
Intermediate integer programming

representations using value disjunctions∗

Matthias Köppe Quentin Louveaux Robert Weismantel

Date: 2006/09/25 15:21:56 – Revision: 3.146

Abstract

We introduce a general technique to create an extended formulation
of a mixed-integer program. We classify the integer variables into blocks,
each of which generates a finite set of vector values. The extended formu-
lation is constructed by creating a new binary variable for each generated
value. Initial experiments show that the extended formulation can have a
more compact complete description than the original formulation.

We prove that, using this reformulation technique, the facet descrip-
tion decomposes into one “linking polyhedron” per block and the “aggre-
gated polyhedron”. Each of these polyhedra can be analyzed separately.
For the case of identical coefficients in a block, we provide a complete
description of the linking polyhedron and a polynomial-time separation
algorithm. Applied to the knapsack with a fixed number of distinct coeffi-
cients, this theorem provides a complete description in an extended space
with a polynomial number of variables.

Based on this theory, we propose a new branching scheme that analyzes
the problem structure. It is designed to be applied in those subproblems
of hard integer programs where LP-based techniques do not provide good
branching decisions. Preliminary computational experiments show that it
is successful for some benchmark problems of multi-knapsack type.

1 Introduction

Extreme representations of the feasible points of a mixed-integer linear opti-
mization problem are either given by means of the facet defining inequalities in
the original space or by a set of feasible mixed-integer points whose convex hull
contains the feasible region. It is well known that in principle one such extreme
representation can be transformed into the other extreme representation. How-
ever from an algorithmic point of view both extreme representations are very
hard to achieve.

This suggests to search for other, “intermediate” representations that are
algorithmically more tractable, in the sense that they—

∗Address: Otto-von-Guericke-Universität Magdeburg, Department of Mathematics/IMO,
Universitätsplatz 2, 39106 Magdeburg, Germany.
E-mail addresses: {mkoeppe, louveaux, weismant}@imo.math.uni-magdeburg.de
The authors gratefully acknowledge support from the European TMR network ADONET
504438.

1

• require less variables than the extreme representation by the vertices,

• require less constraints compared to the total number of facets of the
convex hull,

• have a simpler combinatorial constraint structure than the facets of the
convex hull in the original space and hence, the separation problem in the
extended space is easier to solve.

Intermediate representations of the feasible region are complete descriptions of
an extended formulation of the original problem. To make this notion precise,
we define:

Definition 1 (Representation by projection). Let K ⊆ Rn, K̄ ⊆ Rd be two
rational polyhedra and B ∈ Qn×d a rational matrix. We call F̄ = K̄ ∩ Zd a
representation of F = K ∩ Zn if the following two properties hold:

(a) K ∩ Zn = {x ∈ Zn : x = By, y ∈ K̄ ∩ Zd }.

(b) conv(K ∩ Zn) = {x ∈ Rn : x = By, y ∈ K̄ }.

Such a representation is called extreme if either d = n and B = I or if K̄ =
{y ∈ Rd

+ :
∑d

i=1 yi = 1 }; otherwise, it is called intermediate.

We remark that R. K. Martin [17] calls the sets F̄ and F “strongly equiva-
lent” in this situation.

In the literature, there are several interesting examples of this type. Chopra
and Rao [7, 8] introduced a directed formulation for the Steiner tree problem
and showed that exponentially many inequalities in the undirected formulation
are projections of a small number of directed inequalities. R. K. Martin [18]
reports on the minimum spanning tree problem, which has as an inequality
formulation of size O(2n). It can, however, alternatively be described as the
projection of an extended formulation which requires O(n3) variables and O(n2)
constraints. Moreover, there are many further compact extended formulations
for specific combinatorial optimization problems, in particular for lot-sizing and
fixed-charge network problems; see, for instance, [13, 19, 17].

Next we illustrate on an example that also quite general problems such as
knapsack problems can sometimes be described in an extended space such that
the higher dimensional polyhedron is much more appealing than the original
facet description.

