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Introduction 

• A thin body is a structure with a dimension largely smaller than the other 

ones 

 

– This dimension is called the thickness 
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Introduction 

• Improve the safety of pressurized thin bodies by understanding their 

fracture behavior 
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Blast 

[Larsson et al ijnme 2010] 



Introduction 

• Recourse to the finite element method allows cheaper designs 

 

– A numerical model is an idealization of reality based on mathematical 

equations 

 

– The finite element method (FEM) discretizes the structure in elements 

 

 

 

 

 

 

 

 

– The finite element method is a powerful tool in mechanics  
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[Larsson et al ijnme 2010] 

Mesh 



Introduction 
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Structure Model 

Results FEM computation 



Introduction 

• Beam or shell elements can advantageously be used to model thin bodies 

 

– The dimensions of an element have to be slightly the same in all directions 

 

 

 

– Classical 3D elements leads to a huge number of elements for thin bodies 

 

 

 

 

– Beam and shell elements use a 1D or 2D element as basis and account 

separately for the thickness  drastically reduces the time of computation  
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Better results 

anisotropy 

3D elements 

5850 Dofs 

Beam elements 

240 Dofs 

Shell elements 

1170 Dofs 



Introduction 

• Cohesive zone model is very appealing to model crack initiations in a 

numerical model 

 

– Model the separation of crack lips in brittle materials 
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[Seagraves et al 2010] 
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Introduction 

• The insertion of cohesive elements during the simulation is difficult to 

implement as it requires topological mesh modifications 
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– FEM (continuous Galerkin) 

- + 
4 nodes 

Topological mesh modification 

Create new dofs (nodes) 

Difficult especially in //  

- 
+ 6 nodes 

Cohesive 



Introduction 

• A recourse to an intrinsic cohesive law is generally done with FEM  
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– FEM (continuous Galerkin) 

- 
+ 6 nodes 

Intrinsic cohesive law 

- 
+ 6 nodes 

Intrinsic cohesive law 

𝜎 

Δ Δ 

Δ 

𝜎 

Δ 

fracture 



Introduction 

• Intrinsic cohesive law leads to numerical problems [Seagraves et al 2010] 

 

 

– Spurious stress wave propagation 

 

 

 

– Mesh dependency 

 

 

 

– Too fast crack propagation 
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Introduction 

• Use of extrinsic cohesive law is easier when coupled with DG 
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– Discontinuous Galerkin 

- 
+ 

Interface 

Weak continuity 

 

6 nodes 

- 
+ 6 nodes 

Extrinsic cohesive law 

Substitution when 

fracture occurs 

– FEM (continuous Galerkin) 

- 
+ 6 nodes 

Intrinsic cohesive law 

- 
+ 6 nodes 

Intrinsic cohesive law 

𝜎 

Δ Δ 

Δ Δ 

𝜎 

Δ 

𝜎 

Δ 

Bulk law 

fracture 



Introduction 

• Other methods exist but we focus on the discontinuous Galerkin method 

which has to be extended for thin bodies 
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– XFEM – Discontinuous Galerkin 

crack 

pass 

through 

elements 

crack 

follows  

element 

boundaries 
Continuity is 

weakly ensured 

Continuous 

mesh 

Discontinuous 

mesh 

Enriched 

elements 

Commonly used for 

crack propagation 

Recently developed for 

dynamic phenomena (crack 

propagation due to impact, 

fragmentation) but for 3D 

elements only 



Plan 

• Develop a discontinuous Galerkin method for thin bodies 

 

– Beam elements (1.5D case) 

 

– Shell elements (2.5D case) 

 

• Discontinuous Galerkin / Extrinsic Cohesive law framework 

 

– Develop a suitable cohesive law for thin bodies 

 

 

• Applications 

 

– Fragmentations, crack propagations under blast loadings 
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Full-DG formulation of Euler-Bernoulli beams 

• Highlights 

 

• Simple 1D thin structure 

 

• Restrict the analysis to 

 

– Linear small strains 

 

– Straight rectangular beam (without initial deformation) 

 

– Out-of-plane shearing can be neglected  

 

– Plane stress state 
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Aspect ratio = 
𝑳

𝒉
≥ 𝟏𝟎 

L 

h 



Full-DG formulation of Euler-Bernoulli beams 

• 2 (independent in small deformations) deformation modes (shearing is 

neglected) 

 

– Membrane mode 

 

 

 

 

 

 

– Bending mode 
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E1 

E3 

L 

E1 

E3 

𝑢 

𝑣 



• Membrane mode 

– Strong form 𝑛11 ,1 = 0    with  𝑛11 =  𝜎11𝑑𝜉3
ℎ/2

−ℎ/2
 

 

– Weak form  𝑛11 ,1𝛿𝑢 𝑑𝑥 = 0
𝐿

0
 

Full-DG formulation of Euler-Bernoulli beams 

• FEM (Continuous Galerkin) 

 

 

 

 

 

 

Integration by parts  on the beam 

  𝑛11𝛿𝑢,1𝑑𝑥

Bulk term

= 0

𝑙𝑒𝑒

 

 

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 16 

L0 F 

(a-1)+ (a)+ 

x 

(a+1)- 

F
ie

ld
 

(a+1)+ (a)- (a-1)- 

F 

Overlaid 

(a-1) (a) 

x 

(a+1) 

F
ie

ld
 

F 

u 

  𝑛11𝛿𝑢,1𝑑𝑥

Bulk term𝑙𝑒

− 𝑛11𝛿𝑢 𝑙𝑒
Interface term𝑒

= 0 

• Discontinuous Galerkin 

 

 

 

 

 

 

Integration by parts  on each element 

 

 



Full-DG formulation of Euler-Bernoulli beams 

• The interface terms are developed 

 

– Operators definition 

 

 

 

– Using operators 

 

 

 

– Using mathematical identity 𝑎𝑏 = 𝑎 𝑏 + 𝑎 𝑏  
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- + 
∎− ∎+ 

𝝂−=1 Mean:  ∎ =
1

2
∎+ +∎−  

Jump: ∎ = ∎+ −∎− 

− 𝑛11𝛿𝑢 𝑙𝑒 = 𝑛11𝛿𝑢 𝑠

𝑠𝑒

 

− 𝑛11𝛿𝑢 𝑙𝑒 = 𝑛11 𝛿𝑢 + 𝑛11 𝛿𝑢 𝑠

𝑠𝑒

 



Full-DG formulation of Euler-Bernoulli beams 

• The jump is replaced by a consistent numerical flux (no equality) 

 

 

 

 

 

– Main idea of DG 

• The governing equation becomes 

 

 

 

 

 

 

– ≠ pure penalty method (Intrinsic cohesive law) which does not include the 

consistency terms  
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≠ − 𝑛11𝛿𝑢 𝑙𝑒 = 𝑛11𝛿𝑢 𝑠 = 𝑛11 𝛿𝑢 + 𝑛11 𝛿𝑢 𝑠

𝑠

  𝑛11 𝛿𝑢 𝑠

𝑠𝑠𝑒

 =
 

0  

for the exact continuous 

solution (consistency is 

preserved) 

  𝑛11𝛿𝑢,1𝑑𝑥

Bulk term𝑙𝑒

− 𝑛11𝛿𝑢 𝑙𝑒
Interface term𝑒

   𝑛11𝛿𝑢,1𝑑𝑥

Bulk term𝑙𝑒

+ 𝑛11 𝛿𝑢 𝑠

Consistency term𝑠𝑒

= 0 
≠ 



Full-DG formulation of Euler-Bernoulli beams 

• Discontinuous elements  displacement  jumps have to be constrained 

 

– Membrane mode 

 

 

 

 

 

 

 

– Continuity is weakly ensured by symmetrization terms  

 

 𝐸ℎ𝛿𝑢,1 𝑢
𝑠

𝑠

= 0 
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E1 

E3 

L 

𝑢  

=
 

0  

for the exact continuous solution  

 consistency is preserved 

𝑢 



Full-DG formulation of Euler-Bernoulli beams 

• Method is stabilized by quadratic terms 

 

