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Abstract
A heuristic approach is proposed to solve the structural optimization problem of a cruise ship.  
 
The challenge of optimization is to define the scantling of the structure of a ship in order to minimize 
the weight or the production cost. The variables are the dimensions and positions of the constitutive 
elements of the structure: they are discrete by nature. The objective functions are nonlinear functions. 
The structure is submitted to geometric constraints and to structural constraints. The geometric 
constraints are linear functions and the structural constraints are implicit functions requiring a high 
computation cost.  The problem belongs to the class of mixed-integer nonlinear problems (MINLP). 
 
A local heuristic of the type “dive and fix” is combined with a solver based on approximation 
methods. The solver is used as a black-box tool to perform the structural analysis and solve the 
nonlinear optimization problems (NLP) defined by the heuristic. The heuristic is designed to always 
provide a discrete feasible solution. Experiments on a real-size structure demonstrate that the optimal 
value of the mixed-integer problem is of the same magnitude as the optimal value of the optimization 
problem for which all the variables can take continuous values. 
 

 
1. Introduction  
 
In the domain of naval architecture, structural optimization of a cruise ship occurs at the stage of the 
proposal, the earliest phase of a project. Preliminary ship sizing and structural design always pose 
difficult problems to designers. They have to make the most adequate choices within a very short 
period of time. This happens in numerous industries working with large projects whose characteristics 
are that the product is unique and has to be custom-designed at the very beginning of the project or 
even before the client’s order (i.e. naval or spatial structures). 
 
The decisions taken during this preliminary design phase will greatly influence the subsequent steps 
of the production. Indeed, the preliminary structural design drastically limits the choices of production 
techniques and fixes the main constitutive elements of the structure. The constraints to take into 
account are the customer requirements concerning the ship characteristics such as, for example, speed 
or capacity.  
 
The problem, as we formulate it, is to define the scantling of the constitutive elements of a structure 
modeled as a transversal cross-section of a cruise ship, composed of stiffened panels. The 
optimization is performed in order to minimize either the weight, the production cost or a combination 
of these two objectives. This choice has a great influence on the resulting structure.  The design 
variables are the dimensions and positions of the constitutive elements of the structure: they have 
discrete values by nature. The structure is subject to geometric constraints and structural constraints. 
The geometric constraints ensure the feasibility of the structure (e.g. lower bounds on steel thickness) 
and the structural constraints model the response to solicitations and stresses. 
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The cost, the weight and the geometric constraints are nonlinear functions. The structural constraints 
are defined by implicit functions and their evaluation requires a high computation cost. This 
evaluation can be done thanks to analytical methods or to the use of simulation of mechanical models, 
such as finite element methods.  The resulting model belongs to the class of mixed-integer nonlinear 
programming problems (MINLP). 
 
2. Problem formulation 
 
A ship is a large and complex steel structure whose study requires simplifications. The front and the 
back of the boat have particular shapes that are the object of other specific researches (Mesh models, 
finite element methods, etc.). We are concerned here with the structure between these two parts. The 
ship is considered as the repetition of similar structural pieces (Figure 1). Each piece is left-right 
symmetric such that the basic element to optimize is a half piece, as shown on figure 3. The basic 
element to optimize is an assembly of stiffened panels (fig. 2). The number, the arrangement, the 
width and the length of the panels are given data. The problem formulation used in this work is an 
adaptation of the model presented by Rigo for the optimization of stiffened structures (Rigo 2001a, 
2001b, 2001c).  
 
 

 
 
Fig.1: Decomposition of a ship into more simple 

elements 
 

 
Fig.2: A stiffened panel 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: Cross section of a structure 

 
 