Example 2. Consider the set of x ∈ {0, 1}8 such that

8x0 − x1 − 2x2 − 3x3 − 4x4 − 5x5 − 6x6 − 7x7 ≤ 0. (1)

The convex hull of solutions to this knapsack problems is given by the following system

2

of thirteen inequalities:

x0 − x3 − x5 − x6 − x7 ≤ 0
x0 − x4 − x5 − x6 − x7 ≤ 0
x0 − x1 − x2 − x5 − x6 − x7 ≤ 0
x0 − x1 − x3 − x4 − x6 − x7 ≤ 0
x0 − x2 − x3 − x4 − x5 − x7 ≤ 0
x0 − x2 − x3 − x4 − x6 − x7 ≤ 0
x0 − x1 − x2 − x3 − x4 − x5 − x6 ≤ 0

2x0 − x1 − x2 − x3 − x4 − x5 − x6 − x7 ≤ 0
2x0 − x2 − x3 − x4 − x5 − x6 − 2x7 ≤ 0
2x0 − x1 − x3 − x4 − x5 − 2x6 − 2x7 ≤ 0
3x0 − x1 − x2 − x3 − x4 − 2x5 − 2x6 − 2x7 ≤ 0
3x0 − x1 − x2 − 2x3 − 2x4 − x5 − 2x6 − 2x7 ≤ 0
5x0 − x1 − x2 − 2x3 − 2x4 − 3x5 − 4x6 − 4x7 ≤ 0

One way to obtain an extended formulation for (1) is to replace variables x1, x2, x3,
and x4 by enumerating all the possible subsets of {1, 2} and {3, 4}, respectively, and
introducing variables for all these subsets. This yields the following reformulation:

8x0 − x{1} − 2x{2} − 3x{3} − 4x{4} − 5x5 − 6x6 − 7x7 − 3x{1,2} − 7x{3,4} ≤ 0
x{1} + x{2} + x{1,2} ≤ 1

x{3} + x{4} + x{3,4} ≤ 1

(Here the empty set as a subset of {1, 2} and {3, 4} appears as the slack variable of the
two packing constraints. The original variables relate to the new variables as follows:
x1 = x{1} + x{1,2}, etc.)

The convex hull of all feasible binary solutions to this system is given by the
following list of nine inequalities:

x0 − x5 − x6 − x7 − x{3,4} ≤ 0
x0 − x{1} − x{2} − x5 − x6 − x7 − x{1,2} ≤ 0
x0 − x{3} − x{4} − x6 − x7 − x{1,2} − x{3,4} ≤ 0
x0 − x{2} − x{3} − x{4} − x5 − x7 − x{1,2} − x{3,4} ≤ 0
x0 − x{1} − x{2} − x{3} − x{4} − x5 − x6 − x{1,2} − x{3,4} ≤ 0

2x0 − x{1} − x{2} − x{3} − x{4} − x5 − x6 − x7 − x{1,2} − x{3,4} ≤ 0
2x0 − x{2} − x{3} − x{4} − x5 − x6 − 2x7 − x{1,2} − 2x{3,4} ≤ 0

+ x{3} + x{4} + x{3,4} ≤ 1
x{1} + x{2} + x{1,2} ≤ 1

Note that not only the number of inequalities for the extended formulation is smaller
than in the original space. More importantly, the structure of the inequalities in the
extended space is significantly nicer when compared to the structure of the inequalities
in the original space. For instance, the maximum coefficient occuring in the inequalities
in the higher dimensional space is 2, whereas the highest coefficient in the inequalities
in the original space is already 5.

In the example, the extended formulation was constructed by introducing a
new variable for each of the possible subsets of a set of original variables. An
alternative interpretation of the above construction is the following. The new
variable x{1,2} is the product of the original variables x1 and x2; likewise, the new
variable x{1} is the product of the original variable x1 and the complementary
variable x̄2 = 1− x2. Non-linear constructions of this type are a feature of the
so-called Lift-and-Project approach. This approach has its roots in the work of
Egon Balas on disjunctive optimization [3, 4]. It was further refined by several
authors in [20, 16, 5, 6]; see also [14]. The various Lift-and-Project approaches

3

usually define hierarchies K ⊇ K1 ⊇ K2 ⊇ · · · ⊇ P of continuous relaxations,
starting at a linear relaxation K of F , that reach the convex hull P = convF in
a finite number of steps. The hierarchies of relaxations have strong properties
and a beautiful mathematical theory behind them. A common feature of the
Lift-and-Project approaches is that they consider an extended formulation (by
“lifting” the problem description into a higher-dimensional space using a non-
linear operator), which is then projected down into the original variable space.
In each of the approaches, the individual extended formulations constructed
are of polynomial size. For instance, the Lovasz–Schrijver method [16] uses a
sequence of lifting-and-project steps into dimension O(n2). The Sherali–Adams
method [20], on the other hand, does only one very strong lift-and-project step,
using the so-called “level-t operator” which embeds the original variable space
into a space of dimension O(nt+1); when the level t is considered as a fixed
number, the formulation is again of polynomial size.

