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Introduction

« Athin body is a structure with a dimension largely smaller than the other
ones

— This dimension is called the thickness
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Introduction

* Improve the safety of pressurized thin bodies by understanding their
fracture behavior

Blast

[Larsson et al ijnme 2010]
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Introduction

« Recourse to the finite element method allows cheaper designs

— A numerical model is an idealization of reality based on mathematical
equations

— The finite element method (FEM) discretizes the structure in elements

Mesh

[Larsson et al ijnme 2010]

— The finite element method is a powerful tool in mechanics

{25
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Introduction

 Beam or shell elements can advantageously be used to model thin bodies

— The dimensions of an element have to be slightly the same in all directions

Better results

anisotropy

— Classical 3D elements leads to a huge number of elements for thin bodies

3D elements
5850 Dofs

— Beam and shell elements use a 1D or 2D element as basis and account
separately for the thickness - drastically reduces the time of computation

-------------- Shell elements

1170 Dofs
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Introduction

« Cohesive zone model is very appealing to model crack initiations in a
numerical model

— Model the separation of crack lips in brittle materials

Crack face separation occurs Idealization of atomic separation
across cohesive zone processes in cohesive zone

Cohesive tractions

Sharp crack

. ! LR i
Cohesive zone Lo |

Physical extent of

crack [Seagraves et al 2010]
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Introduction

« The insertion of cohesive elements during the simulation is difficult to
Implement as it requires topological mesh modifications

— FEM (continuous Galerkin)

4 nodes

Topological mesh modification
Create new dofs (nodes)
Difficult especially in //
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Introduction

A recourse to an intrinsic cohesive law is generally done with FEM

— FEM (continuous Galerkin)
\ Intrinsic cohesive law

fracture

\ Intrinsic cohesive law
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Introduction

 Intrinsic cohesive law leads to numerical problems [Seagraves et al 2010]

— Spurious stress wave propagation

— Mesh dependency

— Too fast crack propagation
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Introduction

« Use of extrinsic cohesive law is easier when coupled with DG

— FEM (continuous Galerkin) — Discontinuous Galerkin
\ Intrinsic cohesive law s o Bulk law

Interface
Weak continuity

Substitution when

fracture
fracture occurs

\ Intrinsic cohesive law \EXxtrinsic cohesive law




Introduction

 Other methods exist but we focus on the discontinuous Galerkin method
which has to be extended for thin bodies

— XFEM

Continuous
mesh

crack
pass

through
elements

Enriched
elements

Commonly used for
crack propagation

— Discontinuous Galerkin

Discontinuous
mesh

crack
follows
element

_ Continuity is
boundaries

weakly ensured

Recently developed for
dynamic phenomena (crack
propagation due to impact,

fragmentation) but for 3D
elements only

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 12 UB



Plan

« Develop a discontinuous Galerkin method for thin bodies

— Beam elements (1.5D case)

— Shell elements (2.5D case)
e Discontinuous Galerkin / Extrinsic Cohesive law framework

— Develop a suitable cohesive law for thin bodies

« Applications

— Fragmentations, crack propagations under blast loadings
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Full-DG formulation of Euler-Bernoulli beams

« Highlights
h{

\Y

Aspect ratio = 10

S|~

« Simple 1D thin structure

« Restrict the analysis to
— Linear small strains
— Straight rectangular beam (without initial deformation)
— Out-of-plane shearing can be neglected

— Plane stress state
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Full-DG formulation of Euler-Bernoulli beams

« 2 (independent in small deformations) deformation modes (shearing is
neglected)

— Membrane mode

E,

A

— Bending mode
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Full-DG formulation of Euler-Bernoulli beams

« Membrane mode

— Strong form (n*'); =0 with n't = f_hﬁz c'tdéd 4y
/—) -

A 4

~ Weak form ["(n'1) ,6u dx = 0

 FEM (Continuous Galerkin) « Discontinuous Galerkin

b E3% Overmid/..\.. —

(a-1)(a-1)"@) (a)* (a+1)(a+l)*

Field

Field

1) (@ (a+l)
Integration by parts on each element

Z jnlldulldx— n'téul,, |=0

Integration by parts on the beam

7 j n'téu,dx =0

e I, Bulk term

. N
Bulk term Interface term

e le
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Full-DG formulation of Euler-Bernoulli beams

 The interface terms are developed

— Operators definition

v =1 Mean: (m) = l(l"' +m)
- 9 + 2
O x X -
U Jump: [m] =m™ — m~

— Using operators
—Z Youl,, Z[[n“Su]]s
— Using mathematical identity [ab] = {(a)[[b] + [al{b)

_ Z ], Z«nﬂ)[[csu]] + [nM (8w

e
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Full-DG formulation of Euler-Bernoulli beams

 The jump is replaced by a consistent numerical flux (no equality)

- > ntisul;, Eunﬂ(m]]s 2(<n11>u6u]]+[[n11]]<6u>>5 Z(<n11>[[6u]])s
e I
0
for the exact continuous

solution (consistency is
— Main idea of DG preserved)

« The governing equation becomes

z ’[zlllé'u,ldx— n16u],, _>7j 115u1dx+7 (H[6ul), =0

Bulk term Interface term e I, Bulk term s Consistency term

e le

— # pure penalty method (Intrinsic cohesive law) which does not include the
consistency terms
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Full-DG formulation of Euler-Bernoulli beams

« Discontinuous elements - displacement jumps have to be constrained

— Membrane mode
E3

A

for the exact continuous solution
—> consistency is preserved
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Full-DG formulation of Euler-Bernoulli beams

« Method is stabilized by quadratic terms

> (tul);

Z(<Eh5”,1)[[u]])s B Z <[[ﬁ]] <EZ§2> [[5”]]>S =0

S J 0
for the exact continuous solution
-> consistency is preserved

- B, > 1 dimensionless stability parameter (Practically stable if 8,210)

h®characteristic mesh size which ensures the dimensionless nature of g,
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Full-DG formulation of Euler-Bernoulli beams

