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Abstract
A heuristic approach is proposed to solve the $tmat optimization problem of a cruise ship.

The challenge of optimization is to define the fganof the structure of a ship in order to minai
the weight or the production cost. The variables tire dimensions and positions of the constitutive
elements of the structure: they are discrete byneafThe objective functions are nonlinear funcsion
The structure is submitted to geometric constragntsl to structural constraints. The geometric
constraints are linear functions and the structucahstraints are implicit functions requiring a hig
computation cost. The problem belongs to the adéssixed-integer nonlinear problems (MINLP).

A local heuristic of the type “dive and fix” is cdwmed with a solver based on approximation
methods. The solver is used as a black-box togetform the structural analysis and solve the
nonlinear optimization problems (NLP) defined bg treuristic. The heuristic is designed to always
provide a discrete feasible solution. Experimemtsaeal-size structure demonstrate that the optima
value of the mixed-integer problem is of the saragnitude as the optimal value of the optimization
problem for which all the variables can take contins values.

1. Introduction

In the domain of naval architecture, structurairofation of a cruise ship occurs at the stagehef t
proposal, the earliest phase of a project. Prelinyirship sizing and structural design always pose
difficult problems to designers. They have to méke most adequate choices within a very short
period of time. This happens in numerous industsiesking with large projects whose characteristics
are that the product is unique and has to be cudesigned at the very beginning of the project or
even before the client’s order (i.e. naval or spatiructures).

The decisions taken during this preliminary deggase will greatly influence the subsequent steps
of the production. Indeed, the preliminary struatwtesign drastically limits the choices of prodiorct
techniques and fixes the main constitutive elemefitthe structure. The constraints to take into
account are the customer requirements concerneghip characteristics such as, for example, speed
or capacity.

The problem, as we formulate it, is to define tbangling of the constitutive elements of a struetur

modeled as a transversal cross-section of a crsiigp, composed of stiffened panels. The
optimization is performed in order to minimize eitlthe weight, the production cost or a combination
of these two objectives. This choice has a greffiénce on the resulting structure. The design
variables are the dimensions and positions of thestitutive elements of the structure: they have
discrete values by nature. The structure is sulbjegeometric constraints and structural constsaint

The geometric constraints ensure the feasibilitthefstructure (e.g. lower bounds on steel thicknes

and the structural constraints model the respanselicitations and stresses.

The cost, the weight and the geometric constrairgsnonlinear functions. The structural constraints
are defined by implicit functions and their evaloat requires a high computation cost. This
evaluation can be done thanks to analytical metbods the use of simulation of mechanical models,
such as finite element methods. The resulting mbelengs to the class of mixed-integer nonlinear
programming problems (MINLP).

2. Problem formulation

A ship is a large and complex steel structure whabsdy requires simplifications. The front and the
back of the boat have particular shapes that aelbfect of other specific researches (Mesh models,
finite element methods, etc.). We are concerned ith the structure between these two parts. The
ship is considered as the repetition of similaucttral pieces (Figure 1). Each piece is left-right
symmetric such that the basic element to optimsze half piece, as shown on figure 3. The basic
element to optimize is an assembly of stiffenedefsiffig. 2). The number, the arrangement, the
width and the length of the panels are given dEite. problem formulation used in this work is an
adaptation of the model presented by Rigo for thnozation of stiffened structures (Rigo 2001a,
2001b, 2001c).

Fig.1: Decomposition of a ship into more simple
elements
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Fig.2: A stiffened panel

Fig.3: Cross section of a structure

2.1. Variables

Let P be the collection of panels of the structii@ch panel @ P of the structure is characterized by
the plate thickness, as well as by the spacing theddimensions of the members. The design
variables apply to each stiffened panel p of thecttire (see figure 4):
o ¢ Pisthe plate thickness,
o hP,dP,wP, are the dimensions of web and flange of the lowigiials/stiffeners fitted along
the X direction,
o hP,dPwP are the dimensions of web and flange of the trarsevframes fitted along the Y
direction,
o 4%is the spacing between two longitudinals/stifferfitad along the X direction,
o 4P is the spacing between two transverse framesl fitkeng Y,




Note that® and £, are not design variables.