Even though both the extended formulations constructed for the individual
problems cited above and the extended formulations arising in the various lift-
and-project approaches are of polynomial size, they are usually too large for
writing them down explicitly. In the case of structured problems with too
large an extended formulation, one usually applies column and row generation
techniques (branch-cut-and-price methods) to solve the problems. In the case of
the lift-and-project approaches, the extended formulation is not written down
explicitly and only used as a device for constructing stronger bounds or for
constructing strong valid inequalities for the original formulation.

The method of this paper. The tool that we propose in this paper to gener-
ate an extended formulation is the value-disjunction procedure. Again the idea is
to introduce new variables corresponding to certain subsets of original variables.
Like the Sherali–Adams method, it also applies to subsets of original variables
of arbitrary cardinality. It offers a lot of freedom in generating the extended for-
mulation; however, since it cannot provide the strong linking constraints of the
Sherali–Adams method, it is also much weaker. It is a general way to produce
intermediate representations for mixed-integer optimization problems.

The goal of our method is to compute an intermediate formulation that
is practically small enough to be written down explicitly. We do not prove
theorems on the polynomiality of our reformulations. Indeed, in the general
case, the extended formulations produced by the value-disjunction procedure
have exponentially many variables. However, we propose to use heuristics for
constructing simplifying relaxations of the problem at hand: If the relaxation
is chosen simple enough, we can always introduce an extended formulation that
keeps the number of new variables linear in the size of the subset of the original
variables.

Outline. We introduce the value-disjunction procedure in Section 2. We then
describe the convex hull of the given mixed-integer set as the intersection of
several simpler polyhedra using the variables of the extended space. This is the
structure theorem for the value-disjunction procedure. In Section 3 we introduce
the family of linking polyhedra. In the special but important case that such a
linking polyhedron comes from the unweighted sum of a set of variables, we

4

completely describe the polyhedron by means of linear inequalities and equa-
tions. As an application of the structure theorem in Section 2 together with the
polyhedral characterizations of Section 3, we are able to determine an explicit
description of the convex hull of all solutions to a 0/1 knapsack problem with
only a fixed number of different weights. This is the topic of Section 4.

Finally, in Section 5, we investigate one way of making computational use
of value disjunctions: By branching also on the new binary variables of the
extended formulation instead of only on the original variables, it is possible
to take more flexible branching decisions. In fact, we propose such a branching
scheme for situations where none of the usual LP-based variable selection criteria
provides a solid basis for taking a branching decision. Such situations frequently
occur in very hard integer programs like the market-split instances [10]. We
investigate the effect of branching simplifying the facet description: A branching
decision is considered good if the facet descriptions of the generated subproblems
are significantly simpler than the original facet description. Using experiments
with randomly generated problem instances, we show that it is possible to make
a branching decision based on the structure of the problem which is better than
branching on the original variables. Finally we report on simple computational
experiments with a few hard integer programs, where we branch explicitly on
the new binary variables and then solve the subproblems with the branch-and-
cut system CPLEX. We obtain a significant reduction in both the number of
nodes and the computation time.

2 Value disjunctions

In this section, we present a structural result about an extended formulation
of a given mixed-integer programming model. To this end, consider a bounded
mixed-integer set of the form

F =
{

(x,w) ∈ Zn
+ ×Rd

+ :
n∑

j=1

Ajxj +
d∑

j=1

Gjwj ≤ b, x ≤ u
}

,

where Aj , Gj ∈ Rm for all j, b ∈ Rm, and u ∈ Zn
+. We set P = convF .

Let us partition the set N = {1, . . . , n} into subsets N1, . . . , NK . For each
of the sets Ni, we determine all the possible vectors (“values”) generated by the
columns Aj belonging to the variables indexed by Ni:

Ai =
{ ∑

j∈Ni

Ajxj : xj ∈ {0, . . . , uj} for j ∈ Ni

}
.

Since the integer variables are assumed to be bounded, the set Ai is finite;
its cardinality ni = |Ai| is at most

∏
j∈Ni

(1 + uj). Let the elements of Ai

be numbered, Ai = {fNi
1 , . . . , fNi

ni
}. We shall associate with fNi

k a new binary
variable yNi

k . In order to simplify the subsequent expositions, we shall also
use the abbreviating notations A(xNi) =

∑
j∈Ni

Aj , and moreover A(yNi) =∑ni

k=1 yNi

k fNi

k and A(y) =
∑K

i=1 A(yNi).
We come to two major definitions that we make use of in this paper.

