Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings

BECKER Gauthier – Aerospace engineer

May 2012

Aerospace & Mechanical engineering

- A thin body is a structure with a dimension largely smaller than the other ones
 - This dimension is called the thickness

Université de Liège

Introduction

• Improve the safety of pressurized thin bodies by understanding their fracture behavior

- Recourse to the finite element method allows cheaper designs
 - A numerical model is an idealization of reality based on mathematical equations
 - The finite element method (FEM) discretizes the structure in elements

- The finite element method is a powerful tool in mechanics

Introduction

• Beam or shell elements can advantageously be used to model thin bodies

Better results

Université de Liège

- Classical 3D elements leads to a huge number of elements for thin bodies

 Beam and shell elements use a 1D or 2D element as basis and account separately for the thickness → drastically reduces the time of computation

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 6

Introduction

- Cohesive zone model is very appealing to model crack initiations in a numerical model
 - Model the separation of crack lips in brittle materials

Introduction

- The insertion of cohesive elements during the simulation is difficult to implement as it requires topological mesh modifications
 - FEM (continuous Galerkin)

• A recourse to an intrinsic cohesive law is generally done with FEM

• Intrinsic cohesive law leads to numerical problems [Seagraves et al 2010]

- Spurious stress wave propagation

- Mesh dependency

Too fast crack propagation

Introduction

• Use of extrinsic cohesive law is easier when coupled with DG

Introduction

 Other methods exist but we focus on the discontinuous Galerkin method which has to be extended for thin bodies

– XFEM

Commonly used for crack propagation Discontinuous Galerkin

Recently developed for dynamic phenomena (crack propagation due to impact, fragmentation) but for 3D elements only

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 12

- Develop a discontinuous Galerkin method for thin bodies
 - Beam elements (1.5D case)
 - Shell elements (2.5D case)
- Discontinuous Galerkin / Extrinsic Cohesive law framework
 - Develop a suitable cohesive law for thin bodies

- Applications
 - Fragmentations, crack propagations under blast loadings

Full-DG formulation of Euler-Bernoulli beams

Aspect ratio = $\frac{L}{h} \ge 10$

- Highlights
- Simple 1D thin structure
- Restrict the analysis to
 - Linear small strains
 - Straight rectangular beam (without initial deformation)

h 1

- Out-of-plane shearing can be neglected
- Plane stress state

- 2 (independent in small deformations) deformation modes (shearing is neglected)
 - Membrane mode

Bending mode

• Membrane mode

- Strong form $(n^{11})_{,1} = 0$ with $n^{11} = \int_{-h/2}^{h/2} \sigma^{11} d\xi^3$

- Weak form
$$\int_0^L (n^{11})_{,1} \delta u \, dx = 0$$

• FEM (Continuous Galerkin)

Integration by parts on the beam

$$\sum_{e} \int_{l_e} \underbrace{n^{11} \delta u_{,1} dx}_{\text{Bulk term}} = 0$$

Université Ug de Liège

- The interface terms are developed
 - Operators definition

Using operators

$$-\sum_{e} n^{11} \delta u]_{l_e} = \sum_{s} \llbracket n^{11} \delta u \rrbracket_s$$

- Using mathematical identity $[ab] = \langle a \rangle [b] + [a] \langle b \rangle$

$$-\sum_e n^{11} \delta u]_{l_e} = \sum_s (\langle n^{11} \rangle \llbracket \delta u \rrbracket + \llbracket n^{11} \rrbracket \langle \delta u \rangle)_s$$

• The jump is replaced by a consistent numerical flux (no equality)

$$-\sum_{e} n^{11} \delta u]_{l_{e}} = \sum_{s} [n^{11} \delta u]_{s} = \sum_{s} (\langle n^{11} \rangle [\delta u]] + [n^{11}] \langle \delta u \rangle)_{s} \xrightarrow{\rightarrow} \sum_{s} (\langle n^{11} \rangle [\delta u]])_{s}$$

$$0$$
for the exact continuous solution (consistency is preserved)

• The governing equation becomes

$$\sum_{e} \left(\int_{l_e} \underbrace{n^{11} \delta u_{,1} dx}_{\text{Bulk term}} - \underbrace{n^{11} \delta u}_{\text{Interface term}} \right) \stackrel{\neq}{\Rightarrow} \sum_{e} \int_{l_e} \underbrace{n^{11} \delta u_{,1} dx}_{\text{Bulk term}} + \sum_{s} \underbrace{(\langle n^{11} \rangle \llbracket \delta u \rrbracket)_s}_{\text{Consistency term}} = 0$$

 –
 ≠ pure penalty method (Intrinsic cohesive law) which does not include the consistency terms

• Discontinuous elements \rightarrow displacement jumps have to be constrained

Continuity is weakly ensured by symmetrization terms

$$\sum_{s} \left(\langle Eh\delta u_{,1} \rangle \llbracket u \rrbracket \right)_{s} = 0$$

$$\lim_{0} 0$$
for the exact continuous solution
$$\Rightarrow \text{ consistency is preserved}$$

• Method is stabilized by quadratic terms

$$\sum_{s}^{S} (\langle n^{11} \rangle \llbracket \delta u \rrbracket)_{s} \\ \sum_{s} (\langle Eh \delta u_{,1} \rangle \llbracket u \rrbracket)_{s} \\ \xrightarrow{O} \\ \text{for the exact continuous solution} \\ \xrightarrow{O} \\ \text{consistency is preserved} \\ \xrightarrow{O} \\ \xrightarrow{O}$$

- $\beta_2 > 1$ dimensionless stability parameter (Practically stable if $\beta_2 \ge 10$)