2.1. Variables 
 
Let P be the collection of panels of the structure. Each panel p∈ P of the structure is characterized by 
the plate thickness, as well as by the spacing and the dimensions of the members.  The design 
variables apply to each stiffened panel p of the structure (see figure 4): 

o δ p is the plate thickness, 
o h px,d px,w px are the dimensions of web and flange of the longitudinals/stiffeners fitted along 

the X direction, 
o h py,d py,w py are the dimensions of web and flange of the transverse frames fitted along the Y 

direction, 
o ∆ px is the spacing between two longitudinals/stiffeners fitted along the X direction, 
o ∆ py is the spacing between two transverse frames fitted along Y,  
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Note that tpx, and tpy are not design variables.  
For convenience we use also the notation (v1 

p, v2 
p, v 3 

p, v4 
p, v5 

p, v6 
p, v7 

p, v8 
p, v9 

p) to represent the 
vector of variables (δ p, h px,d px,w px, ∆ px, h py,d py,w py, ∆ py) for each panel p∈P. We denote by vi = vi

p : 

p∈P the vector of values assumed by variable vi
p over all the panels, for each i=1,...,9. We also use the 

notation v to denote the vector (v1, v2, v3, v4, v5, v6, v7, v8, v9). 

Fig.4: Design variables along x and y directions 
 
The thickness and dimensions of the elements (δ p, h px,d px,w px, h py,d py,w py) fall within a finite set of 
standard thicknesses and dimensions, as they are found in a catalog by a manufacturer. Therefore, we 
define for each variable and for each panel a discrete set of admissible values. The extreme values of a 
set are fixed by the technological constraints and we use a realistic discretization step. The definition 
of the admissible sets (one set for each panel and each variable) is of the following type: 
 

vi 
p ∈ Di 

p with Di 
p
 = { vi 

p min, vi 
p min + stepi, vi 

p min + 2*stepi , …, vi 
p min +ni

p*stepi = vi 
p max} 

i∈{1,2,3,4,6,7,8} 
 
The number of members that have to be equidistantly fixed on a panel is integer by nature. Therefore, 
the spacing between two frames along the x direction (∆ px) may take its value in a finite set of values. 
For each panel we determine the set of admissible spacings using the length of the panels L and the 
admissible number of members (np

min,…np
max) for the panel p. The definition of the admissible set 

(one for each panel) is of the following type: 
v5 

p ∈ D5 
p with D5 

p
 = { v5 

p min, ...,v5 
p
 max }, v5 

p min = L/np
max , …, v5 

p max = L/np
min  

 
We can not define such discrete sets of admissible values for the spacing of the members along the y 
direction : there are some correspondance constraints between the spacings of the longitudinal 
members of some panels and the widths of these panels are not identical. Thus, it is not possible to 
have a discrete set for the spacing of the longitudinals that would fit for every panel.  It follows that, 
for each panel p, the spacing of the longitudinals may take its value in a set D9

p
 that is a continuous 

interval : v9 
p ∈ [v9 

p
 min , v9 

p
 max]. 

 
2.2. Objective functions 
 
Two objective functions are modeled: the weight and the production cost of the structure. These are 
nonlinear functions in terms of the design variables. 
- Weight objective function :  

∑










+

+++ =
p

p
y

p
y

p
y

p
y

p
x

p
x

p
x

p
xp

∆

wdh

∆

 wdh
F

p
y

p
xp t

 
t

  B L δγ  

where L is the length of the panel according to the X coordinate (m), Bp is the width of panel p 
according to the Y co-ordinate (m) and γ  is the specific weight (N/m3). 
 

∆x 

δ 
 hx          dx 

tx 
 

wx 

∆y 

 
 hy          dy 

ty 
 

wy 

 4 

- Cost objective function  
The cost is composed of three elements: the cost of raw materials (plates, bars, etc), the cost of 
manpower used for the construction of the entire structure and the cost of the consumables necessary 
for the manufacturing process (energy, welding materials, etc.). A complete expression of the cost 
objective function is given in [Rigo 2001c], it has the generic expression Fc : 
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where the specific coefficients depend on the application (efficiency of the shipyard, unitary cost of 
the materials, etc.). The user may choose to optimize the structure using the weight, the cost or a 
combination of these two objective functions. 
 