 

 

 

 

 

 

 

– 𝛽2 > 1 dimensionless stability parameter (Practically stable if 𝛽2≥10) 

 

 

 

–  ℎ𝑠characteristic mesh size which ensures the dimensionless nature of 𝛽2 
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 𝑛11 𝛿𝑢 𝑠

𝑠

 𝐸ℎ𝛿𝑢,1 𝑢
𝑠

𝑠

  𝑢
𝐸ℎ𝛽2
ℎ𝑠

𝛿𝑢

𝑠𝑠

= 0 =
 

0  

for the exact continuous solution  

 consistency is preserved 



Full-DG formulation of Euler-Bernoulli beams 

• The final equation (membrane mode) is obtained by adding the terms 

 

 

 

 

 

 

 

 

– Consistent, (Weakly) continuous and stable 

 

 

– Same as FEM but with extra interface terms 
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  𝑛11𝛿𝑢,1𝑑𝑥

Bulk term𝑙𝑒

− 𝑛11𝛿𝑢 𝑙𝑒
Interface term𝑒

                𝑛11𝛿𝑢,1𝑑𝑥

Bulk term𝑙𝑒

+ 𝑛11 𝛿𝑢
Consistency term 𝑠

+

𝑠𝑒

 

                                                                     𝐸ℎ𝛿𝑢,1 𝑢

Symmetrization term
𝑠

+ 𝑢
𝐸ℎ𝛽2
ℎ𝑠

𝛿𝑢

Stability term
𝑠

= 0

𝑠𝑠

 

   

FEM (CG) 



Full-DG formulation of Euler-Bernoulli beams 

• 2 (independent) deformation modes (shearing is neglected) 

– Membrane mode (OK) 

 

 

 

 

 

 

– Bending mode 
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Full-DG formulation of Euler-Bernoulli beams 

• The bending mode requires the ∁1 continuity (i.e. the tangent continuity) 

 

– For FEM without rotational Dofs 
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Expected (∁1 continuity) Continuous displacement and 

discontinuous tangent  

F F 



Full-DG formulation of Euler-Bernoulli beams 

• Several techniques exist to ensure the tangent continuity using FEM 

 

 

– ∁1 Shape functions (beams only) 

 

 

– Recourse to rotational degrees of freedom (2-field formulation) 

 

 

– Lagrange multipliers (add degrees of freedom) 

 

 

– … 
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Full-DG formulation of Euler-Bernoulli beams 

• The discontinuous Galerkin method can be advantageously used to 

ensure the tangent continuity 

 

 

– Ensured weakly by interface terms 

 

 

– ∁0/DG method (elements are continuous) 

 

 

– One-field formulation (displacements are the only unknowns) 

 

 

– First DG methods for thin bodies formulation [Engel et al cmame 2002] 
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Full-DG formulation of Euler-Bernoulli beams 

• The form of the DG formulation is similar to the one obtained for the 

membrane problem 

 

– Strong form 𝑚11
,1 = 0   with  𝑚11 =  𝜎11𝜉3𝑑𝜉3

ℎ/2

−ℎ/2
 

– Weak form  𝑚11
,1𝛿(−𝑣,1)𝑑𝑥 = 0

𝐿
 

 

– Shearing is neglected 

 

– External forces and inertial parts are omitted 
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– FEM (Continuous Galekin) 

 

– Discontinuous Galerkin 

 

  𝑚11𝛿 −𝑣,11 𝑑𝑥

Bulk term

= 0

𝑙𝑒𝑒

   𝑚11𝛿 −𝑣,11 𝑑𝑥

Bulk term

−𝑚11𝛿 −𝑣,1  
𝑙𝑒

Interface term𝑙𝑒

= 0

𝑒

 



Full-DG formulation of Euler-Bernoulli beams 

• 3 interfaces terms are considered following the framework made for the 

membrane mode 

– Consistent terms 

 

 

 

– Symmetrization terms 

 

 

 

– Stability terms 
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− 𝑚11𝛿 −𝑣,1  
𝑙𝑒

𝑒

= 𝑚11𝛿(−𝑣,1) 𝑠
  𝑚11 𝛿(−𝑣,1) 𝑠

𝑠𝑠

 

 
𝐸ℎ3

12
𝛿(−𝑣,11) −𝑣,1

𝑠

= 0

𝑠

 

 −𝑣,1
𝐸ℎ3𝛽1
12ℎ𝑠

𝛿(−𝑣,1)

𝑠

= 0

𝑠

 𝛽1 > 1 dimensionless             

stability parameter 

E1 

E3 

𝑣,1  

𝑣 

𝑣 



Full-DG formulation of Euler-Bernoulli beams 

• Bending equation 

 

 

 

 

 

 

 

 

 

 

 

– Consistent, stable and weakly continuous thanks to interface terms 

 

– Same as FEM with extra interface terms  
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  𝑚11𝛿 −𝑣,11 𝑑𝑥

Bulk term

−𝑚11𝛿 −𝑣,1  
𝑙𝑒

Interface term𝑙𝑒𝑒

              𝑚11𝛿 −𝑣,11 𝑑𝑥

Bulk term𝑙𝑒

+

𝑒

 

                             (
𝐸ℎ3

12
)𝛿(−𝑣,11) −𝑣,1

Symmetrization term
𝑠

+

𝑠

 

 −𝑣,1
𝐸ℎ3𝛽1
12ℎ𝑠

𝛿(−𝑣,1)

Stability term
𝑠

= 0

𝑠

 

  

 𝑚11 𝛿(−𝑣,1)

Consistency term
𝑠

+

𝑠

 



Full-DG formulation of Euler-Bernoulli beams 

• Out-of-plane continuity is not ensured 

 

 

 

 

 

 

– Membrane mode 

 

 

– Bending mode 

 

 

– “Shearing” mode 
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OK 

OK 
𝑣,1  

𝑣  ? 

Expected Discontinuous Galerkin 

𝑢  



Full-DG formulation of Euler-Bernoulli beams 

• Out-of-plane continuity is ensured by introducing an interface term in 𝛿𝑣  

 

– Account (temporarily) for negligible shearing in the simplified bending equation 

 

 

 

 

 

– Unusual integration by parts on 𝛿(−𝑣,1)for the shearing term 
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 𝑚11
,1𝛿 −𝑣,1 − 𝑙1𝛿 −𝑣,1 𝑑𝑥 = 0

𝐿

 𝑙1 =  𝜎31𝑑𝜉3 ≈ 0

ℎ/2

−ℎ/2

 with 

Simplified bending equation 

 𝑚11
,1𝛿 −𝑣,1 − 𝑙1𝛿 −𝑣,1 𝑑𝑥 =   𝑚11𝛿 −𝑣,11 𝑑𝑥

Bulk term

−𝑚11𝛿 −𝑣,1  
𝑙𝑒
−

Interface term𝑙𝑒𝑒𝐿

 

      𝑙1 ,1𝛿 −𝑣 𝑑𝑥

Bulk term

+ 𝑙1𝛿 −𝑣  𝑙𝑒
Interface term𝑙𝑒

 = 0 

Term in  𝛿𝑣   We can ensure 

weakly this continuity using DG 

Term in 𝛿𝑣,1 to constrain 𝑣,1   



Full-DG formulation of Euler-Bernoulli beams 

• 3 interface terms are derived from 𝑙1𝛿 −𝑣  𝑙𝑒 exactly as for the 

membrane and bending modes 

 

 

– Consistency terms 

 

 

 

– Symmetrization terms 

 

 

 

– Stability terms 
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 𝑙1𝛿(−𝑣) 𝑒 = − 𝑙1𝛿(−𝑣) 𝑠  − 𝑙1 𝛿(−𝑣) 𝑠

𝑠𝑠𝑒

 

 
𝐸ℎ

2 1 + 𝜈
𝛿(−𝑣,1) −𝑣

𝑠

= 0

𝑠

 

