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1 Introduction

More than 30 years ago, Ralph Gomory [3] introduced an approach to solve
integer linear programs based on group relaxations. His approach has later
been refined by Wolsey [?] and by Gomory and Johnson [4, 5] leading to a
theory of superadditive functions [6]. The central starting point of this line of
research is the Gomory corner polyhedron that may be derived from an integer
programming problem as follows. Starting with a linear integer program

max cl'z
s.t. Ar=1b (1)
T € LY,

one may select a subset of linearly independent columns Ap and relax the integer
program by
S={recZ": Aprp+ Agrg =0b, x5 > 0},

i.e., one ignores the nonnegativity requirement for the variables in the index set
B but maintains integrality of all the variables and the nonnegativity conditions
for the variables in the complementary set of B. Of course, the set S is in
bijection with its projection to the space of complementary variables

S'={ze P Agry = b (mod L(Ap)), x5 > 0},

where L(Ap) = {Apz: z € ZIP1} denotes the lattice generated by the column
vectors of Apg.

The convex hull of all points in S’ is denoted as the Gomory corner polyhe-
dron. Gomory and coauthors [7, 8, 2] claim that although the corner polyhedron
seems to be a quite general mathematical object, its geometry might be sub-
stantially easier to describe than the one of the original integer programming
polyhedron. The reason is that a Gomory corner polyhedron is based on a cyclic
group. In particular, authomorphisms from the cyclic group into itself can be
used to characterize facets of the corner polyhedron. In a similiar vein composi-
tion rules can be used to “lift” facets of corner polyhedra associated with small



groups to corner polyhedra associated with bigger groups. All these results
certainly provide theoretical evidence that Gomory corner polyhedra ought to
be investigated into more depth. This is a starting point of this paper that is
particlarly motivated by the following comment in Evans,Gomory, Johnson [§],
page 338, section 3:

"If we were able to come close to solving the Corner Polyhedron - say by
having an adequate supply of cutting planes or perhaps, in other ways, such as
finding solutions to the group problems, we could come close to a different kind of
algorithm - one based on solving a sequence of Corner Polyhedron problems. . .”

The central theme of this paper is to “come close to such a different kind
of integer programming algorithm” that is based on feasible solutions in corner
polyhedra. We regard the following results as the major contribution of this
paper.

e It is shown that taking any group problem and providing a reformulation
with the nondecomposable solutions of the corresponding system provides
the convex hull of all its solutions. This demonstrates that reformulating a
corner polyhedron problem by means of computing irreducible solutions is
the strongest possible operation so as to move from the linear programming
relaxation to the integer optimum. In other words, the reformulation is
as strong as deriving a convex hull representation by adding all the facet-
defining inequalities to the system.

e If there are many irreducible solutions in a Gomory corner polyhedron,
then one may resort to linear transformations and composition methods in
order to derive a compact representation for the irreducible solutions. This
increases drastically our ability to determine practically the irreducible
solutions to a group problem.

e Evidence is given that Gomory’s group approach can not only theoreti-
cally but also practically be applied to solve integer programs. The key
is however not to make use of the inequality description for small corner
polyhedra, but to systematically study the non-decomposable integer so-
lutions of the corner polyhedron. This opens up the possibility of solving
an integer program iteratively through a sequence of corner prolyhedron
problems as Ralph Gomory suggested.

The algorithm that we propose works in an iterative fashion. Each iteration
requires the analysis of a group relaxation of the original integer program. The
key step is to define an extended formulation for such a group relaxation whose
variables are in one-to-one correspondence with the nondecomposable solutions
of the group relaxation.

More precisely, the general model that we study in this paper is

VY= {z€Z":Bzx = f (mod A)},



where A is a regular diagonal positive integer matrix, columns, and B € Z"*".
As before, the convex hull of points in Y defines a Gomory corner polyhedron.
An extended formulation of Y is a representation of the form

VY={2v:2=Cu, Du=d, peZh}.

Of particular relevance are reformulations that produce the convex hull, i.e.
formulations for which

conv(Y9)={2:2=Cu,Dp=d, pe R, }.

In the following sections, we examine such relaxations. In Section 2 we
present four possible extended formulations for the group relaxation. The first
one uses all the irreducible solutions of the group problem. We call it the
disaggregated formulation. The second one is a first generalization that tries
to reduce the number of new variables by aggregating variables with identical
residuum class. (The aggregated formulation). The third reformulation is based
on an advanced aggregation technique that reduces even further the number of
new variables. Finally we present a reformulation based on the representation
of groups by paths in a digraph.

Section 3 analyzes the different formulations. We show that the extended, the
aggregated and the path reformulation fulfill the convex hull property. We also
characterize conditions under which the advanced aggregation formulation pro-
duces the convex hull.