* The final equation (membrane mode) is obtained by adding the terms

FEM (CG)
Z f n'téu 4 dx — nttéul,, | —> 7jn115u'1dx+7( (nll)[[5u]] ) +
S —— d — v
e \l, Bulkterm  Interface term e [, Bulkterm s Con51stencyterm s

Z( {Ehdus)[u] >+Z [[]]<hﬁ2>[[5]] _0

S Symmetrization term S

Stablllty term

— Consistent, (Weakly) continuous and stable

— Same as FEM but with extra interface terms
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Full-DG formulation of Euler-Bernoulli beams

« 2 (independent) deformation modes (shearing is neglected)

— Membrane mode (OK)
E3

A

— Bending mode
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Full-DG formulation of Euler-Bernoulli beams

- The bending mode requires the C! continuity (i.e. the tangent continuity)

— For FEM without rotational Dofs

Expected (C* continuity) Continuous displacement and
discontinuous tangent

e

Field
Field

—_—————

(a-1) () (a+1) | (a-1) (@) (a+1)
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Full-DG formulation of Euler-Bernoulli beams

« Several technigues exist to ensure the tangent continuity using FEM

- (! Shape functions (beams only)

— Recourse to rotational degrees of freedom (2-field formulation)

— Lagrange multipliers (add degrees of freedom)
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Full-DG formulation of Euler-Bernoulli beams

* The discontinuous Galerkin method can be advantageously used to
ensure the tangent continuity

— Ensured weakly by interface terms

- (°/DG method (elements are continuous)

— One-field formulation (displacements are the only unknowns)

— First DG methods for thin bodies formulation [Engel et al cmame 2002]
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Full-DG formulation of Euler-Bernoulli beams

« The form of the DG formulation is similar to the one obtained for the
membrane problem

— Strong form (m'!) ; =0 with m!! = fh/Z

sz 0.11933d€3

— Weak form [ (m'") ;8(-v1)dx = 0
— Shearing is neglected

— External forces and inertial parts are omitted

— FEM (Continuous Galekin) — Discontinuous Galerkin

z J m115(—v11)dx— 0 Jm115(—”11)dx— 115(_”1)]

4

Bulk term Bulk term Interface term

*gg Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 26



Full-DG formulation of Euler-Bernoulli beams

« 3 interfaces terms are considered following the framework made for the
membrane mode

— Consistent terms

=S mtta(-v)], = Ym sl » Y (),

— Symmetrization terms i

2. «El_fd(_”'ﬂ)) ﬂ‘?h]])g =0

S

— Stability terms

Z ([[—0,1]] <Elliﬁsl> [[5(—12,1)]]) =0 f; > 1 dimensionless

stability parameter
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Full-DG formulation of Euler-Bernoulli beams

« Bending equation

z f 115(—v11)dx_ 115( v )] _)Sjjm115(—v,11)d9f+

-

e le Bulk term Interfaceterm e I, Bulk term
> (m[s(-v1)]
S Consistehcyterm S
> <( )8(- v11)>[[—v1]] +
s
Symmetrlzatlon term s
Eh3B,
—V 6(—v =0
z [=val{ T ) 18w
S -
Stabilify term P

— Consistent, stable and weakly continuous thanks to interface terms

— Same as FEM with extra interface terms
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Full-DG formulation of Euler-Bernoulli beams

« Out-of-plane continuity is not ensured

Expected Discontinuous Galerkin

— Membrane mode

[u] ox \

. [v,] OK
T

— “Shearing” mode

@
— Bending mode

vl 2
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Full-DG formulation of Euler-Bernoulli beams

« QOut-of-plane continuity is ensured by introducing an interface term in v

— Account (temporarily) for negligible shearing in the simplified bending equation

f [(mll),15(—v,1)

h/2
—11§(—v,)]|dx =0 with I = f 031d&3 =~ 0
~h/2

Simplified bending equation

— Unusual integration by parts on §(—v ,)for the shearing term

j [(m'Y) 16(—v,) — 116(—v,)|dx = z j m115(—v,11)d3£

Term in §v, to constrain [v ]

m“c?(—v,l)]le

Interface term

e Bulk term

le

(1) 16(—v)dx

Bulk term

115(—17)]16

Qterface ter

le

Termin v - We can ensure
weakly this continuity using DG
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Full-DG formulation of Euler-Bernoulli beams

« 3 interface terms are derived from 1§ (—v)];, exactly as for the
membrane and bending modes

— Consistency terms
Z”‘“ v, Z[[M( Wl > = ) (IS,

— Symmetrization terms
Eh B °
Z<2“+ 60 v1)>[[ v]]) [v] y

— Stability terms

Z([{— I

S

_EhBs
2(1+v)

[6(— v)]]) B3 > 0 dimensionless

stability parameter
S
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Full-DG formulation of Euler-Bernoulli beams

« Only the stabilization terms remain as the shearing is neglected (Euler-
Bernoulli assumption)

— Consistency terms

2115( ], Z[[llrS( V)]s - Z((ll> Ds =0 NEGLECTED

— Symmetrization terms

Z s )= ) =0 ENSURES CONTINUITY BUT LEAD
2(1+v) 1 TO UNSYMMETRIC FORMULATION
s - IS NOT CONSIDERED

S
— Stability terms

z<[[ v]

S

2(1 4+ v)hs CONTINUITY

EhB; >[[5( v)]]> ENSURES STABILTY AND
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Full-DG formulation of Euler-Bernoulli beams

The final full-DG equation is obtained by adding the different
contributions (membrane + bending) [Becker et al , ijnme 2011]

2]

ele

n116u1dx+7 j m115(—v11)dx+ FEM (CG) equation

e I, Bulk term

2( (o

3

S

<¥

Consistency term

(77111)[[5(—77,1)]]

Consistency term

S

)