2.3. Constraints 
 
The constraints of the mathematical model are classified into three types: technological, geometrical 
and structural. We present the generic formulation of each constraint. The set of constraints for any 
specific application model is a subset of these generic constraints. 
- Technological constraints  
These constraints set bounds on the design variables.  The lower bounds are usually determined by 
technical limitations (for example a lower bound for a thickness variable to limit the impact of 
corrosion) and the upper bounds are usually set by to production requirements (for example handling 
capabilities).  

vi 
p
 min  ≤   vi 

p
  ≤  vi 

p max   

- Geometrical constraints  
These constraints limit the values of some ratios between the design variables to ensure that the 
structure is feasible and reliable, they originate from regulations and norms.  An example is to fix a 
maximum ratio between the dimensions and the thickness of members (frames, stiffeners) or to link 
the dimensions of two distinct types of members of a panel (frame height, stiffener height). An 
example is δp – 2 * dp

x ≤  0. These constraints can be expressed by linear inequalities of the type:  

ai vi 
p – bj vi 

p  ≤  0  

- Structural constraints 
As external loads and forces are applied to the structure, some resultant effects such as displacements, 
deformations and internal stress occur. The complexity of the behavior models leads to the 
impossibility of explicitly drawing the relationships between the parameter studied (deflection, stress, 
etc…) and the design variables (element dimensions and position). The evaluation of these resultant 
effects (and of their derivatives with respect to the design variables) is possible at expensive 
computational cost using analytical approaches or finite element methods (FEM). Given the values of 
the design variables, the displacements, deformations and internal stress are computed for several 
loading scenarios.  
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The structural constraints define the maximum admissible values of these resultant effects in order to 
limit the apparition of physical phenomenon such as yielding, buckling, ruin, etc. They are computed 
at a set of points defined by the user for each panel. The generic mathematical expression of these 
constraints is : 

cj(v) ≤ cj max 

with v the design variables and cj(v) the value of the effect (displacement or stress). For any fixed 
value of the design variable v, a structural analysis is performed to compute the value of the 
constraints. For this calculation, we utilize the LBR-5 software. LBR5 is based on an analytic method 
to solve the systems of differential equations of stiffened panels [Rigo 2005].  
 
2.4. Compact mathematical model 
 
The problem to be solved has the following generic formulation : 
Minimize f(v) 
s.t.  g(v) ≤ 0 
 c(v) ≤ c max  (P1) 
 vi 

p ∈ Di
p    i=1,…,8  

 v9 
p ∈ C9

p, 
with v the vector of all variables, vi a sub-vector of variables (i=1, ...,9), f(v) a nonlinear  function, 
g(v) linear functions and c(v) implicit functions, Di are discrete sets and C9

p is a continuous interval. 
 
This structural optimization problem creates several difficulties: it involves mixed (continuous and 
discrete) variables, a nonlinear objective function and implicit structural constraints with a nonlinear  
behavior. To solve this problem we will use a relaxation of P1 where the discretization constraints are 
removed such that each variable may take its value in a continuous interval Ci

p = [vi 
p
 min , vi 

p
 max], 

where vi 
p
 min and vi 

p
 max  are the extreme values of  Di

p. We obtain the following formulation : 

Minimize f(v) 
s.t.  g(v) ≤ 0 
 c(v) ≤ c max  (P2) 
 vi 

p ∈ Ci
p    i=1,…,9  

We first present the resolution method available for the relaxed problem P2. A candidate solution 
(maybe not feasible) is initially considered and a structural analysis is performed. This analysis 
requires an important amount of computing time for real-size structures. Then an explicit local 
approximation of the problem is built using the output values of the structural analysis. This 
approximate problem is a conservative convex problem (any solution of the approximation is also a 
solution of the original problem). We apply an optimization algorithm based on a dual method [see 
Fleury, 1993 ; Schmidt and Fleury, 1980] to obtain the optimal solution of the approximate problem. 
This new solution is introduced in the original problem and a new structural analysis is performed to 
check its feasibility. These successive steps of optimization and structural analysis may be iterated a 
number of times fixed by the user: usually about 10 iterations are performed to obtain a solution that 
is satisfactory for the designer. We use the LBR5 software developed by Rigo [Rigo, 2001a] to 
perform the structural analysis and the optimization of the non linear approximate problems.  
 
We conclude this section with a proposition based upon the experience of the designers. In structural 
optimization problems each design variable a has a direction in which its value can change that tends 
to satisfy the constraints of the problem. For example an increase of the thickness of an element or a 
decrease of the spacing between members does not affect the feasibility of a feasible solution and may 
lead to a feasible solution, starting from an unfeasible one. Let’s call a change in this direction a 
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“positive change” then the proposition can be stated as follows : 
Any “positive change” of the value of some or all of the design variables of a feasible solution always 
defines a feasible solution. (Proposition 1) 
While not mathematically proven, this proposition always seems to hold in practice. 
 