 −𝑣
𝐸ℎ𝛽3

2 1 + 𝜈
𝛿(−𝑣)

𝑠

= 0

𝑠

 
𝛽3 > 0 dimensionless             

stability parameter 

𝑣  



Full-DG formulation of Euler-Bernoulli beams 

• Only the stabilization terms remain as the shearing is neglected (Euler-

Bernoulli assumption) 

 

 

– Consistency terms 

 

 

 

– Symmetrization terms 

 

 

 

– Stability terms 
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 𝑙1𝛿(−𝑣) 𝑒 = − 𝑙1𝛿(−𝑣) 𝑠  − 𝑙1 𝛿(−𝑣) 𝑠 ≈ 0

𝑠𝑠𝑒

 

 
𝐸ℎ

2 1 + 𝜈
𝛿(−𝑣,1) −𝑣

𝑠

= 0

𝑠

 

 −𝑣
𝐸ℎ𝛽3

2 1 + 𝜈 ℎ𝑠
𝛿(−𝑣)

𝑠

= 0

𝑠

 

NEGLECTED 

ENSURES CONTINUITY BUT LEAD 

TO UNSYMMETRIC FORMULATION 

 IS NOT CONSIDERED 

ENSURES STABILTY AND 

CONTINUITY 



Full-DG formulation of Euler-Bernoulli beams 

• The final full-DG equation is obtained by adding the different 

contributions (membrane + bending) [Becker et al , ijnme 2011] 
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FEM (CG) equation 

                               (
𝐸ℎ3

12
)𝛿(−𝑣,11) −𝑣,1

Symmetrization term
𝑠

+

𝑠

 

 𝑛11 𝛿𝑢
Consistency term 𝑠

 +         

𝑠

 𝐸ℎ𝛿𝑢,1 𝑢

Symmetrization term
𝑠

       +       𝑢
𝐸ℎ𝛽2
ℎ𝑠

𝛿𝑢

Stability term
𝑠

𝑠𝑠

 

  𝑛11𝛿𝑢,1𝑑𝑥

Bulk term𝑙𝑒

+

𝑒

  𝑚11𝛿 −𝑣,11 𝑑𝑥

Bulk term𝑙𝑒

+

𝑒

 

   −𝑣,1
𝐸ℎ3𝛽1
12ℎ𝑠

𝛿(−𝑣,1)

Stability term
𝑠

𝑠

  𝑚11 𝛿(−𝑣,1)

Consistency term
𝑠

+

𝑠

 

       +  −𝑣
𝐸ℎ𝛽3

2 1 + 𝜈 ℎ𝑠
𝛿(−𝑣)

Stability term
𝑠

𝑠

 

      = 0 



• The analytical solution is matched with discontinuous elements 
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Full-DG formulation of Euler-Bernoulli beams 

2nd order 

elements 

3rd order 

elements 



Full-DG formulation of Kirchhoff-Love shells 

• Structure whose thickness is << other dimensions 

 

• Initial curvature (otherwise it is a plate) ⟺ bending/membrane coupling 

 

• Modes 

– Out-of-plane shearing is neglected (Kirchhoff-Love theory) 
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F 
Membrane 

F In plane shearing 

M 

Torsion Bending 
M 



Full-DG formulation of Kirchhoff-Love shells 

• The kinematics of the shell is formulated in a basis linked to the shell 

 

– Convected basis (𝒈1, 𝒈2, 𝒈3) 

 

 

 

 

 

 

 

 

 

 

– The convected basis is not orthonormal 

 

– Curvature of the shell is characterized by   
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x1=cst 

t 

S0 

x2=cst 
 j,1(x

1, x2) 

 j,2(x
1, x2) 

t(x1, x2) 
S0 

 j,1(x
1, x2) 

t,1 

 g1(x
1, x2,x3) 

Mid-plane 

𝒈𝛼 = 𝝋,𝛼 + 𝜉3𝜆ℎ𝒕,𝜶 

𝒈3 = 𝜆ℎ𝒕 

𝜆ℎaccounts for a thickness variation 

 𝒕 = 𝒕(𝜉1, 𝜉2, 𝜉3) by assumption 
where 

𝜆𝛼
𝛽
= 𝒕,𝛼 ⋅ 𝝋

,𝛽 



Full-DG formulation of Kirchhoff-Love shells 

• As the convected basis is not orthonormal, a conjugate (or dual) basis is 

defined to decompose vectors or matrices  
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𝒈𝐼 ⋅ 𝒈
𝐽 = 𝛿𝐼𝐽 

g1 

g2 

E1 

E2 

g2 

g1 

a1 

a2 

a 

a2 

a1 

The vector 𝒂 can be formulated in both bases: 

 

𝒂 = 𝑎1𝒈1 + 𝑎2𝒈2 

𝒂 = 𝑎1𝒈
1 + 𝑎2𝒈

2 

 

 

And (for example) 

 

𝒂 ⋅ 𝒈1 = 𝑎1𝒈1 + 𝑎2𝒈2 ⋅ 𝒈1 = 𝑎1 

 



Full-DG formulation of Kirchhoff-Love shells 

• The equations are formulated in the reference frame 

  

– The Jacobian describes the change between the configurations 
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E1 

E2 

E3 

x1 

x2 
A F = j(x1, x2) 

         +x3 t(x1, x2) x1=cst 

t 

S 

x2=cst 

Shell configuration Reference configuration  

𝑗 = det 𝛻𝚽 = 𝒈1 ∧ 𝒈2 ⋅ 𝒈3 

𝑗 = 𝜆ℎ 𝝋,1 ∧ 𝝋,2 ⋅ 𝒕 



Full-DG formulation of Kirchhoff-Love shells 

• The normal at the interface is chosen as the outward normal to the 

minus element (convention) 

 

 

 

 

 

 

 

 

 

– Normal components 
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- 

+ 𝝋,1
−  

𝝋,2
+  

𝝋,2
−  

𝝋,1
+  

𝝋,1
𝑠  

𝝋,2
𝑠  

= 𝝂− 

𝒕− 
𝒕+ 

𝒕𝑠 

𝜈𝛼
− = 𝝋,2

𝑠 ⋅ 𝝋,𝛼
𝑠   



Full-DG formulation of Kirchhoff-Love shells 

• The stress tensor 𝝈 is integrated on the thickness in the convected basis 

 

– Reduced stresses 
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𝒏𝛼 =
1

𝑗
 𝑗𝝈 ⋅ 𝒈𝛼𝑑𝜉3
ℎ𝑚𝑎𝑥

ℎ𝑚𝑖𝑛

= 𝑛 𝛼𝛽 + 𝜆𝜇
𝛽
𝑚 𝛼𝜇 𝝋,𝛽 

𝒎 𝛼 =
1

𝑗
 𝑗𝜉3𝝈 ⋅ 𝒈𝛼𝑑𝜉3
ℎ𝑚𝑎𝑥

ℎ𝑚𝑖𝑛

  

𝒍 =
1

𝑗
 𝑗𝝈 ⋅ 𝒈3𝑑𝜉3 ≈ 0

ℎ𝑚𝑎𝑥

ℎ𝑚𝑖𝑛

 

E1 

E2 

E3 

A 

m11 ~ 
m21 ~ 

m22 
~ 

m12 ~ 

E1 

E2 

E3 

A 

ñ11 

ñ22 

ñ12 

ñ21 

coupling 

l 



Full-DG formulation of Kirchhoff-Love shells 

• The (Simplified) equations of the problem are formulated in terms of the 

reduced stresses 

 

– Strong form 
1

𝑗
𝑗𝒏𝛼

,𝛼
+

1

𝑗
𝑗𝒎 𝛼 − 𝒍 = 0  

 

– Weak form  𝑗𝒏𝛼
,𝛼
⋅ 𝛿𝝋 + 𝑗𝒎 𝛼

,𝛼
⋅ 𝜆ℎ𝛿𝒕 − 𝑗𝒍 ⋅ 𝜆ℎ𝛿𝒕 𝑑𝐴 = 0

𝐴
 

 

 

