# Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings

**BECKER** Gauthier – Aerospace engineer

May 2012





Aerospace & Mechanical engineering

- A thin body is a structure with a dimension largely smaller than the other ones
  - This dimension is called the thickness

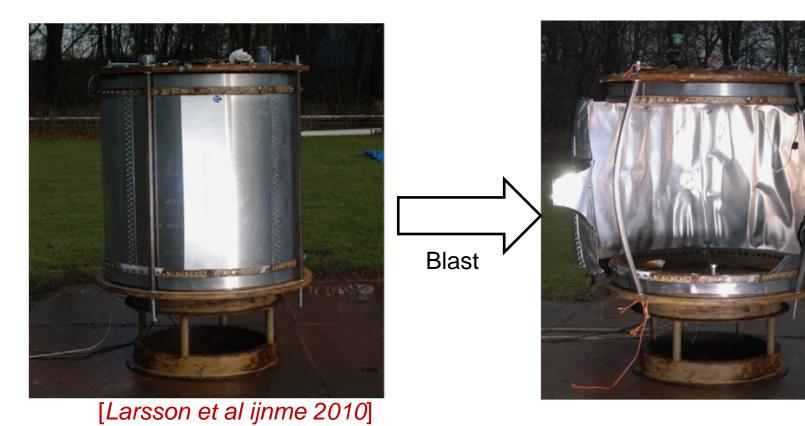




Université de Liège

#### Introduction

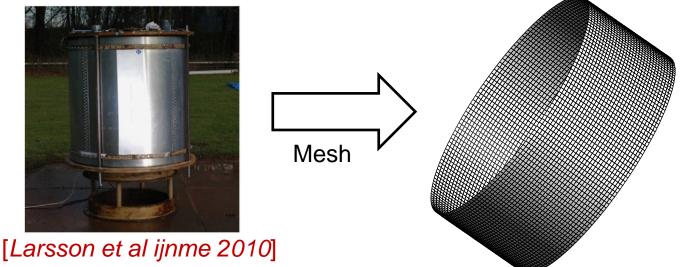
• Improve the safety of pressurized thin bodies by understanding their fracture behavior







- Recourse to the finite element method allows cheaper designs
  - A numerical model is an idealization of reality based on mathematical equations
  - The finite element method (FEM) discretizes the structure in elements

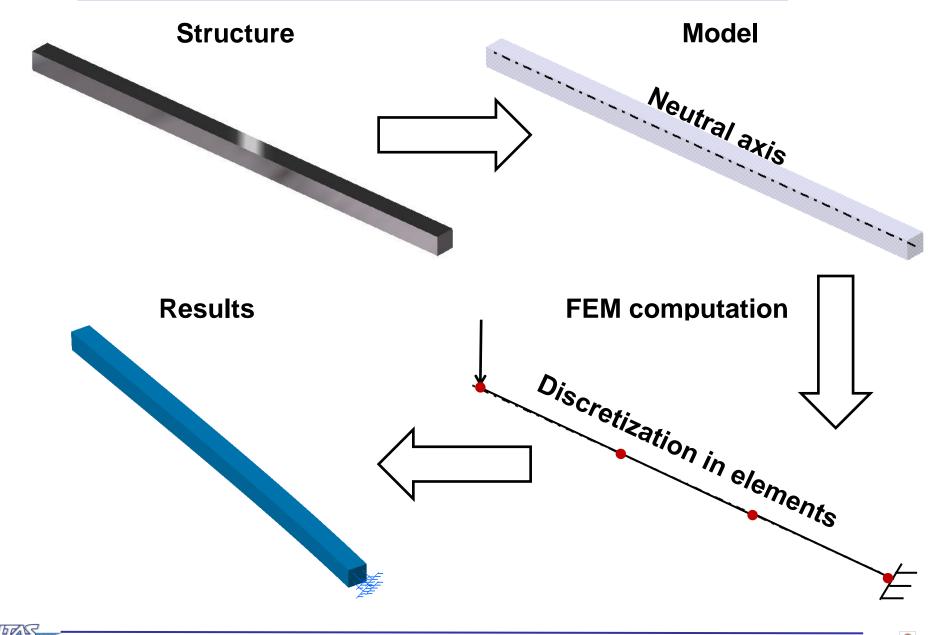


- The finite element method is a powerful tool in mechanics



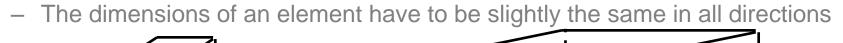


#### Introduction

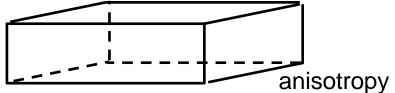




• Beam or shell elements can advantageously be used to model thin bodies

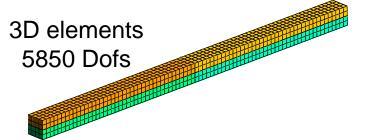


Better results

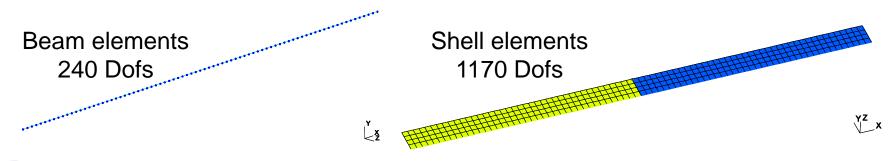


Université de Liège

- Classical 3D elements leads to a huge number of elements for thin bodies



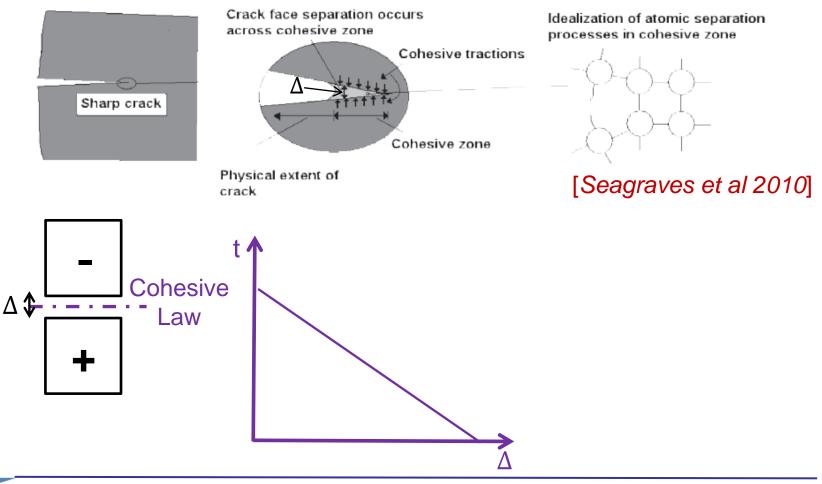
 Beam and shell elements use a 1D or 2D element as basis and account separately for the thickness → drastically reduces the time of computation



Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 6

#### Introduction

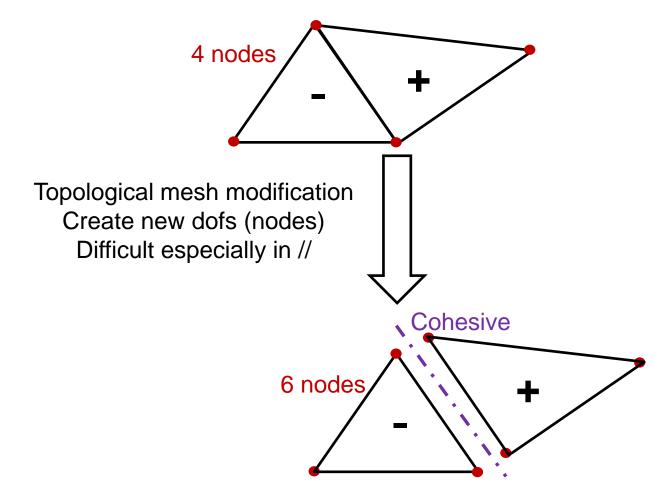
- Cohesive zone model is very appealing to model crack initiations in a numerical model
  - Model the separation of crack lips in brittle materials





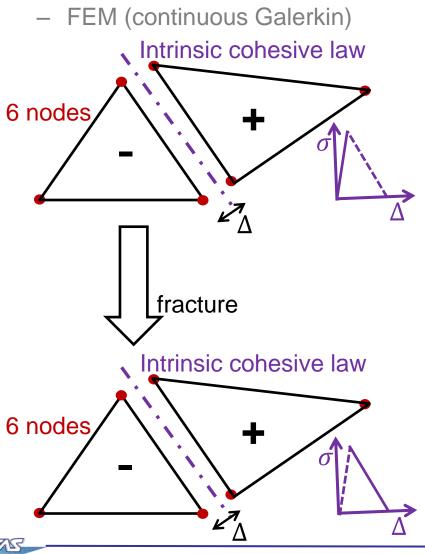
#### Introduction

- The insertion of cohesive elements during the simulation is difficult to implement as it requires topological mesh modifications
  - FEM (continuous Galerkin)





• A recourse to an intrinsic cohesive law is generally done with FEM





• Intrinsic cohesive law leads to numerical problems [Seagraves et al 2010]

- Spurious stress wave propagation

- Mesh dependency

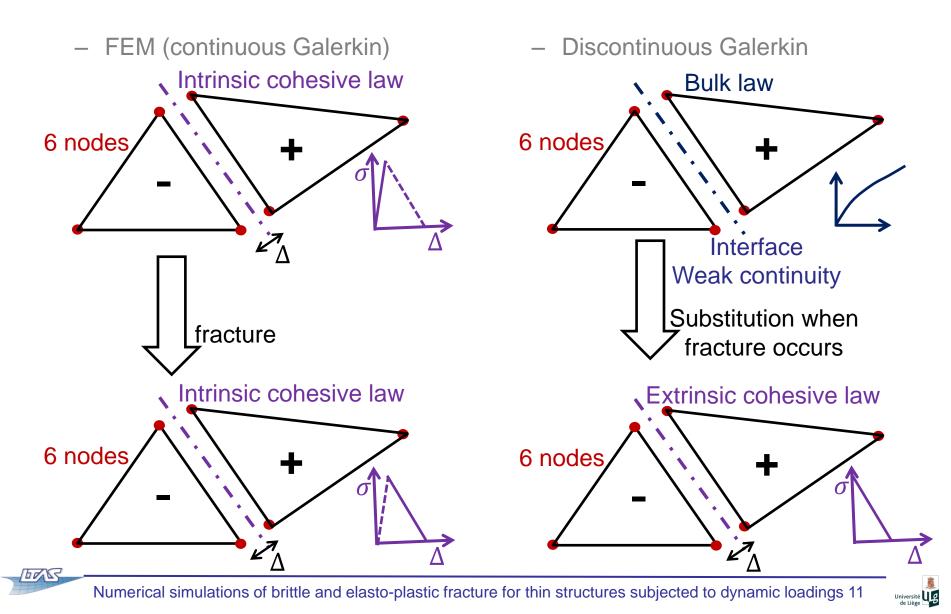
Too fast crack propagation





#### Introduction

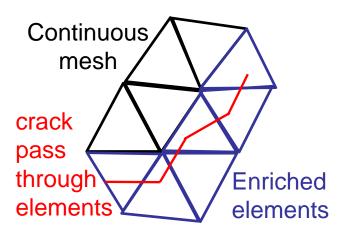
• Use of extrinsic cohesive law is easier when coupled with DG



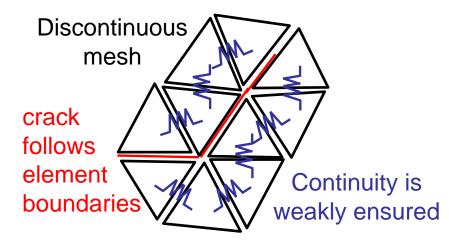
#### Introduction

 Other methods exist but we focus on the discontinuous Galerkin method which has to be extended for thin bodies

– XFEM



Commonly used for crack propagation Discontinuous Galerkin



Recently developed for dynamic phenomena (crack propagation due to impact, fragmentation) but for 3D elements only



Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 12



- Develop a discontinuous Galerkin method for thin bodies
  - Beam elements (1.5D case)
  - Shell elements (2.5D case)
- Discontinuous Galerkin / Extrinsic Cohesive law framework
  - Develop a suitable cohesive law for thin bodies

- Applications
  - Fragmentations, crack propagations under blast loadings





## Full-DG formulation of Euler-Bernoulli beams

Aspect ratio =  $\frac{L}{h} \ge 10$ 

- Highlights
- Simple 1D thin structure
- Restrict the analysis to
  - Linear small strains
  - Straight rectangular beam (without initial deformation)

**h** 1

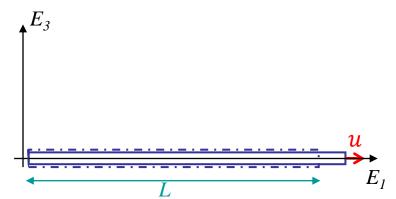
- Out-of-plane shearing can be neglected
- Plane stress state



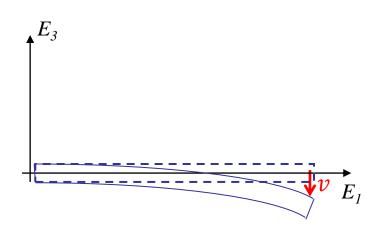




- 2 (independent in small deformations) deformation modes (shearing is neglected)
  - Membrane mode



Bending mode



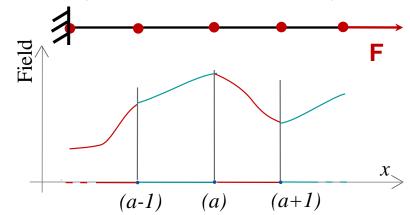


• Membrane mode

- Strong form  $(n^{11})_{,1} = 0$  with  $n^{11} = \int_{-h/2}^{h/2} \sigma^{11} d\xi^3$ 

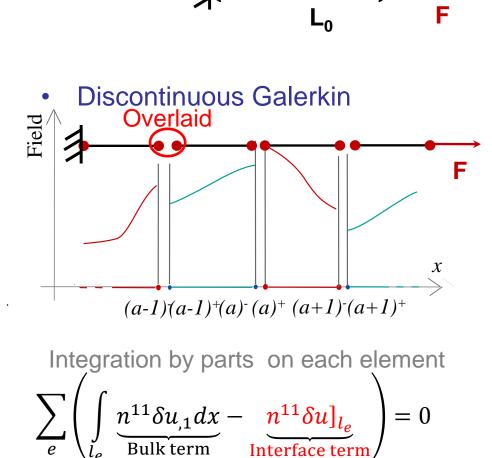
- Weak form 
$$\int_0^L (n^{11})_{,1} \delta u \, dx = 0$$

• FEM (Continuous Galerkin)



Integration by parts on the beam

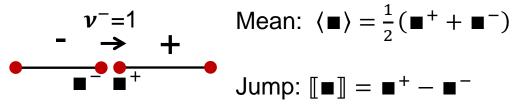
$$\sum_{e} \int_{l_e} \underbrace{n^{11} \delta u_{,1} dx}_{\text{Bulk term}} = 0$$



Université Ug de Liège



- The interface terms are developed
  - Operators definition



Using operators

$$-\sum_{e} n^{11} \delta u]_{l_e} = \sum_{s} \llbracket n^{11} \delta u \rrbracket_s$$

- Using mathematical identity  $[ab] = \langle a \rangle [b] + [a] \langle b \rangle$ 

$$-\sum_e n^{11} \delta u]_{l_e} = \sum_s (\langle n^{11} \rangle \llbracket \delta u \rrbracket + \llbracket n^{11} \rrbracket \langle \delta u \rangle)_s$$





• The jump is replaced by a consistent numerical flux (no equality)

$$-\sum_{e} n^{11} \delta u]_{l_{e}} = \sum_{s} [n^{11} \delta u]_{s} = \sum_{s} (\langle n^{11} \rangle [\delta u]] + [n^{11}] \langle \delta u \rangle)_{s} \xrightarrow{\rightarrow} \sum_{s} (\langle n^{11} \rangle [\delta u]])_{s}$$

$$0$$
for the exact continuous solution (consistency is preserved)

• The governing equation becomes

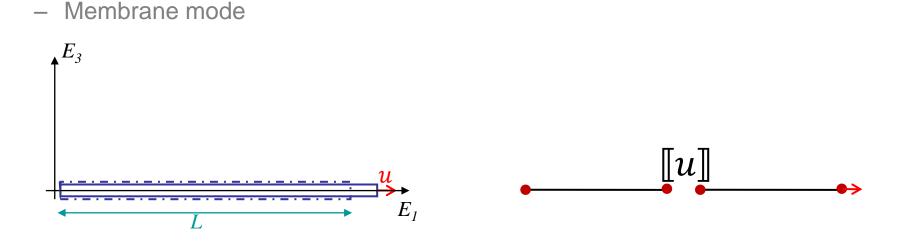
$$\sum_{e} \left( \int_{l_e} \underbrace{n^{11} \delta u_{,1} dx}_{\text{Bulk term}} - \underbrace{n^{11} \delta u}_{\text{Interface term}} \right) \stackrel{\neq}{\Rightarrow} \sum_{e} \int_{l_e} \underbrace{n^{11} \delta u_{,1} dx}_{\text{Bulk term}} + \sum_{s} \underbrace{(\langle n^{11} \rangle \llbracket \delta u \rrbracket)_s}_{\text{Consistency term}} = 0$$

 – 
 *≠* pure penalty method (Intrinsic cohesive law) which does not include the consistency terms





• Discontinuous elements  $\rightarrow$  displacement jumps have to be constrained