For convenience we use also the notatigf, (", v 3°, v4®, vs°, Vs, 2P, Vg, Vo P) to represent the
vector of variabless(” h",d ",,w®, 4 %, h%,d ,wP, 4 7)) for each panel[pP. We denote by; = v":
pOP the vector of values assumed by variafflever all the panels, for each i=1,...,9. We alse the
notationv to denote the vectov( vy, Vs, V4, Vs, Vs, V7, Vg, Vo).
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Fig.4: Design variables along x and y directions

The thickness and dimensions of the elementsh(®.,d P,w %, h P,d P,,w 7)) fall within a finite set of
standard thicknesses and dimensions, as they ame fo a catalog by a manufacturer. Therefore, we
define for each variable and for each panel a elisset of admissible values. The extreme values of
set are fixed by the technological constraints wadise a realistic discretization step. The dedinit

of the admissible sets (one set for each panekaal variable) is of the following type:

Vi O Di® with Di®= { Vi min, Vi ” min + St Vi® min + 2*Step, ..., Vi® mn +nP*sten = vi® mag
i0{1,2,3,4,6,7,8}

The number of members that have to be equidistéirtd on a panel is integer by nature. Therefore,
the spacing between two frames along the x directid,) may take its value in a finite set of values.
For each panel we determine the set of admissfileirsgs using the length of the panels L and the
admissible number of members{f...n"nay for the panel p. The definition of the admissibkt
(one for each panel) is of the following type:

V5p 0 D5pWith D5p= { V5prniny ---yVSpmax}r Vspmin= L/npmam ---:Vspmax: L/npmin

We can not define such discrete sets of admissdllees for the spacing of the members along the y
direction : there are some correspondance conttréietween the spacings of the longitudinal
members of some panels and the widths of thesdspare not identical. Thus, it is not possible to
have a discrete set for the spacing of the longitis that would fit for every panel. It followkat,

for each panel p, the spacing of the longitudimadsy take its value in a setyDhat is a continuous
interval: Vo® O [Vo i, Vo mad-

2.2. Objective functions

Two objective functions are modeled: the weight #rel production cost of the structure. These are
nonlinear functions in terms of the design variable
- Weight objective function :

PAP P+p thP+ Ptp
E= VLZ BP {5;) + hx dx;pthx + Y yApWy y}
P y

X

where L is the length of the panel according to ¥heoordinate (m), Bis the width of panel p
according to the Y co-ordinate (m) apds the specific weight (N/m3).

- Cost objectivefunction

The cost is composed of three elements: the cosawfmaterials (plates, bars, etc), the cost of
manpower used for the construction of the entinectiire and the cost of the consumables necessary
for the manufacturing process (energy, welding nmete etc.). A complete expression of the cost
objective function is given in [Rigo 2001c], it hde generic expression:F
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where the specific coefficients depend on the appbn (efficiency of the shipyard, unitary cost of
the materials, etc.). The user may choose to optirthie structure using the weight, the cost or a
combination of these two objective functions.

2.3. Constraints

The constraints of the mathematical model are ifi@dsnto three types: technological, geometrical
and structural. We present the generic formulatibeach constraint. The set of constraints for any
specific application model is a subset of theseegemronstraints.
- Technological constraints
These constraints set bounds on the design vasiatliée lower bounds are usually determined by
technical limitations (for example a lower bound fo thickness variable to limit the impact of
corrosion) and the upper bounds are usually séb Ipyoduction requirements (for example handling
capabilities).

V‘prnin < V‘p < Vipmax

- Geometrical constraints

These constraints limit the values of some ratiesvben the design variables to ensure that the
structure is feasible and reliable, they originfaten regulations and norms. An example is to fix a
maximum ratio between the dimensions and the tleiskrof members (frames, stiffeners) or to link
the dimensions of two distinct types of membersagbanel (frame height, stiffener height). An
example i$” — 2 * , < 0. These constraints can be expressed by linequdlities of the type:

aviP-hvwP <0

- Structural constraints

As external loads and forces are applied to thestre, some resultant effects such as displacaement
deformations and internal stress occur. The contplesf the behavior models leads to the
impossibility of explicitly drawing the relationgs between the parameter studied (deflection,sstres
etc...) and the design variables (element dimensamasposition). The evaluation of these resultant
effects (and of their derivatives with respect he tdesign variables) is possible at expensive
computational cost using analytical approachesnitefelement methods (FEM). Given the values of
the design variables, the displacements, deformstand internal stress are computed for several
loading scenarios.