– Highlights of the full DG concept 

 

 

– External forces and inertial terms are omitted (same as FEM) 
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Full-DG formulation of Kirchhoff-Love shells 
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• FEM (Continuous Galerkin) 

 

 

 

 

 

 

Integration by parts  on the structure 

 

   𝑗𝒏𝛼 ⋅ 𝛿𝝋,𝛼 + 𝑗𝒎 𝛼 ⋅ 𝜆ℎ𝛿𝒕,𝛼        
𝐴𝑒𝑒

− 𝑗𝒍 ⋅ 𝜆ℎ𝛿𝒕 𝑑𝐴 = 0 

• Discontinuous Galerkin 

 

 

 

 

 

 

Integration by parts  on each element 

(unusual on 𝒍) 

    𝑗𝒏𝛼
,𝛼
⋅ 𝛿𝝋 + 𝑗𝒎 𝛼

,𝛼
⋅ 𝜆ℎ𝛿𝒕    

𝐴𝑒𝑒

− (𝑗𝒍),𝛼 ⋅  𝜆ℎ𝛿𝒕𝑑𝛼
′

𝛼

 𝑑𝐴

−   𝑗𝒏𝛼 ⋅ 𝛿𝝋𝜈𝛼
− + 𝑗𝒎 𝛼 ⋅ 𝜆ℎ𝛿𝒕𝜈𝛼

−  
𝜕𝐴𝑒

− 𝑗𝑙 ⋅  𝜆ℎ𝛿𝑡𝑑𝛼
′

𝛼

 𝜈𝛼
−  𝑑𝐴 = 0 

 

(a-1) (a) 

x 

(a+1) 

F
ie

ld
 

(a-1) (a) 

x 

(a+1) 

F
ie

ld
 

Additional interface 

terms exactly as for 

beams 



Full-DG formulation of Kirchhoff-Love shells 

• The 3 interface terms are replaced by consistent numerical fluxes  

 

– Average fluxes are considered (exactly as for beams) 
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Interface terms    =     A sum of jumps          Consistent terms 

−  𝑗𝒏𝛼 ⋅ 𝛿𝝋𝜈𝛼
−

𝜕𝐴𝑒

𝑑𝐴 =    𝑗𝒏𝛼 ⋅ 𝛿𝝋𝜈𝛼
−

𝑠
𝑑𝛿𝐴𝑒

𝑠𝑠

   𝑗𝒏𝛼 ⋅ 𝛿𝝋 𝜈𝛼
− 𝑑𝜕𝐴𝑒

𝑠𝑠𝑒

 

−  𝑗𝒎 𝛼 ⋅ 𝜆ℎ𝛿𝒕𝜈𝛼
−

𝜕𝐴𝑒

𝑑𝐴

𝑒

=  𝑗𝒎 𝛼 ⋅ 𝜆ℎ𝛿𝒕𝜈𝛼
−

𝑠
𝑑𝛿𝐴𝑒

𝑠𝑠

   𝑗𝒎 𝛼 ⋅ 𝜆ℎ𝛿𝒕 𝜈𝛼
−𝑑𝜕𝐴𝑒

𝑠𝑠

 

  𝑗𝒍 ⋅  𝜆ℎ𝛿𝒕𝑑𝛼
′

𝛼

 𝜈𝛼
−

𝜕𝐴𝑒

𝑑𝐴

𝑒

= −  𝑗𝒍 ⋅  𝜆ℎ𝛿𝒕𝑑𝛼
′

𝛼

 𝜈𝛼
−

𝑠

𝑑𝜕𝐴𝑒
𝑠𝑠

 

 −  𝑗𝒍 ⋅  𝜆ℎ𝛿𝒕𝑑𝛼
′

𝛼

𝜈𝛼
−𝑑𝜕𝐴𝑒

𝑠

≈ 0

𝑠

 



Full-DG formulation of Kirchhoff-Love shells 

• 3 Symmetrization terms are introduced to ensure (weakly) the continuity 

 

– The in-plane displacement jump is constrained by symmetrizing the 

consistency terms on 𝒏𝛼 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Leads to a symmetric formulation only in the linear case 
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F 
Tension 

(+ coupled bending) 

- 
+ 

𝝋 ∙ 𝝋,2
𝑠  

𝝋,1
−  

𝝋,2
+  

𝝋,2
−  

𝝋,1
+  

𝝋,1
𝑠  

𝝋,2
𝑠  

𝒕− 
𝒕+ 

𝒕𝑠 

F In plane shearing 

(+ coupled torsion) 

𝝋 ∙ 𝝋,1
𝑠  

- 
𝝋,1
−  

𝝋,2
−  𝒕− 

+ 

𝝋,2
+  

𝝋,1
+  

𝒕+ 
𝝋,1
𝑠  

𝝋,2
𝑠  𝒕𝑠 

  𝝋 ⋅ 𝛿 𝑗𝒏𝛼

𝑠

𝜈𝛼
−𝑑𝜕𝐴𝑒

𝑠

= 0 

Consistency term 𝒂 ⋅ 𝛿𝒃       Symmetrization term 𝒃 ⋅ 𝛿𝒂   



• 3 Symmetrization terms are introduced to ensure (weakly) the continuity 

 

– The rotational jump is constrained by symmetrizing the consistency terms on 𝒎 𝛼  

- 
𝝋,1
−  

𝝋,2
−  

𝒕− 

+ 

𝝋,2
+  𝝋,1

+  

𝒕+ 

𝝋,1
𝑠  

𝝋,2
𝑠  

𝒕𝑠 

𝒕 ∙ 𝝋,2
𝑠  

𝒕− 𝒕+ 

Bending 

(+ coupled tension) M 

Full-DG formulation of Kirchhoff-Love shells 
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M 
Torsion 

(+ coupled shearing) 

- 

𝝋,1
−  

𝝋,2
−  

𝒕− 

+ 

𝝋,2
+  𝝋,1

+  

𝒕+ 

𝝋,1
𝑠  

𝝋,2
𝑠  𝒕𝑠 

𝒕 ∙ 𝝋,1
𝑠  

𝒕− 𝒕+ 

  𝒕 ⋅ 𝑗𝜆ℎ𝒎 
𝛼 𝜈𝛼

−𝑑𝜕𝐴𝑒 = 0
𝑠𝑠

 

Consistency term 𝒂 ⋅ 𝛿𝒃       Symmetrization term 𝒃 ⋅ 𝛿𝒂   



• 3 Symmetrization terms are introduced to ensure (weakly) the continuity 

 

– The out-of-plane displacement jump is constrained by symmetrizing the 

consistency terms on 𝒍 

 

 

 

 

 

 

 

 

 

   

- 
𝝋,1
−  

𝝋,2
−  

𝒕− 

𝝋,2
+  

𝝋,1
+  

𝒕+ 

𝝋,1
𝑠  

𝝋,2
𝑠  𝒕𝑠 

𝝋 ∙ 𝒕𝐬 

+ 

Full-DG formulation of Kirchhoff-Love shells 
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F 

Consistency term 𝒂 ⋅ 𝛿𝒃       Symmetrization term 𝒃 ⋅ 𝛿𝒂   

   𝜆ℎ𝒕𝑑𝛼
′

𝛼

⋅ 𝛿(𝑗𝒍) 𝜈𝛼
−𝑑𝜕𝐴𝑒 

𝑠

= 0

𝑠

 

𝜆ℎ 𝝋 ⋅ 𝒕𝝋,𝛼 
≈

 
Primitive approximation 



Full-DG formulation of Kirchhoff-Love shells 

• 3 Stabilization terms have to be introduced to ensure the stability of the 

method 

 