5

Definition 3. For a given subset Ni, we define the linking polyhedron as

Vi = conv
{

(xNi ,yNi) ∈ Z|Ni|
+ × {0, 1}ni :

∑
j∈Ni

Ajxj =
ni∑

k=1

fNi

k yNi

k

ni∑
k=1

yNi

k = 1

0 ≤ xj ≤ uj , j = 1, . . . , n

}
. (2)

Furthermore we define the aggregated polyhedron as

Q = conv
{

(y,w) ∈ {0, 1}n1+···+nK ×Rd
+ :

K∑
i=1

ni∑
k=1

fNi

k yNi

k +
d∑

j=1

Gjwj ≤ b

ni∑
k=1

yNi

k = 1 for all i = 1, . . . ,K

}
. (3)

Thus, for every value fNi

k in a set Ai we are introducing a new binary variable
yNi

k . With this family of new variables, we can obtain a new, extended formu-
lation of F by linking the original variables xj with the new “value variables”
yNi

k as follows.

Definition 4. We define the value-disjunction reformulation F as the extended
formulation

F̄ =
{

(x,w,y) ∈ Zn
+ ×Rd

+ × {0, 1}n1+···+nK :

n∑
j=1

Ajxj +
d∑

j=1

Gjwj ≤ b, x ≤ u

∑
j∈Ni

Ajxj =
ni∑

k=1

fNi

k yNi

k for all i = 1, . . . ,K

ni∑
k=1

yNi

k = 1 for all i = 1, . . . ,K

}
,

and P̄ = conv F̄ .

Remark 5. We remark that, for the important case of identical columns Aj

(see section 3), the above value-disjunction reformulation was proposed in the
work of Sherali and Smith [21, § 4.1]. It was used to improve the formulation
of an integer programming model of a specific problem that contained many
symmetric solutions.

The precise link between the extended formulation and the original formula-
tion is given in the following theorem. Before stating the theorem we illustrate
our constructions on an example.

6

Table 1: Sizes of facet descriptions of two reformulations of Example 6

Formulation Equations # Facets

original 328

binary-digit expansion x1 + x2 + x3 + x4 = 20z0 + 21z1 + 22z2 217

value disjunction x1 + x2 + x3 + x4 = 0y0 + 1y1 + 2y2 + 3y3 + 4y4 77
y0 + y1 + y2 + y3 + y4 = 1

Example 6. Consider the convex hull P of all binary solutions to the inequality

3x1 + 3x2 + 3x3 + 3x4 + 4x5 + 7x6 + 8x7 + 9x8 + 13x9 + 15x10 ≤ 45.

We then introduce the subsets

N1 = {1, 2, 3, 4}, N2 = {5}, . . . , N7 = {10}.

We define

V1 = conv
n

(x,yN1) ∈ Z4
+ × {0, 1}5 : 3x1 + 3x2 + 3x3 + 3x4 =

0yN1
0 + 3yN1

1 + 6yN1
2 + 9yN1

3 + 12yN1
4

yN1
0 + yN1

1 + yN1
2 + yN1

3 + yN1
4 = 1

0 ≤ xi ≤ 1, i = 1, . . . , 4
o

.

Since V2, . . . , V7 consist of single points each, these polyhedra are trivial. No additional
y-variables are needed. Then, Q becomes

Q = conv
n

(yN1 , x5, . . . , x10) ∈ {0, 1}11 : 0yN1 + 3yN1
1 + 6yN1

2 + 9yN1
3 + 12yN1

4 + 4x5

+ 7x6 + 8x7 + 9x8 + 13x9 + 15x10 ≤ 45

yN1
0 + yN1

1 + yN1
2 + yN1

3 + yN1
4 = 1,

xi ∈ {0, 1} for i = 5, . . . , 10
o

.

The extended formulation F̄ is then given by:

3x1 + 3x2 + 3x3 + 3x4 + 4x5 + 7x6 + 8x7 + 9x8 + 13x9 + 15x10 ≤ 45

3x1 + 3x2 + 3x3 + 3x4 = 0yN1
0 + 3yN1

1 + 6yN1
2 + 9yN1

3 + 12yN1
4

yN1
0 + yN1

1 + yN1
2 + yN1

3 + yN1
4 = 1

x ∈ {0, 1}10, yN1 ∈ {0, 1}5

We used PORTA [9], version 1.3, to compute the facet description of the original
formulation and the extended formulation F̄ resulting from the above construction;
see also Table 1. In the original formulation there are 328 facets needed to describe the
polyhedron. The extended formulation in the 15-dimensional space requires only 77
facets for a complete description. Moreover, as we shall see in the following theorem,
the complete description has an interesting block structure.