+

Bulk term
Z (Ehc?u,l)[[u]l + z [u ]]< >[[5 |
S Symmetriiation term S
Stablllty term
Eh3 E h3ﬁ1
-Hz <(T)5(_U,11)> [[_U,1]] +z [[_U,1]] < 12hs [[5( v1)]]
S J S
Symmetriiation term < Stablllty term
Y S [[5 ]]
laar )hS (=)
S -
Stablllty term
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Full-DG formulation of Euler-Bernoulli beams

« The analytical solution is matched with discontinuous elements
=
ER &
s & p TQ
X
Rt e e e e e v R S
S TR T T
Y v oy oy A Y Y \d Y \J Y Y \i Y \i Y N
V4
A < > N
L = 1000 [mm]
’ Qe‘“‘“bb,ﬁ+ +,09° i
. 02 Daboh /JJ@” + hjL-158
- S &% ——-h/L=1/16
2"d order 3 %@; ,fée"ff Y
elements § g, * g o s
T 0 Ca; 580 h/L=1/8 FE
Commercial software
-1 Analytic
0 1
0
0.2 ‘ + h5/L=1/8
= -hJL=1/16
3rd order E'OA “““““ h/L=1/32
% 08 h/L=1/64
elements g v ° h/L=1/8 FE
Commercial software
7 | | | 1 | 1 | 1 | Analytinc
0 01 0.2 03 0.4 O/E 0.6 07 0.8 09 1
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Full-DG formulation of Kirchhoff-Love shells

e Structure whose thickness is << other dimensions

 Initial curvature (otherwise it is a plate) < bending/membrane coupling

 Modes
— Qut-of-plane shearing is neglected (Kirchhoff-Love theory)

Bending

= o 3
de Liége =



Full-DG formulation of Kirchhoff-Love shells

« The kinematics of the shell is formulated in a basis linked to the shell

— Convected basis (g1, g, g3)
t(gl, &%)
So A t,l '4

1

Jo = Qo +Et Anaccounts for a thickness variation
' gga= Apt *owhere 9, t(¢h, &2,%) by assumption

— The convected basis is not orthonormal

— Curvature of the shell is characterized by
Acﬂx =ty ‘P'ﬁ
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Full-DG formulation of Kirchhoff-Love shells

« As the convected basis is not orthonormal, a conjugate (or dual) basis is
defined to decompose vectors or matrices

g -g] = 0y

The vector a can be formulated in both bases:

a=a'g,+a’g,
a=a,g'+a,g°

And (for example)

a-g'=(a'g,+a’g,)-g'=a
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Full-DG formulation of Kirchhoff-Love shells

* The equations are formulated in the reference frame
— The Jacobian describes the change between the configurations

Shell configuration Reference configuration

W TN
N HEEL E)

j=det(V®) = (g1 A g2) - g3
j=M(@1Ae@,)-t
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Full-DG formulation of Kirchhoff-Love shells

« The normal at the interface is chosen as the outward normal to the
minus element (convention)

_ (psl T t+
tS
/ 3 +
/ ,2
P
¥
— Normal components
Vo =@ P

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 39 udug



Full-DG formulation of Kirchhoff-Love shells

 The stress tensor o Is integrated on the thickness in the convected basis

— Reduced stresses

n“=;

coupling

jo - g%dg® = (A% + AL+ )\ g

hmax

J hmin
1 Rmax
me == [ "jga - geag
] Rmin
hmax
== jo-g3d&3 =0
] Rmin
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Full-DG formulation of Kirchhoff-Love shells

« The (Simplified) equations of the problem are formulated in terms of the
reduced stresses

— Strong form %(J_n“) _+ % (jm*)—1=0
— Weak form [, [(in®) - 8¢ + (jm®) - 2x6t —j1- 1,5t| dA = 0

— Highlights of the full DG concept

— External forces and inertial terms are omitted (same as FEM)
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Full-DG formulation of Kirchhoff-Love shells

 FEM (Continuous Galerkin) « Discontinuous Galerkin
o h=)
2 _ @
X J N X
(a-1) (a) (a+1) | (a-1) (@) (a+1)

Integration by parts on each element
(unusual on 1)

Z in® - 8¢, + jm® - 1,6t , z{ f [(jna)a.5cp+(jﬁz“)a.,1h5t
e Ae Ae ' ’

e

Integration by parts on the structure

—jl-2,6t]dA =0 — (D, j /1h5tda’] dA
(4

Additional interface
terms exactly as for

beams —jl- j/lh&da’ Vg, ] dA} =0
(04
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Full-DG formulation of Kirchhoff-Love shells

 The 3 interface terms are replaced by consistent numerical fluxes

— Average fluxes are considered (exactly as for beams)

Interface terms = A sum of jumps - Consistent terms

—zf jn% - 6ev, dA = z J[[]_'n“ - Sevg || dsA, — 2 j(fn“) - [8@]vy doA,
> 0A, S S S US

—Z L TR - 2, 6tvs dA = Z j [ime - Aydtvg]_doa, — z j (%) - [1y6tlvy doA,
e Ae S S S S

Z f il f A, Stda’ vy dA = —Z f ﬁﬂ- [ 1.6tda’ v;m oA,
> 0A, a

a S

S S
S —z ]Gl) - “Ah&da’m v=ddA, ~ 0
S S

—

Y
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Full-DG formulation of Kirchhoff-Love shells

« 3 Symmetrization terms are introduced to ensure (weakly) the continuity

— The in-plane displacement jump is constrained by symmetrizing the

consistency terms on n“
Tension e

In plane shearing —7
(+ coupled torsion)

(+ coupled bending)

L’\t‘ \L[[:pL)‘pSZ b ‘PZ)NF _ [[‘Pllz',‘P,sl ..