Section 4 discusses the algorithmic possibilities to compute the extended formu-
lations introduced before. Section 5 contains the outline of the “different kind
of algorithm based on solving a sequence of corner polyhedron problems” and
reports on computational experiments with the method.

2 Extended Formulations for Group Relaxations

We consider a set of the form
S(d) ={x € Z% : Bxt =d (mod A)}, (2)

where A is a regular diagonal positive integer matrix, and B € Z"*", and
d € Z7,.. Associated with S(d) is a group

G={zxeZ :z; €{0,---,A;—1},i=1,---,r},

consisting of all potential residue classes modulo the vector diag(A). For a set
S(d), we now examine several possible extended formulations. To do this we
need to introduce the notion of irreducible solutions.

Definition 1 A vector x is an irreducible solution of S(d) if = € S(d), and
there is no other distinct nonzero & € S(d) with & < z. Every irreducible vector
z in S(0) is called homogeneous. An irreducible vector x in S(d) is called
inhomogeneous whenever d # 0.



An important property is that every integer point in S(d) can be represented
as the sum of exactly one inhomogeneous irreducible solution of S(d) and an
integer combination of the homogeneous irreducible solutions of S(0). In order
to come up with a first reformulation, we investigate a group relaxation

Y(f)={x € Z”} :Bx = f (mod A)} (3)
of the integer program
max cl'z
s.t. Ax=%5b
x € LY.

We determine a matrix C' whose column vectors correspond to all inhomoge-
neous solutions of Y (f). Accordingly we introduce a matrix D whose column
vectors are all the homogeneous solutions of Y(0). We associate integer A and
i variables with the columns of C' and D, respectively, to define the first for-
mulation.

Proposition 1
Y(f)={r€R} :2=CA+Dp, IN=1, N€Z,p € Zz_}

Therefore {x € R? : 2 = CA+Dp, IN=1, X € Z5,p € ZY} is a valid extended
formulation for Y (f) referred to as the disaggregated formulation.

Example: Consider the set X = {z, 22,23 € Z 4 : 321 + Tz + 923 = 22}. By
taking the equation (mod 4, we obtain the valid group relaxation

Y(2) = {z1,22,23 € Zy : 31 + 322 + 23 = 2 (mod 4)}. (4)

The inhomogeneous irreducible solutions of Y (2) are represented in the matrix
21 0 0
c=101 2 0
0 0 0 2
The homogeneous irreducible solutions of Y (0) are represented in the matrix
1 04 3 2 100
D=]101 01 2 3 40
1 1.0 0 0 0 0 4

We refer to Section 4 for more details on how to compute these matrices of
irreducibles. A valid reformulation for Y'(2) is thus to associate a new variable
to each irreducible solution and hence write

Y(2) ={zr ez

T 210 0 A 10432100 i

z |=1 01 2 0 c|+[0 1012340 :

3 000 2 " 1100000 4 s
MA-+M=1

>\17"'a>‘4€{051}7 Ml,"'aHBEZ—i— }



By looking in more details the irreducibles given in the example, it appears
that we can classify some of the irreducible solutions according to the value
given by the sum of the first and second component. For instance, all the

4 3 210
vectors 01 2 3 4 have the property that the sum of the two first
0 00O 0O

components is 4. This property can be highlighted for some other sets of vectors
of C' and D and is due to the fact that x; and x5 have the same coefficient
in the group equation of (4). This suggests to aggregate these two variables
in one variable w so as to reduce the size of the reformulation. We now let
N ={1,---,n} and Ny, = {j € N : B,; = a}, where a is any element of the
group G (mod A) and where B.; denotes the j column of B. We aggregate
the variables with the same coefficient into w, = ZjeN(a) x; and consider the
set

W(f) = fwezl®: Y aw, = f (mod A)},

ael

where G = {a € G : there exists j with B.; = a}. By denoting C' € Z"*® and
Di € Z™** the matrices whose columns are the inhomogeneous and homoge-
neous irreducibles of W (f) and W (0) respectively, we are now able to write a
second formulation for Y(f).

Proposition 2
V(f)={z €Z":w=C\+Dp, IN=1, N€Z%, peZt,
G
Wa = D jen(a) Tj» WE ZL |}.

Therefore {x € Z% : w = CA\+Dp, 1IN =1, X € Z%, u € Zi,wa =

ZjeN(a) zj, w € Z‘fl} is a valid extended formulation for Y (f) referred to
as the aggregated formulation.

Example: Consider again the group relaxation (4),
Y (2) = {z € Z% : 31 + 3z2 + 23 = 2 (mod 4)}.