Continuity is weakly ensured by symmetrization terms

$$\sum_{s} \left( \langle Eh\delta u_{,1} \rangle \llbracket u \rrbracket \right)_{s} = 0$$

$$\lim_{0} 0$$
for the exact continuous solution
$$\Rightarrow \text{ consistency is preserved}$$





• Method is stabilized by quadratic terms

$$\sum_{s}^{S} (\langle n^{11} \rangle \llbracket \delta u \rrbracket)_{s} \\ \sum_{s} (\langle Eh \delta u_{,1} \rangle \llbracket u \rrbracket)_{s} \\ \xrightarrow{O} \\ \text{for the exact continuous solution} \\ \xrightarrow{O} \\ \text{consistency is preserved} \\ \xrightarrow{O} \\ \xrightarrow{O}$$

-  $\beta_2 > 1$  dimensionless stability parameter (Practically stable if  $\beta_2 \ge 10$ )

-  $h^s$  characteristic mesh size which ensures the dimensionless nature of  $\beta_2$ 





• The final equation (membrane mode) is obtained by adding the terms

$$\sum_{e} \left( \int_{l_{e}} \underbrace{n^{11} \delta u_{,1} dx}_{\text{Bulk term}} - \underbrace{n^{11} \delta u}_{\text{Interface term}} \right) \longrightarrow \left[ \sum_{e} \int_{l_{e}} \underbrace{n^{11} \delta u_{,1} dx}_{\text{Bulk term}} \right] + \sum_{s} \left( \underbrace{(n^{11}) [\delta u]}_{\text{Consistency term}} \right)_{s}^{+} \\ \sum_{s} \left( \underbrace{(Eh \delta u_{,1}) [u]}_{\text{Symmetrization term}} \right)_{s}^{+} + \sum_{s} \left( \underbrace{[u]} \left( \frac{Eh \beta_{2}}{h^{s}} \right) [\delta u]}_{\text{Stability term}} \right)_{s}^{+} = 0$$

- Consistent, (Weakly) continuous and stable

- Same as FEM but with extra interface terms

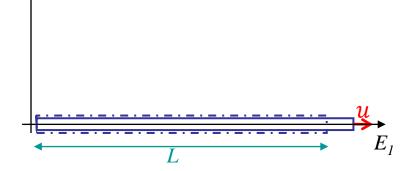




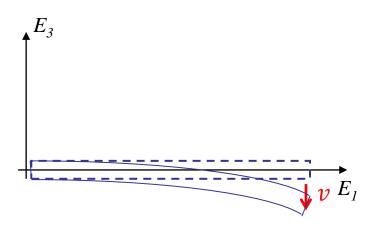
• 2 (independent) deformation modes (shearing is neglected)



E<sub>3</sub>



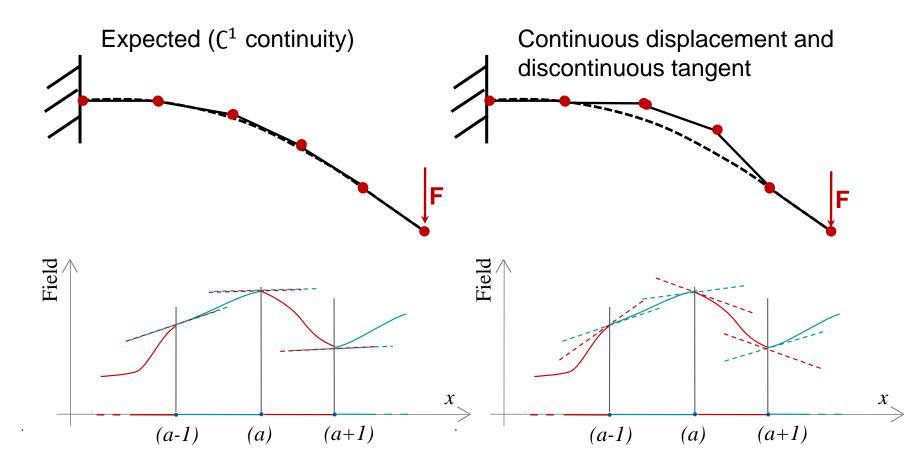
Bending mode







- The bending mode requires the C<sup>1</sup> continuity (*i.e.* the tangent continuity)
  - For FEM without rotational Dofs





• Several techniques exist to ensure the tangent continuity using FEM

- C<sup>1</sup> Shape functions (beams only)
- Recourse to rotational degrees of freedom (2-field formulation)

Lagrange multipliers (add degrees of freedom)





• The discontinuous Galerkin method can be advantageously used to ensure the tangent continuity

- Ensured weakly by interface terms
- C<sup>0</sup>/DG method (elements are continuous)

- One-field formulation (displacements are the only unknowns)
- First DG methods for thin bodies formulation [*Engel et al cmame 2002*]





- The form of the DG formulation is similar to the one obtained for the membrane problem
  - Strong form  $(m^{11})_{,1} = 0$  with  $m^{11} = \int_{-h/2}^{h/2} \sigma^{11} \xi^3 d\xi^3$
  - Weak form  $\int_{L} (m^{11})_{,1} \delta(-v_{,1}) dx = 0$
  - Shearing is neglected
  - External forces and inertial parts are omitted
  - FEM (Continuous Galekin)
     Discontinuous Galerkin

$$\sum_{e} \int_{l_e} \underbrace{m^{11}\delta(-v_{,11})dx}_{\text{Bulk term}} = 0 \qquad \sum_{e} \left( \int_{l_e} \underbrace{m^{11}\delta(-v_{,11})dx}_{\text{Bulk term}} - \underbrace{m^{11}\delta(-v_{,1})}_{\text{Interface term}} \right) = 0$$





- 3 interfaces terms are considered following the framework made for the membrane mode
  - Consistent terms

$$-\sum_{e} m^{11} \delta \left(-v_{,1}\right) \big]_{l_{e}} = \sum_{s} \left[\!\!\left[m^{11} \delta (-v_{,1})\right]\!\!\right]_{s} \rightarrow \sum_{s} \left(\langle m^{11} \rangle \left[\!\!\left[\delta (-v_{,1})\right]\!\!\right]_{s}\right]$$

Symmetrization terms

$$\sum_{s} \left( \left| \frac{Eh^3}{12} \delta(-v_{,11}) \right\rangle \left[ \left[ -v_{,1} \right] \right] \right)_s = 0$$

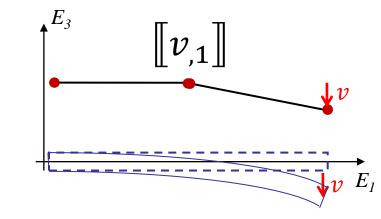
Stability terms

$$\sum_{s} \left( \left[ \left[ -\nu_{,1} \right] \right] \left\langle \frac{Eh^{3}\beta_{1}}{12h^{s}} \right\rangle \left[ \left[ \delta(-\nu_{,1}) \right] \right] \right)_{s} = 0$$

 $\beta_1 > 1$  dimensionless stability parameter







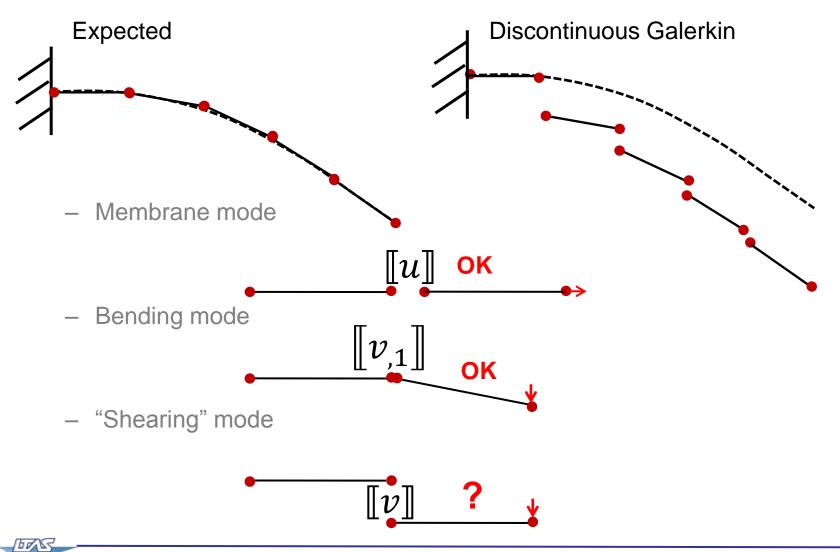
• Bending equation

$$\sum_{e} \left( \int_{l_{e}} \underbrace{m^{11} \delta(-v_{,11}) dx}_{\text{Bulk term}} - \underbrace{m^{11} \delta(-v_{,1})}_{\text{Interface term}} \right) \longrightarrow_{e} \int_{l_{e}} \underbrace{m^{11} \delta(-v_{,11}) dx}_{\text{Bulk term}} + \sum_{s} \left( \underbrace{(m^{11}) \left[ \left[ \delta(-v_{,1}) \right] \right]}_{\text{Consistency term}} \right)_{s} + \sum_{s} \left( \underbrace{\left( \underbrace{Eh^{3}}{12} \delta(-v_{,11}) \right) \left[ -v_{,1} \right]}_{\text{Symmetrization term}} \right)_{s} + \sum_{s} \left( \underbrace{\left( \underbrace{[-v_{,1}]} \left\{ \underbrace{Eh^{3} \beta_{1}}{12 h^{s}} \right\} \left[ \left[ \delta(-v_{,1}) \right] \right]}_{\text{Stability term}} \right)_{s} = 0$$

- Consistent, stable and weakly continuous thanks to interface terms

Same as FEM with extra interface terms

Université de Liège • Out-of-plane continuity is not ensured





- Out-of-plane continuity is ensured by introducing an interface term in  $\delta v$ 
  - Account (temporarily) for negligible shearing in the simplified bending equation

$$\int_{L} \left[ (m^{11})_{,1} \delta(-v_{,1}) - l^{1} \delta(-v_{,1}) \right] dx = 0 \text{ with } l^{1} = \int_{-h/2}^{h/2} \sigma^{31} d\xi^{3} \approx 0$$

### Simplified bending equation

- Unusual integration by parts on  $\delta(-v_{,1})$  for the shearing term

Term in  $\delta v_{,1}$  to constrain  $[v_{,1}]$ 

$$\int_{L} \left[ (m^{11})_{,1} \delta(-v_{,1}) - l^{1} \delta(-v_{,1}) \right] dx = \sum_{e} \left( \int_{l_{e}} \underbrace{m^{11} \delta(-v_{,11}) dx}_{\text{Bulk term}} + \underbrace{m^{11} \delta(-v_{,1})}_{\text{Interface term}} \right)_{l_{e}} = 0$$

$$\int_{l_{e}} \underbrace{(l^{1})_{,1} \delta(-v) dx}_{\text{Bulk term}} + \underbrace{l^{1} \delta(-v)}_{\text{Netrface term}} = 0$$

$$\text{Term in } \delta v \rightarrow \text{We can ensure weakly this continuity using DG}$$

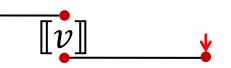
• 3 interface terms are derived from  $l^1\delta(-v)]_{l_e}$  exactly as for the membrane and bending modes

- Consistency terms

$$\sum_{e} l^1 \delta(-v)]_e = -\sum_{s} \llbracket l^1 \delta(-v) \rrbracket_s \to -\sum_{s} (\langle l^1 \rangle \llbracket \delta(-v) \rrbracket)_s$$

Symmetrization terms

$$\sum_{s} \left( \left| \frac{Eh}{2(1+\nu)} \delta(-\nu_{,1}) \right| \left[ -\nu \right] \right)_{s} = 0$$



- Stability terms

$$\sum_{s} \left( \left[ \left[ -\nu \right] \right] \left\{ \frac{Eh\beta_3}{2(1+\nu)} \right\} \left[ \left[ \delta(-\nu) \right] \right] \right)_s = 0$$

 $\beta_3 > 0$  dimensionless stability parameter



 Only the stabilization terms remain as the shearing is neglected (Euler-Bernoulli assumption)

- Consistency terms

$$\sum_{e} l^{1} \delta(-v)]_{e} = -\sum_{s} \llbracket l^{1} \delta(-v) \rrbracket_{s} \to -\sum_{s} (\langle l^{1} \rangle \llbracket \delta(-v) \rrbracket)_{s} \approx 0 \text{ NEGLECTED}$$

ENSURES CONTINUITY BUT LEAD

TO UNSYMMETRIC FORMULATION

→ IS NOT CONSIDERED

Symmetrization terms

$$\sum_{S} \left( \left| \frac{E\hbar}{2(1+\nu)} \delta(-\nu_{,1}) \right| [-\nu] \right)_{S} = 0$$

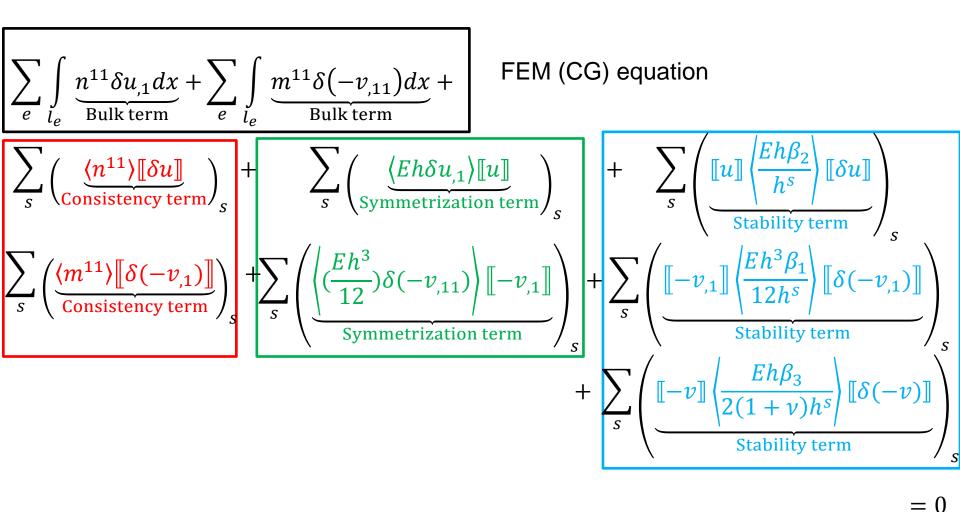
Stability terms

$$\sum_{s} \left( \left[ -v \right] \left\{ \frac{Eh\beta_3}{2(1+\nu)h^s} \right\} \left[ \left[ \delta(-\nu) \right] \right]_s = 0 \quad \begin{array}{c} \text{ENSURES STABILTY AND} \\ \text{CONTINUITY} \end{array} \right\}$$



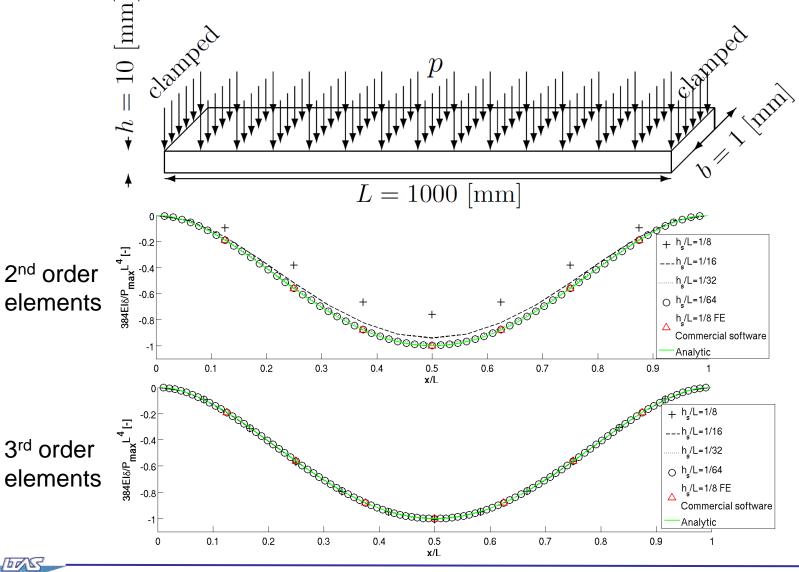


• The final full-DG equation is obtained by adding the different contributions (membrane + bending) [*Becker et al , ijnme 2011*]



67R

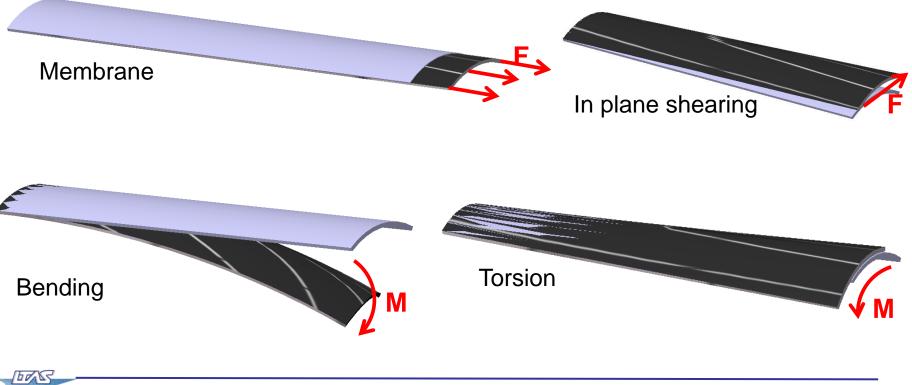
Université de Liège • The analytical solution is matched with discontinuous elements



Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 34

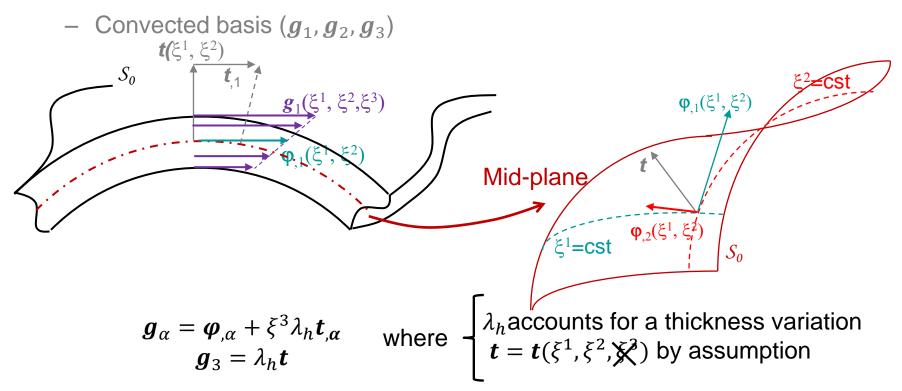


- Structure whose thickness is << other dimensions
- Initial curvature (otherwise it is a plate) ⇔ bending/membrane coupling
- Modes
  - Out-of-plane shearing is neglected (Kirchhoff-Love theory)



Université 🛛 🧕

• The kinematics of the shell is formulated in a basis linked to the shell



The convected basis is not orthonormal

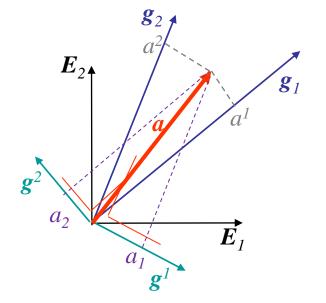
Curvature of the shell is characterized by

$$\lambda_{\alpha}^{\beta} = \boldsymbol{t}_{,\alpha} \cdot \boldsymbol{\varphi}^{,\beta}$$



 As the convected basis is not orthonormal, a conjugate (or dual) basis is defined to decompose vectors or matrices

$$\boldsymbol{g}_{I}\cdot\boldsymbol{g}^{J}=\delta_{IJ}$$



The vector  $\boldsymbol{a}$  can be formulated in both bases:

 $\boldsymbol{a} = a^1 \boldsymbol{g}_1 + a^2 \boldsymbol{g}_2$  $\boldsymbol{a} = a_1 \boldsymbol{g}^1 + a_2 \boldsymbol{g}^2$ 

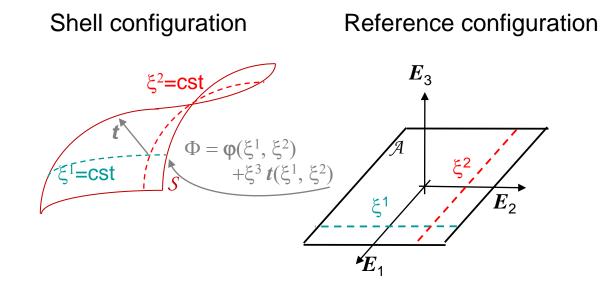
And (for example)

$$\boldsymbol{a} \cdot \boldsymbol{g}^1 = (a^1 \boldsymbol{g}_1 + a^2 \boldsymbol{g}_2) \cdot \boldsymbol{g}^1 = a^1$$





- The equations are formulated in the reference frame
  - The Jacobian describes the change between the configurations

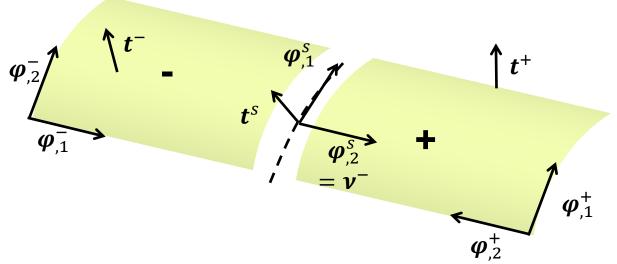


$$j = \det(\nabla \Phi) = (g_1 \wedge g_2) \cdot g_3$$
$$\overline{j} = \lambda_h(\varphi_{,1} \wedge \varphi_{,2}) \cdot t$$





• The normal at the interface is chosen as the outward normal to the minus element (convention)



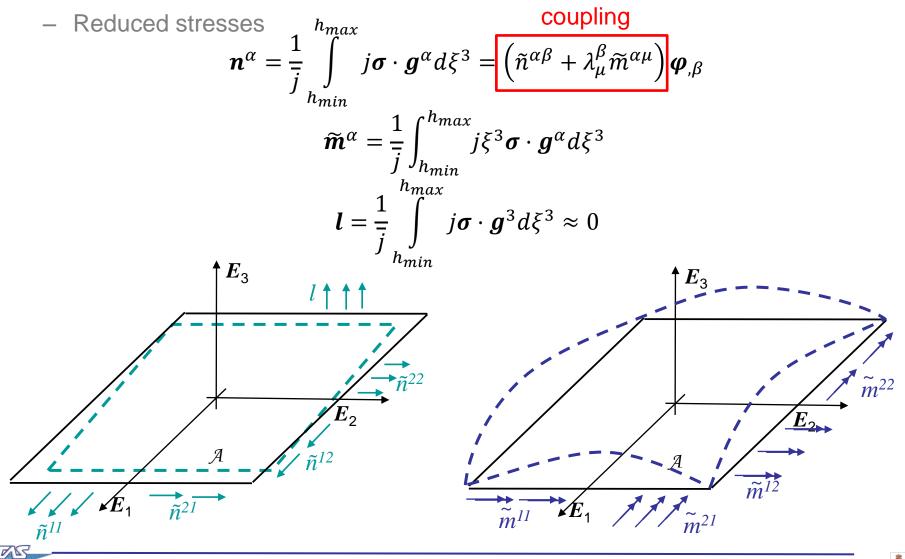
Normal components

$$\nu_{\alpha}^{-} = \boldsymbol{\varphi}_{,2}^{s} \cdot \boldsymbol{\varphi}_{,\alpha}^{s}$$





• The stress tensor  $\sigma$  is integrated on the thickness in the convected basis



Université de Liège  The (Simplified) equations of the problem are formulated in terms of the reduced stresses

- Strong form 
$$\frac{1}{\overline{j}}(\overline{j}\boldsymbol{n}^{\alpha})_{,\alpha} + \frac{1}{\overline{j}}(\overline{j}\widetilde{\boldsymbol{m}}^{\alpha}) - \boldsymbol{l} = 0$$

- Weak form 
$$\int_{A} \left[ \left( \overline{j} \boldsymbol{n}^{\alpha} \right)_{,\alpha} \cdot \delta \boldsymbol{\varphi} + \left( \overline{j} \widetilde{\boldsymbol{m}}^{\alpha} \right)_{,\alpha} \cdot \lambda_{h} \delta \boldsymbol{t} - \overline{j} \boldsymbol{l} \cdot \lambda_{h} \delta \boldsymbol{t} \right] dA = 0$$

- Highlights of the full DG concept

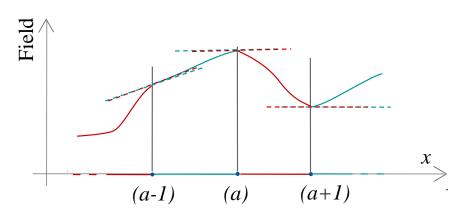
External forces and inertial terms are omitted (same as FEM)





## Full-DG formulation of Kirchhoff-Love shells

FEM (Continuous Galerkin)

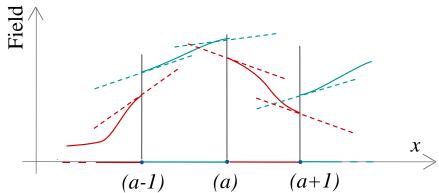


Integration by parts on the structure

$$\sum_{e} \int_{A_{e}} [\overline{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi}_{,\alpha} + \overline{j} \widetilde{\boldsymbol{m}}^{\alpha} \cdot \lambda_{h} \delta \boldsymbol{t}_{,\alpha} - \overline{j} \boldsymbol{l} \cdot \lambda_{h} \delta \boldsymbol{t}] dA = 0$$

Additional interface terms exactly as for beams  $\begin{vmatrix} - \int_{\partial A_e} \left[ \overline{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi} v_{\alpha}^{-} + \overline{j} \widetilde{\boldsymbol{m}}^{\alpha} \cdot \lambda_h \delta \boldsymbol{t} v_{\alpha}^{-} \right] \\ - \overline{j} l \cdot \int_{\alpha} \lambda_h \delta t d\alpha' v_{\alpha}^{-} dA \end{vmatrix} = 0$ 

**Discontinuous Galerkin** 



Integration by parts on each element (unusual on *l*) ()))

$$\sum_{e} \left\{ \int_{A_{e}} \left[ \left( \bar{j} \boldsymbol{n}^{\alpha} \right)_{,\alpha} \cdot \delta \boldsymbol{\varphi} + \left( \bar{j} \tilde{\boldsymbol{m}}^{\alpha} \right)_{,\alpha} \cdot \lambda_{h} \delta \boldsymbol{t} \right] - \left( \bar{j} \boldsymbol{l} \right)_{,\alpha} \cdot \int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' dA$$





- The 3 interface terms are replaced by consistent numerical fluxes
  - Average fluxes are considered (exactly as for beams)

Interface terms = A sum of jumps  $\rightarrow$  Consistent terms

$$-\sum_{e} \int_{\partial A_{e}} \overline{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi} v_{\alpha}^{-} dA = \sum_{s} \int_{s} \left[ \overline{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi} v_{\alpha}^{-} \right]_{s} d\delta A_{e} \rightarrow \sum_{s} \int_{s} \langle \overline{j} \boldsymbol{n}^{\alpha} \rangle \cdot \left[ \delta \boldsymbol{\varphi} \right] v_{\alpha}^{-} d\partial A_{e}$$

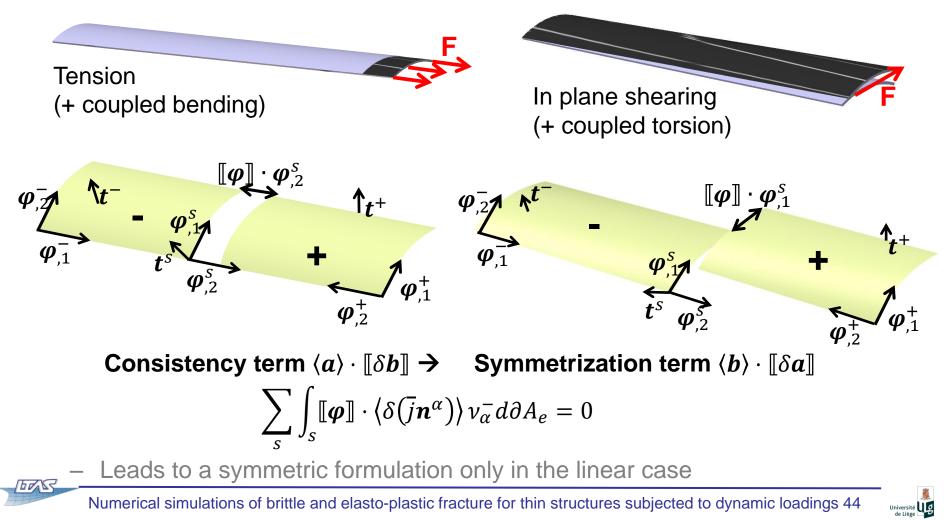
$$-\sum_{e}\int_{\partial A_{e}}\overline{j}\widetilde{\boldsymbol{m}}^{\alpha}\cdot\lambda_{h}\delta\boldsymbol{t}\nu_{\alpha}^{-}dA=\sum_{s}\int_{s}\left[\overline{j}\widetilde{\boldsymbol{m}}^{\alpha}\cdot\lambda_{h}\delta\boldsymbol{t}\nu_{\alpha}^{-}\right]_{s}d\delta A_{e}\rightarrow\sum_{s}\int_{s}\langle\overline{j}\widetilde{\boldsymbol{m}}^{\alpha}\rangle\cdot\left[\lambda_{h}\delta\boldsymbol{t}\right]\nu_{\alpha}^{-}d\partial A_{e}$$

$$\sum_{e} \int_{\partial A_{e}} \overline{j} \boldsymbol{l} \cdot \int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' \ \nu_{\alpha}^{-} dA = -\sum_{s} \int_{s} \left[ \overline{j} \boldsymbol{l} \cdot \int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' \ \nu_{\alpha}^{-} \right]_{s} d\partial A_{e}$$
$$\rightarrow -\sum_{s} \int_{s} \langle \overline{j} \boldsymbol{l} \rangle \cdot \left[ \int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' \right] \nu_{\alpha}^{-} d\partial A_{e} \approx 0$$

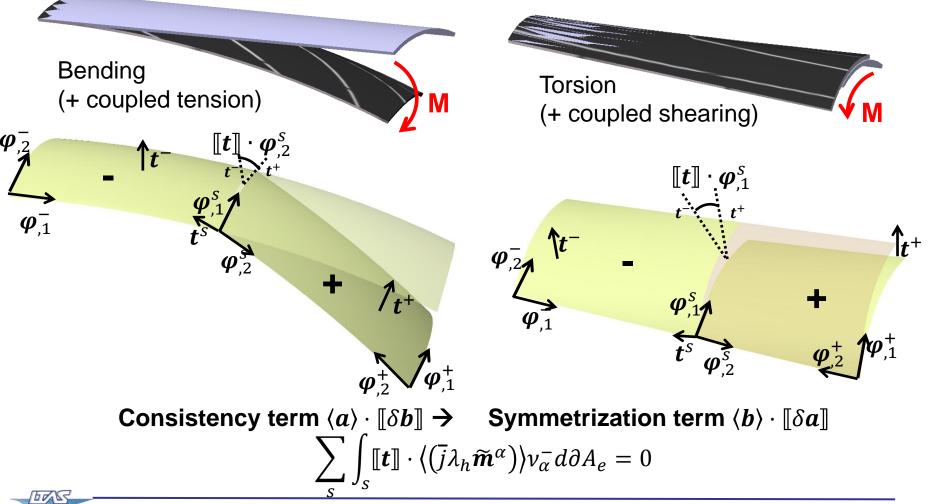




- 3 Symmetrization terms are introduced to ensure (weakly) the continuity
  - The in-plane displacement jump is constrained by symmetrizing the consistency terms on  $n^{\alpha}$

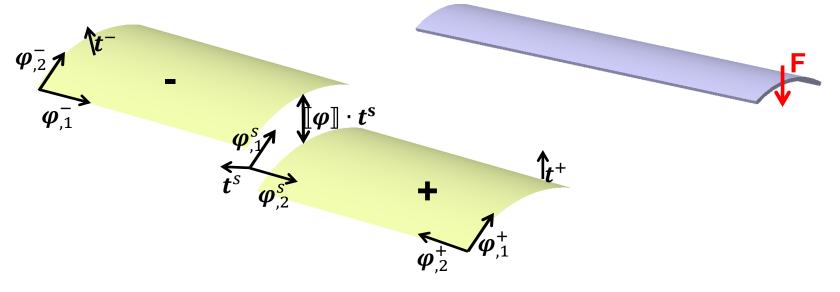


- 3 Symmetrization terms are introduced to ensure (weakly) the continuity
  - The rotational jump is constrained by symmetrizing the consistency terms on  $\widetilde{m}^{\alpha}$



Université de Liège

- 3 Symmetrization terms are introduced to ensure (weakly) the continuity
  - The out-of-plane displacement jump is constrained by symmetrizing the consistency terms on *l*



Consistency term  $\langle a \rangle \cdot [\![\delta b]\!] \rightarrow$  Symmetrization term  $\langle b \rangle \cdot [\![\delta a]\!]$  $\sum_{s} \int_{s} \left[\!\!\int_{\alpha} \lambda_{h} t d\alpha' \right]\!\!] \cdot \langle \delta(\overline{j}l) \rangle v_{\alpha}^{-} d\partial A_{e} = 0$   $\stackrel{?}{\underset{\lambda_{h}}{[\![\varphi]\!]} \cdot t\varphi'^{\alpha} \text{ Primitive approximation}$ 

Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 46



- 3 Stabilization terms have to be introduced to ensure the stability of the method
  - Quadratic terms are formulated from consistent and symmetrization terms in  $n^{\alpha}$

Form of stabilization terms  $[\![a]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta}{h^{s}} Invariant \, stiff \right\rangle [\![\delta a]\!] \cdot \boldsymbol{\varphi}_{,\beta} v_{\alpha}^{-}$ 

$$\sum_{s} \int_{s} \langle \overline{j} \boldsymbol{n}^{\alpha} \rangle \cdot [\![\delta \boldsymbol{\varphi}]\!] \boldsymbol{\nu}_{\alpha}^{-} d\partial A_{e} \\ \sum_{s} \int_{s} [\![\boldsymbol{\varphi}]\!] \cdot \langle \delta(\overline{j} \boldsymbol{n}^{\alpha}) \rangle \boldsymbol{\nu}_{\alpha}^{-} d\partial A_{e} \\ \end{array} \right\} \rightarrow \sum_{s} \left[ \int_{s} [\![\boldsymbol{\varphi}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} \boldsymbol{\nu}_{\delta}^{-} \left\langle \frac{\beta_{2} \mathcal{H}_{n}^{\alpha\beta\gamma\delta} \overline{j}_{0}}{h^{s}} \right\rangle [\![\delta \boldsymbol{\varphi}]\!] \cdot \boldsymbol{\varphi}_{,\beta} \, \boldsymbol{\nu}_{\alpha}^{-} d\partial A_{e} = 0$$





- 3 Stabilization terms have to be introduced to ensure the stability of the method
  - Quadratic terms are formulated from consistent and symmetrization terms in  $\widetilde{m}^{\alpha}$