- h^s characteristic mesh size which ensures the dimensionless nature of β_2

• The final equation (membrane mode) is obtained by adding the terms

$$\sum_{e} \left(\int_{l_{e}} \underbrace{n^{11} \delta u_{,1} dx}_{\text{Bulk term}} - \underbrace{n^{11} \delta u}_{\text{Interface term}} \right) \longrightarrow \left[\sum_{e} \int_{l_{e}} \underbrace{n^{11} \delta u_{,1} dx}_{\text{Bulk term}} \right] + \sum_{s} \left(\underbrace{(n^{11}) [\delta u]}_{\text{Consistency term}} \right)_{s}^{+} \\ \sum_{s} \left(\underbrace{(Eh \delta u_{,1}) [u]}_{\text{Symmetrization term}} \right)_{s}^{+} + \sum_{s} \left(\underbrace{[u]} \left(\frac{Eh \beta_{2}}{h^{s}} \right) [\delta u]}_{\text{Stability term}} \right)_{s}^{+} = 0$$

- Consistent, (Weakly) continuous and stable

- Same as FEM but with extra interface terms

• 2 (independent) deformation modes (shearing is neglected)

E₃

Bending mode

- The bending mode requires the C¹ continuity (*i.e.* the tangent continuity)
 - For FEM without rotational Dofs

• Several techniques exist to ensure the tangent continuity using FEM

- C¹ Shape functions (beams only)
- Recourse to rotational degrees of freedom (2-field formulation)

Lagrange multipliers (add degrees of freedom)

• The discontinuous Galerkin method can be advantageously used to ensure the tangent continuity

- Ensured weakly by interface terms
- C⁰/DG method (elements are continuous)

- One-field formulation (displacements are the only unknowns)
- First DG methods for thin bodies formulation [*Engel et al cmame 2002*]

- The form of the DG formulation is similar to the one obtained for the membrane problem
 - Strong form $(m^{11})_{,1} = 0$ with $m^{11} = \int_{-h/2}^{h/2} \sigma^{11} \xi^3 d\xi^3$
 - Weak form $\int_{L} (m^{11})_{,1} \delta(-v_{,1}) dx = 0$
 - Shearing is neglected
 - External forces and inertial parts are omitted
 - FEM (Continuous Galekin)
 Discontinuous Galerkin

$$\sum_{e} \int_{l_e} \underbrace{m^{11}\delta(-v_{,11})dx}_{\text{Bulk term}} = 0 \qquad \sum_{e} \left(\int_{l_e} \underbrace{m^{11}\delta(-v_{,11})dx}_{\text{Bulk term}} - \underbrace{m^{11}\delta(-v_{,1})}_{\text{Interface term}} \right) = 0$$

- 3 interfaces terms are considered following the framework made for the membrane mode
 - Consistent terms

$$-\sum_{e} m^{11} \delta \left(-v_{,1}\right) \big]_{l_{e}} = \sum_{s} \left[\!\!\left[m^{11} \delta (-v_{,1})\right]\!\!\right]_{s} \rightarrow \sum_{s} \left(\langle m^{11} \rangle \left[\!\!\left[\delta (-v_{,1})\right]\!\!\right]_{s}\right]$$

Symmetrization terms

$$\sum_{s} \left(\left| \frac{Eh^3}{12} \delta(-v_{,11}) \right\rangle \left[\left[-v_{,1} \right] \right] \right)_s = 0$$

Stability terms

$$\sum_{s} \left(\left[\left[-\nu_{,1} \right] \right] \left\langle \frac{Eh^{3}\beta_{1}}{12h^{s}} \right\rangle \left[\left[\delta(-\nu_{,1}) \right] \right] \right)_{s} = 0$$

 $\beta_1 > 1$ dimensionless stability parameter

• Bending equation

$$\sum_{e} \left(\int_{l_{e}} \underbrace{m^{11} \delta(-v_{,11}) dx}_{\text{Bulk term}} - \underbrace{m^{11} \delta(-v_{,1})}_{\text{Interface term}} \right) \longrightarrow_{e} \int_{l_{e}} \underbrace{m^{11} \delta(-v_{,11}) dx}_{\text{Bulk term}} + \sum_{s} \left(\underbrace{(m^{11}) \left[\left[\delta(-v_{,1}) \right] \right]}_{\text{Consistency term}} \right)_{s} + \sum_{s} \left(\underbrace{\left(\underbrace{Eh^{3}}{12} \delta(-v_{,11}) \right) \left[-v_{,1} \right]}_{\text{Symmetrization term}} \right)_{s} + \sum_{s} \left(\underbrace{\left(\underbrace{[-v_{,1}]} \left\{ \underbrace{Eh^{3} \beta_{1}}{12 h^{s}} \right\} \left[\left[\delta(-v_{,1}) \right] \right]}_{\text{Stability term}} \right)_{s} = 0$$

- Consistent, stable and weakly continuous thanks to interface terms

Same as FEM with extra interface terms

Université de Liège • Out-of-plane continuity is not ensured

- Out-of-plane continuity is ensured by introducing an interface term in δv
 - Account (temporarily) for negligible shearing in the simplified bending equation

$$\int_{L} \left[(m^{11})_{,1} \delta(-v_{,1}) - l^{1} \delta(-v_{,1}) \right] dx = 0 \text{ with } l^{1} = \int_{-h/2}^{h/2} \sigma^{31} d\xi^{3} \approx 0$$