3. Heuristic Algorithm 
 
3.1 Local search framework 

We now turn to the more interesting case where the set Di
p are discrete. The main challenge is to build 

a heuristic that always provides a discrete feasible solution of good quality to the problem P1, while 
requiring a very small number of structural analyses. The quality of the heuristic solution may be 
evaluated by comparison to the optimal value of the relaxed problem P2, where all the variables may 
take continuous values. This can also be compared with the value obtained by a single-step rounding 
procedure applied to the solution of the relaxed problem P2. 
 
We use a local search heuristic inspired by the work of Fischetti and Lodi [Fischetti and Lodi, 2003] 
who experimented with a “relax and fix” heuristic for the solution of large MIP (Mixed Integer 
Programming Problems).  This heuristic uses a generic MIP solver as a black-box “tactical” tool to 
explore suitable solution subspaces defined and controlled at a “strategic” level by a simple external 
branching framework. The “relax and fix” heuristic acts as described below. The variables are 
partitioned into disjoint sets of decreasing importance. A succession of MIPs are defined and solved 
iteratively. In the first MIP, the integrality requirement is imposed on the variables of the subset of 
greatest importance and the integrality constraint is relaxed on all the other variables. The resulting 
sub-problem is solved to optimality and the optimal values of the integer variables are fixed. The 
integrality constraint is imposed only on the variables of the next group in order of importance to form 
the MIP problem of the next iteration. The iterations stop when all the values of the variables are 
fixed. The local branching procedure introduced by Fischetti and Lodi consists in adding to the MIP 
model, at each iteration, a linear constraint that imposes a minimum percentage on the number of 
variables to fix at this iteration.   
 
Our approach is a similar two-stage approach: an external heuristic framework acts as a “strategic” 
tool to control at a “tactical” level the definition and the optimization of the sub-problems. At the 
strategic level the “relax and fix” heuristic is replaced with a “dive and fix” heuristic. This heuristic 
for mixed integer linear problems is presented in  [Pochet and Wolsey, 2006]. Initially the heuristic 
solves a linear relaxation of the problem. Then a succession of linear relaxations of the problem are 
solved: at each step a selection of variables are rounded and their values are fixed, this defines the 
next linear sub-problem. The iterative process ends when all the variables have been rounded to 
integer values. A main difference between the “relax and fix” heuristic and the “dive-and-fix” 
heuristic is the nature of the sub problems solved: the “relax and fix” heuristic adds some constraints 
and solves a MIP sub-problem while the “dive and fix” heuristic fixes the values of some variables 
and solves continuous sub-problems.  
 
Applied to the structural optimization problem, the “dive-and-fix” procedure fixes the values of some 
variables while the discretization constraints are relaxed for the other variables. This defines a 
nonlinear sub-problem (instead of the linear problems discussed in Pochet and Wolsey): the procedure 
applied to select the variables and fix their values is described in the sequel of this paper. The LBR5 
black box tool performs the structural analysis for the current solution and solves the current 
approximation to optimality. 
We consider the mixed discrete-continuous nonlinear and implicit problem P1. The variables of the 
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problem are grouped according to their physical meaning, they represent the dimensions of the panels 
and the dimensions and the spacing of the stiffening members. There are 9 variables for each panel p : 
(δp

, h
p
x,d

p
x,w

p
x, ∆

p
x, h

p
y,d

p
y,w

p
y, ∆

p
y) as described at Section 2.1, which we symbolize as (v1

p, v2
p, v3

p, 
v4

p, v5
p, v6

p, v7
p, v8

p, v9
p) for convenience. We first consider the group of variables vi: this is the vector 

composed of all the variables with index i, it may represent for example the thickness of all the panels 
of the structure. The variables in the vectors v1...v8 take their values in discrete sets as defined earlier 
and the vector v9 has real values in a finite interval. We now consider only the eight groups of discrete 
variables. The groups vi are sorted by order of decreasing importance: the importance of each group is 
defined by the designer according to their importance in the production process. This importance is 
roughly linked to the sensitivity of the objective and the constraints with respect to these variables. 
For clarity we assume that the order of importance is v1...v8. Finally we note v the vector of all the 
variables of the problem. 
 