– Quadratic terms are formulated from consistent and symmetrization terms in 

𝒏𝛼 
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  𝑗𝒏𝛼 ⋅ 𝛿𝝋 𝜈𝛼
− 𝑑𝜕𝐴𝑒

𝑠𝑠

  𝝋 ⋅ 𝛿 𝑗𝒏𝛼

𝑠

𝜈𝛼
−𝑑𝜕𝐴𝑒

𝑠

    𝝋 ⋅ 𝝋,𝛾𝜈𝛿
−
𝛽2ℋ𝑛

𝛼𝛽𝛾𝛿
𝑗
0

ℎ𝑠
𝛿𝝋 ⋅ 𝝋,𝛽 𝜈𝛼

−𝑑𝜕𝐴𝑒 = 0
𝑠𝑠

   

Form of stabilization terms 𝒂 ⋅ 𝝋,𝛾𝜈𝛿
− 𝛽

ℎ𝑠
𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑠𝑡𝑖𝑓𝑓 𝛿𝒂 ⋅ 𝝋,𝛽𝜈𝛼

− 



Full-DG formulation of Kirchhoff-Love shells 

• 3 Stabilization terms have to be introduced to ensure the stability of the 

method 

 

– Quadratic terms are formulated from consistent and symmetrization terms in 

𝒎 𝛼 
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  𝑗𝒎 𝛼 ⋅ 𝜆ℎ𝛿𝒕 𝜈𝛼
−𝑑𝜕𝐴𝑒

𝑠𝑠

  𝒕 ⋅ 𝑗𝜆ℎ𝒎 
𝛼 𝜈𝛼

−𝑑𝜕𝐴𝑒
𝑠𝑠

   𝒕 ⋅ 𝝋,𝛾𝜈𝛿
−
𝛽1ℋ𝑚

𝛼𝛽𝛾𝛿
𝑗
0

ℎ𝑠
𝛿𝒕 ⋅ 𝝋,𝛽𝜈𝛼

−𝑑𝜕𝐴𝑒 = 0
𝑠𝑠

 

Form of stabilization terms 𝒂 ⋅ 𝝋,𝛾𝜈𝛿
− 𝛽

ℎ𝑠
𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑠𝑡𝑖𝑓𝑓 𝛿𝒂 ⋅ 𝝋,𝛽𝜈𝛼

− 



Full-DG formulation of Kirchhoff-Love shells 

• 3 Stabilization terms have to be introduced to ensure the stability of the 

method 

 

– Quadratic terms are formulated from consistent and symmetrization terms in 𝒍 
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  𝑗𝒍 ⋅  𝜆ℎ𝛿𝒕𝑑𝛼
′

𝛼

𝜈𝛼
−𝑑𝜕𝐴𝑒

𝑠𝑠

  𝜆ℎ 𝝋 ⋅ 𝒕 𝝋,𝛼 𝛿(𝑗𝒍) 𝜈𝛼
−𝑑𝜕𝐴𝑒 

𝑠𝑠

   𝝋 ⋅ 𝒕𝜈𝛽
−
𝛽3ℋ𝑠

𝛼𝛽
𝑗
0

ℎ𝑠
𝛿𝝋 ⋅ 𝒕𝜈𝛼

−𝑑𝜕𝐴𝑒 = 0
𝑠𝑠

  

Form of stabilization terms 𝒂 ⋅ 𝒕𝜈𝛽
− 𝛽

ℎ𝑠
𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 𝑠𝑡𝑖𝑓𝑓 𝛿𝒂 ⋅ 𝒕𝜈𝛼

− 



Full-DG formulation of Kirchhoff-Love shells 

• The terms of stabilization in 𝒍 ensure also weakly the out-of-plane 

continuity 

 

– The shearing is neglected (Kirchhoff-Love assumption)  𝒍 ≈ 0  

 

– Consistency terms 

 

 

 

– Symmetrization terms (if considered  unsymmetrical formulation) 

 

 

 

– Stabilization terms   
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 𝑗𝒍 ⋅  𝜆ℎ𝛿𝒕𝑑𝛼
′

𝛼

𝜈𝛼
−𝑑𝜕𝐴𝑒

𝑠

≈ 0 

  𝜆ℎ𝒕𝑑𝛼
′

𝛼

⋅ 𝛿 𝑗𝒍 𝜈𝛼
−𝑑𝜕𝐴𝑒 ≈ 0

𝑠

 

 𝝋 ⋅ 𝒕   𝜈𝛽
−
𝛽3ℋ𝑠

𝛼𝛽
𝑗
0

ℎ𝑠
𝛿𝝋 ⋅ 𝒕𝜈𝛼

−𝑑𝜕𝐴𝑒 = 0 
𝑠

 

- 
𝝋,1
−  

𝝋,2
−  𝒕− 

𝝋,2
+  𝝋,1

+  

𝒕+ 

𝝋,1
𝑠  

𝝋,2
𝑠  𝒕𝑠 

𝝋 ∙ 𝒕𝐬 

+ 
Out-of-plane displacement jump is constrained  continuity is weakly ensured 



Full-DG formulation of Kirchhoff-Love shells 

• The equation of the full-DG formulation is obtained by adding the 

different contributions [Becker et al  cmame2011, Becker et al ijnme2012] 

 

 

 

 

 

 

 

 

 

 

 

– Similar form as the beam case (2 Bulk, 2 consistency, 2 symmetrization and 

3 stabilization terms) 
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  𝑗𝒏𝛼
,𝛼
⋅ 𝛿𝝋 + 𝑗𝒎 𝛼

,𝛼
⋅ 𝜆ℎ𝛿𝒕 𝑑𝐴 

𝐴𝑒

+

𝑒

 

  𝑗𝒏𝛼 ⋅ 𝛿𝝋      + 𝝋 ⋅ 𝛿 𝑗𝒏𝛼 + 𝝋 ⋅ 𝝋,𝛾𝜈𝛿
−
𝛽2ℋ𝑛

𝛼𝛽𝛾𝛿
𝑗
0

ℎ𝑠
𝛿𝝋 ⋅ 𝝋,𝛽 𝜈𝛼

−𝑑𝜕𝐴𝑒 +
𝑠𝑠

 

  𝑗𝒎 𝛼 ⋅ 𝜆ℎ𝛿𝒕 + 𝒕 ⋅ 𝑗𝜆ℎ𝒎 
𝛼 + 𝒕 ⋅ 𝝋,𝛾𝜈𝛿

−
𝛽1ℋ𝑚

𝛼𝛽𝛾𝛿
𝑗
0

ℎ𝑠
𝛿𝒕 ⋅ 𝝋,𝛽 𝜈𝛼

−𝑑𝜕𝐴𝑒 +
𝑠𝑠

 

  𝝋 ⋅ 𝒕𝜈𝛽
−
𝛽3ℋ𝑠

𝛼𝛽
𝑗
0

ℎ𝑠
𝛿𝝋 ⋅ 𝒕         𝜈𝛼

−𝑑𝜕𝐴𝑒   = 0 
𝑠𝑠

 

FEM (CG) equation 

Consistency 

terms 
Symmetrization 

terms 

Stabilization  

terms 



Full-DG formulation of Kirchhoff-Love shells 

• The ∁0/DG formulation [Noels et al cmame2008, Noels ijnme2009] is found if 

continuous elements are used ( 𝝋 = 𝛿𝝋 = 0)  
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  𝑗𝒏𝛼
,𝛼
⋅ 𝛿𝝋 + 𝑗𝒎 𝛼

,𝛼
⋅ 𝜆ℎ𝛿𝒕 𝑑𝐴 

𝐴𝑒

+

𝑒

 

  𝑗𝒏𝛼 ⋅ 𝛿𝝋      + 𝝋 ⋅ 𝛿 𝑗𝒏𝛼 + 𝝋 ⋅ 𝝋,𝛾𝜈𝛿
−
𝛽2ℋ𝑛

𝛼𝛽𝛾𝛿
𝑗
0

ℎ𝑠
𝛿𝝋 ⋅ 𝝋,𝛽 𝜈𝛼

−𝑑𝜕𝐴𝑒 +
𝑠𝑠

 