We aggregate the first two variables in w = 7 + 2 and now consider an aggre-
gated version of Y (2),

W(2) = {w,z3 € Zy : w+ 3z3 = 2; (mod 4)}.

The correponding matrices of irreducibles of W (2) and W (0) are

~ 2 0 ~ 1 4 0
C_<0 2) and D_<1 0 4).



The aggregated reformulation of Y (2) is

Y2)={ze€Z3 z +z=w

w\ (20 M), (140 H

25 )\ 0 2 Ao 1 0 4 H2
u3

MH+X=1, NeZ3, pneZ?, wely}

Compared to the disaggregated formulation that we gave earlier, the aggregated
formulation is much more compact.

One way of further reducing the size of the reformulation of Y'(f) consists
in generalizing our aggregation technique to variables with different coefficients.
We study here the case of aggregation of variables whose residue classes are
integer multiples of each other. As before, we let N(a) = {j € N : B,j; = a}.
For some a € G, we define h, € Z and

Zhoa = Z Tj + Z haty. (5)
JEN (@) kEN (hq o)
The set of all & € G for which h, is defined and therefore define some aggregation
of type (5) is denoted by L. Let us now consider the set

2(f) ={z € ZI% . ¥ az, = f (mod A)},

aeG’

where G is the set of all elements of the group G that remain after having
removed h,a for every a € L. By denoting C € Z™% and D € Z™* the
matrices whose columns are the inhomogeneous and homogeneous irreducibles
of Z(f) and Z(0) respectively, we are now able to present a third formulation
for Y'(f).

Proposition 3

V(f)={z€Zn:2=CN+Du, IN=1, N€ Z5, peZt,
Zhoo = > jeN(a) Ti T 2okeN(haa) MaTr, fora € L (6)
z € Zf‘}.

Therefore the right hand side of (6) is a valid extended formulation of Y (f).
We refer to it as the advanced aggregation reformulation.

Example: We study the group problem
Y(3) = {z € Z% : &1 + 225 + 43 = 3 (mod 5)}. (7)

We decide to aggregate z» and z3 and to write z = x5 + 2x3. The advanced
aggregation version of Y'(3) is

Z(3)={z,21 €74 : 21+ 22 =3 (mod 5)}.



The inhomogeneous irreducible solutions of Z(3) are C' = ( } 91 g > and

the homogeneous irreducible solutions of Z(0) are D = < ; i’ g g > . This

allows us to write an advanced aggregation reformulation of Y (3),

Y(3)={x€Z3 :x;+225 =2,
A M1

@) (10 3 A+1305
2 )~ \L1 40 AQ 2 1 5 0
3

A+ A+ A3 =1, /\EZi_, MEZi, Z€Z+}.

Ha

Finally we present a fourth reformulation that is based on the “path” struc-
ture of the group equation. Let (V, A) be a digraph with |G| nodes corresponding
to each element of the group G, and arcs (o,a + B;; (mod A)) for all a € G
and j € N. Figure 1 shows such a graph related to the z; 4+ 2z2 (mod 4) group
problem. The arcs above the nodes correspond to x; while the arcs below the
nodes correspond to 2z2. Now if we go back to the general case, any walk from

T
KRG

Figure 1: The path representation of 1 + 2z, (mod 4), = € Z3.

0 to f corresponds to a point in Y'(f). Specifically let w(B.;) be the number of
times the arc (o, & + B.j) occurs in the walk. Then

> Y. Bjwa(By) = f (mod A).
a€G jEN (o)

We can now formulate the group problem by flow constraints on each node of
the graph, with a flow of 1 coming into node 0 and a flow of 1 going out of f,
the new variables being the flow variables w.



Proposition 4

Y(f)={z: == wa(By)

aeG
Y wo(By) =Y wp-p,(By) =1
JEN JEN
> wg(By) =Y ws_p,;(By)=0  for B#0,f
JEN JEN
D wp(By) =Y wi-p,(By) = -1
JEN JEN
w e ZTG‘ 1,

The right hand side of the equation above is a valid extended formulation of
Y (f) referred as to the path reformulation of Y (f).

Example: Let us consider the following knapsack
Ty + 5xy — 313 =3
and a corresponding group relaxation
V(3) ={z € Z% : 21 + 2> + 223 = 3 (mod 4)}.

The path approach provides the following extended formulation

x1 = 2(0,1) + 2(1,1) + 2(2,1) + 2(3,1)

o = 2(0,2) + 2(1,2) + 2(2,2) + 2(3,2)

zg = 2(0,3) + 2(1,3) + 2(2,3) + 2(3,3)

2(0,1) + 2(0,2) 4+ 2(0,3) — 2(3,1) — 2(3,2) — 2(2,3) =1
z(1,1) + 2(1,2) + 2(1,3) — 2(0,1) — 2(0,2) — 2(3,3) =0
2(2,1) +2(2,2) + 2(2,3) — 2(1,1) — 2(1,2) — 2(0,3) =0
2(3,1) +2(3,2) + 2(3,3) — 2(2,1) — 2(2,2) — 2(1,3) = -1
ze L2 }

A solution z(0,2) = 2(1,3) = 1 corresponds to x5 = z3 = 1.