An initial solution is given by the designer: the values of the variables represent the dimensional 
characteristics of the structure. This solution may be feasible or not, discrete or not. We consider that 
the bounds and the linear explicit constraints are always respected. A non-feasible initial solution is 
allowed as the optimization algorithm used to solve the nonlinear sub-problems may start with any 
solution to derive a feasible solution to the initial problem. Given an initial solution v0 the heuristic 
starts by computing an optimal solution vNLP of the relaxed NLP problem P2, where all the variables 
are free (no variable has its value rounded and fixed). 
 
At each iteration k, the heuristic starts with the solution of the previous iteration vk-1. The sub-vector 
vi

 k-1 of greatest importance among the free variables is selected and the values of these variables 
are fixed according to a rounding procedure (described below) to form the solution vK. A structural 
analysis is performed at vK by the LBR-5 software, it computes the value of the structural constraints 
for the solution vk. These values are used to build an explicit approximated problem NLPk. The LBR5 
optimization module is then applied to solve the NLPk problem. If the NLPk problem appears to have 
no feasible solution, a relax procedure (described below) is applied to free the variables that have been 
fixed at the previous iteration and the algorithm moves to the next iteration. If a feasible solution for 
NLPk is obtained then the algorithm moves to the next iteration (diving). This iterative scheme is 
repeated until all discretization constraints are satisfied. 
 
The round and the relax procedures are the core of the dive-and-fix heuristic. They act jointly to 
define which regions of the solution space will be explored. They control the creation of the nonlinear 
sub problems Pk at each iteration by defining how the values for the variables are rounded and fixed. 
Three variations have been implemented and tested. The first one is a “closest rounding” procedure, 
the second one is a “up & down rounding” procedure and the third one, the “intensified closest 
rounding” procedure, may be seen as an enhancement of the closest rounding procedure.  
 
3.2. Closest rounding procedure 

The dive-and-fix heuristic based on the closest rounding procedure is the following. The algorithm 
starts by computing an optimal solution vNLP of the NLP problem, i.e. the problem where all 
discretization constraints have been removed and where all the variables are free. At each iteration the 
group of free variables of greatest importance is selected and each variable vi of this group is 
individually rounded to its closest value. The values of all the variables of this group are fixed. This 
forms the initial solution vk of the iteration and the local approximated problem Pk is built from this 
solution. Three situations may occur at this point: either Pk has a feasible optimal solution and all the 
discretization constraints are satisfied, in which case the heuristic stops or all the discretization 
constraints are not satisfied and the algorithm moves to the next iteration (diving).  Third, no feasible 
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solution is found for Pk , which implies that the problem is too constrained. A relax step is introduced 
to free the values of the group of variables vi. This backtracking step allows the heuristic to consider 
an alternative rounding procedure to create an alternative solution vk’. The alternative rounding 
procedure chosen here is to round up all the variables of the group selected for rounding. If 
proposition (1) holds this procedure is guaranteed to always provide a solution vk’ for which Pk’, the 
approximate problem, has a feasible solution. A complete run of the algorithm generates at least 8 and 
at most 16 iterations. Each iteration involves a given number (fixed between 10 and 15 by the LBR5 
user) of structural analysis : a complete discrete optimization using this procedure thus involves 160 
up to 240 structural analysis.  

 
3.3. Up & down rounding procedure  

This procedure differs from the previous one in such a way that at each iteration k, the considered 
nonlinear sub-problem produces exactly two nonlinear sub-problems: PkUp and PkDown respectively 
obtained by rounding up or rounding down all the variables of the currently selected group of 
variables.   A key difference with the closest rounding is that all the variables of a group are always 
rounded in a common way. A complete execution of the heuristic with this rounding procedure 
involves the creation and the resolution of exactly 16 sub-problems. 
 