The structural constraints define the maximum asifois values of these resultant effects in order to
limit the apparition of physical phenomenon suclyiafling, buckling, ruin, etc. They are computed
at a set of points defined by the user for eactelparne generic mathematical expression of these
constraints is :

CJ(V) < G max

with v the design variables ang(W the value of the effect (displacement or streBs). any fixed
value of the design variable a structural analysis is performed to compute thkie of the
constraints. For this calculation, we utilize thBR-5 software. LBR5 is based on an analytic method
to solve the systems of differential equationstiffened panels [Rigo 2005].

2.4, Compact mathematical model

The problem to be solved has the following genfenimulation :

Minimize f(v)

s.t. gy <o
¢(V) < C max (P1)
v;? O DP i=1,...,8
voP O C,

with v the vector of all variables; & sub-vector of variables (i=1, ...,9), f(v) a woear function,
g(v) linear functions and c(v) implicit function; are discrete sets and’@ a continuous interval.

This structural optimization problem creates sdvdifficulties: it involves mixed (continuous and
discrete) variables, a nonlinear objective functom implicit structural constraints with a nonkne
behavior. To solve this problem we will use a ration of P1 where the discretization constraings ar
removed such that each variable may take its vialee continuous interval €= [vi? .., v " .
wherev;? ..andVi® ..« are the extreme values 8. We obtain the following formulation :

Minimize f(v)

s.t. g <o
¢(v) < € max (P2)
viPOCP i=1,...,9

We first present the resolution method availabletfe relaxed problem P2. A candidate solution
(maybe not feasible) is initially considered andsteuctural analysis is performed. This analysis
requires an important amount of computing time rfeal-size structures. Then an explicit local
approximation of the problem is built using the puit values of the structural analysis. This
approximate problem is a conservative convex prokany solution of the approximation is also a
solution of the original problem). We apply an aptiation algorithm based on a dual method [see
Fleury, 1993 ; Schmidt and Fleury, 1980] to obt#ia optimal solution of the approximate problem.
This new solution is introduced in the original lplem and a new structural analysis is performed to
check its feasibility. These successive steps tfigation and structural analysis may be iteraed
number of times fixed by the user: usually abouftéations are performed to obtain a solution that
is satisfactory for the designer. We use the LBRfiware developed by Rigo [Rigo, 2001a] to
perform the structural analysis and the optimizatibthe non linear approximate problems.

We conclude this section with a proposition bageohuthe experience of the designers. In structural
optimization problems each design variable a hdisegtion in which its value can change that tends
to satisfy the constraints of the problem. For gxanan increase of the thickness of an element or a
decrease of the spacing between members doesfact the feasibility of a feasible solution and may
lead to a feasible solution, starting from an usitela one. Let's call a change in this direction a

“positive change” then the proposition can be statefollows :

Any “positive change” of the value of some or dltlee design variables of a feasible solution alsvay
defines a feasible solution. (Proposition 1)
While not mathematically proven, this propositidways seems to hold in practice.

3. Heuristic Algorithm

3.1 Local search framework

We now turn to the more interesting case wheres¢h&® are discrete. The main challenge is to build
a heuristic that always provides a discrete feasblution of good quality to the problem P1, while
requiring a very small number of structural anadysehe quality of the heuristic solution may be
evaluated by comparison to the optimal value ofrdiaxed problem P2, where all the variables may
take continuous values. This can also be compaitbdtiae value obtained by a single-step rounding
procedure applied to the solution of the relaxeibjam P2.

We use a local search heuristic inspired by thekwbrFischetti and Lodi [Fischetti and Lodi, 2003]
who experimented with a “relax and fix” heuristior fthe solution of large MIP (Mixed Integer
Programming Problems). This heuristic uses a gemiP solver as a black-box “tactical” tool to
explore suitable solution subspaces defined anttalted at a “strategic” level by a simple external
branching framework. The “relax and fix” heuris@cts as described below. The variables are
partitioned into disjoint sets of decreasing impode. A succession of MIPs are defined and solved
iteratively. In the first MIP, the integrality remement is imposed on the variables of the subket o
greatest importance and the integrality constrisimelaxed on all the other variables. The resgltin
sub-problem is solved to optimality and the optimalues of the integer variables are fixed. The
integrality constraint is imposed only on the vakés of the next group in order of importance torfo
the MIP problem of the next iteration. The iteraostop when all the values of the variables are
fixed. Thelocal branchingprocedure introduced by Fischetti and Lodi cossistadding to the MIP
model, at each iteration, a linear constraint thgioses a minimum percentage on the number of
variables to fix at this iteration.