Form of stabilization terms  $[\![a]\!] \cdot \varphi_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta}{h^{s}} Invariant \, stiff \right\rangle [\![\delta a]\!] \cdot \varphi_{,\beta} v_{\alpha}^{-}$ 

$$\left. \sum_{s} \int_{s} \langle \overline{j} \widetilde{\boldsymbol{m}}^{\alpha} \rangle \cdot [\lambda_{h} \delta \boldsymbol{t}] v_{\alpha}^{-} d\partial A_{e} \\
\sum_{s} \int_{s} [[\boldsymbol{t}]] \cdot \langle (\overline{j} \lambda_{h} \widetilde{\boldsymbol{m}}^{\alpha}) \rangle v_{\alpha}^{-} d\partial A_{e} \right\} \rightarrow \sum_{s} \int_{s} [[\boldsymbol{t}]] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{1} \mathcal{H}_{m}^{\alpha\beta\gamma\delta} \overline{j}_{0}}{h^{s}} \right\rangle [[\delta \boldsymbol{t}]] \cdot \boldsymbol{\varphi}_{,\beta} v_{\alpha}^{-} d\partial A_{e} = 0$$





- 3 Stabilization terms have to be introduced to ensure the stability of the method
  - Quadratic terms are formulated from consistent and symmetrization terms in *l*

Form of stabilization terms  $\llbracket a \rrbracket \cdot tv_{\beta}^{-} \langle \frac{\beta}{h^{s}} Invariant \, stiff \rangle \llbracket \delta a \rrbracket \cdot tv_{\alpha}^{-}$  $\sum_{s} \int_{s} \langle \overline{j} l \rangle \cdot \left[ \int_{\alpha} \lambda_{h} \delta t d\alpha' \right] v_{\alpha}^{-} d\partial A_{e} \\\sum_{s} \int_{s} \lambda_{h} \llbracket \varphi \rrbracket \cdot t \, \varphi^{,\alpha} \langle \delta(\overline{j}l) \rangle v_{\alpha}^{-} d\partial A_{e} \right] \rightarrow \sum_{s} \int_{s} \llbracket \varphi \rrbracket \cdot tv_{\beta}^{-} \left( \frac{\beta_{3} \mathcal{H}_{s}^{\alpha\beta} \overline{j}_{0}}{h^{s}} \right) \llbracket \delta \varphi \rrbracket \cdot tv_{\alpha}^{-} d\partial A_{e} = 0$ 





- The terms of stabilization in *l* ensure also weakly the out-of-plane continuity
  - The shearing is neglected (Kirchhoff-Love assumption)  $\rightarrow l \approx 0$
  - Consistency terms

$$\int_{S} \langle \bar{j} \boldsymbol{l} \rangle \cdot \left[ \int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' \right] v_{\alpha}^{-} d\partial A_{e} \approx 0$$

- Symmetrization terms (if considered  $\rightarrow$  unsymmetrical formulation)

$$\int_{S} \left[ \int_{\alpha} \lambda_{h} \boldsymbol{t} d\alpha' \right] \cdot \langle \delta(\bar{j} \boldsymbol{l}) \rangle v_{\alpha}^{-} d\partial A_{e} \approx 0$$

- Stabilization terms  $\int \left[ \varphi \right] \cdot t v_{\beta}^{-} \left( \frac{\beta_{3} \mathcal{H}_{s}^{\alpha \beta} \overline{j}_{0}}{h^{s}} \right) \left[ \delta \varphi \right] \cdot t v_{\alpha}^{-} d\partial A_{e} = 0$   $\int \left[ s \right] \left[ \delta \varphi \right] \cdot t v_{\alpha}^{-} d\partial A_{e} = 0$   $\int \left[ s \right] \left[ s \right] \left[ s \right] \left[ \delta \varphi \right] \cdot t v_{\alpha}^{-} d\partial A_{e} = 0$ Out-of-plane displacement jump is constrained  $\Rightarrow$  continuity is weakly ensured  $\varphi_{,2}^{+} \varphi_{,1}^{+}$  • The equation of the full-DG formulation is obtained by adding the different contributions [*Becker et al cmame2011, Becker et al ijnme2012*]

$$\sum_{e} \int_{A_{e}} \left[ (\bar{j}\boldsymbol{n}^{\alpha})_{,\alpha} \cdot \delta\boldsymbol{\varphi} + (\bar{j}\tilde{\boldsymbol{m}}^{\alpha})_{,\alpha} \cdot \lambda_{h} \delta\boldsymbol{t} \right] dA + \text{FEM (CG) equation}$$

$$\sum_{s} \int_{S} \left[ \langle \bar{j}\boldsymbol{n}^{\alpha} \rangle \cdot [\![\delta\boldsymbol{\varphi}]\!] + [\![\boldsymbol{\varphi}]\!] \cdot \langle \delta(\bar{j}\boldsymbol{n}^{\alpha}) \rangle + [\![\boldsymbol{\varphi}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{2} \mathcal{H}_{n}^{\alpha\beta\gamma\delta} \bar{j}_{0}}{h^{s}} \right\rangle [\![\delta\boldsymbol{\varphi}]\!] \cdot \boldsymbol{\varphi}_{,\beta}} \right] v_{\alpha}^{-} d\partial A_{e} + \left[ [\![\boldsymbol{t}]\!] \cdot \langle (\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}) \rangle + [\![\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{1} \mathcal{H}_{m}^{\alpha\beta\gamma\delta} \bar{j}_{0}}{h^{s}} \right\rangle [\![\delta\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\beta}} \right] v_{\alpha}^{-} d\partial A_{e} + \left[ [\![\boldsymbol{t}]\!] \cdot \langle (\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}) \rangle + [\![\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{1} \mathcal{H}_{m}^{\alpha\beta\gamma\delta} \bar{j}_{0}}{h^{s}} \right\rangle [\![\delta\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\beta}} \right] v_{\alpha}^{-} d\partial A_{e} + \left[ [\![\boldsymbol{t}]\!] \cdot \langle (\bar{j}\lambda_{h}\tilde{\boldsymbol{m}}^{\alpha}) \rangle + [\![\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{1} \mathcal{H}_{m}^{\alpha\beta\gamma\delta} \bar{j}_{0}}{h^{s}} \right\rangle [\![\delta\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\beta}} \right] v_{\alpha}^{-} d\partial A_{e} = 0$$

$$\text{Stabilization}$$

$$\text{terms}$$

 Similar form as the beam case (2 Bulk, 2 consistency, 2 symmetrization and 3 stabilization terms)





## Full-DG formulation of Kirchhoff-Love shells

The C<sup>0</sup>/DG formulation [Noels et al cmame2008, Noels ijnme2009] is found if continuous elements are used ([[φ]] = [[δφ]] = 0)

$$\sum_{e} \int_{A_{e}} \left[ (\bar{j}\boldsymbol{n}^{\alpha})_{,\alpha} \cdot \delta\boldsymbol{\varphi} + (\bar{j}\tilde{\boldsymbol{m}}^{\alpha})_{,\alpha} \cdot \lambda_{h} \delta\boldsymbol{t} \right] dA + \\ \sum_{s} \int_{s} \left[ \sqrt{\bar{j}\boldsymbol{n}^{\alpha}} \cdot [\delta\boldsymbol{\varphi}] + [\boldsymbol{\varphi}] \cdot \langle \delta(\bar{j}\boldsymbol{n}^{\alpha}) \rangle + [\boldsymbol{\varphi}] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \begin{pmatrix} \beta_{2}\mathcal{H}_{n}^{\alpha\beta\gamma\delta} \bar{j}_{0} \\ h^{s} \end{pmatrix} [\delta\boldsymbol{\varphi}] \cdot \boldsymbol{\varphi}_{,\beta} \right] v_{\alpha}^{-} d\partial A_{e} + \\ \sum_{s} \int_{s} \int_{s} \left[ \sqrt{\bar{j}}\tilde{\boldsymbol{m}}^{\alpha} \rangle \cdot [\lambda_{h} \delta\boldsymbol{t}] + [\boldsymbol{t}] \cdot \langle (\bar{j}\lambda_{h} \tilde{\boldsymbol{m}}^{\alpha}) \rangle + [\boldsymbol{t}] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \begin{pmatrix} \beta_{1}\mathcal{H}_{m}^{\alpha\beta\gamma\delta} \bar{j}_{0} \\ h^{s} \end{pmatrix} [\delta\boldsymbol{t}] \cdot \boldsymbol{\varphi}_{,\beta} \right] v_{\alpha}^{-} d\partial A_{e} + \\ Consistency \quad Symmetrization \quad \sum_{s} \int_{s} [\boldsymbol{\xi} \boldsymbol{\varphi}] \cdot t v_{\beta}^{-} \begin{pmatrix} \beta_{3}\mathcal{H}_{s}^{\alpha\beta} \bar{j}_{0} \\ h^{s} \end{pmatrix} [\delta\boldsymbol{\varphi}] \cdot t v_{\alpha}^{-} d\partial A_{e} = 0 \\ \text{Stabilization} \\ \text{terms} \quad \text{terms} \quad \text{Stabilization}$$



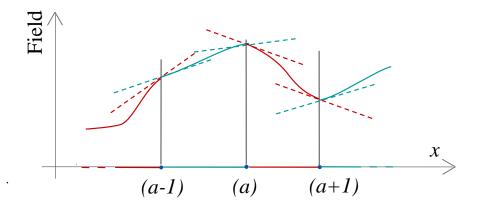


## Full-DG formulation of Kirchhoff-Love shells

The C<sup>0</sup>/DG formulation [Noels et al cmame2008, Noels ijnme2009] is found if continuous elements are used ([[φ]] = [[δφ]] = 0)

$$\sum_{e} \int_{A_{e}} \left[ \left( \bar{j} \boldsymbol{n}^{\alpha} \right)_{,\alpha} \cdot \delta \boldsymbol{\varphi} + \left( \bar{j} \tilde{\boldsymbol{m}}^{\alpha} \right)_{,\alpha} \cdot \lambda_{h} \delta \boldsymbol{t} \right] dA + \\\sum_{s} \int_{s} \left[ \left\langle \bar{j} \tilde{\boldsymbol{m}}^{\alpha} \right\rangle \cdot \left[ \lambda_{h} \delta \boldsymbol{t} \right] \right] + \left[ \left[ \boldsymbol{t} \right] \cdot \left\langle \left( \bar{j} \lambda_{h} \tilde{\boldsymbol{m}}^{\alpha} \right) \right\rangle \right] + \left[ \left[ \boldsymbol{t} \right] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta}^{-} \left\langle \frac{\beta_{1} \mathcal{H}_{m}^{\alpha \beta \gamma \delta} \bar{j}_{0}}{h^{s}} \right\rangle \left[ \left[ \delta \boldsymbol{t} \right] \right] \cdot \boldsymbol{\varphi}_{,\beta} \right] v_{\alpha}^{-} d\partial A_{e} = 0$$
Consistency Symmetrization terms terms

Elements are continuous but the tangent continuity is ensured by DG







• The implementation is based on Gmsh

 3D finite element grid generator with a built-in CAD engine and a postprocessor

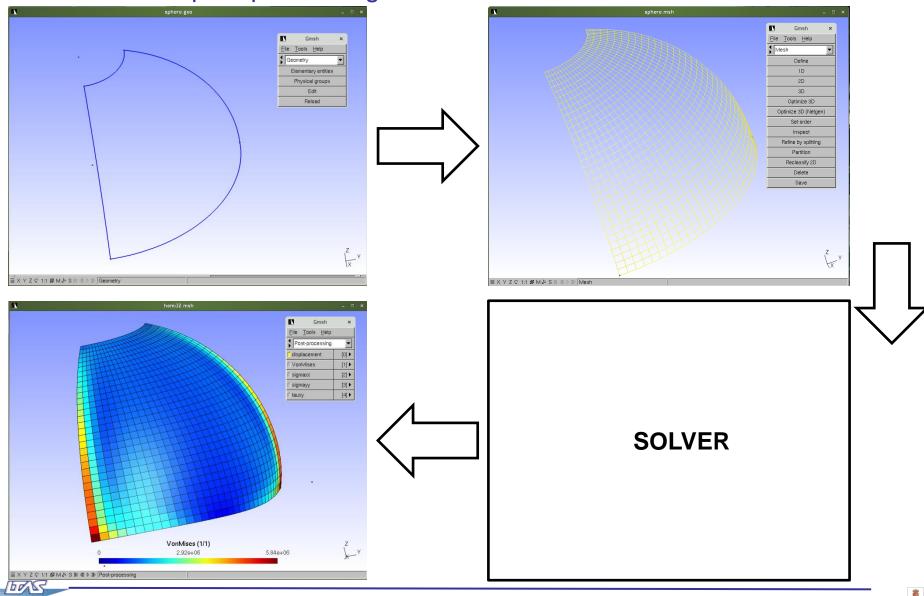
Developed by C. Geuzaine (Ulg) and J.-F. Remacles (Ucl) [Geuzaine et al ijnme2009]

Industrially used (Cenaero, EDF, ...)



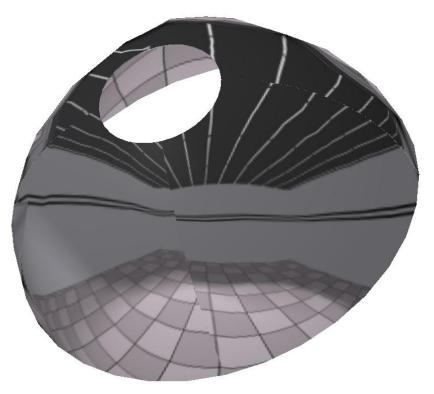


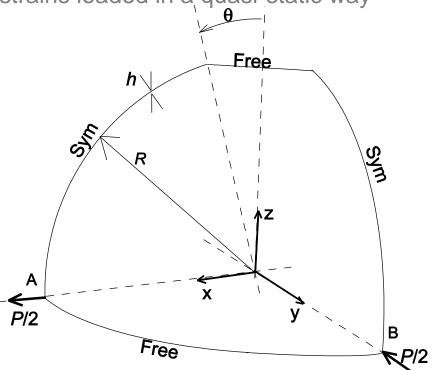
• Elements & post-processing C++ classes of Gmsh are used in the solver



Université Ug de Liège

- 2 benchmarks to prove the ability of the full-DG formulation to model continuous mechanics
  - Elastic open hemisphere with small strains loaded in a quasi-static way

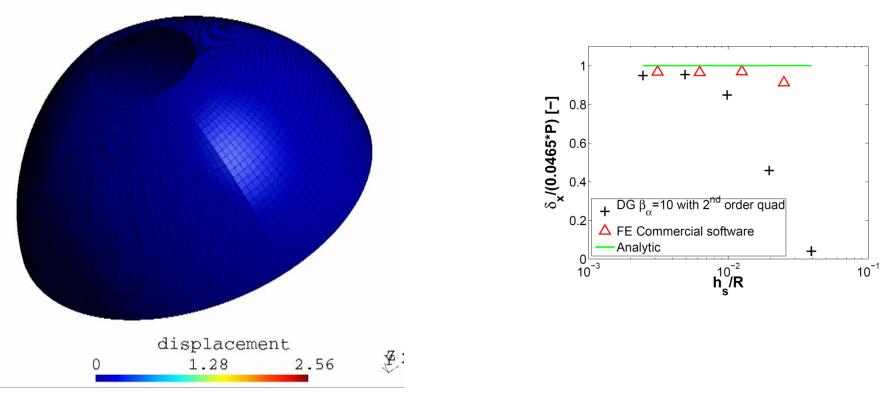








- 2 benchmarks to prove the ability of the full-DG formulation to model continuous mechanics
  - Elastic open hemisphere with small strains loaded in a quasi-static way

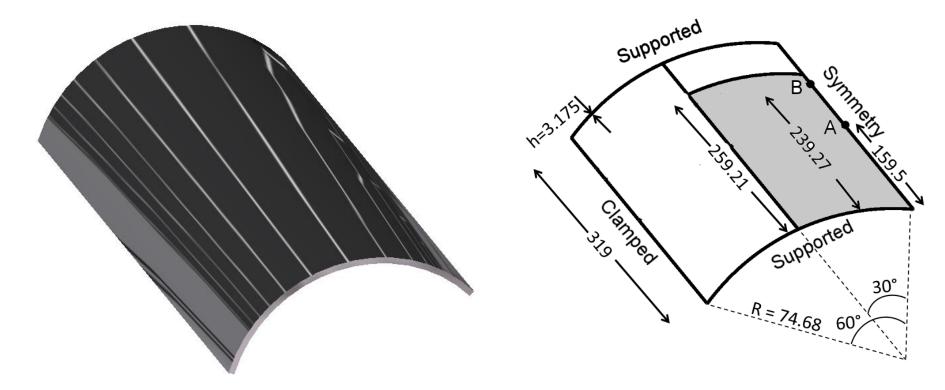


The method converges to the analytical solution with the mesh refinement





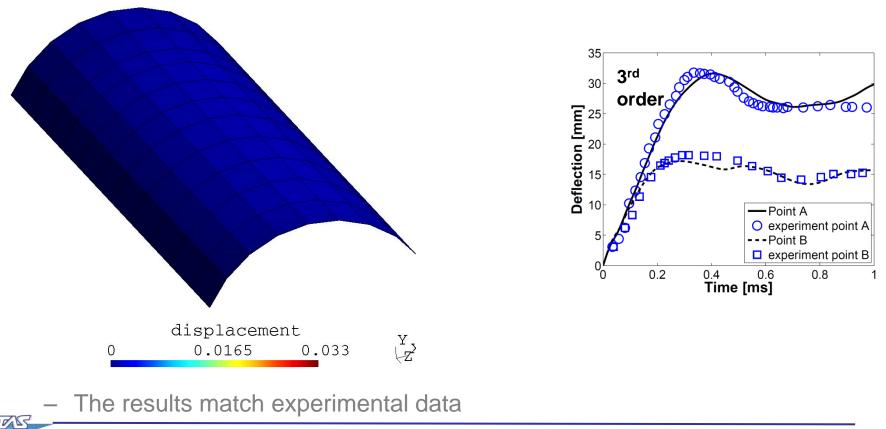
- 2 benchmarks to prove the ability of the full-DG formulation to model continuous mechanics
  - J<sub>2</sub>-linear hardening (elasto-plastic large deformations) panel loaded dynamically (explicit Hulbert-Chung scheme)