Simplified bending equation

- Unusual integration by parts on $\delta(-v_{,1})$ for the shearing term

Term in $\delta v_{,1}$ to constrain $[v_{,1}]$

$$\int_{L} \left[(m^{11})_{,1} \delta(-v_{,1}) - l^{1} \delta(-v_{,1}) \right] dx = \sum_{e} \left(\int_{l_{e}} \underbrace{m^{11} \delta(-v_{,11}) dx}_{\text{Bulk term}} + \underbrace{m^{11} \delta(-v_{,1})}_{\text{Interface term}} \right)_{l_{e}} = 0$$

$$\int_{l_{e}} \underbrace{(l^{1})_{,1} \delta(-v) dx}_{\text{Bulk term}} + \underbrace{l^{1} \delta(-v)}_{\text{Netrface term}} = 0$$

$$\text{Term in } \delta v \rightarrow \text{We can ensure weakly this continuity using DG}$$

• 3 interface terms are derived from $l^1\delta(-v)]_{l_e}$ exactly as for the membrane and bending modes

- Consistency terms

$$\sum_{e} l^1 \delta(-v)]_e = -\sum_{s} \llbracket l^1 \delta(-v) \rrbracket_s \to -\sum_{s} (\langle l^1 \rangle \llbracket \delta(-v) \rrbracket)_s$$

Symmetrization terms

$$\sum_{s} \left(\left| \frac{Eh}{2(1+\nu)} \delta(-\nu_{,1}) \right| \left[-\nu \right] \right)_{s} = 0$$

- Stability terms

$$\sum_{s} \left(\left[\left[-\nu \right] \right] \left\{ \frac{Eh\beta_3}{2(1+\nu)} \right\} \left[\left[\delta(-\nu) \right] \right] \right)_s = 0$$

 $\beta_3 > 0$ dimensionless stability parameter

 Only the stabilization terms remain as the shearing is neglected (Euler-Bernoulli assumption)

- Consistency terms

$$\sum_{e} l^{1} \delta(-v)]_{e} = -\sum_{s} \llbracket l^{1} \delta(-v) \rrbracket_{s} \to -\sum_{s} (\langle l^{1} \rangle \llbracket \delta(-v) \rrbracket)_{s} \approx 0 \text{ NEGLECTED}$$

ENSURES CONTINUITY BUT LEAD

TO UNSYMMETRIC FORMULATION

→ IS NOT CONSIDERED

Symmetrization terms

$$\sum_{S} \left(\left| \frac{E\hbar}{2(1+\nu)} \delta(-\nu_{,1}) \right| [-\nu] \right)_{S} = 0$$

Stability terms

$$\sum_{s} \left(\left[-v \right] \left\{ \frac{Eh\beta_3}{2(1+\nu)h^s} \right\} \left[\left[\delta(-\nu) \right] \right]_s = 0 \quad \begin{array}{c} \text{ENSURES STABILTY AND} \\ \text{CONTINUITY} \end{array} \right\}$$

• The final full-DG equation is obtained by adding the different contributions (membrane + bending) [*Becker et al , ijnme 2011*]

67R

Université de Liège • The analytical solution is matched with discontinuous elements

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 34

- Structure whose thickness is << other dimensions
- Initial curvature (otherwise it is a plate) ⇔ bending/membrane coupling
- Modes
 - Out-of-plane shearing is neglected (Kirchhoff-Love theory)

Université 🛛 🧕

• The kinematics of the shell is formulated in a basis linked to the shell

The convected basis is not orthonormal

Curvature of the shell is characterized by

$$\lambda_{\alpha}^{\beta} = \boldsymbol{t}_{,\alpha} \cdot \boldsymbol{\varphi}^{,\beta}$$

 As the convected basis is not orthonormal, a conjugate (or dual) basis is defined to decompose vectors or matrices

$$\boldsymbol{g}_{I}\cdot\boldsymbol{g}^{J}=\delta_{IJ}$$

The vector \boldsymbol{a} can be formulated in both bases:

 $\boldsymbol{a} = a^1 \boldsymbol{g}_1 + a^2 \boldsymbol{g}_2$ $\boldsymbol{a} = a_1 \boldsymbol{g}^1 + a_2 \boldsymbol{g}^2$

And (for example)

$$\boldsymbol{a} \cdot \boldsymbol{g}^1 = (a^1 \boldsymbol{g}_1 + a^2 \boldsymbol{g}_2) \cdot \boldsymbol{g}^1 = a^1$$

- The equations are formulated in the reference frame
 - The Jacobian describes the change between the configurations

$$j = \det(\nabla \Phi) = (g_1 \wedge g_2) \cdot g_3$$
$$\overline{j} = \lambda_h(\varphi_{,1} \wedge \varphi_{,2}) \cdot t$$

• The normal at the interface is chosen as the outward normal to the minus element (convention)

Normal components

$$\nu_{\alpha}^{-} = \boldsymbol{\varphi}_{,2}^{s} \cdot \boldsymbol{\varphi}_{,\alpha}^{s}$$

• The stress tensor σ is integrated on the thickness in the convected basis

Université de Liège The (Simplified) equations of the problem are formulated in terms of the reduced stresses

- Strong form
$$\frac{1}{\overline{j}}(\overline{j}\boldsymbol{n}^{\alpha})_{,\alpha} + \frac{1}{\overline{j}}(\overline{j}\widetilde{\boldsymbol{m}}^{\alpha}) - \boldsymbol{l} = 0$$

- Weak form
$$\int_{A} \left[\left(\overline{j} \boldsymbol{n}^{\alpha} \right)_{,\alpha} \cdot \delta \boldsymbol{\varphi} + \left(\overline{j} \widetilde{\boldsymbol{m}}^{\alpha} \right)_{,\alpha} \cdot \lambda_{h} \delta \boldsymbol{t} - \overline{j} \boldsymbol{l} \cdot \lambda_{h} \delta \boldsymbol{t} \right] dA = 0$$

- Highlights of the full DG concept

External forces and inertial terms are omitted (same as FEM)

Full-DG formulation of Kirchhoff-Love shells

FEM (Continuous Galerkin)