  𝑗𝒎 𝛼 ⋅ 𝜆ℎ𝛿𝒕 + 𝒕 ⋅ 𝑗𝜆ℎ𝒎 
𝛼 + 𝒕 ⋅ 𝝋,𝛾𝜈𝛿

−
𝛽1ℋ𝑚

𝛼𝛽𝛾𝛿
𝑗
0

ℎ𝑠
𝛿𝒕 ⋅ 𝝋,𝛽 𝜈𝛼

−𝑑𝜕𝐴𝑒 +
𝑠𝑠

 

  𝝋 ⋅ 𝒕𝜈𝛽
−
𝛽3ℋ𝑠

𝛼𝛽
𝑗
0

ℎ𝑠
𝛿𝝋 ⋅ 𝒕         𝜈𝛼

−𝑑𝜕𝐴𝑒   = 0 
𝑠𝑠

 Consistency 

terms 
Symmetrization 

terms 

Stabilization  

terms 



Full-DG formulation of Kirchhoff-Love shells 

• The ∁0/DG formulation [Noels et al cmame2008, Noels ijnme2009] is found if 

continuous elements are used ( 𝝋 = 𝛿𝝋 = 0)  

 

 

 

 

 

 

 

– Elements are continuous but the tangent continuity is ensured by DG  
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  𝑗𝒏𝛼
,𝛼
⋅ 𝛿𝝋 + 𝑗𝒎 𝛼

,𝛼
⋅ 𝜆ℎ𝛿𝒕 𝑑𝐴 

𝐴𝑒

+

𝑒

 

  𝑗𝒎 𝛼 ⋅ 𝜆ℎ𝛿𝒕 + 𝒕 ⋅ 𝑗𝜆ℎ𝒎 
𝛼 + 𝒕 ⋅ 𝝋,𝛾𝜈𝛿

−
𝛽1ℋ𝑚

𝛼𝛽𝛾𝛿
𝑗
0

ℎ𝑠
𝛿𝒕 ⋅ 𝝋,𝛽 𝜈𝛼

−𝑑𝜕𝐴𝑒 = 0
𝑠𝑠

 

Consistency 

terms 
Symmetrization 

terms 
Stabilization  

terms 

(a-1) (a) 

x 

(a+1) 

F
ie

ld
 



Full-DG formulation of Kirchhoff-Love shells 

• The implementation is based on Gmsh 

 

 

– 3D finite element grid generator with a built-in CAD engine and a post-

processor 

 

 

– Developed by C. Geuzaine (Ulg) and J.-F. Remacles  (Ucl) [Geuzaine et al 

ijnme2009] 

 

 

– Industrially used (Cenaero, EDF, …) 
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Full-DG formulation of Kirchhoff-Love shells 

• Elements & post-processing C++ classes of Gmsh are used in the solver 
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SOLVER 



Full-DG formulation of Kirchhoff-Love shells 

• 2 benchmarks to prove the ability of the full-DG formulation to model 

continuous mechanics 

– Elastic open hemisphere with small strains loaded in a quasi-static way 
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Full-DG formulation of Kirchhoff-Love shells 

• 2 benchmarks to prove the ability of the full-DG formulation to model 

continuous mechanics 

– Elastic open hemisphere with small strains loaded in a quasi-static way 

 

 

 

 

 

 

 

 

 

 

 

 

– The method converges to the analytical solution with the mesh refinement   
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Full-DG formulation of Kirchhoff-Love shells 

• 2 benchmarks to prove the ability of the full-DG formulation to model  

continuous mechanics 

 

– J2-linear hardening (elasto-plastic large deformations) panel loaded 

dynamically (explicit Hulbert-Chung scheme) 
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Full-DG formulation of Kirchhoff-Love shells 

• 2 benchmarks to prove the ability of the full-DG formulation to model  

continuous mechanics 

 

– J2-linear hardening (elasto-plastic large deformations) panel loaded 

dynamically (explicit Hulbert-Chung scheme) 

 

 

 

 

 

 

 

 

 

 

 

 

– The results match experimental data 
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Full-DG formulation of Kirchhoff-Love shells 

• The full-DG method provides accurate results but is more costly than 

𝐶0/DG (memory, computational time) as it considers more degrees of 

freedom 

 

– Number of dofs (for the same mesh) 

 

 

 

 

 

 

– The number of dofs is more or less twice larger for the full-DG formulation 
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Benchmark ∁𝟎/DG Full-DG 

Open hemisphere 867 1728 

Cylindrical panel 1683 3456 



Full-DG formulation of Kirchhoff-Love shells 

• The full-DG method can be advantageously used for 

 

 

 

 

– Parallel computation  for explicit scheme [Becker et al, ijnme2012] 

 

 

 

 

 

– Fracture applications (same number of Dofs as FEM/ICL) 
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Plan 

• Develop a discontinuous Galerkin method for thin bodies 

 

– Beam elements (1.5D case) 

 

– Shell elements (2.5D case) 

 

• Discontinuous Galerkin / Extrinsic Cohesive law framework 

 

– Develop a suitable cohesive law for thin bodies 

 

 

• Applications 

 

– Fragmentations, crack propagations under blast loadings 
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Full-DG/ECL framework 

• There are 3 fracture modes in fracture mechanics 
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Full-DG/ECL framework 

• Only modes I and II can be modeled by Kirchhoff-Love theory  

 

– Kirchhoff-Love  out-of-plane shearing is neglected 

 

 

 

 

 

 

 

 

 

 

– Model restricted to problems with negligible 3D effects at the crack tip 
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Full-DG/ECL framework 

• Fracture criterion based on an effective stress  

 

– Camacho & Ortiz Fracture criterion [Camacho et al ijss1996] 
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𝜎 

𝜏 

Traction  

Compression  

- 
+ 

Interface 

6 nodes 

- 
+ 6 nodes 

Extrinsic cohesive law 

𝜎𝑒𝑓𝑓 > 𝜎𝑐 

𝜎 

Δ 

𝜎𝑒𝑓𝑓 =  
𝜎2 + 𝛽−2𝜏2 if 𝜎 ≥ 0

1

𝛽
≪ 𝜏 − 𝜇𝑐 𝜎  if 𝜎 < 0

 with 

𝜎𝑐 , 𝛽 and 𝜇𝑐 are material 

parameters 



Full-DG/ECL framework 

• The effective stress is evaluated at the external fibers 

 

– The bending stress varies along the thickness 

 

 

– The fracture criterion is evaluated where the stress is maximum  
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z 𝜎𝑏𝑒𝑛𝑑𝑖𝑛𝑔 

𝜎 



Full-DG/ECL framework 

• The cohesive law is formulated in terms of an effective opening 

 

– Camacho & Ortiz Fracture criterion [Camacho et al ijss1996] 
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- 

+ 
6 nodes 

Extrinsic cohesive law 

𝜎 

Δ 

𝑢  

𝑣  

Δ = 𝑢 + 𝛽2 𝑣  



Full-DG/ECL framework 

• The area under the cohesive law has to be equal to the fracture energy 𝐺𝑐 

 

– 𝐺𝑐 is a material parameter 
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Full-DG/ECL framework 

• The maximal stress of the cohesive law is equal to 𝜎𝑒𝑓𝑓 

 

– Ensure the continuity of stresses  

 

 

 

 

 

 

 

 

 

 

– Otherwise numerical problems [Papoulia et al ijnme2003] 
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𝐺𝑐 

Δ𝑐 Δ 



Full-DG/ECL framework 

• The shape of the cohesive law is linearly decreasing 

 

– Little influence of the shape for brittle materials 

 

 

 

 

 

 

 

 

 

 

– Δ𝑐is equal to 2𝐺𝑐/𝜎𝑐 
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t 

𝜎𝑒𝑓𝑓 

𝐺𝑐 

Δ𝑐 Δ 



Full-DG/ECL framework 

• The through the thickness crack propagation is not straightforward with 

shell elements 

 

– No elements on thickness 

 

– Integrate the 3D TSL on the thickness  [Cirak et al cmame2005] 

 

 

 

 

– The position of the neutral axis has to be recomputed to propagate the crack 

 

 

 

Tension (fracture) 

Compression (no fracture) 

Discontinuity 

Continuity (Computation ?) 
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Full-DG/ECL framework 

