Using Diva on large datasets: applications and tips

C. Troupin, M. Ouberdous, F. Lenartz, D. Sirjacobs, J.-M. Beckers
& the GHER team

October 16, 2008
Outline

1. some applications of the tools presented yesterday
2. some tips from my tries to get a climatology in the Atlantic
3. application of Diva + satellite imagery + numerical model
4. lots of pictures
Introduction
Large data set issues
Other tools
Diva + dineof + GHER model

Data

- $0 - 50^\circ W, 0 - 60^\circ N$
- WOA + Coriolis + Hydrobase + MedAtlas + campaigns + misc
- from 1890 to August 2008
Contour and mesh

- contours from DBDBV (GEBCO too fine)
- \(L = 3.0 \)
- same \(L \) for each level

Tips:
- generate the mesh only once for each level → implementation in 3Dinfo?
- choose \(L \) not too small (memory issue)
- choose \(L \) not too large (resolution issue)
Analysis

Configuration:
- $L = 2.73$ from divafit
- $\lambda = 4.0$ from divafit
- nothing magic

Conclusions:
- divafit too slow with lots of data
 - use divafit nsamples
- visible outliers...
Analysis

Configuration:
- L from divafit
- $\lambda = 300.0$ from divagcv

Conclusions:
- L too small, λ too large
- Outliers more visible
Analysis

Configuration:
- $L = 5$ (experience, physics, ...)
- $\lambda = 300.0$ from divagcv

Conclusions:
- λ still too large
- Outliers did not disappear (no magic)
Introduction
Large data set issues
Other tools
Diva + dineof + GHER model

Analysis

Configuration:
- L from divafit
- $\lambda = 14.4$ from divacvrand 2000 2 -r

Conclusions:
- more realistic estimate of λ using divacvrand

Calvi, 15-17 October, 2008
Analysis

Configuration:
- L from divafit
- $\lambda = 1$

Conclusions:
- very smooth field
- outlier still visible
Analysis

Configuration:
- L from \textit{divafit}
- λ from \textit{divacvrand}
- outlier removal with \textit{divaqcbis}

Conclusions:
- 696 outliers detected
- improved results
Analysis

Configuration:
- outlier removal
- L from divafit
- $\lambda = 1$ (with divagcv 63.5)
- semi-normed analysis

Conclusions:
- lots of steps before satisfying field
- need good parameters before using divaqc
- semi-normed analysis helps where few data are available
Error fields

Methods:
1. *poor man's* error estimate (quick but underestimated)
2. hybrid approach, analogy with O.I
3. real covariance function → don’t use your laptop!

Conclusions:
1. highly depends on data coverage
2. same distribution of errors
3. different orders of magnitude
Semi-normed analysis

Methods:
1. create a reference field with large L and small λ
2. compute anomalies with respect to reference
3. analyse the anomalies
4. sum up the 2 fields

Utility:
1. better field where no data are available

GHER team
Calvi, 15-17 October, 2008
Data-Interpolating Variational Analysis
[Brasseur et al. (1996), Brankart and Brasseur (1996, 1998)]

- advanced data-gridding method
- finite-element resolution
- coastlines + advection influence
- error maps
- many more
Data used

Data set = aggregation between:
WOD05 + MedAtlas2 + Hydrobase2 + Coriolis

- 24293 unique profiles
- observations with depth < 5 m (82.6% of the profiles)
- > 40% of data between May and July
- mean: 18.4769°C, standard deviation: 3.8773°C
- 99.3% of data have 12 < T < 27°C
Monthly temperature fields

January

DINEOF

DIVA

GHER

T (°C)

12 12.5 13 13.5 14 14.5 15

GHER team
Calvi, 15-17 October, 2008
Thanks for your attention!