- 2 benchmarks to prove the ability of the full-DG formulation to model continuous mechanics
  - J<sub>2</sub>-linear hardening (elasto-plastic large deformations) panel loaded dynamically (explicit Hulbert-Chung scheme)



Université Ug

Full-DG formulation of Kirchhoff-Love shells

- The full-DG method provides accurate results but is more costly than *C*<sup>0</sup>/DG (memory, computational time) as it considers more degrees of freedom
  - Number of dofs (for the same mesh)

| Benchmark         | (° <b>/DG</b> | Full-DG |
|-------------------|---------------|---------|
| Open hemisphere   | 867           | 1728    |
| Cylindrical panel | 1683          | 3456    |

- The number of dofs is more or less twice larger for the full-DG formulation





• The full-DG method can be advantageously used for

- Parallel computation for explicit scheme [Becker et al, ijnme2012]

Fracture applications (same number of Dofs as FEM/ICL)





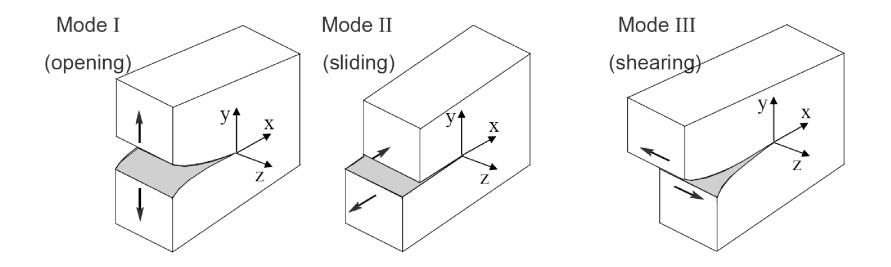
- Develop a discontinuous Galerkin method for thin bodies
  - Beam elements (1.5D case)
  - Shell elements (2.5D case)
- Discontinuous Galerkin / Extrinsic Cohesive law framework
  - Develop a suitable cohesive law for thin bodies

- Applications
  - Fragmentations, crack propagations under blast loadings





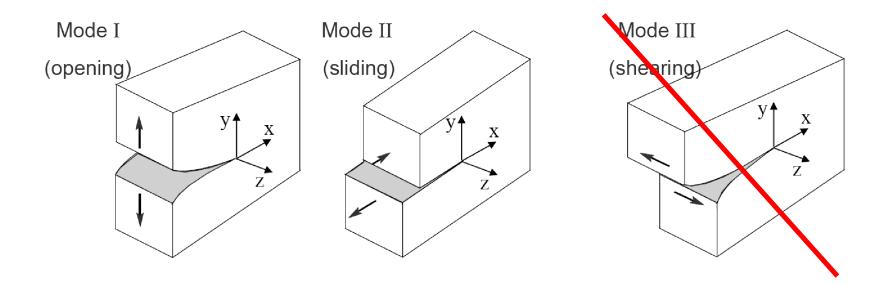
• There are 3 fracture modes in fracture mechanics







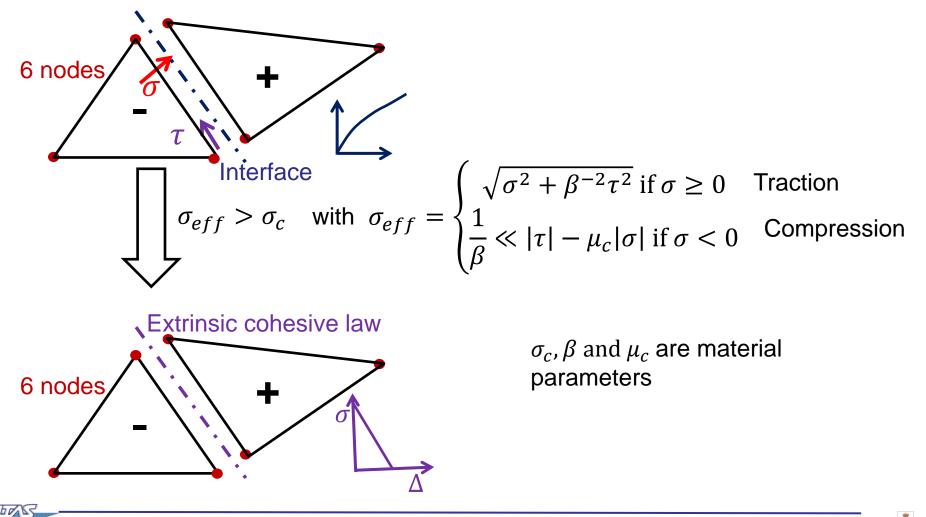
- Only modes I and II can be modeled by Kirchhoff-Love theory
  - Kirchhoff-Love  $\rightarrow$  out-of-plane shearing is neglected



Model restricted to problems with negligible 3D effects at the crack tip



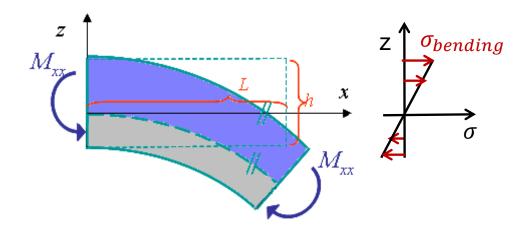
- Fracture criterion based on an effective stress
  - Camacho & Ortiz Fracture criterion [Camacho et al ijss1996]



Université de Liège

- The effective stress is evaluated at the external fibers
  - The bending stress varies along the thickness

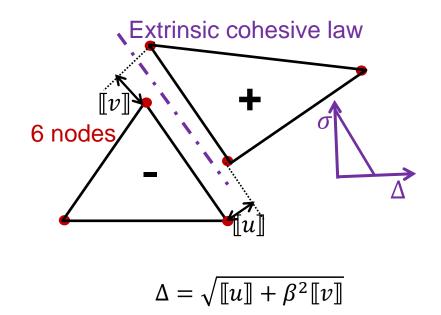
- The fracture criterion is evaluated where the stress is maximum







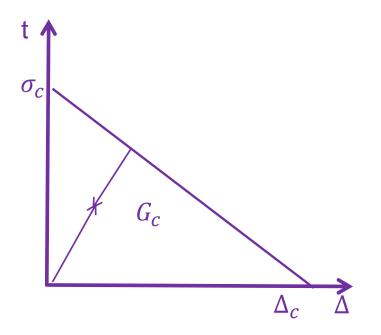
- The cohesive law is formulated in terms of an effective opening
  - Camacho & Ortiz Fracture criterion [Camacho et al ijss1996]







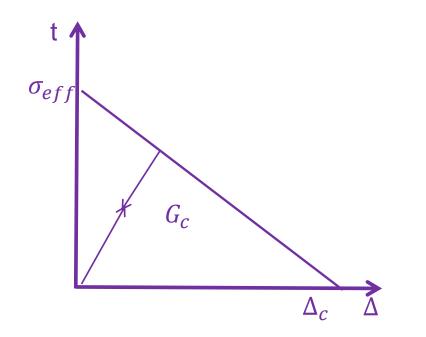
- The area under the cohesive law has to be equal to the fracture energy  $G_c$ 
  - $G_c$  is a material parameter







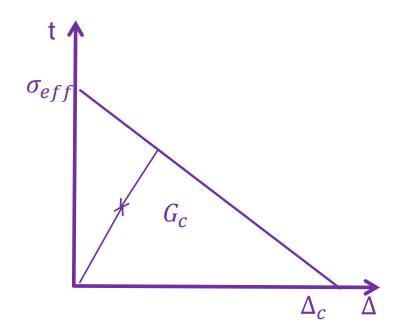
- The maximal stress of the cohesive law is equal to  $\sigma_{eff}$ 
  - Ensure the continuity of stresses



- Otherwise numerical problems [Papoulia et al ijnme2003]

Université de Liège

- The shape of the cohesive law is linearly decreasing
  - Little influence of the shape for brittle materials

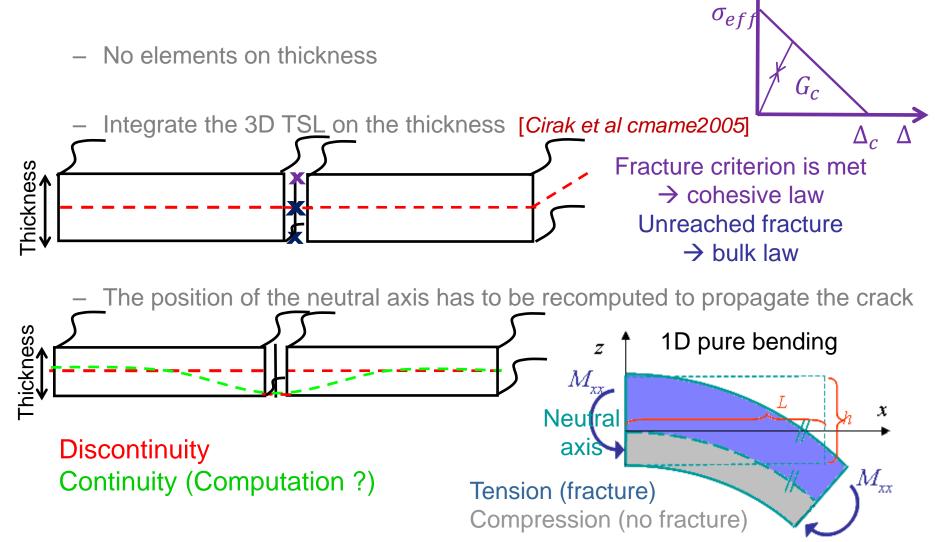


-  $\Delta_c$  is equal to  $2G_c/\sigma_c$ 



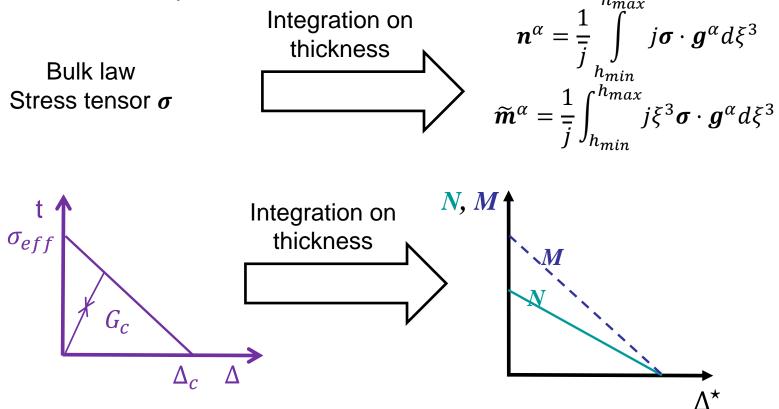


 The through the thickness crack propagation is not straightforward with shell elements



Université de Liège

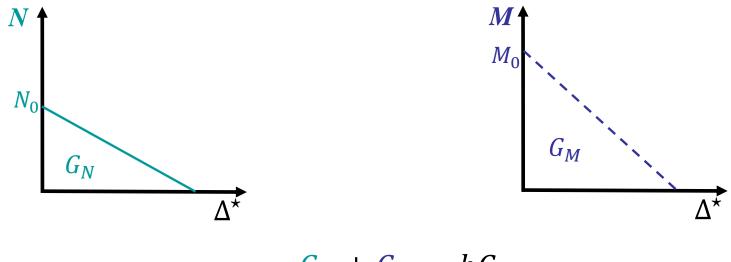
- The cohesive law can be formulated in terms of reduced stresses
  - Same as shell equations Integration on



Similar concept suggested by Zavattieri [Zavattieri jam2006]



- Define  $\Delta^*$  and  $N(\Delta^*)$ ,  $M(\Delta^*)$  to dissipate an energy equal to  $hG_c$  during the fracture process [Becker et al ijnme2012, Becker et al ijf2012]
  - Integration on thickness

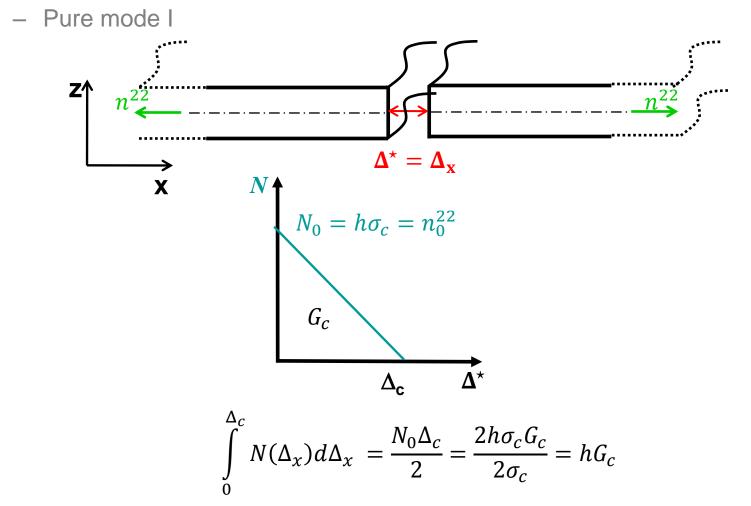






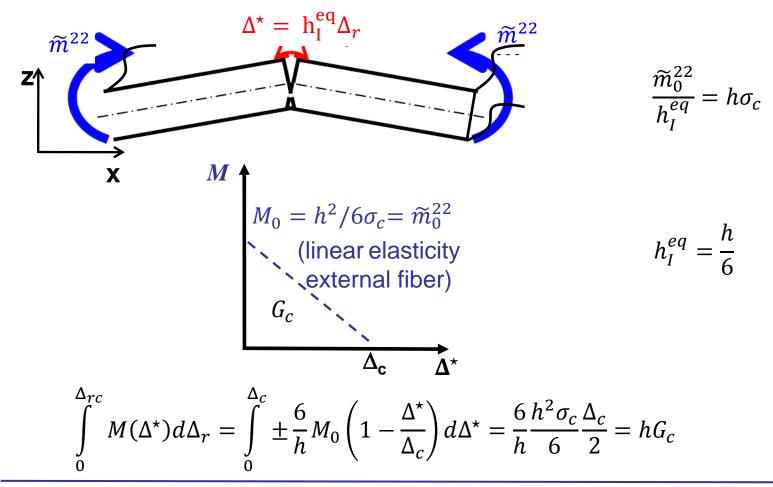


The law N(Δ<sup>\*</sup>) is defined to release an energy equal to hG<sub>c</sub> in pure tension



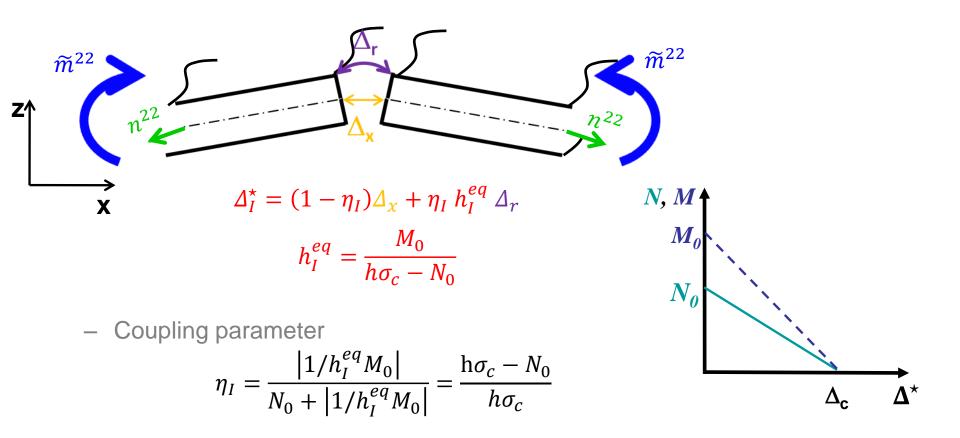


- The law  $M(\Delta^*)$  is defined to release an energy equal to  $hG_c$  in pure bending
  - Pure mode I



Using the superposition principle the energy released for any couple N,M is equal to hG<sub>c</sub> [Becker et al ijnme2011]

- Pure mode I







Full-DG/ECL framework

The cohesive model for mode I can be extended to mode II  $T_0 = n_0^{21}$ n<sup>21</sup>  $\widetilde{m}^{21}$  $\widetilde{m}^{21}$  $\Delta_{rt}$  $G_T$ Δ\*  $\Delta_{c}$  $M_0^T = \widetilde{m}_0^{22}$ M  $\Delta_{II}^{\star} = (1 - \eta_{II})\Delta_t + \eta_{II}h_{II}^{eq}\Delta_{rt}$  $G_{M^{T}}$  $h_{II}^{eq} = \frac{M_0^T}{h\beta\sigma_c - T_0}$ - Coupling parameter  $G_T + G_M T = h\beta G_c$  $\eta_{II} = \frac{\left| 1/h_{II}^{eq} M_0^T \right|}{T_0 + \left| 1/h_{eq}^{eq} M_0^T \right|} = \frac{h\beta\sigma_c - T_0}{h\beta\sigma_c}$ 





- Combination of mode I and II is performed following Camacho & Ortiz [Camacho et al ijss1996]
  - Usually perform in the literature

- Define an effective opening 
$$\Delta^* = \sqrt{\ll \Delta_I^* \gg^2 + \beta^2 {\Delta_{II}^*}^2}$$