Integration by parts on the structure

$$\sum_{e} \int_{A_{e}} [\overline{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi}_{,\alpha} + \overline{j} \widetilde{\boldsymbol{m}}^{\alpha} \cdot \lambda_{h} \delta \boldsymbol{t}_{,\alpha} - \overline{j} \boldsymbol{l} \cdot \lambda_{h} \delta \boldsymbol{t}] dA = 0$$

Additional interface terms exactly as for beams $\begin{vmatrix} - \int_{\partial A_e} \left[\overline{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi} v_{\alpha}^{-} + \overline{j} \widetilde{\boldsymbol{m}}^{\alpha} \cdot \lambda_h \delta \boldsymbol{t} v_{\alpha}^{-} \right] \\ - \overline{j} l \cdot \int_{\alpha} \lambda_h \delta t d\alpha' v_{\alpha}^{-} dA \end{vmatrix} = 0$

Discontinuous Galerkin

Integration by parts on each element (unusual on *l*) ()))

$$\sum_{e} \left\{ \int_{A_{e}} \left[\left(\bar{j} \boldsymbol{n}^{\alpha} \right)_{,\alpha} \cdot \delta \boldsymbol{\varphi} + \left(\bar{j} \tilde{\boldsymbol{m}}^{\alpha} \right)_{,\alpha} \cdot \lambda_{h} \delta \boldsymbol{t} \right] - \left(\bar{j} \boldsymbol{l} \right)_{,\alpha} \cdot \int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' dA$$

- The 3 interface terms are replaced by consistent numerical fluxes
 - Average fluxes are considered (exactly as for beams)

Interface terms = A sum of jumps \rightarrow Consistent terms

$$-\sum_{e} \int_{\partial A_{e}} \overline{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi} v_{\alpha}^{-} dA = \sum_{s} \int_{s} \left[\overline{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi} v_{\alpha}^{-} \right]_{s} d\delta A_{e} \rightarrow \sum_{s} \int_{s} \langle \overline{j} \boldsymbol{n}^{\alpha} \rangle \cdot \left[\delta \boldsymbol{\varphi} \right] v_{\alpha}^{-} d\partial A_{e}$$

$$-\sum_{e}\int_{\partial A_{e}}\overline{j}\widetilde{\boldsymbol{m}}^{\alpha}\cdot\lambda_{h}\delta\boldsymbol{t}\nu_{\alpha}^{-}dA=\sum_{s}\int_{s}\left[\overline{j}\widetilde{\boldsymbol{m}}^{\alpha}\cdot\lambda_{h}\delta\boldsymbol{t}\nu_{\alpha}^{-}\right]_{s}d\delta A_{e}\rightarrow\sum_{s}\int_{s}\langle\overline{j}\widetilde{\boldsymbol{m}}^{\alpha}\rangle\cdot\left[\lambda_{h}\delta\boldsymbol{t}\right]\nu_{\alpha}^{-}d\partial A_{e}$$

$$\sum_{e} \int_{\partial A_{e}} \overline{j} \boldsymbol{l} \cdot \int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' \ \nu_{\alpha}^{-} dA = -\sum_{s} \int_{s} \left[\overline{j} \boldsymbol{l} \cdot \int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' \ \nu_{\alpha}^{-} \right]_{s} d\partial A_{e}$$
$$\rightarrow -\sum_{s} \int_{s} \langle \overline{j} \boldsymbol{l} \rangle \cdot \left[\int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' \right] \nu_{\alpha}^{-} d\partial A_{e} \approx 0$$

- 3 Symmetrization terms are introduced to ensure (weakly) the continuity
 - The in-plane displacement jump is constrained by symmetrizing the consistency terms on n^{α}

- 3 Symmetrization terms are introduced to ensure (weakly) the continuity
 - The rotational jump is constrained by symmetrizing the consistency terms on \widetilde{m}^{α}

Université de Liège

- 3 Symmetrization terms are introduced to ensure (weakly) the continuity
 - The out-of-plane displacement jump is constrained by symmetrizing the consistency terms on *l*

Consistency term $\langle a \rangle \cdot [\![\delta b]\!] \rightarrow$ Symmetrization term $\langle b \rangle \cdot [\![\delta a]\!]$ $\sum_{s} \int_{s} \left[\!\!\int_{\alpha} \lambda_{h} t d\alpha' \right]\!\!] \cdot \langle \delta(\overline{j}l) \rangle v_{\alpha}^{-} d\partial A_{e} = 0$ $\stackrel{?}{\underset{\lambda_{h}}{[\![\varphi]\!]} \cdot t\varphi'^{\alpha} \text{ Primitive approximation}$

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 46

- 3 Stabilization terms have to be introduced to ensure the stability of the method
 - Quadratic terms are formulated from consistent and symmetrization terms in n^{α}

Form of stabilization terms $[\![a]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta}{h^{s}} Invariant \, stiff \right\rangle [\![\delta a]\!] \cdot \boldsymbol{\varphi}_{,\beta} v_{\alpha}^{-}$

$$\sum_{s} \int_{s} \langle \overline{j} \boldsymbol{n}^{\alpha} \rangle \cdot [\![\delta \boldsymbol{\varphi}]\!] \boldsymbol{\nu}_{\alpha}^{-} d\partial A_{e} \\ \sum_{s} \int_{s} [\![\boldsymbol{\varphi}]\!] \cdot \langle \delta(\overline{j} \boldsymbol{n}^{\alpha}) \rangle \boldsymbol{\nu}_{\alpha}^{-} d\partial A_{e} \\ \end{array} \right\} \rightarrow \sum_{s} \left[\int_{s} [\![\boldsymbol{\varphi}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} \boldsymbol{\nu}_{\delta}^{-} \left\langle \frac{\beta_{2} \mathcal{H}_{n}^{\alpha\beta\gamma\delta} \overline{j}_{0}}{h^{s}} \right\rangle [\![\delta \boldsymbol{\varphi}]\!] \cdot \boldsymbol{\varphi}_{,\beta} \, \boldsymbol{\nu}_{\alpha}^{-} d\partial A_{e} = 0$$