+ P1 s +
, @'
P2 t ()

P
Consistency term (a) - [6b] = Symmetrization term (b) - [6a]

Z L[[‘P]] - (5(]_'n“))v0jd6Ae =0

— Leads to a symmetric formulation only in the linear case
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Full-DG formulation of Kirchhoff-Love shells

3 Symmetrization terms are introduced to ensure (weakly) the continuity

— The rotational jJump is constrained by symmetrizing the consistency terms on m®

——

p -

Bending
(+ coupled tension)

— U
Tt t_ "t+ i

—_— S R
D1 £t
P £
- N T+
¢ -

)

,2 -
T > L S
) +
ft\ @1 ((p_t +
<p‘,+z\/|¢,+1 2

¢
Consistency term (a) - [6b] = Symmetrization term (b) - [da]

Z fs 161 - {(FAn %) vz dod, = 0
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Full-DG formulation of Kirchhoff-Love shells

« 3 Symmetrization terms are introduced to ensure (weakly) the continuity

— The out-of-plane displacement jump is constrained by symmetrizing the
consistency terms on 1

P1 0" ﬁfp]] - 3
;?4) + fi
()
d+
‘P,-E P

Consistency term (a) - [6b] 2 Symmetrization term (b) - [da]

z] Wﬂhtd“'w@(ﬁ))v;dme _0
s Q

Apll@] - te'* Primitive approximation
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Full-DG formulation of Kirchhoff-Love shells

« 3 Stabilization terms have to be introduced to ensure the stability of the
method

— Quadratic terms are formulated from consistent and symmetrization terms in
na

Form of stabilization terms [a] - ¢ ,vs E Imvariant sti [b6a] - @ gv,
Y o) hS ;B

- )
z L (jn%) - [6@lvg doA, B, 3BV
: _ o | [ 101 @5 \ B 1801 - g5 v dod, = 0
> |11 (sGn)vadon, | s
s J
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Full-DG formulation of Kirchhoff-Love shells

« 3 Stabilization terms have to be introduced to ensure the stability of the
method

— Quadratic terms are formulated from consistent and symmetrization terms in
ﬁla

Form of stabilization terms [a] - ¢, vs <ﬁslnvariant stiff> [6a] - @ gvg

h
Z J (Fme) - [25tlvg dod,
> [t (Grume)zaon,

o
BLH PG
hS

>[[5t]] . pvzddA, = 0

>—>ZL[[t]]-<p,yv(§

J
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Full-DG formulation of Kirchhoff-Love shells

« 3 Stabilization terms have to be introduced to ensure the stability of the
method

— Quadratic terms are formulated from consistent and symmetrization terms in 1

Form of stabilization terms [a] - tvg <B Invariant Stlff> [6a] - tv,

ZL(J_'I).NLAh&da’N vy ddA, 1 _)zf[[(p]] tvﬂ<

) 8] - tv;doA, = 0
> [l to(oGD)vzdoa, |
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Full-DG formulation of Kirchhoff-Love shells

« The terms of stabilization in I ensure also weakly the out-of-plane
continuity

— The shearing is neglected (Kirchhoff-Love assumption) 2 I = 0
— Consistency terms

f (j1) - N j Ah(Stda’m vy ddA, = 0

S a

— Symmetrization terms (if considered - unsymmetrical formulation)

L“Ahtd“'m (6(j1)vgdoa, ~ 0

Y N
Q t
— Stabilization terms L n [@] - t°
,337{a'8j b ZS $ <
— S -
L"ﬁ — | [6¢] - tvzdoA, = 0 s + e

ts . S/
Out-of-plane displacement jump is constrained - continuity is weakly ensured ¢?, P
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Full-DG formulation of Kirchhoff-Love shells

* The equation of the full-DG formulation is obtained by adding the
different contributions [Becker et al cmame2011, Becker et al ijinme2012]

2f _(]_'n“)a 5 + (jm®) -Ah5t] da 4 FEM (CG) equation
e de - , '
aﬁyS—
T a T« B2 H, -
> [n) - 1501 4101 - (6Gn) ]t 0] - @5 {2222 1501 - 04| vidoa, +
s S
pyé=
T~ = ~ ﬁl}[a ] _
z j (m®) - [A,8¢] tH [e] - (A ) HIED - @ vy Zs 21 [6t] - @ g |va doA, +
s 5T
Consistency Symmetrization} J[[(p]] v <.33 o) 501 -t | vedaa, =0
terms terms 4 Jg hs
Stabilization
terms

— Similar form as the beam case (2 Bulk, 2 consistency, 2 symmetrization and
3 stabilization terms)
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Full-DG formulation of Kirchhoff-Love shells

continuous elements are used ([@] = [d¢@] = 0)

__.a

+

(jm®) - [A,6t]

Consistency Symmetrization \|

terms

|| EEDH <§(_i“a)>||

[2] - (A %))

terms

(%) - 8¢ + (jin®) - 2,5t|dA +

The C°/DG formulation [Noels et al cmame2008, Noels ijnme2009] is found if

6_
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Stabilization
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Full-DG formulation of Kirchhoff-Love shells

« The (/DG formulation [Noels et al cname2008, Noels ijnme2009] is found if
continuous elements are used ([[@] = [d¢@] = 0)

z j (%) - 8¢ + (jin®) - 2,5t|dA +
) ,

" - HPY]
[-(/m“) - [An6t] (H [2] - ((jﬂhﬁl“))|+ [t]- @, vs <ﬁ - e ! °> [6t] - @4

Vadi0A, =0

Consistency Symmetrization Stabilization
terms terms terms

— Elements are continuous but the tangent continuity is ensured by DG
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-
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~

@1 () (@+1)

Field
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Full-DG formulation of Kirchhoff-Love shells

* The implementation is based on Gmsh

— 3D finite element grid generator with a built-in CAD engine and a post-
processor

— Developed by C. Geuzaine (Ulg) and J.-F. Remacles (Ucl) [Geuzaine et al
ijnme2009]

— Industrially used (Cenaero, EDF, ...)
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Full-DG formulation of Kirchhoff-Love shells

« Elements & post-processing C++ classes of Gmsh are used in the solver

- B

sphere.geo

n Gmsh
File Tools Help
Elementary entities
Physical groups
Edit 3D
Reload Optimize 30
Optirize 3D (Netgen)

