Rencontre Marocaine de Chimie de l'Etat Solide Meknès, Maroc, 10-14 Avril 2005

Structural features of AgCaCdMg₂(PO₄)₃ and AgCd₂Mg₂(PO₄)₃, two new compounds with the alluaudite-type structure, and their catalytic activity in butan-2-ol conversion

Mohammed Kacimi^a, Frédéric Hatert^b and Mahfoud Ziyad^a

^aFaculté des Sciences, Laboratoire de Physico-Chimie des Matériaux et Catalyse, Département de chimie, Avenue Ibn Battouta, Rabat, Morocco (m_kacimi2000@yahoo.fr). ^bLaboratoire de Minéralogie, Université de Liège, B18, B-4000 Liège, Belgium.

Abstract

AgCaCdMg₂(PO₄)₃ and AgCd₂Mg₂(PO₄)₃, two new compounds with the alluaudite-type structure, were synthesized by a solid state reaction in air at 750°C. The X-ray powder diffraction pattern of AgCaCdMg₂(PO₄)₃ indicates the presence of small amounts of (Ca₂Mg)₃(PO₄)₂ with the whitlockite structure, as impurity, whereas AgCd₂Mg₂(PO₄)₃ is constituted by pure alluaudite.

The Rietveld refinement of the X-ray powder diffraction pattern of AgCd₂Mg₂(PO₄)₃ indicates an ordered cationic distribution with Ag on A(2), Cd on A(1) and M(1), and Mg on M(2). The catalytic properties of the AgCd₂Mg₂(PO₄)₃ compounds has been measured in reaction of butan-2-ol dehydrogenation. In absence of oxygen, the sample exhibits poor dehydrogenation activity. The sample displayed no dehydration activity. Introduction of oxygen in feed change totally the catalytic behavior of the catalyst. The production of methyl ethyl ketone increases with time on stream and the reaction temperature.