Our approach is a similar two-stage approach: aereal heuristic framework acts as a “strategic”
tool to control at a “tactical” level the definitioand the optimization of the sub-problems. At the
strategic level the “relax and fix” heuristic isptaced with a “dive and fix” heuristic. This heuiis

for mixed integer linear problems is presented[Rochet and Wolsey, 2006]. Initially the heuristic
solves a linear relaxation of the problem. Themecsssion of linear relaxations of the problem are
solved: at each step a selection of variables @uaded and their values are fixed, this defines the
next linear sub-problem. The iterative process emben all the variables have been rounded to
integer values. A main difference between the %edend fix” heuristic and the “dive-and-fix”
heuristic is the nature of the sub problems soltieel:“relax and fix" heuristic adds some constint
and solves a MIP sub-problem while the “dive and fieuristic fixes the values of some variables
and solves continuous sub-problems.

Applied to the structural optimization problem, tiéve-and-fix” procedure fixes the values of some
variables while the discretization constraints eskaxed for the other variables. This defines a
nonlinear sub-problem (instead of the linear protgeliscussed in Pochet and Wolsey): the procedure
applied to select the variables and fix their valisedescribed in the sequel of this paper. The3BR
black box tool performs the structural analysis foe current solution and solves the current
approximation to optimality.

We consider the mixed discrete-continuous nonlirzat implicit problem P1. The variables of the




problem are grouped according to their physicalnimeg they represent the dimensions of the panels

and the dimensions and the spacing of the stifteemembers. There are 9 variables for each panel p :

(8° Py, P WPy, AP, Py, Py WPy, AP)) as described at Section 2.1, which we symbolizé/, v,°, v3°,

v, v, V&', VAP, Vg, vo°) for convenience. We first consider the group arfiables y this is the vector
composed of all the variables with index i, it mapresent for example the thickness of all the lsane
of the structure. The variables in the vectarsw take their values in discrete sets as definedezarli
and the vectorghas real values in a finite interval. We now coasiahly the eight groups of discrete
variables. The groups are sorted by order of decreasing importanceintpertance of each group is
defined by the designer according to their imparéaim the production process. This importance is
roughly linked to the sensitivity of the objectiaed the constraints with respect to these variables
For clarity we assume that the order of importaisce...vs. Finally we note v the vector of all the
variables of the problem.

An initial solution is given by the designer: thelwes of the variables represent the dimensional
characteristics of the structure. This solution rbayfeasible or not, discrete or not. We consibat t
the bounds and the linear explicit constraintsaiweys respected. A non-feasible initial solutien i
allowed as the optimization algorithm used to sdalve nonlinear sub-problems may start with any
solution to derive a feasible solution to the aliforoblem. Given an initial solutiorf ¥he heuristic
starts by computing an optimal solutiof%/of the relaxed NLP problem P2, where all the \sés
are free (no variable has its value rounded aredtijix

At each iteration k, the heuristic starts with gwution of the previous iteratiorf'¥ The sub-vector
v;“* of greatest importance among the free variablesliscted anthe values of these variables
are fixed according to a rounding procedure (dbsdribelow) to form the solutiorf.vA structural
analysis is performed af by the LBR-5 software, it computes the value @f $tructural constraints
for the solution § These values are used to build an explicit agprated problem NL¥ The LBR5
optimization module is then applied to solve theMproblem. If the NLF problem appears to have
no feasible solution, a relax procedure (descrliEdw) is applied to free the variables that haserb
fixed at the previous iteration and the algorithroves to the next iteration. If a feasible solution
NLP* is obtained then the algorithm moves to the nterafion (diving). This iterative scheme is
repeated until all discretization constraints atsfed.