Set order
Inspect
Refine by splitting
Partition

Delete

SEXYZC 11 @MESH 40 b [Geometry [ SXYZIO I OMESH O 0 [Mesh

SOLVER

VonMises (1/1) z
0 2926406 5.806+06 &(”Y
N B |

EXYZIC 1 BMESH AP B[Fo [
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Full-DG formulation of Kirchhoff-Love shells

« 2 benchmarks to prove the ability of the full-DG formulation to model
continuous mechanics

— Elastic open hemisphere with small strains loaded in a quasi-static way
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Full-DG formulation of Kirchhoff-Love shells

« 2 benchmarks to prove the ability of the full-DG formulation to model
continuous mechanics
— Elastic open hemisphere with small strains loaded in a quasi-static way

o
[

o
o

o
~

5x1(0.0465*P) [-]

+ DG B =10 with 27" order quad

| A FE Commercial software
Analytic +
-3 -2
10
h /R

S

o
N

o

10°

—_
o

digplacement

0 1.28 2.56 b
I B |

— The method converges to the analytical solution with the mesh refinement
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Full-DG formulation of Kirchhoff-Love shells

* 2 benchmarks to prove the ability of the full-DG formulation to model
continuous mechanics

— J,-linear hardening (elasto-plastic large deformations) panel loaded
dynamically (explicit Hulbert-Chung scheme)
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Full-DG formulation of Kirchhoff-Love shells

« 2 benchmarks to prove the ability of the full-DG formulation to model
continuous mechanics

— J,-linear hardening (elasto-plastic large deformations) panel loaded
dynamically (explicit Hulbert-Chung scheme)

35
rd
30 3
_. | order
£ 25! a o
E
s 20/ .00
o ==Y O
sl ST Naa=T E
©
o 0] — Point A
O experiment point A
S ---Point B I
0 O experiment point B
0 0.2 0.4 0.6 0.8 1
Time [ms]
displacement v
0 0.0165 0.033 \(25
[ e

— The results match experimental data
]
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 The full-DG method provides accurate results but is more costly than
Cc°/DG (memory, computational time) as it considers more degrees of

Full-DG formulation of Kirchhoff-Love shells

freedom

— Number of dofs (for the same mesh)

— The number of dofs is more or less twice larger for the full-DG formulation

Benchmark C°/DG Full-DG
Open hemisphere 867 1728
Cylindrical panel 1683 3456
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Full-DG formulation of Kirchhoff-Love shells

« The full-DG method can be advantageously used for

— Parallel computation for explicit scheme [Becker et al, ijnme2012]

— Fracture applications (same number of Dofs as FEM/ICL)
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Plan

« Develop a discontinuous Galerkin method for thin bodies

— Beam elements (1.5D case)

— Shell elements (2.5D case)
e Discontinuous Galerkin / Extrinsic Cohesive law framework

— Develop a suitable cohesive law for thin bodies

« Applications

— Fragmentations, crack propagations under blast loadings
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Full-DG/ECL framework

* There are 3 fracture modes in fracture mechanics

Mode 1 Mode 11

(opening) (sliding)

/)
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Full-DG/ECL framework

 Only modes | and Il can be modeled by Kirchhoff-Love theory

— Kirchhoff-Love - out-of-plane shearing is neglected

Mode 1 Mode 11

(opening) (sliding)

/)

— Model restricted to problems with negligible 3D effects at the crack tip
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Full-DG/ECL framework

 Fracture criterion based on an effective stress

— Camacho & Ortiz Fracture criterion [Camacho et al ijss1996]

Interface ( \/02 T+ B27%ifg = 0 Traction
Oeff > Oc WIth Oppp =41 & || - plo| ifa <0 Compression
c
N
\EXxtrinsic cohesive law
: o., 3 and u. are material
parameters
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Full-DG/ECL framework

 The effective stress Is evaluated at the external fibers

— The bending stress varies along the thickness

— The fracture criterion is evaluated where the stress is maximum
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Full-DG/ECL framework

 The cohesive law is formulated in terms of an effective opening

— Camacho & Ortiz Fracture criterion [Camacho et al ijss1996]

\EXxtrinsic cohesive law

A =/[u] + B2[v]

; !; Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 67 uﬁ,_i.éu;g



Full-DG/ECL framework

 The area under the cohesive law has to be equal to the fracture energy G.

- G, Is a material parameter

>v
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Full-DG/ECL framework

« The maximal stress of the cohesive law Is equal to o, ¢

— Ensure the continuity of stresses

4

Oerf]

>
A. A

— Otherwise numerical problems [Papoulia et al ijnme2003]
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Full-DG/ECL framework

 The shape of the cohesive law is linearly decreasing

— Little influence of the shape for brittle materials

4

Oerf]

B>v

- A,is equal to 2G,./a,
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Full-DG/ECL framework

* The through the thickness crack propagation is not straightforward with

shell elements t4
Oeff

— No elements on thickness
G

— Integrate the 3D TSL on the thickness [Cirak et al cmame2005] A A
C

>

_ Fracture criterion is met
_____________________ |-~ - cohesive law
j— Unreached fracture
- bulk law

Thickness

— The position of the neutral axis has to be recomputed to propagate the crack

1D pure bending

Thickness

M, T .
Neufral B
Discontinuity axisop| \
Continuity (Computation ?) Tension (fracture) - A

Compression (no fracture)

_g{ a Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 71 e



Full-DG/ECL framework

* The cohesive law can be formulated in terms of reduced stresses

— Same as shell equations

Integration on

thickness - ?
Bulk law Rmin

Stress tensor o

A
t Integration on N, M
Ocff thickness \\M
Ge
>

A, A -

A*

— Similar concept suggested by Zavattieri [Zavattieri jam2006]
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Full-DG/ECL framework

« Define A* and N(A*), M (A®) to dissipate an energy equal to hG.during the
fracture process [Becker et al jnme2012, Becker et al 1jf2012 ]

— Integration on thickness
N A

No

N
-

A*

GN‘l‘GM —_ hGC
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Full-DG/ECL framework