- 3 Stabilization terms have to be introduced to ensure the stability of the method
 - Quadratic terms are formulated from consistent and symmetrization terms in \widetilde{m}^{α}

Form of stabilization terms $[\![a]\!] \cdot \varphi_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta}{h^{s}} Invariant \, stiff \right\rangle [\![\delta a]\!] \cdot \varphi_{,\beta} v_{\alpha}^{-}$

$$\left. \sum_{s} \int_{s} \langle \overline{j} \widetilde{\boldsymbol{m}}^{\alpha} \rangle \cdot [\lambda_{h} \delta \boldsymbol{t}] v_{\alpha}^{-} d\partial A_{e} \\
\sum_{s} \int_{s} [[\boldsymbol{t}]] \cdot \langle (\overline{j} \lambda_{h} \widetilde{\boldsymbol{m}}^{\alpha}) \rangle v_{\alpha}^{-} d\partial A_{e} \right\} \rightarrow \sum_{s} \int_{s} [[\boldsymbol{t}]] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{1} \mathcal{H}_{m}^{\alpha\beta\gamma\delta} \overline{j}_{0}}{h^{s}} \right\rangle [[\delta \boldsymbol{t}]] \cdot \boldsymbol{\varphi}_{,\beta} v_{\alpha}^{-} d\partial A_{e} = 0$$

- 3 Stabilization terms have to be introduced to ensure the stability of the method
 - Quadratic terms are formulated from consistent and symmetrization terms in *l*

Form of stabilization terms $\llbracket a \rrbracket \cdot tv_{\beta}^{-} \langle \frac{\beta}{h^{s}} Invariant \, stiff \rangle \llbracket \delta a \rrbracket \cdot tv_{\alpha}^{-}$ $\sum_{s} \int_{s} \langle \overline{j} l \rangle \cdot \left[\int_{\alpha} \lambda_{h} \delta t d\alpha' \right] v_{\alpha}^{-} d\partial A_{e} \\\sum_{s} \int_{s} \lambda_{h} \llbracket \varphi \rrbracket \cdot t \, \varphi^{,\alpha} \langle \delta(\overline{j}l) \rangle v_{\alpha}^{-} d\partial A_{e} \right] \rightarrow \sum_{s} \int_{s} \llbracket \varphi \rrbracket \cdot tv_{\beta}^{-} \left(\frac{\beta_{3} \mathcal{H}_{s}^{\alpha\beta} \overline{j}_{0}}{h^{s}} \right) \llbracket \delta \varphi \rrbracket \cdot tv_{\alpha}^{-} d\partial A_{e} = 0$

- The terms of stabilization in *l* ensure also weakly the out-of-plane continuity
 - The shearing is neglected (Kirchhoff-Love assumption) $\rightarrow l \approx 0$
 - Consistency terms

$$\int_{S} \langle \bar{j} \boldsymbol{l} \rangle \cdot \left[\int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' \right] v_{\alpha}^{-} d\partial A_{e} \approx 0$$

- Symmetrization terms (if considered \rightarrow unsymmetrical formulation)

$$\int_{S} \left[\int_{\alpha} \lambda_{h} \boldsymbol{t} d\alpha' \right] \cdot \langle \delta(\bar{j} \boldsymbol{l}) \rangle v_{\alpha}^{-} d\partial A_{e} \approx 0$$

- Stabilization terms $\int \left[\varphi \right] \cdot t v_{\beta}^{-} \left(\frac{\beta_{3} \mathcal{H}_{s}^{\alpha \beta} \overline{j}_{0}}{h^{s}} \right) \left[\delta \varphi \right] \cdot t v_{\alpha}^{-} d\partial A_{e} = 0$ $\int \left[s \right] \left[\delta \varphi \right] \cdot t v_{\alpha}^{-} d\partial A_{e} = 0$ $\int \left[s \right] \left[s \right] \left[s \right] \left[\delta \varphi \right] \cdot t v_{\alpha}^{-} d\partial A_{e} = 0$ Out-of-plane displacement jump is constrained \Rightarrow continuity is weakly ensured $\varphi_{,2}^{+} \varphi_{,1}^{+}$ • The equation of the full-DG formulation is obtained by adding the different contributions [*Becker et al cmame2011, Becker et al ijnme2012*]

$$\sum_{e} \int_{A_{e}} \left[(\bar{j}\boldsymbol{n}^{\alpha})_{,\alpha} \cdot \delta\boldsymbol{\varphi} + (\bar{j}\tilde{\boldsymbol{m}}^{\alpha})_{,\alpha} \cdot \lambda_{h} \delta\boldsymbol{t} \right] dA + \text{FEM (CG) equation}$$