Remark 7. We remark that there is an obvious alternative way to define an
extended formulation based on introducing new variables for the values that the

7

expression x1+x2+x3+x4 can attain. One could introduce an expansion for the
values of x1+x2+x3+x4 into binary digits, i.e., one introduces binary variables
z0, z1, z2 and requires that x1+x2+x3+x4 = 20z0+21z1+22z2. In general, this
type of reformulation is much more compact than the proposed reformulation.
Indeed, one only needs a number of new variables that is logarithmic (rather
than linear) in the number of possible values. Hence, this reformulation seems
to have advantages over the proposed reformulation.

However, we observed in many experiments that the facet structure of this
binary-digit reformulation is very complicated. For the problem of Example 6,
one obtains a polyhedron in a 13-dimensional space that requires 217 facets
for a complete description; see Table 1. The number of facets in the com-
plete description is larger than in the proposed value-disjunction reformulation.
Moreover, the structure of the individual facets is very complicated, and it seems
very unlikely that one could come up with a structural theorem in the spirit of
Theorem 8.

Theorem 8 (Structure Theorem for Value Disjunction).

P̄ =
{

(x,w,y) ∈ Rn ×Rd × [0, 1]n1+···+nK : (y,w) ∈ Q and

(xNi ,yNi) ∈ Vi for all i
}
.

(4)

Proof. The inclusion ⊆ is trivial. We shall prove the inclusion ⊇. Let us consider
(x,w,y) from the right-hand-side of (4). We try to prove that (x,w,y) ∈ P .
For such an (x,w,y), we know that (xNi , yNi) ∈ Vi. Therefore there exist convex
multipliers λNi,l ≥ 0 with

∑Li

l=1 λNi,l = 1 such that

(xNi ,yNi) =
Li∑
l=1

λNi,l(x̄Ni,l, ȳNi,l), (5)

where (x̄Ni,l, ȳNi,l) is an integral element of Vi and A(ȳNi,l) = A(x̄Ni,l). In
particular the y-part is made of exactly one 1-entry. Therefore

yNi
t =

∑
l∈T (Ni,t)

λNi,l (6)

with the sets T (Ni, t), t = 1, . . . , ni, being a packing of {1, . . . , Li}, namely for
all i we have

{1, . . . , Li} = T (Ni, 1) ∪· . . . ∪· T (Ni, ni), (7)

where C = A∪· B means C = A∪B and A∩B = ∅. The insight of (6) is shown
in Figure 1.

Up to now we have used the fact that (xNi ,yNi) ∈ Vi. We also have a second
condition stating that (y,w) ∈ Q. Therefore there exist convex multipliers σr ≥
0 with

∑R
r=1 σr = 1 such that

y =
R∑

r=1

σrŷr and w =
R∑

r=1

σrŵr, (8)

where
ŷr =

(
ŷN1,r, . . . , ŷNK ,r

)
,

8

yN1
1
...

yN1
n1
...

yNK
1
...

yNK
nK

=

λN1,· + · · ·+ λN1,·

...
λN1,· + · · ·

...
λNK ,· + · · ·

...
λNK ,· + · · ·

Figure 1: Each y is equal to the sum of zero, one or more λ from the convex
combination.

and where ŷNi,r is a unit vector. Furthermore

K∑
i=1

A(ŷNi,r) +
d∑

j=1

Gjŵr
j ≤ b.

We are now able to express (x,w) as a convex combination of feasible so-
lutions of Ax + Gw ≤ b, using the convex combinations (8) and (5). To do
this, we first remark that, similarly to (6), we can express y in terms of σr only,
namely

yNi
t =

∑
s∈S(Ni,t)

σs, (9)

with the sets S(Ni, t), t = 1, . . . , ni being a packing of {1, . . . , R}, namely

{1, . . . , R} = S(Ni, 1) ∪· . . . ∪· S(Ni, ni), (10)

for all i. By using (6), we therefore conclude that∑
s∈S(Ni,t)

σs =
∑

l∈T (Ni,t)

λNi,l (11)

By using the similarity of decompositions (9) and (6), we can construct the
desired convex combination as follows.

Let us fix r, i.e., we consider each pair (σr, ŷr) separately. We know that
ŷr is divided into K blocks with a unit vector in each block. In the block Ni,
we refer to the index of the non-zero component of ŷr as c(ŷNi,r). Using (6),
we can associate to c(ŷNi,r) a set T (Ni, c(ŷNi,r)) of indices l, which correspond
to multipliers λNi,l and vectors x̄Ni,l of the convex combination (5). For every
possible choice of indices

lr1 ∈ T (N1, c(ŷN1,r)), . . . , lrK ∈ T (NK , c(ŷNK ,r)),

we consider the point

x(lr1, . . . , l
r
K) =

(
x̄N1,lr1 , · · · , x̄NK ,lrK

)
together with

w(lr1, . . . , l
r
K) = ŵr

y(lr1, . . . , l
r
K) = ŷr,

9

with a corresponding coefficient

ν(lr1, . . . , l
r
K) = σr

λN1,lr1∑
l∈T (N1,c(ŷN1,r))