• The cohesive law can be formulated in terms of reduced stresses  

 

– Same as shell equations 

 

 

 

 

 

 

 

 

 

 

 

 

– Similar concept suggested by Zavattieri [Zavattieri jam2006]  
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Δ⋆ 

N, M 
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𝑗
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1
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Integration on 

thickness 

t 
𝜎𝑒𝑓𝑓 

𝐺𝑐 

Δ𝑐 Δ 



Full-DG/ECL framework 

• Define Δ⋆ and 𝑁 Δ⋆ , 𝑀(Δ⋆) to dissipate an energy equal to ℎ𝐺𝑐during the 

fracture process  [Becker et al ijnme2012, Becker et al ijf2012 ] 

 

– Integration on thickness 
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     N 

𝑁0 

Δ⋆ 

     M 

 𝑀0 

Δ⋆ 

𝐺𝑁 
𝐺𝑀 

𝐺𝑁 + 𝐺𝑀 = ℎ𝐺𝑐 



• The law 𝑁(Δ⋆) is defined to release an energy equal to hGc in pure 

tension 

 

– Pure mode I 

 

 

 

 

 

  

Full-DG/ECL framework 

𝚫⋆ 

N 

𝑁0 = ℎ𝜎𝑐 = 𝑛0
22

 

Dc 
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 𝑁 Δ𝑥 𝑑Δ𝑥 
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0
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2
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𝐺𝑐 
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𝚫⋆ = 𝚫𝐱  



• The law M(Δ⋆) is defined to release an energy equal to hGc in pure 

bending 

 

– Pure mode I 

 

 

 

 

 

  

Full-DG/ECL framework 

𝚫⋆ 

M 

 𝑀0 = ℎ2/6𝜎𝑐= 𝑚 0
22 

Dc 
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𝐺𝑐 

(linear elasticity 

external fiber) 



• Using the superposition principle the energy released for any couple N,M 

is equal to hGc  [Becker et al ijnme2011] 

 

– Pure mode I 

 

 

 

 

 

 

 

 

 

– Coupling parameter 

 

 

 

 

 

  

Full-DG/ECL framework 
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𝑛21 

𝑛21 

𝑚 21 

𝑚 21 

• The cohesive model for mode I can be extended to mode II 

 

 

 

 

 

 

 

 

 

 

 

– Coupling parameter 

Full-DG/ECL framework 
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Full-DG/ECL framework 

• Combination of mode I and II is performed following Camacho & Ortiz 
[Camacho et al ijss1996] 

 

– Usually perform in the literature 

 

– Define an effective opening Δ⋆ = ≪ Δ𝐼
⋆ ≫2 +𝛽2 Δ𝐼𝐼

⋆ 2
  

 

– Fracture initiation 𝜎𝑒𝑓𝑓 =  
𝜎𝐼
2 + 𝛽−2𝜏𝐼𝐼

2  if 𝜎𝐼 ≥ 0
1

𝛽
≪ 𝜏𝐼𝐼 − 𝜇𝑐 𝜎𝐼  if 𝜎𝐼 < 0

= 𝜎𝑐  

– The equivalent thicknesses become 
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Full-DG/ECL framework 

• The transition between uncracked to fully cracked body depends on Δ𝐸𝑖𝑛𝑡  

 

– Double clamped elastic beam loaded in a quasi-static way 

 

 

 

 

 

No fracture Fully broken 

Transition 

? 

𝐸𝑖𝑛𝑡𝐷𝐶𝐵(𝑢𝑧) 
2𝐸𝑖𝑛𝑡𝑆𝐵𝐶  (𝑢𝑧) 

𝛥𝐸𝑖𝑛𝑡 (𝑢𝑧)  = 𝐸𝑖𝑛𝑡𝐷𝐶𝐵
 (𝑢𝑧)  −   2𝐸𝑖𝑛𝑡𝑆𝐵𝐶  (𝑢𝑧) 
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• The framework can model stable/unstable crack propagation 

– Geometry effect (no pre-strain)  

Full-DG/ECL framework 

Stable transition 

𝛥𝐸𝑖𝑛𝑡 (𝑢𝑧)  <  ℎ𝐺𝑐 

 

Unstable transition 

𝛥𝐸𝑖𝑛𝑡 (𝑢𝑧)  >  ℎ𝐺𝑐 
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𝑢𝑥,𝑝𝑟𝑒𝑠 𝜂𝐼 Δ𝐸𝑖𝑛𝑡 𝐸𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 

−2𝑒−5 1,0692 14.82 21.98 

0. 1 12.33 21.98 

2𝑒−5 0.93 11.39 21.98 

4𝑒−5 0.86 11.99 21.98 

6𝑒−5 0.79 14.11 21.98 

8𝑒−5 0.72 17.76 21.99 

10𝑒−4 0.66 22.95 -- 

• The energy released during fracture is always equal to ℎ𝐺𝑐 

– Pre-strain effect 
ℎ𝐺𝑐    =   22.00 

Unstable 

P
re

-s
tr

a
in

 

Full-DG/ECL framework 

> 22.00 

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 81 



Full-DG/ECL framework 

• A benchmark with a dynamic crack propagation 

 

– A single edge notched elastic plate dynamically loaded 
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Full-DG/ECL framework 

• The energy released in a dynamic crack propagation is equal to ℎ𝐺𝑐 

 

– Compare results to the literature 

    [Zavattieri jam2006] 

 

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 83 

𝐺𝑐 



Full-DG/ECL framework 

• A benchmark involving contact 

 

– A single edge notched elastic plate impacted by a rigid cylinder 
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1 [m/s] 



Full-DG/ECL framework 

• The crack propagates correctly even if there is (rigid) contact 

 

– Results are compared to the literature [Zavattieri jam2006] 
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Full-DG/ECL framework 

• A benchmark to investigate the fragmentation 

 

– Elastic plate ring loaded by a centrifugal force 
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60000 [rps] 



Full-DG/ECL framework 

• Fragmentation phenomena can also be studied by the full-DG/ECL 

framework 

– Results are compared with the literature [Zhou et al ijnme2004] 
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[Zhou et al ijnme2004] 



Plan 

• Develop a discontinuous Galerkin method for thin bodies 

 

– Beam elements (1.5D case) 

 

– Shell elements (2.5D case) 

 

• Discontinuous Galerkin / Extrinsic Cohesive law framework 

 

– Develop a suitable cohesive law for thin bodies 

 

 

• Applications 

 

– Fragmentations, crack propagations under blast loadings 
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Applications of the DG/ECL framework 

• Application to the dynamic fragmentation of a sphere 

 

– Elastic sphere under radial uniform expansion  

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 89 

𝜖 =  
1𝑒4

2𝑒4

1𝑒5
 [s-1] 



Applications of the DG/ECL framework 

• The distribution of fragments and the number of fragments are in 

agreement with the literature [Levy EPFL2010] 

– Levy uses 3D elements 
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𝜖 = 1𝑒4[s-1] 

𝜖 = 1𝑒5[s-1] 

𝜖 = 2𝑒4[s-1] 

𝜖 = 1𝑒4[s-1] 

2 588 265 Dofs 

±48h on 32 cpus 

(±17h for 𝜖 = 1𝑒5[s-1]) 

 



Applications of the DG/ECL framework 

• Blast of an axially notched elasto-plastic cylinder (large deformations) 
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28 [mm] 

h=1 [mm] 

Blast 



Applications of the DG/ECL framework 

• Accounting for plasticity allows capturing the crack speed 

 

– Compare with the literature [Larson et al ijnme2011] 
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556 080 Dofs  

±72h on 16 cpus 



Applications of the DG/ECL framework 

• Pressure wave passes through an axially notched elasto-plastic pipe 

(large deformations) 
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Applications of the DG/ECL framework 

• Crack path and speed are well captured by the framework 

 

– Compare with the literature  

      [Song et al jam2009] 
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Backward 

Forward 

224 256 Dofs 

±21 h on 12 cpus 



Conclusions 

• Full-DG / ECL framework allows accounting for fracture in dynamic 

simulations of thin bodies 

 