$$\sum_{s} \int_{S} \left[\langle \bar{j}\boldsymbol{n}^{\alpha} \rangle \cdot [\![\delta\boldsymbol{\varphi}]\!] + [\![\boldsymbol{\varphi}]\!] \cdot \langle \delta(\bar{j}\boldsymbol{n}^{\alpha}) \rangle + [\![\boldsymbol{\varphi}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{2} \mathcal{H}_{n}^{\alpha\beta\gamma\delta} \bar{j}_{0}}{h^{s}} \right\rangle [\![\delta\boldsymbol{\varphi}]\!] \cdot \boldsymbol{\varphi}_{,\beta}} \right] v_{\alpha}^{-} d\partial A_{e} + \left[[\![\boldsymbol{t}]\!] \cdot \langle (\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}) \rangle + [\![\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{1} \mathcal{H}_{m}^{\alpha\beta\gamma\delta} \bar{j}_{0}}{h^{s}} \right\rangle [\![\delta\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\beta}} \right] v_{\alpha}^{-} d\partial A_{e} + \left[[\![\boldsymbol{t}]\!] \cdot \langle (\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}) \rangle + [\![\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{1} \mathcal{H}_{m}^{\alpha\beta\gamma\delta} \bar{j}_{0}}{h^{s}} \right\rangle [\![\delta\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\beta}} \right] v_{\alpha}^{-} d\partial A_{e} + \left[[\![\boldsymbol{t}]\!] \cdot \langle (\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}) \rangle + [\![\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{1} \mathcal{H}_{m}^{\alpha\beta\gamma\delta} \bar{j}_{0}}{h^{s}} \right\rangle [\![\delta\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\beta}} \right] v_{\alpha}^{-} d\partial A_{e} = 0$$

$$\text{Stabilization}$$

$$\text{terms}$$

 Similar form as the beam case (2 Bulk, 2 consistency, 2 symmetrization and 3 stabilization terms)

Full-DG formulation of Kirchhoff-Love shells

The C⁰/DG formulation [Noels et al cmame2008, Noels ijnme2009] is found if continuous elements are used ([[φ]] = [[δφ]] = 0)

$$\sum_{e} \int_{A_{e}} \left[(\bar{j}\boldsymbol{n}^{\alpha})_{,\alpha} \cdot \delta\boldsymbol{\varphi} + (\bar{j}\tilde{\boldsymbol{m}}^{\alpha})_{,\alpha} \cdot \lambda_{h} \delta\boldsymbol{t} \right] dA + \\ \sum_{s} \int_{s} \left[\sqrt{\bar{j}\boldsymbol{n}^{\alpha}} \cdot [\delta\boldsymbol{\varphi}] + [\boldsymbol{\varphi}] \cdot \langle \delta(\bar{j}\boldsymbol{n}^{\alpha}) \rangle + [\boldsymbol{\varphi}] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \begin{pmatrix} \beta_{2}\mathcal{H}_{n}^{\alpha\beta\gamma\delta} \bar{j}_{0} \\ h^{s} \end{pmatrix} [\delta\boldsymbol{\varphi}] \cdot \boldsymbol{\varphi}_{,\beta} \right] v_{\alpha}^{-} d\partial A_{e} + \\ \sum_{s} \int_{s} \int_{s} \left[\sqrt{\bar{j}}\tilde{\boldsymbol{m}}^{\alpha} \rangle \cdot [\lambda_{h} \delta\boldsymbol{t}] + [\boldsymbol{t}] \cdot \langle (\bar{j}\lambda_{h} \tilde{\boldsymbol{m}}^{\alpha}) \rangle + [\boldsymbol{t}] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \begin{pmatrix} \beta_{1}\mathcal{H}_{m}^{\alpha\beta\gamma\delta} \bar{j}_{0} \\ h^{s} \end{pmatrix} [\delta\boldsymbol{t}] \cdot \boldsymbol{\varphi}_{,\beta} \right] v_{\alpha}^{-} d\partial A_{e} + \\ Consistency \quad Symmetrization \quad \sum_{s} \int_{s} [\boldsymbol{\xi} \boldsymbol{\varphi}] \cdot t v_{\beta}^{-} \begin{pmatrix} \beta_{3}\mathcal{H}_{s}^{\alpha\beta} \bar{j}_{0} \\ h^{s} \end{pmatrix} [\delta\boldsymbol{\varphi}] \cdot t v_{\alpha}^{-} d\partial A_{e} = 0 \\ \text{Stabilization} \\ \text{terms} \quad \text{terms} \quad \text{Stabilization}$$

Full-DG formulation of Kirchhoff-Love shells

The C⁰/DG formulation [Noels et al cmame2008, Noels ijnme2009] is found if continuous elements are used ([[φ]] = [[δφ]] = 0)

$$\sum_{e} \int_{A_{e}} \left[\left(\bar{j} \boldsymbol{n}^{\alpha} \right)_{,\alpha} \cdot \delta \boldsymbol{\varphi} + \left(\bar{j} \tilde{\boldsymbol{m}}^{\alpha} \right)_{,\alpha} \cdot \lambda_{h} \delta \boldsymbol{t} \right] dA + \\\sum_{s} \int_{s} \left[\left\langle \bar{j} \tilde{\boldsymbol{m}}^{\alpha} \right\rangle \cdot \left[\lambda_{h} \delta \boldsymbol{t} \right] \right] + \left[\left[\boldsymbol{t} \right] \cdot \left\langle \left(\bar{j} \lambda_{h} \tilde{\boldsymbol{m}}^{\alpha} \right) \right\rangle \right] + \left[\left[\boldsymbol{t} \right] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{1} \mathcal{H}_{m}^{\alpha \beta \gamma \delta} \bar{j}_{0}}{h^{s}} \right\rangle \left[\left[\delta \boldsymbol{t} \right] \right] \cdot \boldsymbol{\varphi}_{,\beta} \right] v_{\alpha}^{-} d\partial A_{e} = 0$$
Consistency Symmetrization terms terms

Elements are continuous but the tangent continuity is ensured by DG

• The implementation is based on Gmsh

 3D finite element grid generator with a built-in CAD engine and a postprocessor

Developed by C. Geuzaine (Ulg) and J.-F. Remacles (Ucl) [Geuzaine et al ijnme2009]

Industrially used (Cenaero, EDF, ...)