The following example illustrates the sizes of the different formulations for
the single row group problem

3x1 + 3we + 3wz + 624 + 55 + 1026 + 727 = 1 (mod 11).

Homogeneous Inhomogeneous Total Number of
Irreducibles Irreducibles Variables
Disaggregated form. 378 76 454
Aggregated form. 54 26 80
Advanced agg. form. 13 8 21
Path formulation 7




3 Analysis of the reformulations

In this section we analyze the four formulations presented in the previous sec-
tion. We focus on showing under which conditions the convex hull property is
satisfied for each formulation. We denote by Py the corresponding polyhedron
when the integrality requirement of A and p is dropped in the disaggregated
reformulation. Similarly we denote by PZ, Pg, Py the polyhedra correspond-
ing to the aggregated, the advanced aggregation and the path reformulation
respectively, when all the integrality constraints are dropped.

An important result is that the convex hull property presented in Section 1
holds for three among the four reformulations, namely for the disaggregated, the
aggregated and the path reformulation. To prove this result, two intermediate
propositions are needed.

Proposition 5 For f # 0, every extreme point of conv(Y (f)) is an irreducible
inhomogeneous solution.

Proof: Let y be a vertex of conv(Y'(f)). It is obvious that y is an inhomogeneous
solution of (2). Let us suppose now that y is reducible. Therefore there exists
y1 < y,y1 # y, inhomogeneous solution of (2). We also have that z = y — y;
is nonnegative and is an homogeneous solution of the group problem. Hence
y2 =y + z is also a solution of (2) different from y. Furthermore

1 n 1
Y= 2y1 2y2,
contradicting the fact that y is a vertex. d

It can also be noticed that every unit vector multiplied by the product of all A;,
fori=1,---,r is definitely an homogeneous solution of the problem. Therefore
there always exist a parallel vector which is irreducible.

Proposition 6 For all a € G, [[[_, Ajea € W(0). Therefore conv(W(0)) =
IRL_Gl. Similarly, conv(Y (0)) = IR‘_f_Vl.

Based on Proposition 5 and 6 it can be shown that the disaggregated, the
aggregated and the path formulation do not only model a group problem, but

define “ideal formulations” in the sense that they produce the Gomory corner
polyhedron, i.e. the convex hull of all the integer points of a group problem.

Theorem 1 P} = P2 = P} = conv(Y (f)).

Proof: For P, the proof follows immediately from Proposition 5 and 6 as the

extreme points are columns of C, and the extreme rays kje; are columns of D.
For PZ, we note that if z € PZ, there exist w, A, u such that

w:é’/\+]ju, IAN=1, w, = Z xj, x,w, A\, pu > 0.
JEN(a)



For a0 with w, > 0, we have that

Wo = Zéasks + Zbatﬂta
s t

or
w 0
Tj1 00( o .
: _ )\541+- + A, JIN ()]
: We, 0 We,
Lj|N (o) 0 Wa
T
= Z Wa€jAs
JEN(a) “
Therefore we can write
T UJZ €j1
0 [Tz
S5 310 Sl IR PRI
T s a jieN(a) wZD_1ej

The results follows since each of the vector in the sum lies in C.

For Py, the result follows from the fact that the matrix of flow constraints
on the arcs w is totally unimodular. Hence every extreme point has integer
values for w. Therefore z is integer as well. d

The structure of the path reformulation is interesting because it leads to a
totally unimodular matrix. This fact can be further used. We can also produce
the convex hull for a bounded corner polyhedron as we outline below. Consider
a bounded group relaxation

Yp(f) ={r € Z} : Br = f (mod A), x < u}, (8)

where u € 7} represent the bounds on the variables. We construct a digraph
(V,A) with n + 1 levels of nodes, corresponding to each variable and a source
level. Specifically the digraph has (n+41)|G| nodes denoted by Vp,, for the source
level and by Vi, for i = 1,--- ,n, @ € G, corresponding to a group element at
the it" level. For each variable i, and each group element «, the arcs

(Vi-nas Via)s =+ s (Viimyas Vig(atus By mod a)))

belong to the graph. A solution to (8) is now any walk from the source node
Voo to the “target node” V,y. If we denote by w(V{;_1)a,Vig) the flow going
into the arc (V;_1)a, Vi), for any i € N, a, f € G, we have

n Ui

Z Z Z kB.jw (V(i—l)a’ ‘/;((a+kB:i) mod A))) = f (mod A).

a€cl i=1 k=0

10



Hence in any solution, the value of the variables can be expressed by

Li= Z Z kw (V(ifl)a’vi((wks;i) mod A))) )

k=0 aed

foralli =1,---,n. Figure 2 shows such a graph for the z; + 2z, (mod 4) group
problem with z; € {0,1,2} and 2 € {0,1}. A walk from Vpo to Vas represent
a solution with 2 as right hand side.