« The law N(A") is defined to release an energy equal to hG_ in pure
tension

— Pure mode |

.
*
-------------

G
>
A, A*
i N.A.  2ho.G
0,
N(A)dA, = —C=""C"°C_ g
! X X 2 ZO_C C
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Full-DG/ECL framework

« The law M(A%) is defined to release an energy equal to hG, in pure
bending

— Pure mode |

Z 132
X = ho,
I
MO — h2/6O'C= ﬁi%z h
>« (linear elasticity h; =z
~ external fiber)
Ge .
- >
A, A
AT‘C AC
fM(A*)dA —j +6M 1 -l dA*—6hZUCAC—hG
N A, " h 6 2 O°F
0 0
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Full-DG/ECL framework

« Using the superposition principle the energy released for any couple N,M
Is equal to hG, [Becker et al ijnme2011]

— Pure mode |

mZZ
Z
X Aj =@ -0l +n k4,
heq _ MO
I hO-C - NO
— Coupling parameter
~|1/h"™™Me|  ha. — Ny N
= NO + |1/hquM0| B hO'C A*
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Full-DG/ECL framework

* The cohesive model for mode | can be extended to mode Il

N 4
TO — n(z)l
Gr
>
A, A*
M 4
M{ = mé?
1= = m)Ae + by Ay N
pea _ Mg G, \\\
1 hIBO-C _ TO - >
. A *
— Coupling parameter c A
__lyniME| hpo. — T, Gr 4 Gyr =BG
M= Y RSIME] T hBo,
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Full-DG/ECL framework

« Combination of mode | and Il is performed following Camacho & Ortiz
[Camacho et al 1j5s1996]

— Usually perform in the literature

— Define an effective opening A* = \/<< AF 2 42 AY?

Jot + B2t if o, = 0
<L |tyl = peloglif o <0

— Fracture initiation g, = 4 1 O,

B
— The equivalent thicknesses become
heq — MO
I hO'] — NO
MT
hflq = -
hT” — TO
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Full-DG/ECL framework

The transition between uncracked to fully cracked body depends on AE;,,;

— Double clamped elastic beam loaded in a quasi-static way

A
&
R —
—H
+h =+
%
8

No fracture

Fully broken
\/ Transition \/
—>

ZEintSBC (uz)

AEint (uz) — FE:

ntpce

(uz) _ 2EintSBC (uz)

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 79 .

Université g
de Liége =



Full-DG/ECL framework

 The framework can model stable/unstable crack propagation
— Geometry effect (no pre-strain)

Unstable transition
AE, . (u,) > hGc

Stable transition
AE, , (u,) < hGc

|
|
|
|
o I o
|
10+ I -200 ¢
-20 | : -400 |
= z
-30
E. I X -600
| ()]
o -40 o
‘%’ I E -800
-50
L | -1000 |
60 | |
I -1200 | — analytic DCB
-70 ¢ ——analytic DCB | - - -analytic SCB
8 | _“analytic SCB| L MBs 2 a5 4 s 0
-1.5 -1 -0.5 0 Displacement [mm]
Displacement [mm]
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Full-DG/ECL framework

 The energy released during fracture is always equal to hG,
— Pre-strain effect

hG, =j 22.00

Ux pres ni AEint Ereleased
0;10“ ) —2e~° 1,0692 14.82 21.98
3 0. 1 12.33 21.98
=, 207> 0.93 11.39 21.98
.g_
L 3
N
6e> 0.79
_4
c
------- DCB =
S -08 -06 -04 0.2 0 n
Prescribed z displacement [mm] i) 10e % 0.66
(a
Unstable

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 81 e



Full-DG/ECL framework

A benchmark with a dynamic crack propagation

— A single edge notched elastic plate dynamically loaded

w= 127 [mfn]

|——

ap = 26 [mm)]

L = 300 [mm]

thickness
h =6 [mm)]

NN

[m/ls] ‘

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 82 .

Université g
de Ligge | g



Full-DG/ECL framework

 The energy released in a dynamic crack propagation is equal to hG,

140r,

— Compare results to the literature ol O Zavattenzocs] S
[Zavattieri jam2006] 1001 W
= Fsha §
E. 80' » ‘|
Q H / y
5 A ‘
40, :
M""‘O
20y
% 0.05 0.1 o5 O 0
displacement [mm]
147 G,
12: ---------------------------------
10
o 8r
£
S 6
o 4
von Mlses 2
0 2.76e+08 5.:52et+(8 0
[ - -2 ‘ . ‘ ‘
0 50 100 150 200
time [us]
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Full-DG/ECL framework

« A benchmark involving contact

— A single edge notched elastic plate impacted by a rigid cylinder

~
A

thickness
h =6 [mm]

300 [mm]

L—
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Full-DG/ECL framework

« The crack propagates correctly even if there is (rigid) contact

— Results are compared to the literature [Zavattieri jam2006]

=

(1 -

'; 1i—she|l

= O Zavattieri 2006

(1]

8 os

& o)
3

S 06

S o
© 04f

(8]

°

N 0.2f

© D
g 0 L O
2 0 1 2 3 4

time [ms]

displacement 7
0 0.00287 0.00575 L ¥
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Full-DG/ECL framework

« A benchmark to investigate the fragmentation

— Elastic plate ring loaded by a centrifugal force

60000 [rps] o o

80C
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Full-DG/ECL framework

« Fragmentation phenomena can also be studied by the full-DG/ECL
framework

— Results are compared with the literature [Zhou et al ijnme2004]

[Zhou et al ijnme2004]

displacement {(360/39755) Y
7.73e-13 g.o00122 0.000243 \Z_X
I |
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Plan

« Develop a discontinuous Galerkin method for thin bodies

— Beam elements (1.5D case)

— Shell elements (2.5D case)
e Discontinuous Galerkin / Extrinsic Cohesive law framework

— Develop a suitable cohesive law for thin bodies

« Applications

— Fragmentations, crack propagations under blast loadings
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Applications of the DG/ECL framework