The heurisitic using this procedure, as well as the one using the closest rounding procedure, may look 
similar to a branch and bound method (see [Pochet and Wolsey, 2006]) but there are two important 
aspects that prevent us from using an exact branch and bound method. First, we are dealing with an 
implicit problem and each step of the local search defines and optimizes only a local approximation of 
the original structural problem. Therefore, no upper bounds can be obtained and used in a branch and 
bound tree.  Second, as the definition of each local approximation requires a computationally 
expensive structural analysis, we prefer to operate on groups of variables instead of individual 
variables. This decision reduces the number of sub-problems but not induce a complete enumeration 
of the solution space as in a branch and bound approach.   
 
3.4. Intensified closest rounding procedure. 

We want to enhance the closest rounding procedure to intensify the local search towards more 
promising regions of the solution space. The heuristic is modified in order to analyze more sub-
problems and to use some lower rounding. The improved heuristics act exactly as described with the 
closest rounding procedure except that when a discrete feasible solution is found the algorithm 
performs some backtracking instead of stopping.  
 
The backtracking is an iterative procedure that relaxes the fixed values of one or several groups of 
variables of a current solution to create a new solution on which the diving process is applied. The 
backtracking considers the solution before the last rounding step on vi. If this step was a closest 
rounding, this operation is replaced with a lower rounding and the diving starts again with the new 
solution. If the last rounding step was an upper rounding (meaning that a closest rounding on this 
group of variables has previously led to an unfeasible solution) or a lower rounding (meaning that the 
closest rounding was by chance equivalent to a lower rounding or that backtracking has already been 
applied to this sub-problem), then the values fixed at this step are relaxed and the procedure 
backtracks to the sub-problem where the rounding step was applied on the group of variables vi-1.  
 
This enhanced heuristic may create up to 28

 sub-problems and may be highly time consuming. It can 
be stopped at any time by the user or can be set to stop when a time limit is reached.  
 
The framework of the three heuristics  is presented in Figure 5.  
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Are all discrete restrictions
 satisfied ?

Solve NLP ignoring discrete restrictions

No

Is NLP(k) feasible ?

Yes

Select the group of variables of greatest importance 
among the free variables

Apply a fixing procedure to the selected 
group of variables

Perform the structural analysis and create the 
continuous problem NLP(k) 

Solve NLP(k) with the optimization black-box 

No

Yes

Relax some group of fixed variables

Is the stopping
 criterion met ?

No

Yes

Stop

 
Fig. 5: Flowchart for the heuristic procedure. 

 
 
4. Enhancements of the heuristic  
 
Sorting the groups of variables. 
Usually in the dive-and-fix heuristics the choice of the variables to be fixed is value-driven: the 
variables whose values are close to a discrete admissible value are chosen to be rounded and fixed. In 
our heuristic the variables are partitioned in groups according to their physical meaning. We have 
performed several experiments with other orders of the groups of variables and the results obtained 
using the order of the groups proposed intuitively by the designers outperforms the results with other 
orders. This observation suggests that the methods usually presented in the literature to select the 
variables to round (i.e. rounding the variables whose values are close to the discrete admissible value) 
would not provide good results as some variables of structural importance could be fixed too early. In 
such situations unfeasible solutions may appear early and the search process may terminate 
prematurely. 
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Balancing the workload between the number of sub-problems created at the strategic level and 
the number of iterations performed to solve a nonlinear  problem at the tactical level. 
Within the LBR5 black-box, each nonlinear (continuous) sub-problem is optimized thanks to an 
iterative method, each iteration implies the resolution of a computationally expensive structural 
analysis. Usually, the number of iterations in LBR5 is fixed by the user to 10 or up to 15 for difficult 
problems. This number of iterations allows a convergence of the optimization method even starting 
with unfeasible solutions. In practice, we have observed that after 5 iterations, a solution of good 
quality is usually found. We add a dynamic control of the iterative process : the number of iterations 
to solve the nonlinear sub-problems is set to 5 and 10 extra iterations are allowed if no feasible 
solution is found after the 5 initial iterations. 
 