The round and the relax procedures are the cotbeoflive-and-fix heuristic. They act jointly to

define which regions of the solution space willdx@lored. They control the creation of the nonlmea
sub problems 'Pat each iteration by defining how the values fur variables are rounded and fixed.
Three variations have been implemented and te$tel first one is a “closest rounding” procedure,
the second one is a “up & down rounding” procedanel the third one, the “intensified closest
rounding” procedure, may be seen as an enhancerht@ closest rounding procedure.

3.2. Closest rounding procedure

The dive-and-fix heuristic based on the closeshding procedure is the following. The algorithm
starts by computing an optimal solutiof*¥ of the NLP problem, i.e. the problem where all
discretization constraints have been removed aretenvéil the variables are free. At each iteratien t
group of free variables of greatest importance elected and each variable of this group is
individually rounded to its closest value. The \eawof all the variables of this group are fixedisTh
forms the initial solution %of the iteration and the local approximated prob is built from this
solution. Three situations may occur at this pagither P has a feasible optimal solution and all the
discretization constraints are satisfied, in whizdse the heuristic stops or all the discretization
constraints are not satisfied and the algorithmesde the next iteration (diving). Third, no fddsi

solution is found for ¥, which implies that the problem is too constraingdelax step is introduced

to free the values of the group of variablgsThis backtracking step allows the heuristic tasider

an alternative rounding procedure to create anneltive solution §. The alternative rounding
procedure chosen here is to round up all the vi@sabf the group selected for rounding. If
proposition (1) holds this procedure is guaranteealways provide a solutiorffor which P, the
approximate problem, has a feasible solution. Amlete run of the algorithm generates at least 8 and
at most 16 iterations. Each iteration involves\aeginumber (fixed between 10 and 15 by the LBR5
user) of structural analysis : a complete discogtimization using this procedure thus involves 160
up to 240 structural analysis.

3.3. Up & down rounding procedure

This procedure differs from the previous one inhsacway that at each iteration k, the considered
nonlinear sub-problem produces exactly two nonlire#-problems: ‘Ejp and Pooun respectively
obtained by rounding up or rounding down all theialdes of the currently selected group of
variables. A key difference with the closest rounding istthaf the variables of a group are always
rounded in a common way. A complete execution @f euristic with this rounding procedure
involves the creation and the resolution of exat@lysub-problems.

The heurisitic using this procedure, as well asahe using the closest rounding procedure, may look
similar to a branch and bound method (see [Poaleivdolsey, 2006]) but there are two important
aspects that prevent us from using an exact brandhbound method. First, we are dealing with an
implicit problem and each step of the local seatefines and optimizes only a local approximation of
the original structural problem. Therefore, no uppeunds can be obtained and used in a branch and
bound tree. Second, as the definition of eachllag@roximation requires a computationally
expensive structural analysis, we prefer to opecategroups of variables instead of individual
variables. This decision reduces the number ofpsoblems but not induce a complete enumeration
of the solution space as in a branch and boundappr

3.4. Intensified closest rounding procedure.

We want to enhance the closest rounding procedurmténsify the local search towards more
promising regions of the solution space. The hgaris modified in order to analyze more sub-
problems and to use some lower rounding. The ingatdveuristics act exactly as described with the
closest rounding procedure except that when a etisdieasible solution is found the algorithm
performs some backtracking instead of stopping.

The backtracking is an iterative procedure thaaxes the fixed values of one or several groups of
variables of a current solution to create a newtsni on which the diving process is applied. The
backtracking considers the solution before the tesnding step on;vIf this step was a closest
rounding, this operation is replaced with a loweurnding and the diving starts again with the new
solution. If the last rounding step was an uppemding (meaning that a closest rounding on this
group of variables has previously led to an unfdasolution) or a lower rounding (meaning that the
closest rounding was by chance equivalent to adoaending or that backtracking has already been
applied to this sub-problem), then the values fixadthis step are relaxed and the procedure
backtracks to the sub-problem where the roundieg sias applied on the group of variablgs v

This enhanced heuristic may create up®sub-problems and may be highly time consumingait ¢
be stopped at any time by the user or can be stopowvhen a time limit is reached.

The framework of the three heuristics is presemtdeigure 5.




Solve NLP ignoring discrete restrictions

Are all discrete restriction
satisfied ?