« Application to the dynamic fragmentation of a sphere

— Elastic sphere under radial uniform expansion
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Applications of the DG/ECL framework

« The distribution of fragments and the number of fragments are in
agreement with the literature [Levy EPFL2010]

— Levy uses 3D elements o -
10" ———13 )
107"}
107 4 o - 4
€ = le*[s1] € = 2e*[s?]
©
107
3 —shell
10 | ©-Lewy2010| |
——shell 10-2 107" 100 10"
1o -©-Levy2010 | mlmaver
1072
x 10°
10° e
. 4_ _1 25
107 € = 185[5'1] e =le [S ]
2 588 265 Dofs 27 X
B 07 +48hon 32 cpus  E£1s
- (+17h for é = 1e°[s]) &£ ||
107
—shell 0 x,,'Q X shell
_4||"©-Levy2010 0 o . ©-Levy2010
1075 : 0 2 4 6 8 10
10 de/dt 10"
aver .
“FrE—— &
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Applications of the DG/ECL framework

« Blast of an axially notched elasto-plastic cylinder (large deformations)

127

107

pressure [bars]

g 200 400 600 800 1000
time [u s]
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Applications of the DG/ECL framework

« Accounting for plasticity allows capturing the crack speed

— Compare with the literature [Larson et al ijinme2011]

5000r
-Bl- elastic small strain
-A-elasto-plastic tri
—, 4000} O Larsson 2010 experiment
) | —Larsson 2010 C . =5e8 n=1
-E. ‘\ VISC
S 3000
Q
Q
&
f} 2000¢
displacement o :
0 0.0879 0.176 v X ° 1000,
[ ] N
556 080 Dofs o 0.2 0.3 .
+72h on 16 CpUS propagated crack distance [m]
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Applications of the DG/ECL framework

* Pressure wave passes through an axially notched elasto-plastic pipe
(large deformations)

N

Pressure
wave

Clamped

81.4 [cm]
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Applications of the DG/ECL framework

« Crack path and speed are well captured by the framework

500 & [—ful-DG
— Compare with the literature “00l (5 O Sene 20
: » p
[Song et al jam2009] E
- 3007
Qo
(]
>
2 200t
()
o
© 100
0—Q: ‘ - ‘
200 250 300 350 400
time [us]
500 ‘
—full-DG
4| O Song 2009
— 4007 1
@
E
_ i
(/]
(3]
o
& 200
o
Y ©
“*yon Mises . ® 100/
0 2.35e+08 4.7e+08 Oy
| -] 0 O . . ‘
200 250 300 350 400
224 256 Dofs time [us]

+21 h on 12 cpus
§
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Conclusions

« Full-DG / ECL framework allows accounting for fracture in dynamic
simulations of thin bodies

— Crack propagation as well as fragmentation
— Recourse to an elasto-plastic model is mandatory to capture crack speed

— Affordable computational time for large models
« Main contributions

— Full-DG model of linear Euler-Bernoulli beams and (non)-linear Kirchhoff-
Love shell

— Energetically consistent extrinsic cohesive law based on reduced stresses

— Explicit Hulbert-Chung algorithm based on ghost elements (reduce MPI
communication, independent of material law)
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Future work

 Model the damage to crack transition by coupling a damage law with the
full-DG/ECL framework

— Replace the criterion based on an effective stress by a criterion based on
the damage

— Define the shape of the cohesive law
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Future work

« An exploratory benchmark
— Quasi-static
(dynamic relaxation)

— Linear damage theory
— Fracture criterion D > D,

— Cohesive shape

t A
O-frac init

continuity

Ge

—>
A, A
G, from the literature [Mazars et al ijss1996 |

thickness t=1 [mm]
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— Fracture criterion D > D,

— Cohesive shape

Future work

The benchmark shows encouraging perspectives

— Linear damage theory

t AN
Ufrac init
continuity
Ge
Damage v
Ac A 0 0.2 0.4 |Z 2

G, from the literature [Mazars et al ijss1996 |
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Future work

 The benchmark shows encouraging perspectives but many
Improvements are required

— Non local damage model

— Account for stress triaxiality (and out-of-plane shearing)

— Shape of the cohesive law
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Thank you for your attention
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Implementation of the full-DG formulation of Kirchhoff-Love shells

« Application is implemented separately from the solver to be versatile

GMSH
(elasticity)
Solver

v

NonLinear
MechSolver

A4

.-___7>I

Applications

Linear | |  Dof (Bi)linear || Function || Quadrature || G€0
) System | | Manager terms Space Rule tools
\( —_— _FI _______ e e i
) NLSystem | NLDofManager Part NLTerms | IPVaria || Material
QS & Explicit QS & Explicit Domain ble Law
|
oo oo oo o . Z8 e (R R -
---------------- [
| : Terms €
: “iiiiiiit o |PartDomain
| : Function
| ' | Interface Space
________________ |
S
< : ________________ i Solver |PVaI’Iab|e <
.
: 5 | act Material |
: ¥ projects Law <
________________ ,
[ e T
: | | Interface
| ¥ Element
________________ ,
T | dgshell
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Implementation of the full-DG formulation of Kirchhoff-Love shells

GMSH
(elasticity)
Solver

v

NonLinear
MechSolver

A4

.-___7>I

Applications

« DofManager allows to define dof independently of the mesh
N\

Linear | / Dof (Bi)linear || Function || Quadrature || G€0
< System | \ Manager, terms Space Rule tools
| \/

AT TN \l: _________ v~~~ T/ 7 7 )= == ======
) NLSystem | NLDofManager Part NLTerms | IPVaria || Material
QS & Explicit QS & Explicit Domain ble Law
|
T - 28 I -
---------------- [
| : Terms €
: ~oot o [PartDomain
: | Function
| ' | Interface Space
________________ |
S
< : ________________ i Solver |PVaI’Iab|e <
.
: 5 | roiect Material |
: ¥ projects Law |
________________ ,
[ e T
: | | Interface
| ¥ Element
________________ ,
T | dgshell
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Implementation of the full-DG formulation of Kirchhoff-Love shells