Tolerance for the rounding rule 
A major characteristic of both heuristics is that the rounding procedure is applied simultaneously on 
all variables of a group. Although this “group-based” approach is a key to limit the number of sub-
problems optimized and the number of structural analyses performed, it may appear too restrictive 
when using the up- or down-rounding. We may want to independently consider the variables whose 
values are very close to a discrete admissible value. We define a tolerance parameter so that if the 
value of a variable selected to be rounded (up or down) falls within a tolerance interval of a discrete 
admissible value then it is fixed to this value even if this does not comply with the active rounding 
procedure. The interval for this rule is defined using (tolarr * step) where tolarr is the tolerance 
parameter and step is the difference between two consecutive values of the admissible domain of the 
variable. For example, a variable delta is rounded to its closest admissible value if the following 
condition is true: 

(modulo (delta, step)<= tolarr*step ) or ( modulo (delta, step)>= (1-tolarr)*step ) 
 
Tolerance for the feasibility of the solution 
The optimization method applied to solve approximate nonlinear problems is a dual approach that 
allows some constraint violation and tries to reduce these violations as much as possible. An initial 
solution may be unfeasible. The result of the optimization of the approximate problem may not satisfy 
exactly all the constraints of the original problem: a structural analysis is performed to check that the 
solution is feasible for the original problem. We use a tolerance factor to accept solutions of the 
nonlinear problem for which the constraints violation is less than a given percentage of the value of 
the constraint. Allowing to consider these non feasible solutions of the approximated problem as a 
starting point for sub-problems allows the diving process to continue and leads to the creation of sub-
problems for which feasible solutions of good quality are sometimes found. 
 
5. Computation experiments 
 
The heuristic has been tested to find discrete values for the design variables of the structure of a real 
ship build by a major European Shipyard. A partial model of the ship structure is composed of 68 
panels whose structural characteristics have to be optimized. The problem has 460 discrete variables 
and 52 continuous variables. The solution space for the discrete variables contains more than 10e360 
solutions. There are 1709 constraints. A nonlinear analysis of the relaxed problem (with all 
continuous variables) takes about 10 minutes on a workstation with a processor pentium 3GHz and 
2GB of RAM. Using the same machine, a run of the “dive-and-fix” heuristic may last from one to 
thirty hours, depending on the settings and the number of sub-problems generated. One may notice 
that the computing time is mainly due to the structural analysis.  
 
Solving the relaxed problem (P2) with a cost objective function provides a value of magnitude 904197 
(in cost units). When the solution of the nonlinear problem is rounded by a designer, the values of the 
objective functions increases by about 3%. We implemented a straightforward method to obtain a 
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discrete solution. First a simultaneous rounding of all the variables down to their closest admissible 
value is performed. The solution produced by this method appears to be unfeasible. Then we try 
rounding the variables to their closest admissible discrete value. This again leads towards an 
unfeasible solution. Finally, rounding of all the variables up to their closest discrete value gives a 
feasible discrete solution with cost value of 942469, that is an increase of 4.2%.   
 
The optimization of the relaxed problem P2 with the weight objective function provides an objective 
function of magnitude 6244916 (in weight units). A discrete solution is computed thanks to the same 
procedure as above. Rounding down yields a weight value of 6414353, i.e. a increase of 2.7%.  
 
We ran the heuristic with the three rounding procedures. The results are presented in Table 1. We 
computed the percentage of loss due to the discretization of the problem. Two orders of importance, 
o1 and o2 provided by the designer, were used to sort the groups of variables. Other orders have been 
tested and only lead to only unfeasible sub-problems or provide results that are significantly worse. 
When using the heuristics the increase from 1.4% up to 2.2% for the weight objective function and 
from 0.3% up to 0.8% for the cost objective function, depending on the method used (See Table 2).  
  

 
The basic heuristic using the closest rounding procedure provides results of good quality really fast. 
The number of sub-problems generated is around 10 and is guaranteed to be less than 16. The basic 
heuristic provides results of better quality using the up & down rounding procedure but the number of 
sub-problems generated is much larger and the run may take up to 30 hours. The enhanced heuristic 
may produce a number of sub-problems as large as the basic heuristic with up & down rounding and 
produces results of the same quality. Any one of these two methods may be interrupted at any time by 
the user or a time limit may be imposed. An interesting feature is that 50% of the solutions generated 