Figure 2: The graph related to the group problems z; + 2z (mod 4), x; €
{0,1,2}, 22 € {0, 1}.

Proposition 7
Ye(f)={r ez} :
ui

T = Z Z kw (V(iq)a,Vi((aHB:i) mod A))) , fori=1,---.n

u k=0 a€G
ZW(VOOavl(kB(:l))) =1
k=0
u; Wit
Z w(vv(i—l)(a—kB:(i,l))avvia) - Z w(Via, ‘/(i—i-l)(oz—&-kB:i)) =0
k=0 k=0
foralli=1,---,n, and a € G, (i,a) # (n, f)
Zw(v(n—l)(f—kB:i)aan) =1
k=0
w e 7Y 1,

where M = |G| Y., (u;i + 1). Therefore, the expression in brackets is a valid
extended formulation for Yg(f), referred as to the bounded path reformulation.

The key argument to prove that the bounded path reformulation provides the
convex hull of Yg(f) is again that the flow conservation constraints form a

11



totally unimodular matrix. If we denote by Py the polyhedron obtained from
the bounded path reformulation by relaxing the integrality constraints on the
variables, we have the following result.

Proposition 8

Py = conv(Yg(f)).

We have seen that the convex hull property holds for the disaggregated, the
aggregated and the path formulations. Unfortunately the advanced aggregation
formulation is not as strong from a linear programming point of view. Indeed,
in this case some fractional extreme points appear from the fact that

s t s
P = {271,332,/\2',%‘ € ]R+ txp + hry = chi/\i +ZDlj,Uja ZAi = ]-}7

for some | = 1,---,|G|, is not an integral polyhedron. We can, however,
strengthen the formulation by adding cutting planes that are valid for

s t s
P = {$1,$2,>\i,uj €EZy:x1+ hzy = ZCZzAz + ZDUH’J" Z)\Z = 1} (10)
‘ — —

Furthermore when h = 2 or 3, one can completely recover integrality by adding
known valid inequalities.

Proposition 9 The inequality

e <Y1 ZfD” (11)

is valid for the set P.

Proof: We know that, for every integer feasible solution, exactly one of the ); is
equal to one. Let us fix 1 < k < s, and consider all the integer points satisfying
(10) such that A, = 1. For those points, we certainly have that

t
T + hl‘z — ZDU/J/]' = Clk-
Jj=1

By dividing by h and rounding down, we can generate the Gomory cut
Dy; Cux
Zf = i <155

which is valid for all the points in P for which Az = 1. This can also be written
as

e = T < S5 (12)

j=1

12



We can write similar constraints for all k, k =1,--- ,s. Furthermore it is clear
that every equation (12) is still valid by adding integer combinations of the A;,
i # k, since \; = 0, for ¢ # k. Therefore it follows that (11) is globally valid for
every integer point in P. O

It is also clear that one can multiply the equation (9) by any integer x before
generating the Gomory cut. Therefore the following proposition is also true.

Proposition 10 For any k € Z, the inequality

t

ks < ZL”i’iJAi + Z(%m (13)

=1 j=1

is valid for the set P.

In the case when h = 2 or 3, it can be shown that one or two inequalities of
type (13) are required to guarantee the integrality of the polyhedron P.

Theorem 2 The polyhedron

A

P = {$1,l’2,)\i,ﬂj20,i:1,"',S,j:].,"',ti
t s
w1+2w2—ZDljuj ZZCzMi (14)
j=1 i=1

t Dl' s él‘
I RS PE Y (15)
j=1

i=1
i=1

18 integral.

Proof: We show that every extreme point of Pis integer. First we compute
the extreme points for which exactly one ); is nonzero. Let us fix 1 < k < s
such that A\ = 1. Let us consider an arbitrary linear objective function that we
maximize.

First if élk = 0, the unique extreme point is ; = 2 = 0 and p; = 0 for all
j=1,---,q, which is integer. Henceforth we assume Cj; > 0.