– Crack propagation as well as fragmentation 

 

– Recourse to an elasto-plastic model is mandatory to capture crack speed 

 

–  Affordable computational time for large models 

• Main contributions 

 

– Full-DG model of linear Euler-Bernoulli beams and (non)-linear Kirchhoff-

Love shell  

 

– Energetically consistent extrinsic cohesive law based on reduced stresses 

 

– Explicit Hulbert-Chung algorithm based on ghost elements (reduce MPI 

communication, independent of material law)  
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Future work 

• Model the damage to crack transition by coupling a damage law with the 

full-DG/ECL framework 

 

 

– Replace the criterion based on an effective stress by a criterion based on  

the damage 

 

 

– Define the shape of the cohesive law 
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Future work 

• An exploratory benchmark  

– Quasi-static  

     (dynamic relaxation) 

 

– Linear damage theory 

 

– Fracture criterion 𝐷 > 𝐷𝑐 

 

– Cohesive shape 
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continuity 

𝐺𝑐 from the literature [Mazars et al ijss1996 ] 



Future work 

• The benchmark shows encouraging perspectives 

 

– Linear damage theory 

 

 

– Fracture criterion 𝐷 > 𝐷𝑐 

 

 

– Cohesive shape 
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Future work 

• The benchmark shows encouraging perspectives but many 

improvements are required 

 

 

– Non local  damage model 

 

 

– Account for stress triaxiality (and out-of-plane shearing) 

 

 

– Shape of the cohesive law 

 

 

– … 
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Thank you for your attention 

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 100 



Appendix 
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Implementation of the full-DG formulation of Kirchhoff-Love shells 

• Application is implemented separately from the solver to be versatile 
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Implementation of the full-DG formulation of Kirchhoff-Love shells 

• DofManager allows to define dof independently of the mesh 
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Implementation of the full-DG formulation of Kirchhoff-Love shells 

• Continuous mesh is used as interface elements are generated in dgshell   
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Implementation of the full-DG formulation of Kirchhoff-Love shells 

• Quasi-static or dynamic (explicit Hulbert-Chung) schemes are available 
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Implementation of the full-DG formulation of Kirchhoff-Love shells 

• Different material law (elastic linear, neo-Hookean, J2-linear hardening) 
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Plane stress assumption 



Implementation of the full-DG formulation of Kirchhoff-Love shells 

• A library of 4 shell elements is implemented 
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Associated 

Dofs 

- 2nd order triangle 

- 3rd order triangle 

- 2nd order quadrilateral 

- 3rd order quadrilateral 



Implementation of the full-DG formulation of Kirchhoff-Love shells 

• Parallel scheme is based on Ghost element concept 
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Scheme Ghost Dofs 

MPI Comm 

No MPI 

Comm 



Parallel implentation of full-DG formulation of Kirchhoff-Love shells 

• Ghost elements of a partition are the elements of other partitions which 

have a common interface with this partition 
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METIS partitioning 

Partition I 

Partition II 

Partition III Ghost elements (overlap 

between the partitions) 



Parallel implentation of full-DG formulation of Kirchhoff-Love shells 

• Solve for the dofs of the elements of the partition linked to the processor 

 

– 𝑴 is the diagonalized mass matrix 
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𝒙 𝑛+1 =
1

1 − 𝛼𝑀
𝑴−1 ⋅ [𝑭𝑒𝑥𝑡

𝑛 − 𝑭𝑖𝑛𝑡
𝑛  −

𝛼𝑀
1 − 𝛼𝑀

𝒙 𝑛  

𝒙 𝑛+1 = 𝒙 𝑛 + Δ𝑡 1 − 𝛾 𝒙 𝑛 + Δ𝑡𝛾𝒙 𝑛+1 

𝒙𝑛+1 = 𝒙𝑛 + Δ𝑡 𝒙 𝑛 + Δ𝑡2
1

2
− 𝛽 𝒙 𝑛 + Δ𝑡2𝛽𝒙 𝑛+1 

Processor I 

𝒙𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼 , 

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼 ,  

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼 

Processor II 
𝒙𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼,  

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼,  

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼 

Processor III 
𝒙𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼𝐼, 
𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼𝐼, 
𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼𝐼 



Parallel implentation of full-DG formulation of Kirchhoff-Love shells 

• The elements have to be discontinuous between partition  
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𝒙𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼 , 

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼 ,  

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼 
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𝒙𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼,  

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼,  

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼 

Processor III 
𝒙𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼𝐼, 
𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼𝐼, 
𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼𝐼 

≠
 



Parallel implentation of full-DG formulation of Kirchhoff-Love shells 

• Recourse to the full-DG formulation between partitions to ensure 

continuity between them 

 

– Extra dofs are only inserted between partitions  

 

 

 

 

 

 

 

 

 

 

– Interface elements have to be computed  
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Processor I 

𝒙𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼 , 

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼 ,  

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼 

Processor II 
𝒙𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼,  

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼,  

𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼 

Processor III 
𝒙𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼𝐼, 
𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼𝐼, 
𝒙 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝐼𝐼 

Continuous 

Full-DG 
Continuous 

Continuous 



Parallel implentation of full-DG formulation of Kirchhoff-Love shells 

• Interface elements are computed on each partition (using Ghost 

elements) 
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– Processor I – Processor II 

- + - + 

𝑭𝑖𝑛𝑡 =
𝑭𝑖𝑛𝑡
−

𝑭𝑖𝑛𝑡
+  𝑭𝑖𝑛𝑡 =

𝑭𝑖𝑛𝑡
−

𝑭𝑖𝑛𝑡
+  



Parallel implentation of full-DG formulation of Kirchhoff-Love shells 

• Only the part of 𝑭𝑖𝑛𝑡 associated to the dofs of the partition is assembled 
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– Processor I – Processor II 

- + - + 

𝑭𝑖𝑛𝑡 =
𝑭𝑖𝑛𝑡
−

𝑭𝑖𝑛𝑡
+  𝑭𝑖𝑛𝑡 =

𝑭𝑖𝑛𝑡
−

𝑭𝑖𝑛𝑡
+  

Explicit system 

(Partition I) 

Explicit system 

(Partition II) 

Assembled 

Assembled 



Parallel implentation of full-DG formulation of Kirchhoff-Love shells 

• Only one MPI communication is required by time step 

 

– Unknowns are exchanged before the computation of 𝐹𝑖𝑛𝑡 
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells 

• The parallel scheme is almost optimal 

 

– Theoretical speed-up = time n processor / time 1 processor = 1/n 

 

– Practically the speed-up is lower than expected (MPI communication)  

 

– Cylindrical panel benchmark on Nic3 (cluster with 8 cores 2.5Ghz per node)   
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Parallel implentation of full-DG formulation of Kirchhoff-Love shells 

• The parallel scheme is almost optimal when the number of elements 

remains large compared to the number of interfaces (OK in practice) 

– Theoretical speed-up = time n processor / time 1 processor = 1/n 

 

– Practically the speed-up is lower than expected (MPI communication)  

 

– Cylindrical panel benchmark on Nic3 (cluster with 8 cores 2.5Ghz per node)   
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The number of 

interfaces is not 

negligible compared to 

the number of elements 

on each partition 

(±1 interface for 3 

elements) 



Full-DG formulation extra benchmarks 

• Neo-Hookean (elastic large deformations) plate ring loaded in a quasi-

static way 
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Full-DG formulation extra benchmarks 

• Neo-Hookean (elastic large deformations) plate ring loaded in a quasi-

static way 

 

– The method gives accurate results even in the case of large distortions 
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Full-DG formulation extra benchmarks 

• J2-linear hardening (elasto-plastic large deformations) hemisphere 

loaded in a quasi-static way  
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Full-DG formulation extra benchmarks 

• J2-linear hardening (elasto-plastic large deformations) hemisphere 

loaded in a quasi-static way  

 

– Same results for 2nd and 3rd order triangles 
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3rd  

order 