Select the group of variables of greatest importance
among the free variables

s the stopping
criterion met 2

Stop

Apply a fixing procedure to the selected
group of variables

)

Perform the structural analysis and create the
continuous problem NLP(k)
Solve NLP(k) with the optimization black-box

Is NLP(Kk) feasible ?

Relax some group of fixed variables

Fig. 5: Flowchart for the heuristic procedure.

4. Enhancements of the heuristic

Sorting the groups of variables.

Usually in the dive-and-fix heuristics the choicktie variables to be fixed is value-driven: the
variables whose values are close to a discretesailité value are chosen to be rounded and fixed. In
our heuristic the variables are partitioned in g@according to their physical meaning. We have
performed several experiments with other orderthefgroups of variables and the results obtained
using the order of the groups proposed intuitilehthe designers outperforms the results with other
orders. This observation suggests that the methsdally presented in the literature to select the
variables to round (i.e. rounding the variables sehwalues are close to the discrete admissibleyalu
would not provide good results as some variablestrattural importance could be fixed too early. In
such situations unfeasible solutions may appealy eand the search process may terminate
prematurely.

Balancing the workload between the number of sub-problems created at the strategic level and

the number of iterations performed to solve a nonlinear problem at thetactical level.

Within the LBR5 black-box, each nonlinear (contingp sub-problem is optimized thanks to an
iterative method, each iteration implies the resofu of a computationally expensive structural
analysis. Usually, the number of iterations in LBRSixed by the user to 10 or up to 15 for difficu
problems. This number of iterations allows a cogeece of the optimization method even starting
with unfeasible solutions. In practice, we haveenbsd that after 5 iterations, a solution of good
quality is usually found. We add a dynamic contbthe iterative process : the number of iterations
to solve the nonlinear sub-problems is set to 5 Hbcextra iterations are allowed if no feasible
solution is found after the 5 initial iterations.

Tolerancefor therounding rule

A major characteristic of both heuristics is tha tounding procedure is applied simultaneously on
all variables of a group. Although this “group-bdisapproach is a key to limit the number of sub-
problems optimized and the number of structuralymea performed, it may appear too restrictive
when using the up- or down-rounding. We may wanhttependently consider the variables whose
values are very close to a discrete admissibleevale define a tolerance parameter so that if the
value of a variable selected to be rounded (upo@amy falls within a tolerance interval of a diseret
admissible value then it is fixed to this value reviethis does not comply with the active rounding
procedure. The interval for this rule is definedngs(tolarr * step) wheretolarr is the tolerance
parameter andtepis the difference between two consecutive valdgh@admissible domain of the
variable. For example, a variabiielta is rounded to its closest admissible value if tbiéowing
condition is true:

(modulo @elta step<=tolarr*step) or ( modulo {elta step>= (1-+tolarr)*step)

Tolerancefor thefeasibility of the solution

The optimization method applied to solve approxenabdnlinear problems is a dual approach that
allows some constraint violation and tries to redtleese violations as much as possible. An initial
solution may be unfeasible. The result of the ojzition of the approximate problem may not satisfy
exactly all the constraints of the original problearstructural analysis is performed to check that
solution is feasible for the original problem. Weeua tolerance factor to accept solutions of the
nonlinear problem for which the constraints viaatis less than a given percentage of the value of
the constraint. Allowing to consider these non ifelassolutions of the approximated problem as a
starting point for sub-problems allows the divinggess to continue and leads to the creation of sub
problems for which feasible solutions of good dyadire sometimes found.

5. Computation experiments

The heuristic has been tested to find discreteegatar the design variables of the structure afad r
ship build by a major European Shipyard. A pamieldel of the ship structure is composed of 68
panels whose structural characteristics have toptienized. The problem has 460 discrete variables
and 52 continuous variables. The solution spacé¢himiscrete variables contains more tharf®f0e
solutions. There are 1709 constraints. A nonlinaaalysis of the relaxed problem (with all
continuous variables) takes about 10 minutes oroikstation with a processor pentium 3GHz and
2GB of RAM. Using the same machine, a run of thivé¢eand-fix” heuristic may last from one to
thirty hours, depending on the settings and thebmunof sub-problems generated. One may notice
that the computing time is mainly due to the stitaitanalysis.