We then consider the case where the optimal solution has only one non zero
variable. To satisfy the equation (14), this variable cannot be any p;, because
the coeflicients of all p; are non-positive. It remains two cases to analyze. If
the non zero variable is z;, then z; = élk which is integerA and satisfies the
Cr

2

second inequality. If the non zero variable is zs, then zo = which satisfies

the second constraint only if Cyr is even. In that case, the vertex is integer. In
the case where Cy, is odd, two variables have to be non zero. Therefore, all the
extreme points having one non zero variable are integer.

13



Let us now consider the case where the optimal solution has two non zero
variables, and therefore the two constraints (14) and (15) are tight. These two
variables cannot be of the form p;, and p;,, for ji,jo =1,---,q, j1 # j2, since it
would not satisfy the equation (14). We can also note that these two variables
cannot be x1 together with uj, for j = 1,---,¢, because the constraint (15)
could not be tight, and it would certainly not be optimal. Two possible cases
remain. Let us first suppose that both x; and x5 are non zero. In this case, the
optimal solution satisfies

1 + 2z5 = Cp

zy = |
If C’lk is even, this leads to an already known solution, i.e. with z; = 0. If C’lk
is odd, the corresponding extreme point is ;1 = 1 and z5 = L%J, which is an
integer point. The second and last case is when x2 and p; are non zero for some
j=1,---,q. We know that the optimal solution satisfies

21‘2 - éljk = élk
{ D1 _ | Cu (16)
Ty — fT]Mj = LTJ-
Now we consider (16a)-2(16b), namely
Dij. - . Cir
@[5 = Dij)us = Cix = 257 (17)

If Cy;, is odd and Dlj is even, the system has no solution. If both are odd,

this leads to the extreme point xo = % and p; = 1, which is integer. If
both are even, p1; = 0 and this leads to a known integer extreme point, with
only x5 non zero. Finally, if Cik is even and Dlj is odd, p; can take any non
negative value. But, related to the objective function, either it is not lucrative
to increase both x5 and p;, in which case the optimal solution will be the known
integer extreme point with only x5 non zero, or it is lucrative, and the problem
is unbounded and this objective function does not lead to an extreme point of
the polyhedron.

Finally we show that no extreme point z* can be such that A7 , A}, # 0, for
i1 # io. If this were the case, then exactly one other variable would be non
zero making the three constraints tight. It clearly cannot be one of the other
p variables beacause it would not fulfill (14). Suppose z] # 0. From (14), we
have z} = C'lil AT+ C’liQ A3. This is the convex combination of the two feasible
points (z} = Cp;,, A}, = 1,AL, = 0) and (23 = Cuy,, A} = 0,23 = 1). Therefore,
z* cannot be extreme. Suppose now that z3, A7 , A}, # 0. As (14) and (15) are
tight, it means that Cy;, and Cy;, are even because otherwise (14) cannot be
tight. Then z* is a convex combination of two points with A;; =1 and A;, =1
respectively like in the case where x; is nonzero. Therefore no point with more

than one \; nonzero can be extreme.

14



Now, all the possible cases have been explored, and they all lead to either an
integer extreme point or to an unbounded solution. Therefore, all the extreme
points of the polyhedron are integer. O

Theorem 2 can be extended to the case where h = 3. The idea of the proof
is similar to the proof of Theorem 2 but requires the analysis of many subcases
that we refrain from explaining here in detail.

Theorem 3 The polyhedron

A~

P = {l‘l,Z'Q,Ai,MjZO,Z':].,"',S,j:].,"',t:
t s
I +3$2—Zﬁljuj :ZéliAi
j=1 i=1
t Dl' s él'
= [ < L5

j=1 i=1

t ~ s A
2D, 20}
2wy = D[y < 315" N
j=1

i=1

S

=1}

i=1
18 integral.
A straightforward extension of Theorem 3 where h > 4 is not true as the fol-

lowing example shows.
Example: Consider the polyhedron

Q:{xlax%)‘la"' 7)‘37M17"' y 4 ERF :
T1 +4xs = A1 4+ 20 + 33 + p1 + 20 + 3us + 4y
AMt+X+A3=1 }

As Proposition 10 states, we can add some valid inequalities like
Ty < pn et st s

Ao+ Az + p1 4 po + 23 + 24

)\2 + 2/\3 + p1 + 2#2 + 3#3 + 3/.1/4

2ry <
<

3.’L‘2

If we add these three inequalities to (), there remain two fractional extreme
points

1 1 1
1
0O 1. 010 - 0 - O
( 5 5 0

that satisfy the three valid inequalities presented above. In this case, the in-
equality

2wy < A3+ 1+ 2p2 + 2p3 + 244,
which is not of the type of Proposition 10, is missing to make the polyhedron
integral.
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4 Computation of irreducible group solutions