λN1,l
· · · λNK ,lrK∑

l∈T (NK ,c(ŷNK ,r))

λNK ,l
. (12)

First we can see that for all lr1, . . . , l
r
K , the vector (x(lr1, . . . , l

r
K), ŵr) satisfies

Ax(lr1, . . . , l
r
K) + Gŵr ≤ b. Indeed,

Ax(lr1, . . . , l
r
K) + Gŵr = A(x̄N1,lr1) + · · ·+ A(x̄NK ,lrK) + Gŵr

= A(ŷN1,r) + · · ·+ A(ŷNK ,r) + Gŵr

= A(ŷr) + Gŵr

≤ b,

since (ŷr, ŵr) is a mixed-0/1 solution of Q. It now suffices to prove that (x,w,y)
is the convex combination of all the (x,w,y)(lr1, . . . , l

r
K) using the corresponding

coefficients ν(lr1, . . . , l
r
K). First we clearly have, if we fix Ni and an index j ∈ Ni,

yNi
j =

R∑
r=1

∑
lr1∈T (N1,c(ŷN1,r))

· · ·
∑

lrK∈T (NK ,c(ŷNK ,r))

ν(lr1, . . . , l
r
K)ŷNi,r

j

=
R∑

r=1

σrŷ
Ni,r
j

which is clear using (8). Similarly wj =
∑R

r=1 σrŵ
r
j . If we fix again Ni and an

index j ∈ Ni, we have

xNi
j =

R∑
r=1

∑
lr1∈T (N1,c(ŷN1,r))

· · ·
∑

lrK∈T (NK ,c(ŷNK ,r))

ν(lr1, . . . , l
r
K)xNi

j (lr1, . . . , l
r
K)

=
R∑

r=1

∑
lr1∈T (N1,c(ŷN1,r))

· · ·
∑

lrK∈T (NK ,c(ŷNK ,r))

ν(lr1, . . . , l
r
K)x̄Ni,l

r
i

j

=
R∑

r=1

∑
lri∈T (Ni,c(ŷNi,r))

σr
λNi,l

r
i∑

l∈T (Ni,c(ŷNi,r))

λNi,l
x̄

Ni,l
r
i

j , (13)

the last identity being obtained using (12). For a fixed i, we have, using (10),

{1, . . . , R} = S(Ni, 1) ∪· . . . ∪· S(Ni, ni).

Therefore we can rewrite (13) using indices running over the different S(Ni, k).
Remark also that when we fix r ∈ S(Ni, k), we have c(ˆyNi,r) = k. We hence

10

have

xNi
j =

ni∑
k=1

∑
p∈S(Ni,k)

∑
l∈T (Ni,k)

σp
λNi,l∑

q∈T (Ni,k)

λNi,q
x̄Ni,l

j

=
ni∑

k=1

∑
l∈T (Ni,k)

∑
p∈S(Ni,k)

σp∑
q∈T (Ni,k)

λNi,q
λNi,lx̄Ni,l

j

=
ni∑

k=1

∑
l∈T (Ni,k)

λNi,lx̄Ni,l
j , (14)

where (14) is obtained using (11). We can use (7) namely

T (Ni, 1) ∪· . . . ∪· T (Ni, ni) = {1, . . . , Li}.

In particular it allows us to sum over {1, . . . , Li} in (14) instead of the summa-
tion over k and l. We therefore finally have

xNi
j =

Li∑
l=1

λNi,lx̄Ni,l
j ,

which is the desired result using (5). Finally, the sum of the ν coefficients is
equal to 1 due to their construction and the fact that

∑R
r=1 σr = 1.

Example 9. Consider the set

F = {x ∈ {0, 1, 2}4 : x1 + x2 + 2x3 + 3x4 ≤ 7}.

The complete facet description of convF is given by the 14 inequalities c>x ≤ γ shown
in Table 2.