Solving the relaxed problem (P2) with a cost olyectunction provides a value of magnitude 904197

(in cost units). When the solution of the nonlinpesblem is rounded by a designer, the valuesef th
objective functions increases by about 3%. We impleted a straightforward method to obtain a
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discrete solution. First a simultaneous roundinglbthe variables down to their closest admissible
value is performed. The solution produced by thiethod appears to be unfeasible. Then we try
rounding the variables to their closest admissitiecrete value. This again leads towards an
unfeasible solution. Finally, rounding of all thariables up to their closest discrete value gives a
feasible discrete solution with cost value of 94248at is an increase of 4.2%.

The optimization of the relaxed problem P2 with teight objective function provides an objective
function of magnitude 6244916 (in weight units)discrete solution is computed thanks to the same
procedure as above. Rounding down yields a weigluievof 6414353, i.e. a increase of 2.7%.

We ran the heuristic with the three rounding proced. The results are presented in Table 1. We
computed the percentage of loss due to the digatimn of the problem. Two orders of importance,
ol and 02 provided by the designer, were usedrtdte® groups of variables. Other orders have been
tested and only lead to only unfeasible sub-problemprovide results that are significantly worse.
When using the heuristics the increase from 1.4%oup.2% for the weight objective function and
from 0.3% up to 0.8% for the cost objective funafidepending on the method used (See Table 2).

Table 1. Results for dive-and-fix heuristic

Order of | Systematic Rounding Closest Rounding EnhancedeSidggounding
the Value of Nb of Value of Nb of Value of Nb of Nb of
groups the sub- the sub- the sub- solutions

objective | problems| objective | problems | objective | problems
Weight objective functic

ol 6338793 117 6381804 10 6352028 131 64

02 6333208 147 6349315 10 6334737 160 52|
Cost objectiv functior

ol 906901 22 908348 11 9073756 53 26

02 911293 24 912187 11 911459 56 26

Table 2. Results : percentage of increase duestoatization

Order of | Systematic Roundingd Closest Rounding Intensified Closest Rounding
the
groups % of increase % of increase % of increase
Weight objective functic
ol 15 2.2 1.7
02 14 1.7 14
Cost objective functic
ol 0.3 0.5 0.4
02 0.8 0.9 0.8

The basic heuristic using the closest rounding gulace provides results of good quality really fast.

The number of sub-problems generated is arounchddsaguaranteed to be less than 16. The basic
heuristic provides results of better quality usihg up & down rounding procedure but the number of
sub-problems generated is much larger and the myntake up to 30 hours. The enhanced heuristic
may produce a number of sub-problems as largeeabasic heuristic with up & down rounding and

produces results of the same quality. Any one e$¢ltwo methods may be interrupted at any time by
the user or a time limit may be imposed. An inténgsfeature is that 50% of the solutions generated
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with these two methods are feasible discrete swisti The designer may choose among those
solutions the one that complies with some condsdimat are not expressed in the model. He may
also use this list of about 60 discrete solutianshoose the one that provides low values for both
weight and the objective function.

6. Conclusion

This paper has presented a basic heuristic andteneed heuristic to solve the structural desiga of
cruise ship. This is a mixed integer nonlinear foits with implicit constraints and discrete
variables. To evaluate if a structure compliesdtructural constraints a computationally expensi
structural analysis has to be performed. The betnmethod proposed is a two-stage local search
heuristic. At a strategic level a “dive-and-fix” thed controls the definition of nonlinear sub-
problems. The generation of the explicit sub-protdeand their optimization are performed at a
tactical level, using the LBR5 software as a blaok: Other structural analysis and optimization
methods could be chosen. Two rounding procedurge baen proposed and tested for the basic
heuristic and one for the enhanced heuristic. Agwyristic is guaranteed to always provide a solution
using a small number of structural analysis andasanable amount of time, if proposition (1) holds.
The heuristics have been tested on a real shiptstas The solutions of the heuristics shows very
similar values for the objective functions and afwautperform a “hand-made” rounding or an
automatic single step rounding of the solutionhef tontinuous problem. The designer may choose
among the proposed heuristics the one that igdagitve a discrete result or the one that genemtes
important number of discrete feasible solutiona more important period of time.
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