A way of computing the irreducibles of a group problem is by using a Buchberger-
type algorithm (see [1]) or via a recursive computation of “Primitive Partition
Identities (PPI)” [9, 10]. These algorithms have the tendency of being slow
and are therefore not suited to be used within an iterative integer program-
ming algorithm. This fact suggests the idea to build up a database for certain
group master problems and reuse the precomputed database in the iterative in-
teger programming algorithm. Suppose, for example, that we construct a table
Tp(Dy) of the irreducibles of the master group problem

x1+2x9+3x3+ -+ (D —1)zp_1 = Dy (mod D),

for some D € Z, and 0 < Dy < D — 1. Once this table is precomputed, we
are able to read off the irreducibles of every (mod D) group problem from the
irreducibles given in the table. Table 1 shows the number of irreducible solutions
of single and two rows master group problems.

Modulus | Number of Moduli | Number of
Irreducibles Irreducibles
2 2 2,2 9
3 7 3,3 246
4 15 3,4 1436
5 38 3,5 6363
6 56 3,6 12939
7 143 3,7 63454
8 209 3,8 147210
9 402 4,4 5215
10 598 4,5 40014
11 1267 5,5 169870
12 1445
13 3238

Table 1: The number of irreducibles for single and two rows master group
problems

The operation of reading the irreducibles in the table is fast. We explain it
below. Suppose that we want to find the irreducibles for the group problem

D—-1 p;

> > iz, = Dy (mod D), (18)

i=1 k=1

where p; denotes the number of times the coefficient ¢ appears in (18) for i =
1,--+,D — 1. The following algorithm gives the set Z of irreducibles for (18).

)
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Reconstruction Algorithm

Set ZT:=10
For each vector v € Tp(Dg) do
If for all i € {0,---,D — 1}, p; = 0 implies v; =0 then
Create as many irreducibles w’ as there are integer solutions of
o wik = v; for all ¢ such that p; > 0.
Set 7:=7U (Uj{w’}).
Return 7.

Proposition 11 (i) The Reconstruction Algorithm provides the set of all ir-
reducibles of (18)

(i) The number of irreducibles generated from a vector v for which p; = 0
implies v; = 0 for all i € {0,--+, D — 1} is [, o, (pﬁp”:*l).

The proof of (i) can be found in [9]. An easy analysis of the Reconstruction
Algorithm provides the proof of (ii). From Proposition 11 we can thus deduce
that the number of irreducible solutions of a group problem grows exponentially
with the size of p;. This affects particularly the disaggregated formulation.
Indeed, the other formulations based on irreducibles gather the variables having
the same coefficients which implies that p; are small for all 4.

It is computationally intractable to build tables for single-row master group
problems if the modulus D is too big. However, there is an alternative for
composite groups with D non prime, in the case of a single-row group problem.
It is possible to build up the set of irreducibles from the irreducibles of smaller
groups. Suppose specifically that D = pg with p,q > 1 integer. Starting from
W(ag) = {w e Z%: Z]D;ll a;w; = ap (mod D)}, we consider the relaxation

D—1
W(go) ={w e Z: Y gjw; = go (mod p)}

j=1

where a; = f;jp+ g; for all 0 < j < D — 1. Given the matrices of irreducibles C
and D for W (go), we have that

W(go) = {w:w=CX+ Dy, IN=1,\ € Zy,puj €Z}.
Substituting for w in W(ag), we obtain that
aTCX+a"Dp = ag (mod D),
where a! = pft + g, gC = g(1---1),¢gD = 0. In other words
pfTCA+ g"CX + pfTDp+ gDy = fop + go (mod pq)

1IA=1
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or ~ ~
FTCX+ fTDp = fo (mod q)
=1

Now let {A° 5_, be the matrix of inhomogeneous irreducibles for {z: fT Dy =
fo— fTC* (mod q)} and B the matrix of homogeneous irreducibles. We now
have

A*a® + BB
o= 1

=
Il

Finally we obtain
uw= Z A’a® + Bp
8§

Zaszl

8§

This opens up the possibility of computing the set of irreducibles of bigger
groups from the database that we precomputed.

Example: Let us consider the problem of finding irreducibles for

wy + 2wy = 3 (mod 4)
w e 73

By first considering the equation (mod 2), it yields

wy + 0wz =1 (mod 2)
w e Z3,

(ZQ>:(3)M+<§ ?>” (19)

A =1

which means that

Substituting gives
AL+ 2uy +2u0 =3 (mod 4)
A =1,

By replacing A; by its value and by dividing by 2, we now have
p1 + p2 =1 (mod 2).
By using the representation by irreducibles, we can write

<Z2>:(3 )“*(3 }g)ﬁ (20)

a; +ay = 1.
18
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By replacing (20) in (19), we finally obtain
w1 o 1 2 0
() = (o) (5
31
- (3 1)e |

with a; + a2 = 1 and «, f > 0 and integer.