Table 2: The complete description of Example 9 in the original space

c1 c2 c3 c4 γ c1 c2 c3 c4 γ

−1 0 0 0 ≤ 0 1 0 0 1 ≤ 3
0 −1 0 0 ≤ 0 0 1 0 1 ≤ 3
0 0 −1 0 ≤ 0 0 0 1 2 ≤ 4
0 0 0 −1 ≤ 0 1 1 1 1 ≤ 5
1 0 0 0 ≤ 2 0 1 2 2 ≤ 6
0 1 0 0 ≤ 2 1 0 2 2 ≤ 6
0 0 1 0 ≤ 2 1 1 2 3 ≤ 7

We now construct a value disjunction of the set F . To do this, we consider three
blocks N1 = {1, 2}, N2 = {3}, N4 = {4}. In block N1 we consider the linear form
x1 + x2, which can take the values 0, 1, . . . , 4 because x1 and x2 have an upper bound
of 2. We introduce thus five variables y0, y1, y2, y3, y4 corresponding to the possible

11

values. The blocks N2 and N3 are trivial, so we do not need to introduce new variables
in those cases. A valid extended formulation F̄ for F is thus

F̄ =
˘

(x,y) ∈ {0, 1, 2}4 × {0, 1}5 : 0y0 + 1y1 + 2y2 + 3y3 + 4y4 + 2x3 + 3x4 ≤ 7

x1 + x2 = 0y0 + 1y1 + 2y2 + 3y3 + 4y4

y0 + y1 + y2 + y3 + y4 = 1
¯
.

Theorem 8 now asserts that we obtain the complete description of the extended for-
mulation F̄ of F by combining the complete descriptions of the polyhedra

V1 = conv{ (x1, x2,y) ∈ {0, 1, 2}2 × {0, 1}5 : x1 + x2 = 0y0 + 1y1 + 2y2 + 3y3 + 4y4

y0 + y1 + y2 + y3 + y4 = 1 },

and

Q = conv{ (x3, x4,y) ∈ {0, 1, 2}2 × {0, 1}5 : 2x3 + 3x4 + 0y0 + 1y1 + 2y2 + 3y3 + 4y4 ≤ 7

y0 + y1 + y2 + y3 + y4 = 1 }.

We obtain the facet description given by the inequalities c>x + d>y ≤ γ shown in
Table 3. For each non-trivial inequality, we also mention whether it comes from V1 or
from Q.

Table 3: The complete description of Example 9 in the extended space

c1 c2 c3 c4 d0 d1 d2 d3 d4 γ Origin

−1 ≤ 0
−1 ≤ 0

−1 ≤ 0
−1 ≤ 0

−1 ≤ 0
−1 ≤ 0

−1 ≤ 0
−1 1 2 ≤ 0 V1

−1 1 2 ≤ 0 V1

1 1 1 1 1 = 1 Q, V1

1 1 ≤ 2 Q
1 1 1 1 ≤ 2 Q

1 1 1 1 1 2 ≤ 3 Q
1 2 1 2 2 ≤ 4 Q

1 1 −1 −2 −3 −4 = 0 V1

In the example it turns out that the number of inequalities describing convF
and conv F̄ is the same in the two representations. This, however, is not always
true. Moreover, an inherent advantage of the second formulation over the first
formulation is that its structure is better known. In particular, it may occur
that the same polyhedron Vi appears in several different problems. In this case,
the knowledge about the description of the polyhedron Vi can be used over and
over again.

The next section presents the case of a polyhedron that appears often in our
experiments, namely the Vi polyhedron where all the coefficients of the variables
x are the same. We show that we can compute a full description for this object.

12

3 A special family of linking polyhedra

In this section we study the linking polyhedra Vi for the case where the columns
Aj for j ∈ Ni are identical and the variables xj are binary. Hence the set of
possible values is Ai = { kAj : k = 0, . . . , |Ni| }, so ni = |Ai| = 1 + |Ni|. To
simplify the notation, we shall index the variables yNi

k by k = 0, . . . , |Ni|. In
other words, we study the polytope

Vi = conv{(xNi ,yNi) ∈ {0, 1}|Ni| × {0, 1}ni :
∑
j∈Ni

xj =
|Ni|∑
k=0

kyNi

k

|Ni|∑
k=0

yNi

k = 1 }.

We are able to give the complete, exponential-size description of this polytope
Vi and a polynomial-time separation algorithm.

Theorem 10. Vi is a polytope whose affine hull is given by the equations:

∑
j∈Ni

xj =
|Ni|∑
k=0

kyNi

k (15a)

|Ni|∑
k=0

yNi

k = 1 (15b)

The facets of Vi are given by:

∑
j∈T

xj −
|T |∑
k=1

kyk −
|Ni|∑

k=|T |+1

|T |yk ≤ 0 for ∅ 6= T ⊂ Ni (15c)

yNi

k ≥ 0 for k = 0, . . . , |Ni|. (15d)

Proof. We first show that the inequalities (15) are valid for Vi. To this end,
let (x,y) ∈ {0, 1}|Ni| × {0, 1}ni be a vertex of Vi. If y = e0, then we have
x = 0, and inequality (15c) is trivially satisfied. Otherwise, y = ek with
k =

∑
j∈Ni

xj = | suppxNi | ∈ {1, . . . , |Ni|}. Let ∅ 6= T ⊂ Ni be arbitrary. If
k ≤ |T |, we have

∑
j∈T

xj −
|T |∑
k=1

kyk −
|Ni|∑

k=|T |+1

|T |yk =
∑
j∈T

xj − k ≤ 0.

