety of signaling processes were implicated in
various pathologies including cardiac dysfunctions [63,
102, 103], invasion of pathogenic Escherichia coli [104],
cell-to-cell HIV-1 transmission [105], Alzheimer’s disease
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[106], and other neurodegenerative diseases (Parkinson’s,
amyotrophic lateral sclerosis, Huntington’s, those caused
by prions) [107], obesity and diabetes mellitus [108],
tumorigenesis and malignant tumors [109-111], as well as
in physiological processes such as brain plasticity [112,
113], neuroprotection [114], cholesterol homeostasis [115],
cell survival, and apoptosis [116]. In addition, sphingoli-
pids, although they account for a minor component of the
total cellular lipid pool, when accumulated in excess in
certain cells, may be a cause of many diseases [117].
Accumulating evidence suggests that large ceramide-enri-
ched platforms that are formed due to the activation of
sphingomyelinase and generation of ceramide, and through
which transmembrane signals are transmitted and/or
amplified, are involved in the modulation of the cell and
intracellular membrane ion channels, cell proliferation and
apoptotic cell death, neutrophil adhesion to the vessel wall,
vascular tone, and in the development of cardiovascular
diseases, to name some important examples [25, 118].

MLN64

LE/LY

Fig. 2 Schematic representation of vesicular transport of light
density lipoproteins (LDL) via receptor endocytosis in normal
(a) and NPC cells (b) characterized by mutation in the NPCI gene
encoding the NPC1 protein or in the HEI/NPC2 gene encoding the
NPC2 protein. Low level or malfunction of mutated NPC1 or NPC2
proteins lead to disturbances of intracellular cholesterol transport
(depicted in b by crossed darts) and an overnormative storage of
cholesterol in lysosome-like storage organelles (LSO) corresponding
to the late endosome/lysosome compartment (LE/LY, pH;, 5.0-6.0).
Intracellular localization of annexins (A2, A6, A13b) is shown. Rafts,
cholesterol-enriched membrane microdomains, are identified as
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Several lines of evidence suggest that annexins may also
participate in the pathologies mentioned above, including
obesity and type II diabetes mellitus [119], by exerting
their biological function through interaction with mem-
brane constituents of the lipid microdomain/rafts. Studies
carried out on cell lines from patients suffering from the
Niemann-Pick type C (NPC) disease have shown that
intracellular distribution of annexins matches cholesterol
distribution in these cells. On the basis of these findings,
we propose a hypothesis that some annexins may play a
role in intracellular cholesterol storage, including in the
aberrant storage occurring in NPC disease [120, 121].

Niemann-Pick type C (NPC) disease

The NPC disease (OMIM 257220) is a fatal, autosomal
recessive disorder characterized by progressive neurode-
generation and hepatosplenomegaly [122]. The NPC
disease results from dysfunctions of the NPC1 or NPC2

ORPIL

A6 A6

LE/LY Munes AB cytosol

possible targets for annexins. Other explanations are in the text.
Abbreviations and symbols: CCP clathrin-coated pit; CCV clathrin-
coated vesicle (pH;, 7.2-7.4); EE early endosome; SEC sorting
endosome compartment (pH;, 5.9-6.0); REC recirculating endosome
compartment; MVB multivesicular body; GA Golgi apparatus; ER
endoplasmic reticulum (pH;, 7.2-7.4); LE late endosome (pH;,
5.0-6.0); LY lysosome (pHj, 5.0-5.5); NPC1/NPC2 —Niemann-Pick
type C1 or C2 proteins; ORP1L and MLNG64 LE proteins participating
in the transport of cholesterol; orange squares LDL particles; black
crosses clathrin network; blue dots cholesterol
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proteins (Fig. 2). In approximately 95% of NPC patients,
development of the disease is associated with the existence
of mutations in the NPC/ gene encoding a large, trans-
membrane, heavily glycosylated late endosome NPCl1
protein [123]. Only in 5% of patients mutations in the HE1/
NPC2 gene encoding a small soluble NPC2 protein that
resides in the lumen of late endosomes/lysosomes have
been described [124]. Both NPC1 and NPC2 proteins, as
cholesterol binding proteins, were implicated in the trans-
port of lipids from the late endosome/lysosome
compartment to other cellular compartments such as plasma
membrane, endoplasmic reticulum, and Golgi [125-127].
Due to the dysfunction described above, accumulation of
abnormal amounts of cholesterol and other lipids in the late
endosome/lysosome compartment, also called the lyso-
some-like storage organelles, is observed [128—-130].

Cholesterol is one of the major lipid components of the
eukaryotic plasma membrane [131]. Its content in the
membrane may reach up to 50% of total lipids and may
significantly affect membrane properties such as fluidity,
permeability, and distribution of other membrane constit-
uents. The distribution of cholesterol in intracellular
membranes strongly depends on the metabolic activity of a
given cell type or tissue and it can be dysregulated in
certain pathologies. Experimental data demonstrate that
altered cholesterol homeostasis changes the physicochem-
ical properties of the plasma membrane in NPC cells. In
general, the level of cholesterol in the internal membranes
is much lower than in the plasma membrane and is
restricted to special microdomains, most probably origi-
nating from similar microdomains of the plasma membrane
due to the retrograde vesicular transport via the endocytic
mechanism. It is suggested that changes in the architecture
and composition of biological membranes due to excessive
cholesterol accumulation may strongly affect vital cellular
processes leading to cell death [132].