(21)

5 Computational experiments

We now discuss an algorithm that incorporates any of the previous reformula-
tions presented above. Our algorithm is primal-dual. The primal part comes
from the fact that we always keep a primal feasible solution and an integer
simplex tableau in which we perform the reformulations. These reformulations
also provide the possibility of finding new augmenting vectors in the tableau.
For choosing the right group relaxations, we “ask” the dual. Indeed, we select
the group relaxations from rows derived from a fractional simplex tableau, for
example at the optimal solution of the linear relaxation.

For the ease of exposition, we assume that we have a feasible integer starting
point. If it is not the case, then one starts the algorithm with an infeasible
integer point and apply a phase 1-method that uses the sum of the violated
constraints as an objective function. Suppose that we are trying to solve

T

max ¢z
s.t. Ar=1b (22)
x € LY.

As said before, we assume that we know xo € Z7 feasible for (22). The Algo-
rithm can be outlined as follows.

1. Initialization
Compute an integer tableau representing zg.

2. Geometric Search for Fractionality
Compute a fractional point z; of the polyhedron, for instance the LP opti-
mum.
If no such point exists, return the LP optimum as optimal solution of (22).

3. Group Relaxation
Generate a group relaxation Y¢ = {z € Z% : Bz = f (mod A) from a subset
of tight constraints defining z.

4. Reformulation
Compute an extended reformulation for YC.
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5. Make Compact
Use bounds on variables, as well as other problem constraints or knowledge
of the problem to eliminate as many of the new variables, possibly adding
also GUB or SOS constraints to the description of Y. The goal here is to
prevent an excessive increase in the number of variables. If the number is
still too large, the set Y must perhaps be relaxed further.

6. Update Simplex Tableau
Update the integer tableau introducing the new columns and rows. Select
the right variables to enter the basis in order to recover a tableau.

7. Augmentation
Check for augmentation, i.e. check if there exists a new column v of positive
reduced cost such that z; +v is feasible. In that case, pivot in v in an integer
fashion and obtain an integer tableau representing the new feasible solution
Tit1 = X; + 0.

8. Return to Step 2.

The Integral Basis Method introduced by Haus, K6ppe and Weismantel [9] pro-
vides the algorithmic frame for testing our algorithm. In particular the following
four phases have been described in [9]: Initialization, Make Compact, Update
Simplex Tableau, Augmentation. In the following, we address some questions
related to the phases Geometric Search for Fractionality, Group Relaxation and
Reformulation.

Geometric Search for Fractionality

We start from an integer point z. Associated with this integer point is an
algebraic tableau representation that encodes the geometry of the underlying
linear programming relaxation. Investigating a small subset of the rows of this
tableau means geometrically that we only consider the vicinity of z. However
the “interesting” part of the linear programming polyhedron is hidden. These
heuristic arguments motivate to inspect the linear programming optimum and
use its tableau representation to select few rows from which a group relaxation
can be built that cuts off the fractional point.

Group Relaxation

We compute the linear programming optimum of our current tableau using
floating point arithmetic. We extract one or two fractional basic variables whose
fractional part is closest to 1/2. For those variables, we reconstruct in exact
arithmetic the corresponding rows. It turns out that on our entire test set, the
least common multiple of all the denominators occuring in a fractional row is
gigantic, namely up to hundreds of digits. Clearly one cannot work with a group
of this size. Our strategy is to define a tractable group problem by selecting
a modulus (or two moduli) between 2 and 20 (between 2 and 8) for which the
nondecomposable solutions have been tabulated in our database. Within this
range, we choose a modulus that
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(i) is not a divisor of the right hand side, in order to cut off the optimum
point with our group relaxation,

(ii) produces the maximum number of O-residue coefficients in order to reduce
the size of the reformulation.

Example: Suppose that an interesting row provided by the fractional tableau
at the optimum LP point is

g 930 1724 937 620 30 127
T 70007 T 100072 10007 10007 * " 1000°° ~ 1000’

which can also be written in integer form
1000z + 93021 + 172425 — 93723 — 62024 + 3025 = 127.

As we pointed before, it is computationnaly intractable to work with a (mod 1000)
group. We decide therefore to chose some modulus between 2 and 20 in order
to be able to use our precomputed table of irreducible solutions. If we choose
5 or 10 as a modulus, four variables will disappear from the group relaxation,
which can be interesting in the point of view of having a reformulation that is
not too large. Furthermore, as 127 is not divisible by 5, the group relaxation
will cut off the fractional point. That is why we choose to compute the group
relaxation
Y(2) = {22,253 € Z4 : 425 + 323 = 2 (mod 5)}.
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