• Elements & post-processing C++ classes of Gmsh are used in the solver

Université Ug de Liège

- 2 benchmarks to prove the ability of the full-DG formulation to model continuous mechanics
 - Elastic open hemisphere with small strains loaded in a quasi-static way

- 2 benchmarks to prove the ability of the full-DG formulation to model continuous mechanics
 - Elastic open hemisphere with small strains loaded in a quasi-static way

The method converges to the analytical solution with the mesh refinement

- 2 benchmarks to prove the ability of the full-DG formulation to model continuous mechanics
 - J₂-linear hardening (elasto-plastic large deformations) panel loaded dynamically (explicit Hulbert-Chung scheme)

- 2 benchmarks to prove the ability of the full-DG formulation to model continuous mechanics
 - J₂-linear hardening (elasto-plastic large deformations) panel loaded dynamically (explicit Hulbert-Chung scheme)

Université Ug

Full-DG formulation of Kirchhoff-Love shells

- The full-DG method provides accurate results but is more costly than *C*⁰/DG (memory, computational time) as it considers more degrees of freedom
 - Number of dofs (for the same mesh)

Benchmark	(° /DG	Full-DG
Open hemisphere	867	1728
Cylindrical panel	1683	3456

- The number of dofs is more or less twice larger for the full-DG formulation

• The full-DG method can be advantageously used for

- Parallel computation for explicit scheme [Becker et al, ijnme2012]

Fracture applications (same number of Dofs as FEM/ICL)

- Develop a discontinuous Galerkin method for thin bodies
 - Beam elements (1.5D case)
 - Shell elements (2.5D case)
- Discontinuous Galerkin / Extrinsic Cohesive law framework
 - Develop a suitable cohesive law for thin bodies

- Applications
 - Fragmentations, crack propagations under blast loadings

• There are 3 fracture modes in fracture mechanics

- Only modes I and II can be modeled by Kirchhoff-Love theory
 - Kirchhoff-Love \rightarrow out-of-plane shearing is neglected

Model restricted to problems with negligible 3D effects at the crack tip

- Fracture criterion based on an effective stress
 - Camacho & Ortiz Fracture criterion [Camacho et al ijss1996]

Université de Liège

- The effective stress is evaluated at the external fibers
 - The bending stress varies along the thickness

- The fracture criterion is evaluated where the stress is maximum

- The cohesive law is formulated in terms of an effective opening
 - Camacho & Ortiz Fracture criterion [Camacho et al ijss1996]

- The area under the cohesive law has to be equal to the fracture energy G_c
 - G_c is a material parameter

- The maximal stress of the cohesive law is equal to σ_{eff}
 - Ensure the continuity of stresses

- Otherwise numerical problems [Papoulia et al ijnme2003]

Université de Liège

- The shape of the cohesive law is linearly decreasing
 - Little influence of the shape for brittle materials

- Δ_c is equal to $2G_c/\sigma_c$

 The through the thickness crack propagation is not straightforward with shell elements

Université de Liège

- The cohesive law can be formulated in terms of reduced stresses
 - Same as shell equations Integration on

Similar concept suggested by Zavattieri [Zavattieri jam2006]

- Define Δ^* and $N(\Delta^*)$, $M(\Delta^*)$ to dissipate an energy equal to hG_c during the fracture process [Becker et al ijnme2012, Becker et al ijf2012]
 - Integration on thickness

The law N(Δ^{*}) is defined to release an energy equal to hG_c in pure tension

- The law $M(\Delta^*)$ is defined to release an energy equal to hG_c in pure bending
 - Pure mode I

Using the superposition principle the energy released for any couple N,M is equal to hG_c [Becker et al ijnme2011]

- Pure mode I

Full-DG/ECL framework

The cohesive model for mode I can be extended to mode II $T_0 = n_0^{21}$ n²¹ \widetilde{m}^{21} \widetilde{m}^{21} Δ_{rt} G_T Δ* Δ_{c} $M_0^T = \widetilde{m}_0^{22}$ M $\Delta_{II}^{\star} = (1 - \eta_{II})\Delta_t + \eta_{II}h_{II}^{eq}\Delta_{rt}$ $G_{M^{T}}$ $h_{II}^{eq} = \frac{M_0^T}{h\beta\sigma_c - T_0}$ - Coupling parameter $G_T + G_M T = h\beta G_c$ $\eta_{II} = \frac{\left| 1/h_{II}^{eq} M_0^T \right|}{T_0 + \left| 1/h_{eq}^{eq} M_0^T \right|} = \frac{h\beta\sigma_c - T_0}{h\beta\sigma_c}$

- Combination of mode I and II is performed following Camacho & Ortiz [Camacho et al ijss1996]
 - Usually perform in the literature

- Define an effective opening
$$\Delta^* = \sqrt{\ll \Delta_I^* \gg^2 + \beta^2 {\Delta_{II}^*}^2}$$

- Fracture initiation
$$\sigma_{eff} = \begin{cases} \sqrt{\sigma_I^2 + \beta^{-2} \tau_{II}^2} & \text{if } \sigma_I \ge 0 \\ \frac{1}{\beta} \ll |\tau_{II}| - \mu_c |\sigma_I| & \text{if } \sigma_I < 0 \end{cases} = \sigma_c$$

The equivalent thicknesses become

$$h_I^{eq} = \frac{M_0}{h\sigma_I - N_0}$$
$$h_{II}^{eq} = \frac{M_0^T}{h\tau_{II} - T_0}$$

- The transition between uncracked to fully cracked body depends on ΔE_{int}
 - Double clamped elastic beam loaded in a quasi-static way

- The framework can model stable/unstable crack propagation
 - Geometry effect (no pre-strain)