- Fracture initiation 
$$\sigma_{eff} = \begin{cases} \sqrt{\sigma_I^2 + \beta^{-2} \tau_{II}^2} & \text{if } \sigma_I \ge 0 \\ \frac{1}{\beta} \ll |\tau_{II}| - \mu_c |\sigma_I| & \text{if } \sigma_I < 0 \end{cases} = \sigma_c$$

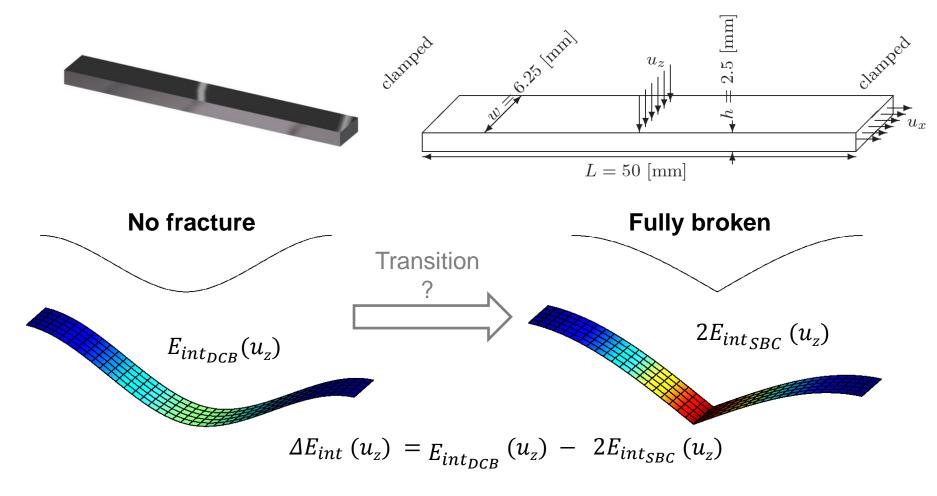
The equivalent thicknesses become

$$h_I^{eq} = \frac{M_0}{h\sigma_I - N_0}$$
$$h_{II}^{eq} = \frac{M_0^T}{h\tau_{II} - T_0}$$



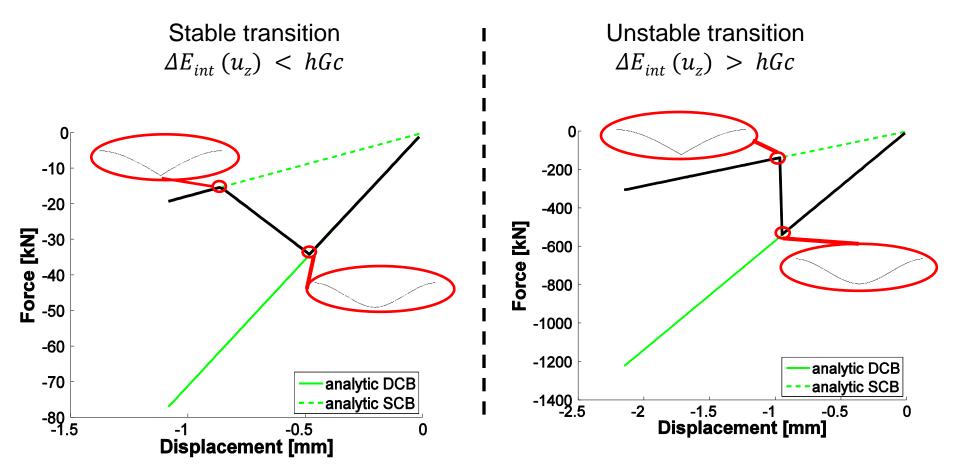


- The transition between uncracked to fully cracked body depends on  $\Delta E_{int}$ 
  - Double clamped elastic beam loaded in a quasi-static way



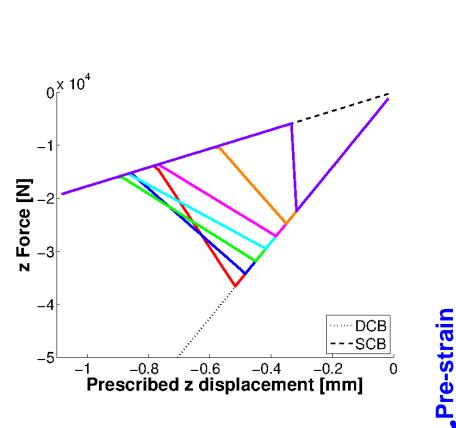


- The framework can model stable/unstable crack propagation
  - Geometry effect (no pre-strain)



• The energy released during fracture is always equal to  $hG_c$ 



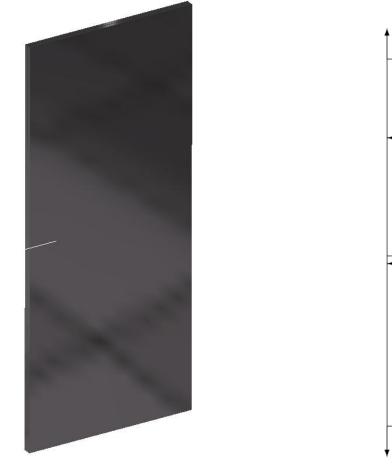


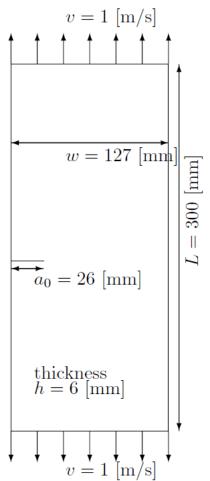
|                          |          | $hG_c =$         | 22.00                 |
|--------------------------|----------|------------------|-----------------------|
| u <sub>x,pres</sub>      | $\eta_I$ | $\Delta E_{int}$ | E <sub>released</sub> |
| $-2e^{-5}$               | 1,0692   | 14.82            | 21.98                 |
| 0.                       | 1        | 12.33            | 21.98                 |
| 2 <i>e</i> <sup>-5</sup> | 0.93     | 11.39            | 21.98                 |
| $4e^{-5}$                | 0.86     | 11.99            | 21.98                 |
| 6e <sup>-5</sup>         | 0.79     | 14.11            | 21.98                 |
| 8e <sup>-5</sup>         | 0.72     | 17.76            | 21.99                 |
| $10e^{-4}$               | 0.66     | 22.95            |                       |
|                          |          | > 22.00          |                       |
|                          | Unstable |                  |                       |





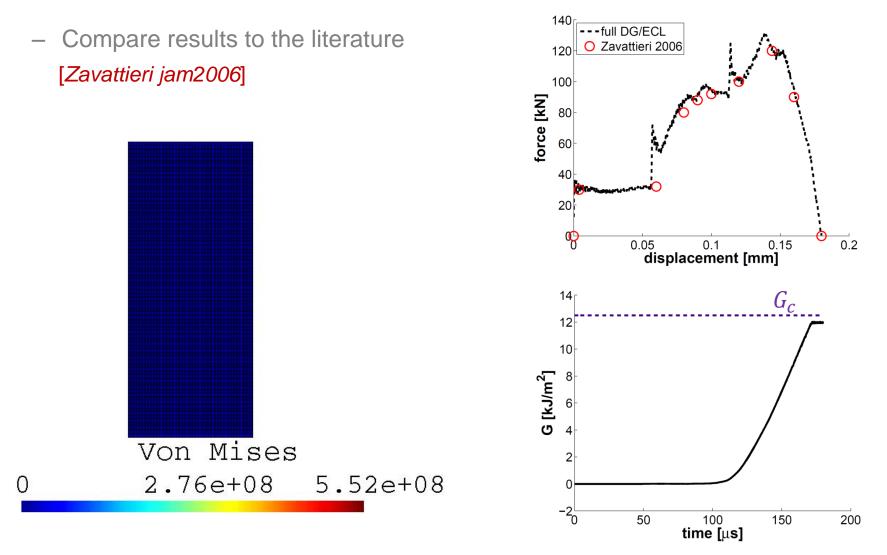
- A benchmark with a dynamic crack propagation
  - A single edge notched elastic plate dynamically loaded



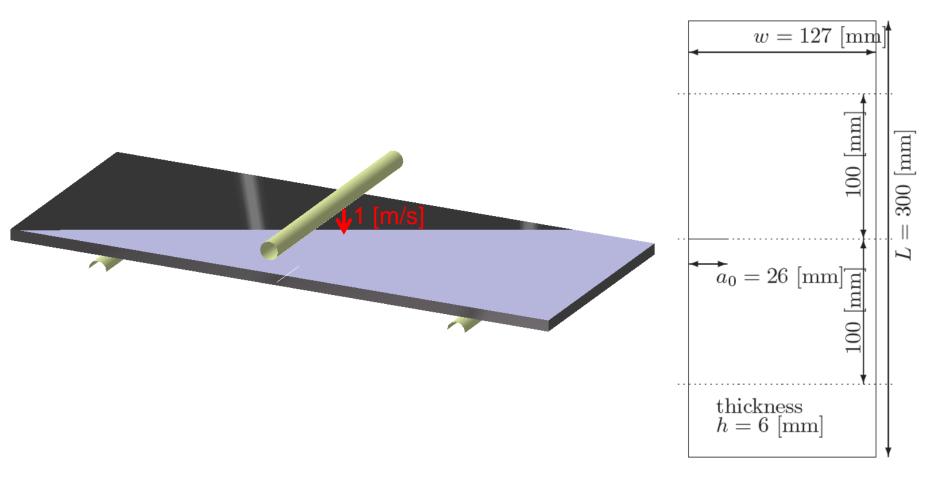


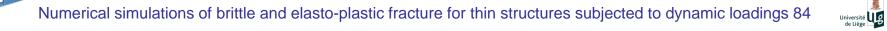


• The energy released in a dynamic crack propagation is equal to  $hG_c$ 

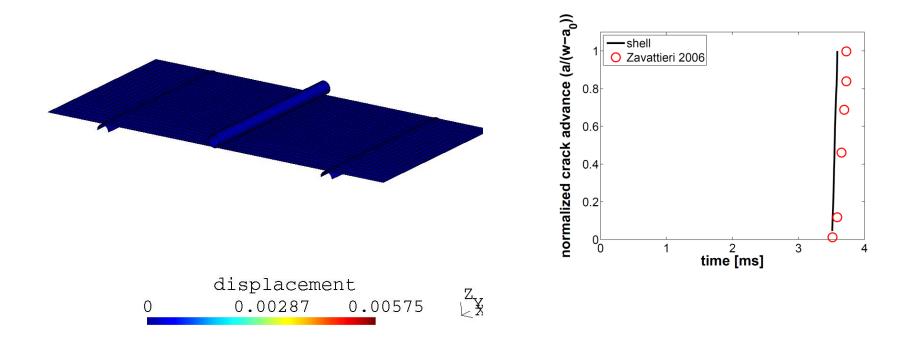


- A benchmark involving contact
  - A single edge notched elastic plate impacted by a rigid cylinder



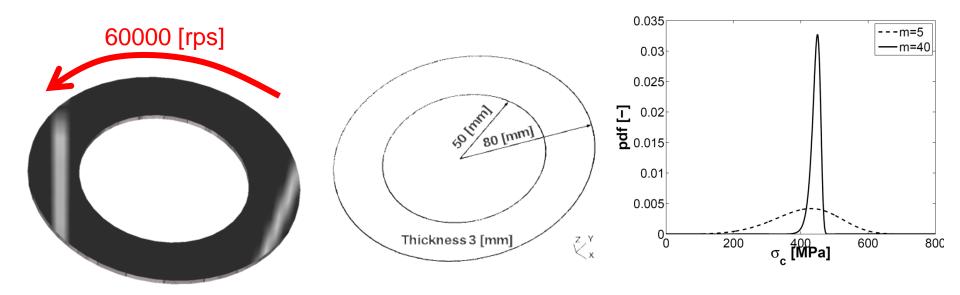


- The crack propagates correctly even if there is (rigid) contact
  - Results are compared to the literature [Zavattieri jam2006]



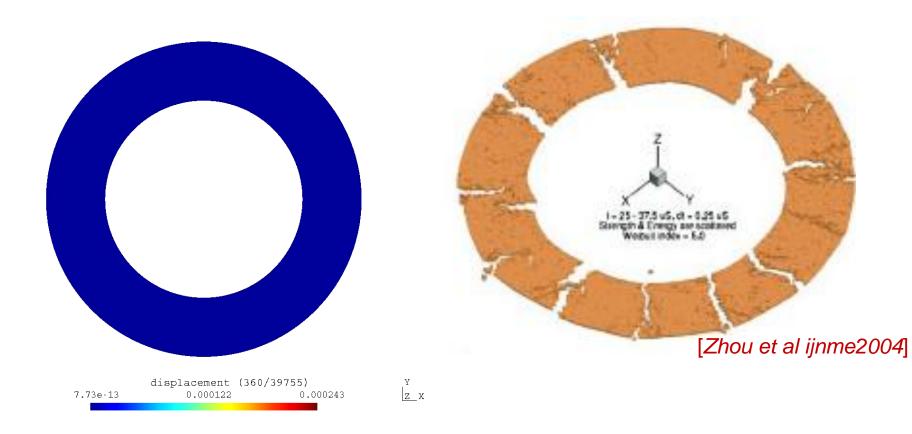


- A benchmark to investigate the fragmentation
  - Elastic plate ring loaded by a centrifugal force





- Fragmentation phenomena can also be studied by the full-DG/ECL framework
  - Results are compared with the literature [Zhou et al ijnme2004]







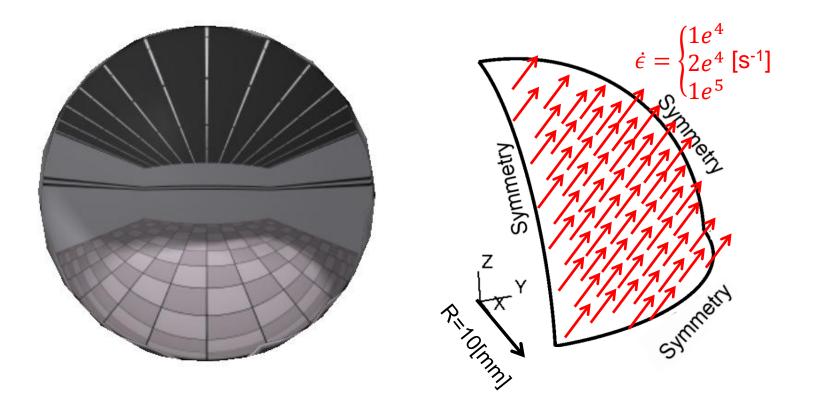
- Develop a discontinuous Galerkin method for thin bodies
  - Beam elements (1.5D case)
  - Shell elements (2.5D case)
- Discontinuous Galerkin / Extrinsic Cohesive law framework
  - Develop a suitable cohesive law for thin bodies

- Applications
  - Fragmentations, crack propagations under blast loadings





- Application to the dynamic fragmentation of a sphere
  - Elastic sphere under radial uniform expansion

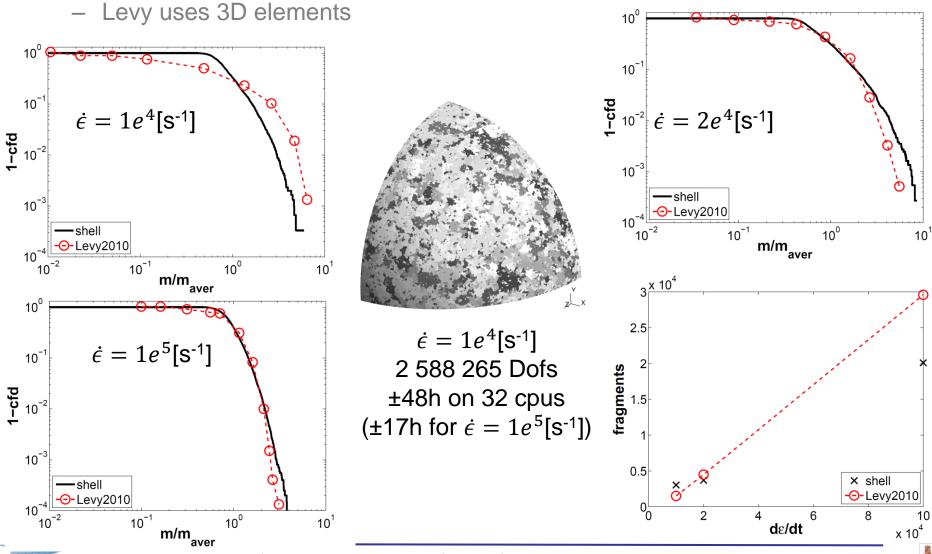






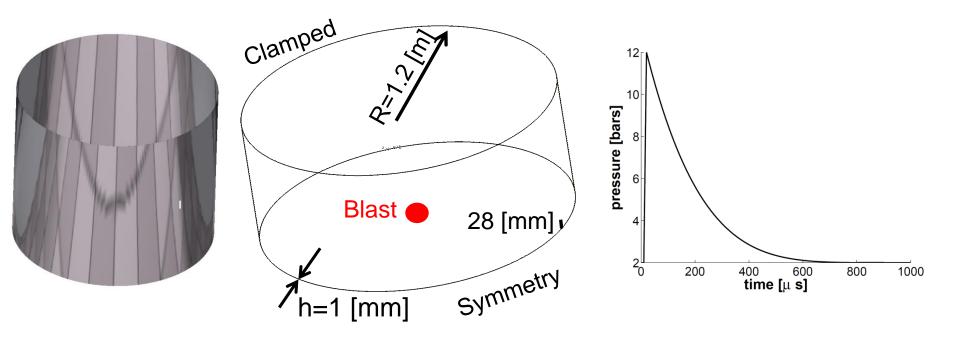
Applications of the DG/ECL framework

• The distribution of fragments and the number of fragments are in agreement with the literature [*Levy EPFL2010*]



Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 90

• Blast of an axially notched elasto-plastic cylinder (large deformations)

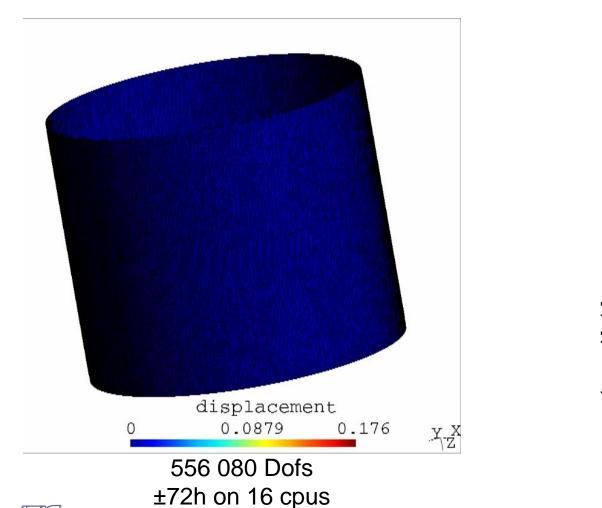


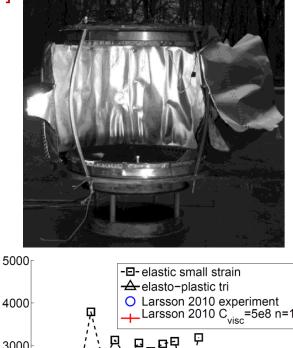


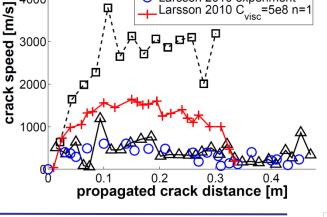


Applications of the DG/ECL framework

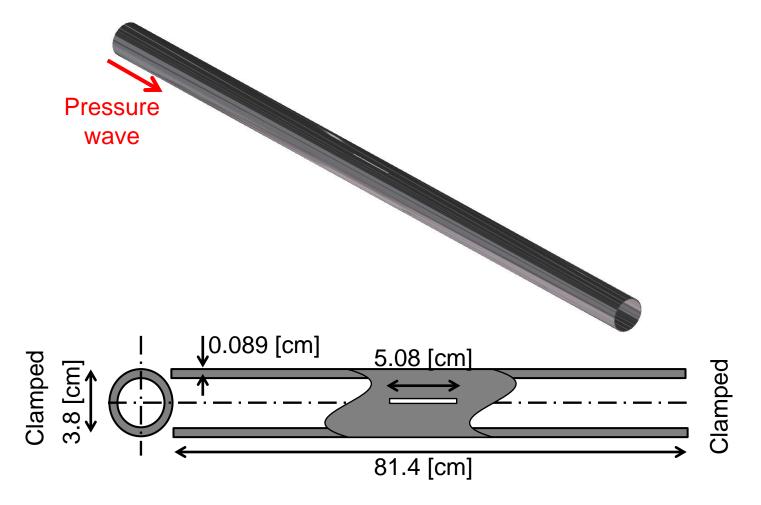
- Accounting for plasticity allows capturing the crack speed
  - Compare with the literature [Larson et al ijnme2011]







• Pressure wave passes through an axially notched elasto-plastic pipe (large deformations)



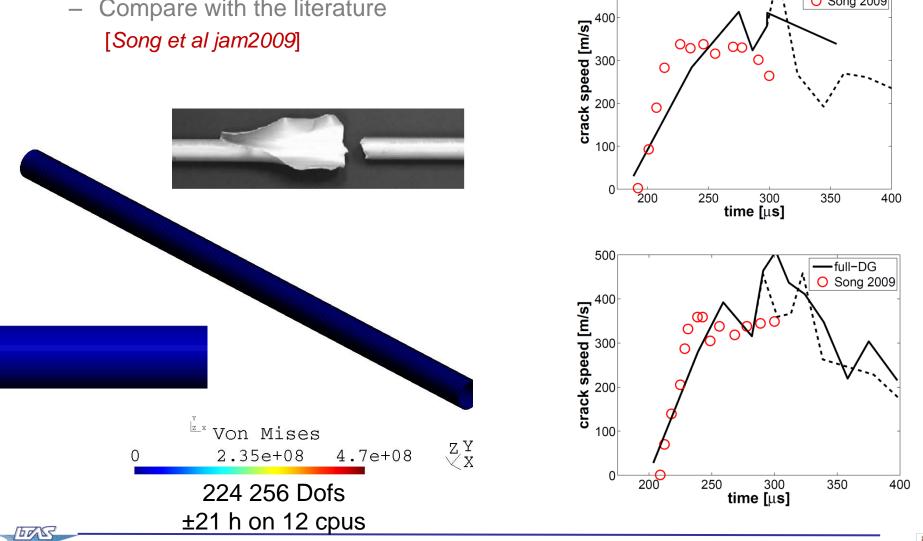


Applications of the DG/ECL framework

500

full-DG O Song 2009

- Crack path and speed are well captured by the framework
  - Compare with the literature [Song et al jam2009]



- Full-DG / ECL framework allows accounting for fracture in dynamic simulations of thin bodies
  - Crack propagation as well as fragmentation
  - Recourse to an elasto-plastic model is mandatory to capture crack speed
  - Affordable computational time for large models
- Main contributions
  - Full-DG model of linear Euler-Bernoulli beams and (non)-linear Kirchhoff-Love shell
  - Energetically consistent extrinsic cohesive law based on reduced stresses
  - Explicit Hulbert-Chung algorithm based on ghost elements (reduce MPI communication, independent of material law)





 Model the damage to crack transition by coupling a damage law with the full-DG/ECL framework

 Replace the criterion based on an effective stress by a criterion based on the damage

- Define the shape of the cohesive law





# Future work

- An exploratory benchmark
  - Quasi-static
     (dynamic relaxation)
  - Linear damage theory
  - Fracture criterion  $D > D_c$

 $G_c$ 

 $\Delta_c$ 

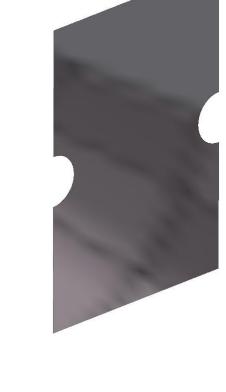
 $G_c$  from the literature [Mazars et al ijss1996]

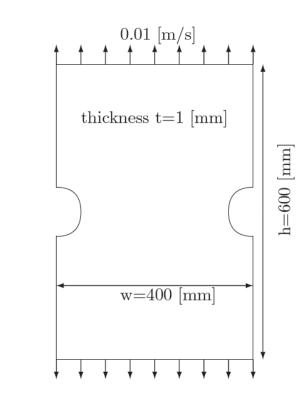
Δ

- Cohesive shape

 $\sigma_{frac init}$ 

continuity



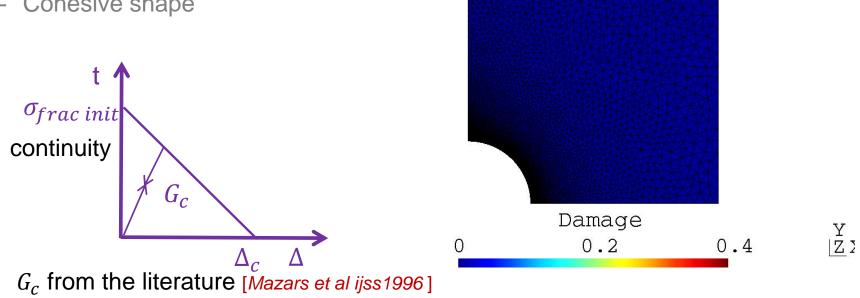




- The benchmark shows encouraging perspectives
  - Linear damage theory \_

Fracture criterion  $D > D_c$ \_

Cohesive shape \_





• The benchmark shows encouraging perspectives but many improvements are required

- Non local damage model

Account for stress triaxiality (and out-of-plane shearing)

Shape of the cohesive law





# Thank you for your attention





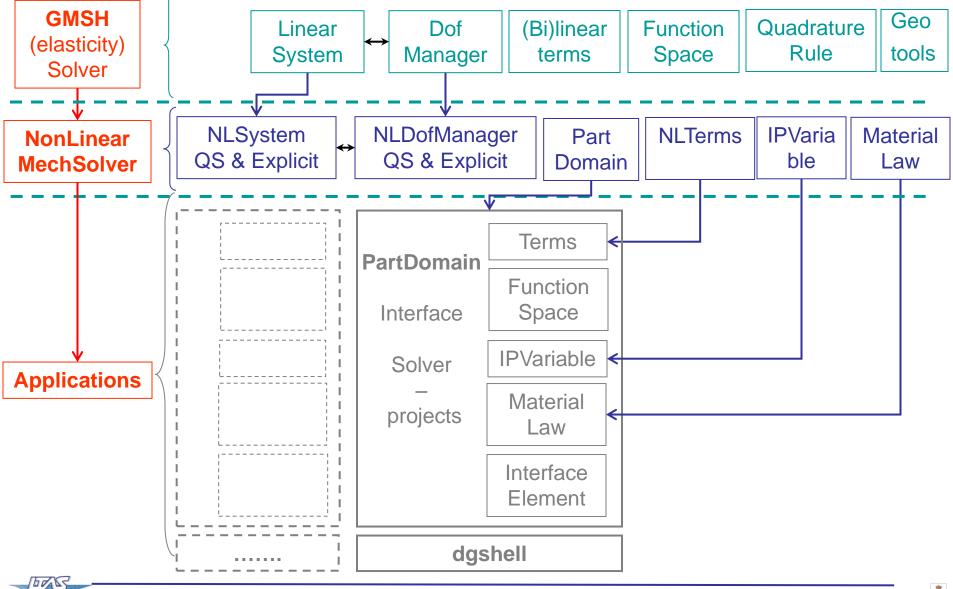
# Appendix





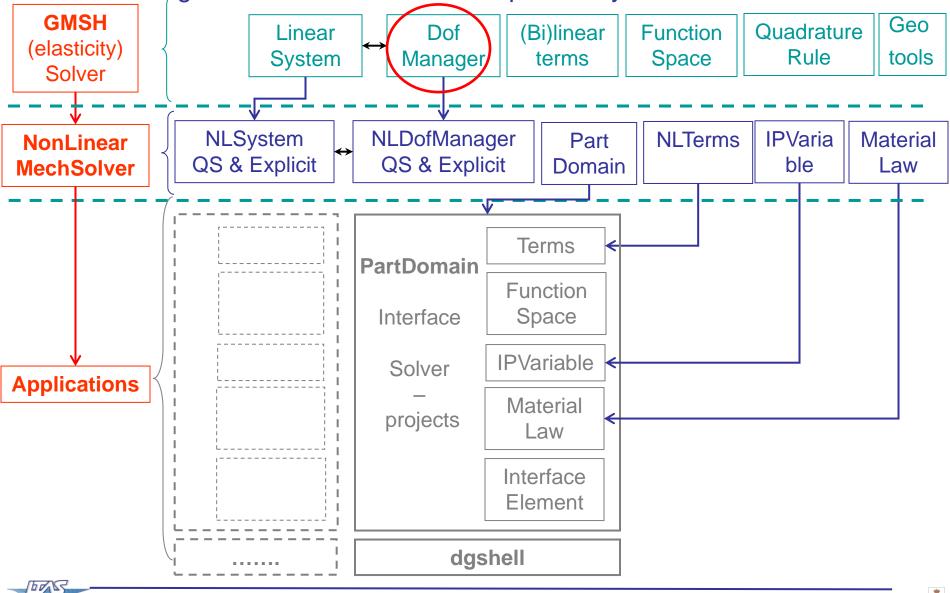


• Application is implemented separately from the solver to be versatile



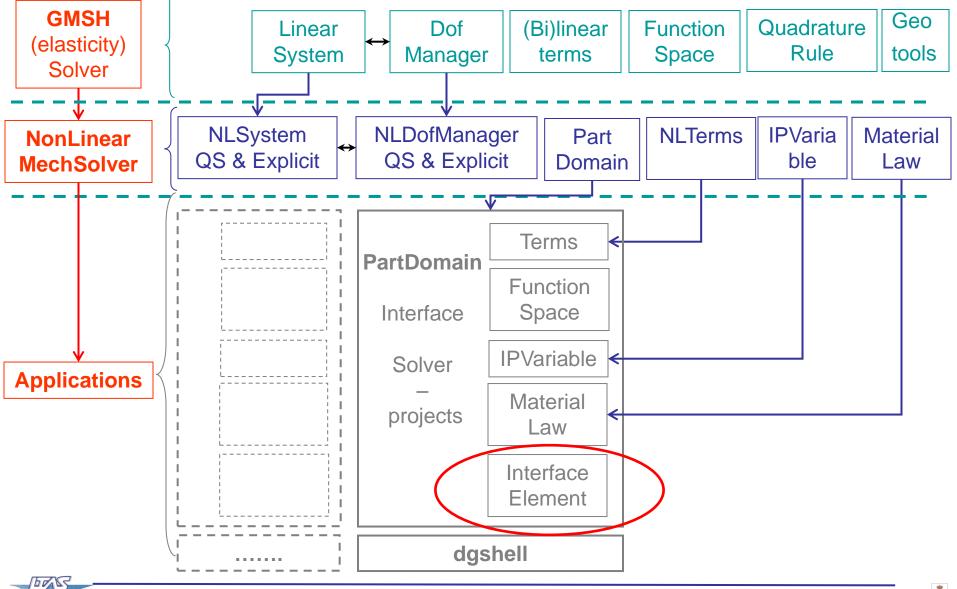


DofManager allows to define dof independently of the mesh

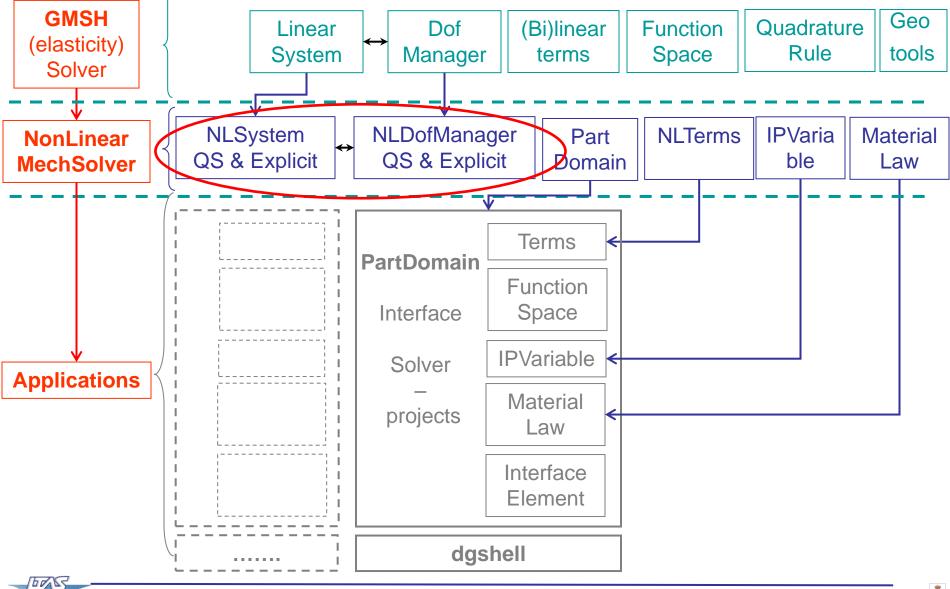




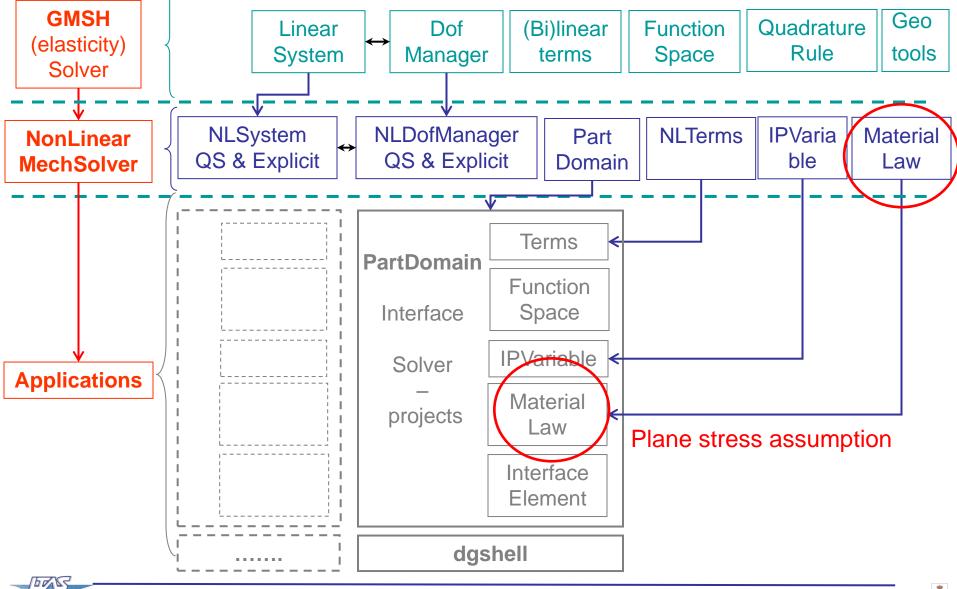
• Continuous mesh is used as interface elements are generated in dgshell