Participation of AnxA6 in transport and storage of cho-
lesterol in NPC disease: In the Niemann-Pick type C disease
the absence, low level or presence of dysfunctional NPC1
and NPC2 proteins may not be the only cause of the disease.
Growing evidence suggests that malfunction and a dysreg-
ulated content or intracellular distribution of other proteins
should be considered as an important factor of NPC disease
etiology. In this regard, annexins (Fig. 2), among them
AnxA®6, are gaining the attention of many investigators.

Upon cell activation, AnxA6 is recruited to the plasma
membrane, endosomes, and caveolae/membrane rafts to
interact with signaling proteins, and to the endocytic
machinery and actin cytoskeleton to inhibit epidermal
growth factor receptor and Ras signaling. In addition,
AnxAG6 associates with late endosomes to regulate cho-
lesterol export, which in turn leads to reduced cytoplasmic
phospholipase A, activity and caveolae formation.

Investigators suggested that AnxA6 may function as an
organizer of membrane domains by creating a scaffold for
the formation of multifactorial signaling complexes which
regulate transient membrane—actin interactions during
endocytic transport, and modulate intracellular cholesterol
homeostasis [5]. AnxA6, due to its unique structure, may
be able to recruit interacting partners to membrane
microdomains and to bridge specialized membrane
domains with cortical actin skeleton [133]. The following
experimental evidence favors the hypothesis of AnxA6
involvement in the etiology of NPC disease.

First, it has been shown that AnxA6 colocalizes with
lysobisphosphatidic acid (LBPA), a maker of cholesterol-
rich late endosomal structures, in Chinese hamster ovary
(CHO) cells with overexpression of the ANXA6 gene,
suggesting that cholesterol modulates the intracellular
distribution of Ca”*"-dependent and -independent pools of
this protein [78].

Second, in NPC1-null CHO cells, altered distribution of
cholesterol and AnxA6 as well as an altered membrane
architecture of the endosomal compartment, enriched with
glycosphingolipids and cholesterol, has been observed in
comparison to control cells. These alterations in membrane
composition may be responsible for the deficit in endocytic
trafficking found in the NPC disease. This altered intra-
cellular trafficking may, in turn, be the result of mis-
targeting and disrupted function of proteins associated with
membrane microdomains [134].

Third, CHO cells expressing high levels of AnxA6 were
characterized by accumulation of caveolin-1 in the Golgi
complex. This was associated with the sequestration of
cholesterol in the late endosomal compartment and lower
levels of cholesterol in the Golgi and the plasma mem-
brane, both likely contributing to the retention of caveolin
in the Golgi apparatus and to a reduced number of caveolae
at the cell surface. Furthermore, knock down of the AnxA6
gene and the ectopic expression of the Niemann-Pick C1
protein in AnxA6-overexpressing cells restore the cellular
distribution of cav-1 and cholesterol, respectively. In
summary, this study demonstrates that elevated expression
levels of AnxA6 perturb the intracellular distribution of
cholesterol and indirectly inhibit the exit of caveolin from
the Golgi complex [135, 136].

In addition to what is mentioned above, it has been
recently shown that AnxA6 co-purifies with the late
endosome/lysosome fraction of membranes isolated from
NPC L1 fibroblasts obtained from an NPC patient. A sig-
nificant pool of AnxA6 was found to interact with
cholesterol in a calcium-independent manner. In conclu-
sion, it was postulated that AnxA6 may participate in the
formation of cholesterol-rich platforms in the late endo-
some compartment and therefore may contribute to the
pathology of the NPC disease [120]. Furthermore, using the
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same cells, it has been evidenced that in the presence of
calcium, AnxA6 re-located to the fractions enriched in
DRMs only in the NPC cells, suggestive of AnxA6 par-
ticipation in the organization of cholesterol-enriched
microdomains in NPC fibroblasts [121].

Considering other members of the annexin family of
proteins, AnxA2 was found to regulate the endogenous
low-density lipoprotein receptor levels [137, 138]. There-
fore, AnxA2 began to be considered as a target for the
treatment of hypercholesterolemia. AnxA2 was also
implicated in the Niemann-Pick type C disease [139], since
it showed, similarly to AnxA6, distorted distribution,
related to the mislocalization of membrane microdomains,
in NPC cells [134]. Identification of other members of the
annexin family as potential players in the pathophysiology
of disorders related to altered cholesterol traffic and storage
as well as distorted membrane organization requires further
experiments.

Concluding remarks and perspectives

To summarize, growing evidence suggests that certain
members of the annexin family of proteins may participate,
as membrane-binding proteins, in the mechanism of bio-
genesis, organization, and maintenance of the cholesterol
and sphingomyelin-enriched microdomains, i.e., lipid rafts,
and, in consequence, they may regulate the intracellular
cholesterol transport and storage. Dysregulation of the
annexin—cholesterol interaction and intracellular choles-
terol distribution may lead to development and sustenance
of fatal disorders such as the Niemann-Pick type C disease.
Identification of other diseases in which annexins and
cholesterol-enriched microdomains are important is only a
question of time.
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