• The energy released during fracture is always equal to hG_c

		$hG_c =$	22.00
u _{x,pres}	η_I	ΔE_{int}	E _{released}
$-2e^{-5}$	1,0692	14.82	21.98
0.	1	12.33	21.98
2 <i>e</i> ⁻⁵	0.93	11.39	21.98
$4e^{-5}$	0.86	11.99	21.98
6e ⁻⁵	0.79	14.11	21.98
8e ⁻⁵	0.72	17.76	21.99
$10e^{-4}$	0.66	22.95	
		> 22.00	
	Unstable		

- A benchmark with a dynamic crack propagation
 - A single edge notched elastic plate dynamically loaded

• The energy released in a dynamic crack propagation is equal to hG_c

- A benchmark involving contact
 - A single edge notched elastic plate impacted by a rigid cylinder

- The crack propagates correctly even if there is (rigid) contact
 - Results are compared to the literature [Zavattieri jam2006]

- A benchmark to investigate the fragmentation
 - Elastic plate ring loaded by a centrifugal force

- Fragmentation phenomena can also be studied by the full-DG/ECL framework
 - Results are compared with the literature [Zhou et al ijnme2004]

- Develop a discontinuous Galerkin method for thin bodies
 - Beam elements (1.5D case)
 - Shell elements (2.5D case)
- Discontinuous Galerkin / Extrinsic Cohesive law framework
 - Develop a suitable cohesive law for thin bodies

- Applications
 - Fragmentations, crack propagations under blast loadings

- Application to the dynamic fragmentation of a sphere
 - Elastic sphere under radial uniform expansion

Applications of the DG/ECL framework

• The distribution of fragments and the number of fragments are in agreement with the literature [*Levy EPFL2010*]

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 90

• Blast of an axially notched elasto-plastic cylinder (large deformations)

Applications of the DG/ECL framework

- Accounting for plasticity allows capturing the crack speed
 - Compare with the literature [Larson et al ijnme2011]

• Pressure wave passes through an axially notched elasto-plastic pipe (large deformations)

Applications of the DG/ECL framework

500

full-DG O Song 2009

- Crack path and speed are well captured by the framework
 - Compare with the literature [Song et al jam2009]

- Full-DG / ECL framework allows accounting for fracture in dynamic simulations of thin bodies
 - Crack propagation as well as fragmentation
 - Recourse to an elasto-plastic model is mandatory to capture crack speed
 - Affordable computational time for large models
- Main contributions
 - Full-DG model of linear Euler-Bernoulli beams and (non)-linear Kirchhoff-Love shell
 - Energetically consistent extrinsic cohesive law based on reduced stresses
 - Explicit Hulbert-Chung algorithm based on ghost elements (reduce MPI communication, independent of material law)

 Model the damage to crack transition by coupling a damage law with the full-DG/ECL framework

 Replace the criterion based on an effective stress by a criterion based on the damage

- Define the shape of the cohesive law

Future work

- An exploratory benchmark
 - Quasi-static
 (dynamic relaxation)
 - Linear damage theory
 - Fracture criterion $D > D_c$

 G_c

 Δ_c

 G_c from the literature [Mazars et al ijss1996]

Δ

- Cohesive shape

 $\sigma_{frac init}$

continuity

- The benchmark shows encouraging perspectives
 - Linear damage theory _

Fracture criterion $D > D_c$ _

Cohesive shape _

• The benchmark shows encouraging perspectives but many improvements are required

- Non local damage model

Account for stress triaxiality (and out-of-plane shearing)

Shape of the cohesive law

Thank you for your attention

Appendix

• Application is implemented separately from the solver to be versatile

DofManager allows to define dof independently of the mesh

• Continuous mesh is used as interface elements are generated in dgshell

• Quasi-static or dynamic (explicit Hulbert-Chung) schemes are available

Different material law (elastic linear, neo-Hookean, J₂-linear hardening)

• A library of 4 shell elements is implemented

Parallel scheme is based on Ghost element concept

 Ghost elements of a partition are the elements of other partitions which have a common interface with this partition

- Solve for the dofs of the elements of the partition linked to the processor
 - M is the diagonalized mass matrix

The elements have to be discontinuous between partition

- Recourse to the full-DG formulation between partitions to ensure continuity between them
 - Extra dofs are only inserted between partitions

- Interface elements have to be computed

- Interface elements are computed on each partition (using Ghost elements)
 - Processor I

- Processor II

$$\boldsymbol{F}_{int} = \begin{bmatrix} \boldsymbol{F}_{int}^{-} \\ \boldsymbol{F}_{int}^{+} \end{bmatrix}$$

- Only the part of F_{int} associated to the dofs of the partition is assembled
 - Processor I

- Processor II

- Only one MPI communication is required by time step
 - Unknowns are exchanged before the computation of F_{int}

- The parallel scheme is almost optimal
 - Theoretical speed-up = time n processor / time 1 processor = 1/n
 - Practically the speed-up is lower than expected (MPI communication)
 - Cylindrical panel benchmark on Nic3 (cluster with 8 cores 2.5Ghz per node)

- The parallel scheme is almost optimal when the number of elements remains large compared to the number of interfaces (OK in practice)
 - Theoretical speed-up = time n processor / time 1 processor = 1/n
 - Practically the speed-up is lower than expected (MPI communication)
 - Cylindrical panel benchmark on Nic3 (cluster with 8 cores 2.5Ghz per node)

 Neo-Hookean (elastic large deformations) plate ring loaded in a quasistatic way

- Neo-Hookean (elastic large deformations) plate ring loaded in a quasistatic way
 - The method gives accurate results even in the case of large distortions

Université de Liège

0

displacement

15.4

Zy Zy

30.9

• J₂-linear hardening (elasto-plastic large deformations) hemisphere loaded in a quasi-static way

 J_2 -linear hardening (elasto-plastic large deformations) hemisphere loaded in a quasi-static way

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 121