

The Western Mediterranean SST seen through complementary *in situ*, satellite and modelling approaches

C. Troupin, F. Lenartz, D. Sirjacobs & the GHER team

September 30, 2008

Outline

- Objectives
 - Combined effort on determinate region
 - representation of seasonal cycle in the region
 - effectiveness of tools in limited area.
 - interactions between approaches
- Tools
 - circulation model → GHER model
 - cloud filling in SST imagery → DINEOF
 - in situ data analysis → Diva
- Outputs
 - Annual, seasonal and monthly averaged fields, 0.0625-degree resolution
 - SST fields for the year 1998, $4.5 11.5^{\circ}W$ and $40.5 - 45^{\circ}N$

GHER model (1)

General:

Variables: T, S, SSE, u, v, tke

Boussinesq approximation, Cartesian coordinates, Arakawa C-grid, mode splitting

k-turbulent kinetic energy closure scheme [Nihoul (1989)]

algebraic equation for ϵ

Atmospheric forcing:

bulk formula [Kondo et al. (1975)] implementation [Barth et al. (2004)]

Applications:

Western Mediterranean Sea [Beckers (1991)], [Beckers et al. (1997)], MEDMEX experiment [Beckers et al. (2000)]

GHER model (2)

Nesting [Barth et al. (2002)]:

- 1 interpolation of fine grid BC's from coarse grid model
- integration of both grid models for one time step
- 3 averaging the values of the fine grid model and updating of coarse grid model

Boundary conditions:

Normal velocity: volume conservation + penalisation of abrupt variations

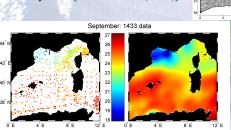
Tangent velocity: bilinear interpolation

Scalars: linearly interpolation normal to the boundary + tangent interpolation sponge layer: diffusion in the fine model is linearly raised to coarse model diffusion

DINEOF

Ocean satellite data: gappy \rightarrow gridded field **Objectives:**

- identification of dominant spatio-temporal features
- full gridded data at regular time steps
- identification of suspect data


Principle [Alvera-Azcárate et al. (1995, 1996), Beckers et al. (2003, 2006)]:

- Empirical Orthogonal Functions (EOF) decomposition (iterations)
- ② General Cross Validation (GCV) → optimal number of EOF
- Final SVD decomposition

Diva

Data-Interpolating Variational Analysis [Brasseur et al. (1996), Brankart and Brasseur (1996, 1998)]

- advanced data-gridding method
- + finite-element resolution
- + coastlines + advection influence
- + error maps
- + many more [Beckers et al. (2008)]

DINEOF

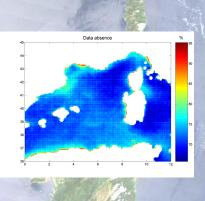
Sources:

Sensor: AVHRR Pathfinder SST,

http:

//podaac.jpl.nasa.gov

Period: 1985-1995


Resolution: remapped daily at 1/16°

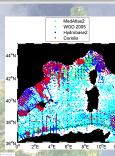
[Marullo et al. (2006)]

Quality: more than 5 % of valid

data

→ 3974 images

Diva


Data set = aggregation between:

WOD05 + MedAtlas2 + Hydrobase2 + Coriolis

- 24293 unique profiles
- observations with depth < 5 m (82.6% of the profiles)
- 1986: 3267 measurements, 1994: 653
- > 40% of data between May and July
- mean: 18.4769° C, standard deviation: 3.8773° C
- 99.3% of data have $12 < T < 27^{\circ}C$

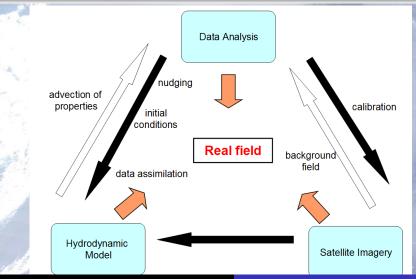
Monthly temperature fields

Origin of the differences

- Data analysis:
 - relies on data distribution (time + space)
 - + needs parameter selection
- Satellite images:
 - DINEOF relies on calibration algorithm
 - + surface effets
 - + inegal repartition of cloud coverage
- Hydrodynamic model:
 - forcing accuracy
 - + small-scale process parameterisation

Possible improvements

detrending:


- subdivision of data into several groups
- analysis → computation of a trend for each group:
 trend = misfit with respect to overal analysis
- subtraction of the trend
- iteration until convergence

data assimilation:

- optimal combination of model results and independent data
- Kalman filter, optimal interpolation, nudging, ...

→ needs for a strategy combining all the approaches

Interactions between approaches

Acknowledgments

- S. Marullo and B. Nardelli for sharing this database foreseeing a comparison between their O.I. method and the DINEOF).
- The Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the NASA Jet Propulsion Laboratory, Pasadena, CA) for providing the AVHRR Oceans Pathfinder SST data.
- The E.U. for funding Seadatanet project.
- The FRS-FRIA foe funding PhD grants.
- The workshop organisers for giving the possibility to PhD students to present their contributions.

Introduction Tools and data Results Discussion