Table 1. Results for dive-and-fix heuristic  
 

Systematic  Rounding Closest Rounding Enhanced Closest Rounding Order of 
the 

groups 
Value of 

the 
objective 

Nb of 
sub-

problems 

Value of 
the 

objective 

Nb of 
sub-

problems 

Value of 
the 

objective 

Nb of 
sub-

problems 

Nb of 
solutions 

Weight objective function 
o1 6338793 117 6381804 10 6352028 131 64 

o2 6333208 147 6349315 10 6334737 160 52 
Cost objective function 

o1 906901 22 908348 11 907375 53 26 

o2 911293 24 912187 11 911459 56 26 

  

Table 2. Results : percentage of increase due to discretization 
 

Systematic  Rounding Closest Rounding 
 

Intensified Closest Rounding Order of 
the 

groups % of  increase % of  increase % of  increase 

Weight objective function 
o1 1.5 2.2 1.7 

o2 1.4 1.7 1.4 
Cost objective function 

o1 0.3 0.5 0.4 

o2 0.8 0.9 0.8 
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with these two methods are feasible discrete solutions. The designer may choose among those 
solutions the one that complies with some constraints that are not expressed in the model. He may 
also use this list of about 60 discrete solutions to choose the one that provides low values for both the 
weight and the objective function.  
 
6. Conclusion 
 
This paper has presented a basic heuristic and an enhanced heuristic to solve the structural design of a 
cruise ship. This is a mixed integer nonlinear problems with implicit constraints and discrete 
variables. To evaluate if a structure complies to the structural constraints a computationally expensive 
structural analysis has to be performed.  The heuristic method proposed is a two-stage local search 
heuristic. At a strategic level a “dive-and-fix” method controls the definition of nonlinear sub-
problems. The generation of the explicit sub-problems and their optimization are performed at a 
tactical level, using the LBR5 software as a black-box. Other structural analysis and optimization 
methods could be chosen. Two rounding procedures have been proposed and tested for the basic 
heuristic and one for the enhanced heuristic. Any heuristic is guaranteed to always provide a solution 
using a small number of structural analysis and a reasonable amount of time, if proposition (1) holds. 
The heuristics have been tested on a real ship structure. The solutions of the heuristics shows very 
similar values for the objective functions and always outperform a “hand-made” rounding or an 
automatic single step rounding of the solution of the continuous problem. The designer may choose 
among the proposed heuristics the one that is fast to give a discrete result or the one that generates an 
important number of discrete feasible solutions in a more important period of time.  
 
References 
 
FISCHETTI, M.; LODI, A. (2003), Local Branching, Math. Program., Ser. B 98, pp.23-47 
 
FLEURY, C. (1993), Dual Methods for Convex SeparableProblems, Optimization of large structural 
systems; Proceedings of the NATO /DFG Advanced Study Institute, Berchtesgaden, Germany; 
Netherlands; 23 Sept.-4 Oct. 1991. pp. 509-530  
 
FLOUDAS, C. (1995), Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications,  
Oxford University Press, New York. 
 
POCHET, Y.; WOLSEY, L. (2006), Production Planning by Mixed Integer Programming, Springer 
Series in Operations Research and Financial Engineering. 
 
RIGO Ph. (2001 a), A module oriented tool for optimum design of stiffened structures-PartI,  Marine 
Structures, vol.14, pp.611-629. 
 
RIGO Ph. (2001 b), Scantling optimization based on convex linearizations and dual approach-PartII, 
Marine Structures, vol.14, pp.631-649. 
 
RIGO Ph. (2001 c), Least cost structural optimization oriented preliminary design, The Society of 
Naval architects and Marine Engineers, Ship Production Symposium, paper 15. 
 
RIGO Ph. (2005), Differential Equations of Stiffened Panels of Ship Structures & Fourier Series 
Expansions, Ship Technology Research, Schiffahrts-Verslag “Hansa”, Hamburg, vol.52, pp. 82-100 
 
SCHMIDT L, FLEURY C. (1980), Discrete continuous variable structural synthesis using dual 
methods, AIAA Journal, vol.18, n°4, pp.:1515-1524. 
 
THANEDAR P., VANDERPLAATS G. (1995), Survey of discrete variable optimization for 
structural design, Journal of Structural Engineering, vol.121, n°2, pp.301-306. 