« Continugus mesh is used as interface elements are generated in dgshell

GMSH
(elasticity)
Solver

v

NonLinear
MechSolver

A4

.-___7>I

Applications

Linear | |  Dof (Bi)linear || Function || Quadrature || G€0
) System | | Manager terms Space Rule tools
\( —_— _FI _______ e e i
) NLSystem | NLDofManager Part NLTerms | IPVaria || Material
QS & Explicit QS & Explicit Domain ble Law
|
oo oo oo o . Z8 e (R R -
---------------- [
| : Terms €
: “iiiiiiit o |PartDomain
| : Function
| ' | Interface Space
________________ |
S
< : ________________ i Solver |PVaI’Iab|e <
.
: 5 | act Material |
: ¥ projects Law <
S iiiivisisisisisisiois : E—
: | | Interface
! ¥ Element
L . e
CTITIIIIZIIoo
T | dgshell
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Implementation of the full-DG formulation of Kirchhoff-Love shells

* Quasi-static or dynamic (explicit Hulbert-Chung) schemes are available

GMSH
(elasticity)
Solver

v

NonLinear
MechSolver

A4

Applications

Linear | |  Dof (Bi)linear || Function || Quadrature || G€0
< System | | Manager terms Space Rule tools
_\_ - ﬁ-—_—._\_v_\“ ____________________

o~ .
/NLSystem N NLDofManager Part NLTerms | IPVaria || Material
QS & Explicit QS & Explicit omain ble Law
—
e — = _x 4 [ A D —

T T I T T T T
| : Terms €
: ~oot o [PartDomain
| : Function
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Implementation of the full-DG formulation of Kirchhoff-Love shells

 Different material law (elastic linear, neo-Hookean, J,-linear hardening)

GMSH
(elasticity)
Solver

v

NonLinear
MechSolver

A4

.-___7>I

Applications
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Implementation of the full-DG formulation of Kirchhoff-Love shells

* Alibrary
GMSH
(elasticity) | <
Solver
YT
NonLinear J
MechSolver
7,
\ 4
Applications

~of 4 shell elements is implemented

[
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Implementation of the full-DG formulation of Kirchhoff-Love shells

« Parallel scheme is based on Ghost element concept

GMSH
(elasticity)
Solver

v

NonLinear

MechSolver

A4

Applications
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells

Ghost elements of a partition are the elements of other partitions which
have a common interface with this partition

Partition Il

Partition Il Ghost elements (overlap
between the partitions)
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells

Solve for the dofs of the elements of the partition linked to the processor

— M is the diagonalized mass matrix

Sn+1 -1 n n
X = M- — F;
1—ay [Fext mtl T g,

™ = 4" + At(1 — p)X™ + Atyx"tt
1
x = x™ + At x™ + At? (f — ﬂ) X"+ At2pxntt

Processor |

—"

XN

xpartition D
xpartition D

xpartition I

Processor I <N\ Processor I
X ) )

. partition 11 '- xpartition 111>
Jf.zoartition I k‘ Xpartition 111>
Xpartition I1 X

Xpartition 111
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells

The elements have to be discontinuous between partition

Processor |

Xpartition I»
xpartition I
x'partition I
Processor |l Processor llI
Xpartition 11/ Xpartition 111>
{partition 1D xpartition 11D
Xpartition 11 Xpartition 111
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells

Recourse to the full-DG formulation between partitions to ensure
continuity between them

— Extra dofs are only inserted between partitions

Processor |
xpartition D
xpartition I

xpartition I

-

Processor I Processor Il|
{Cpartition 1 Xpartition 11D
-x.:.partition 11 xpartition 1D
Xpartition II > xpartition 111

— Interface elements have to be computed
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells

* Interface elements are computed on each partition (using Ghost
elements)

— Processor | — Processor I
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells

* Only the part of F;,,; associated to the dofs of the partition is assembled

— Processor | — Processor I

/
/
/
/ =
/
I e e e -
i1 t
Fint = Fint =
int
Assembled
Assembled
Explicit system Explicit system
(Partition 1) (Partition II)
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells

« Only one MPI communication is required by time step

— Unknowns are exchanged before the computation of Fj,,;

o'\ N\
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells

* The parallel scheme is almost optimal

— Theoretical speed-up = time n processor / time 1 processor = 1/n
— Practically the speed-up is lower than expected (MPlI communication)

— Cylindrical panel benchmark on Nic3 (cluster with 8 cores 2.5Ghz per node)

10°

speed-up [-]
81

—simulations
||~ = ~theoretical

10° 10'
#cpu [-]
[
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells

* The parallel scheme is almost optimal when the number of elements
remains large compared to the number of interfaces (OK in practice)

— Theoretical speed-up = time n processor / time 1 processor = 1/n
— Practically the speed-up is lower than expected (MPlI communication)

— Cylindrical panel benchmark on Nic3 (cluster with 8 cores 2.5Ghz per node)

10°

The number of
interfaces is not
negligible compared to
| the number of elements
| on each partition
| (+1 interface for 3
elements)

speed-up [-]
5‘I

—simulations
||~ = ~theoretical

10° 10'
#cpu [-]
[
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Full-DG formulation extra benchmarks

 Neo-Hookean (elastic large deformations) plate ring loaded in a quasi-
static way
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Full-DG formulation extra benchmarks

 Neo-Hookean (elastic large deformations) plate ring loaded in a quasi-
static way

— The method gives accurate results even in the case of large distortions

displacement
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Full-DG formulation extra benchmarks

« J,-linear hardening (elasto-plastic large deformations) hemisphere
loaded in a quasi-static way
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Full-DG formulation extra benchmarks

« J,-linear hardening (elasto-plastic large deformations) hemisphere
loaded in a quasi-static way

— Same results for 2" and 39 order triangles 0.03
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