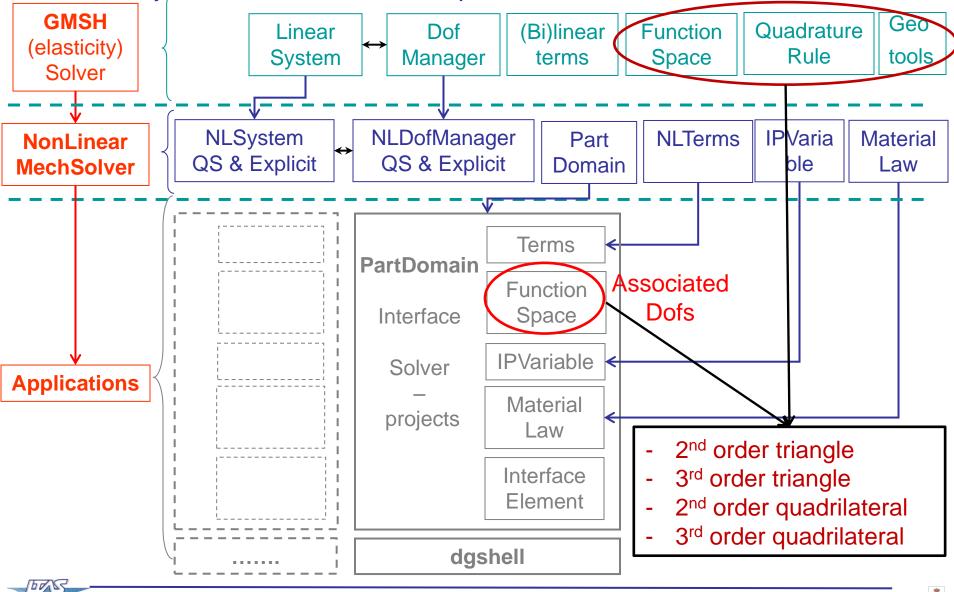
• Quasi-static or dynamic (explicit Hulbert-Chung) schemes are available



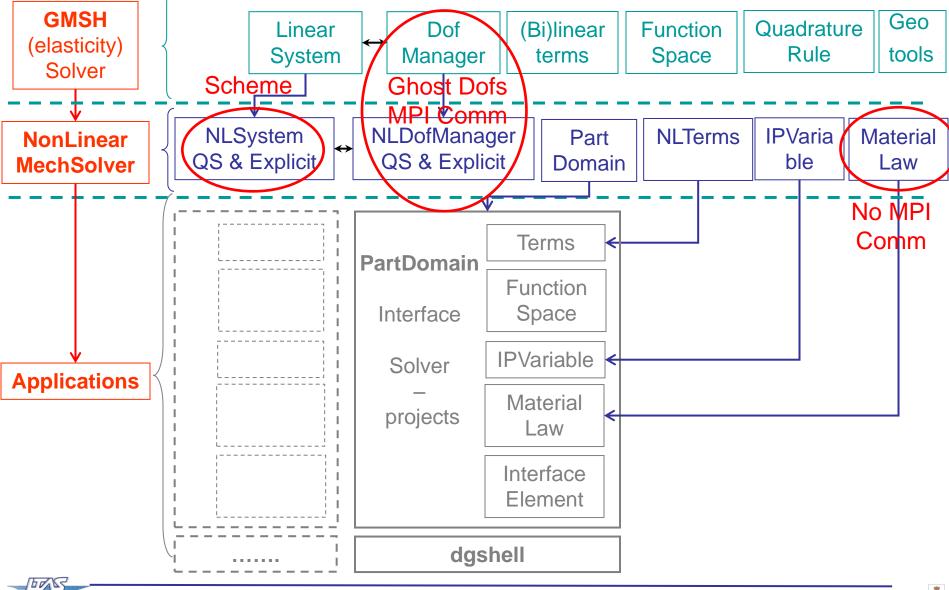
Different material law (elastic linear, neo-Hookean, J<sub>2</sub>-linear hardening)



• A library of 4 shell elements is implemented

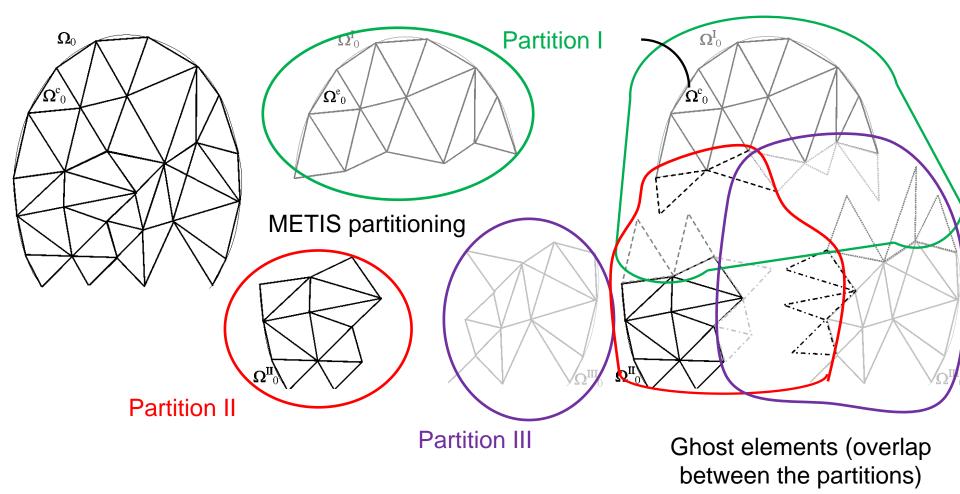


Parallel scheme is based on Ghost element concept





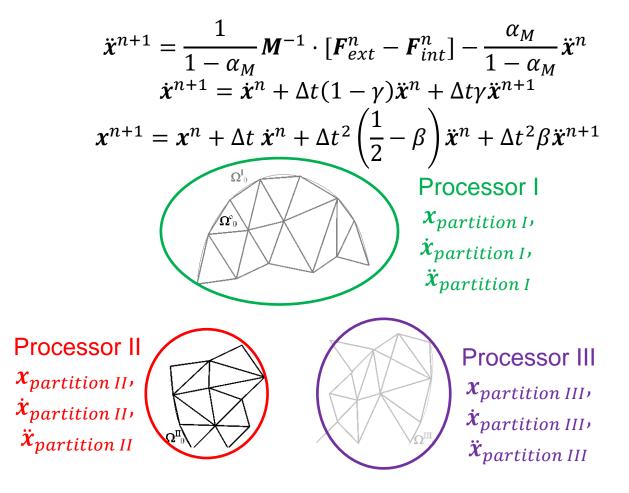
 Ghost elements of a partition are the elements of other partitions which have a common interface with this partition





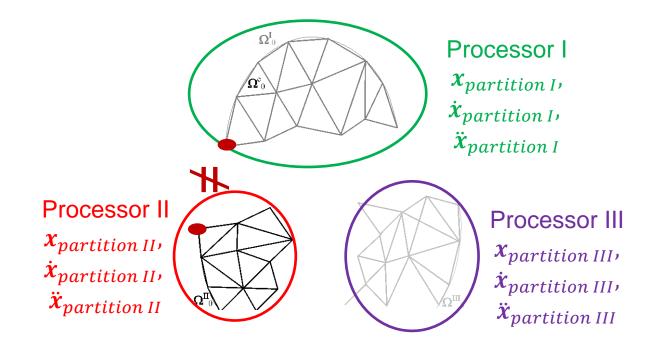


- Solve for the dofs of the elements of the partition linked to the processor
  - M is the diagonalized mass matrix





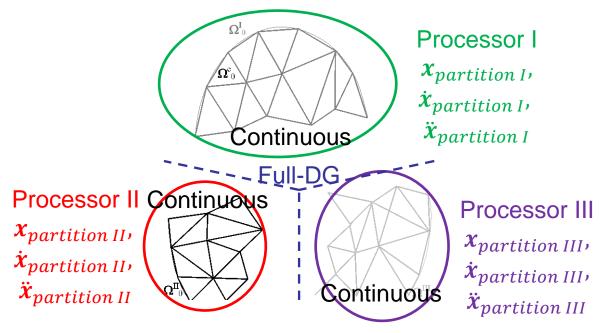
The elements have to be discontinuous between partition







- Recourse to the full-DG formulation between partitions to ensure continuity between them
  - Extra dofs are only inserted between partitions



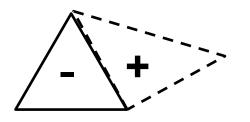
- Interface elements have to be computed

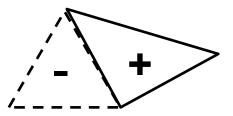




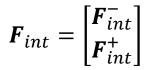
- Interface elements are computed on each partition (using Ghost elements)
  - Processor I

- Processor II





$$\boldsymbol{F}_{int} = \begin{bmatrix} \boldsymbol{F}_{int}^{-} \\ \boldsymbol{F}_{int}^{+} \end{bmatrix}$$

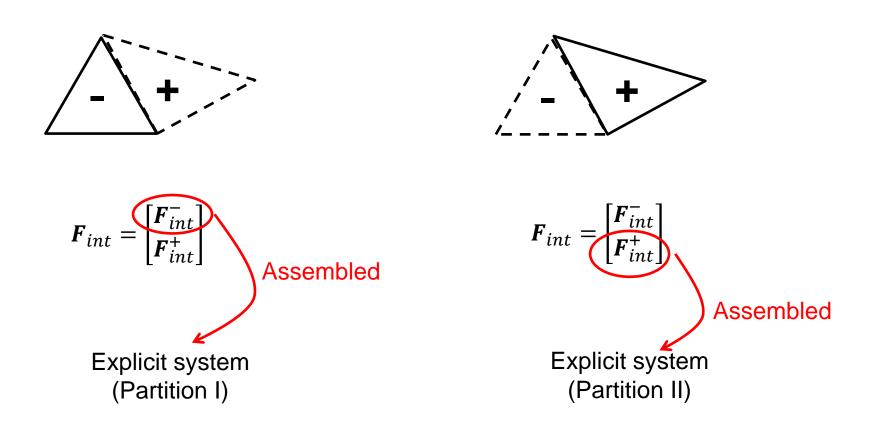






- Only the part of  $F_{int}$  associated to the dofs of the partition is assembled
  - Processor I

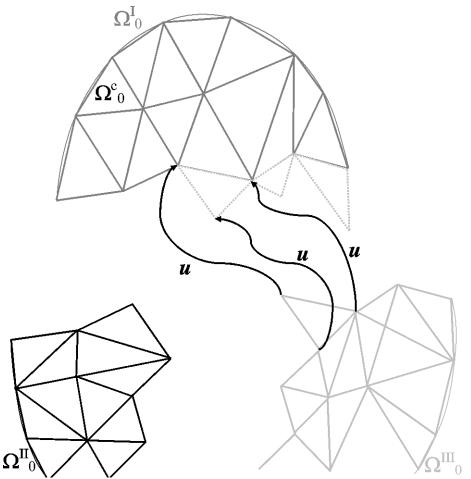
- Processor II







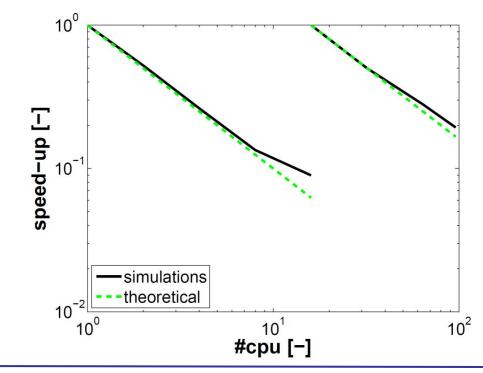
- Only one MPI communication is required by time step
  - Unknowns are exchanged before the computation of  $F_{int}$



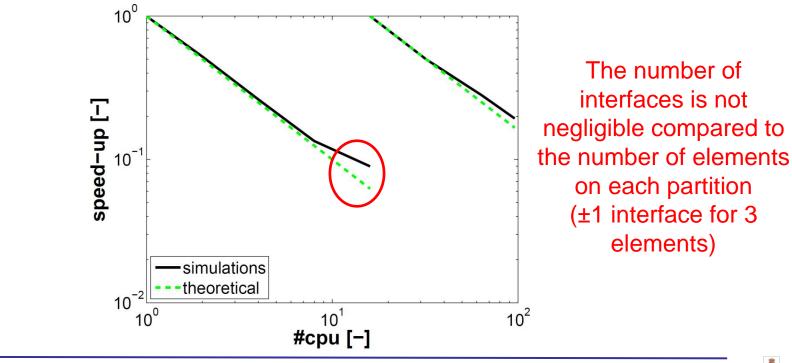




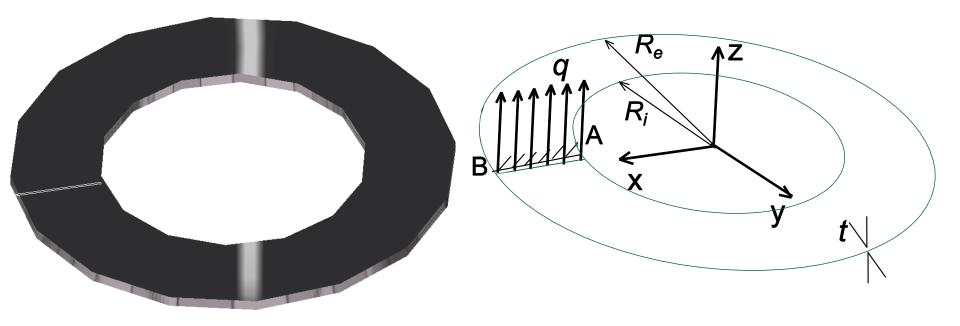
- The parallel scheme is almost optimal
  - Theoretical speed-up = time n processor / time 1 processor = 1/n
  - Practically the speed-up is lower than expected (MPI communication)
  - Cylindrical panel benchmark on Nic3 (cluster with 8 cores 2.5Ghz per node)



- The parallel scheme is almost optimal when the number of elements remains large compared to the number of interfaces (OK in practice)
  - Theoretical speed-up = time n processor / time 1 processor = 1/n
  - Practically the speed-up is lower than expected (MPI communication)
  - Cylindrical panel benchmark on Nic3 (cluster with 8 cores 2.5Ghz per node)



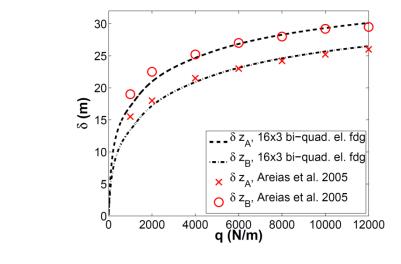
 Neo-Hookean (elastic large deformations) plate ring loaded in a quasistatic way







- Neo-Hookean (elastic large deformations) plate ring loaded in a quasistatic way
  - The method gives accurate results even in the case of large distortions



Université de Liège



0

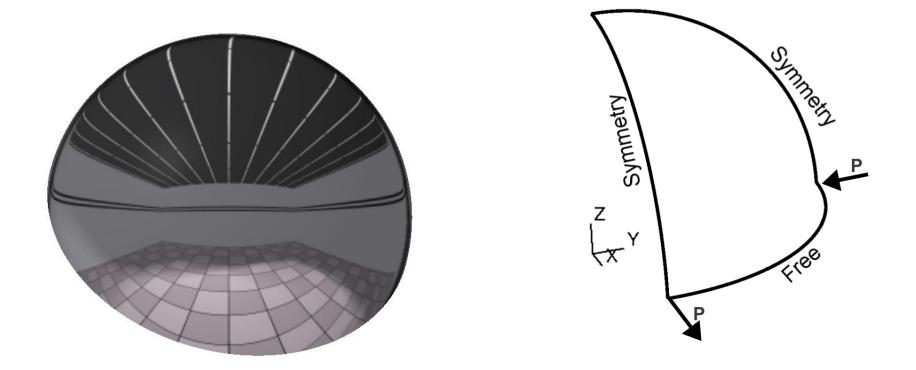
displacement

15.4

Zy Zy

30.9

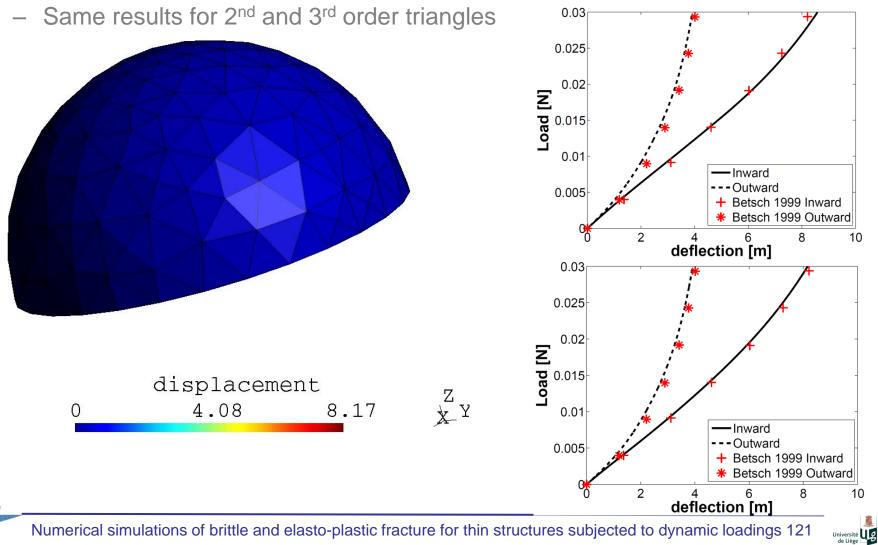
• J<sub>2</sub>-linear hardening (elasto-plastic large deformations) hemisphere loaded in a quasi-static way







 $J_2$ -linear hardening (elasto-plastic large deformations) hemisphere loaded in a quasi-static way



Numerical simulations of brittle and elasto-plastic fracture for thin structures subjected to dynamic loadings 121