On the other hand, if k > |T |, we have

∑
j∈T

xj −
|T |∑
k=1

kyk −
|Ni|∑

k=|T |+1

|T |yk =
∑
j∈T

xj − |T | ≤ 0.

Hence, (15c) is satisfied. The remaining inequalities are trivially valid for Vi.
For the ease of notation we let N = Ni, n = |N | and substitute the variables

yNi

k by simply yk. Let c>x + d>y ≤ γ be a facet-defining inequality of Vi and
set

F = { (x,y) ∈ Vi : c>x + d>y = γ }.

13

We will show that c>x+d>y ≤ γ corresponds to one of the inequalities in (15)
up to multiplication by a scalar. We assume that the variables in N are reordered
such that c1 ≥ c2 ≥ . . . ≥ cn. Since Vi is not full dimensional, we first transform
c>x+d>y ≤ γ into a standard form. This can be achieved by adding multiples
of the equations (15a) and (15b) to c>x + d>y ≤ γ. More precisely, we first
proceed with the following three steps.

(1) By adding a multiple of equation (15b), ensure that d0 = 0.

(2) While there exists an index i ∈ N such that ci < 0, add −ci times Equa-
tion (15a) to the inequality c>x + d>y ≤ γ. Let us again denote by
c>x + d>y ≤ γ the resulting inequality. Notice that after terminating
with Step 1, we have that ci ≥ 0 for all i ∈ N and cn = 0.

(3) If ci > 0 for all i ∈ N and there exist i, j ∈ N such that ci 6= cj , then
c1 > cn > 0 due to our reordering. In this case we subtract cn times
Equation (15a) from the inequality c>x + d>y ≤ γ. Notice that also after
Step (2) has been performed we have that cn = 0 and ci ≥ 0 for all i ∈ N .

The preprocessing steps (1) and (2) guarantee that ci ≥ 0 for all i ∈ N . Now
let s ∈ {0, . . . , n} be an index such that

c1 ≥ c2 ≥ . . . ≥ cs > 0 = cs+1 = . . . = cn.

We define T = { i ∈ N : ci > 0 } = {1, . . . , s}. We consider the following cases.

Case 1. If T = ∅, i.e., c1 = · · · = cn = 0, it follows that c>x + d>y ≤ γ
is a multiple of the inequality

∑n
k=1 yk ≤ 1 or of the non-negativity

constraints yk ≥ 0.

Indeed, because (0,0) is feasible, we have γ ≥ 0. Since F is a facet,
there must be 2n − 1 affinely independent feasible points on it. If
γ = 0, we have (0,0) ∈ F ; therefore, for all but one k = 1, . . . , n, a
point (x, ek) must be contained in F . This means that dk = γ = 0 for
all but one k = 1, . . . , n. For the remaining one k̃ ∈ {1, . . . , n} we have
dk̃ ≤ γ = 0, so c>x+d>y ≤ γ is a scalar multiple of the non-negativity
constraint yk̃ ≥ 0.

On the other hand, if γ > 0, then (0,0) /∈ F , so we have F ⊆ { (x,y) ∈
Vi :

∑n
k=1 yk = 1 }, since (0,0) is the only feasible integer point with

y = 0. Because F is a facet, we have F = { (x,y) ∈ Vi :
∑n

k=1 yk = 1 },
which corresponds to (15b).

Case 2. If T = N , we conclude from our previous analysis that ci = cj 6= 0 for
all i, j ∈ N . It follows that c>x+d>y ≤ γ is implied by Equation (15a),
a contradiction that F defines a facet of Vi.

Case 3. Therefore, we may assume that ∅ 6= T ⊂ N , T 6= N . Again, since (0,0)
is feasible, we have that γ ≥ 0. If γ > 0, then F ⊆ { (x,y) ∈ Vi :∑n

k=1 yk = 1}. Hence, we can assume that γ = 0.

We next define indices 1 ≤ i1 < i2 < . . . < ir ≤ s as follows:

c1 = . . . = ci1 > ci1+1 = . . . = ci2 > . . . > cir+1 = . . . = cs.

14

By testing the inequality c>x + d>y ≤ 0 with the feasible points
(e1, e1), (e1 + e2, e2), (e1 + e2 + e3, e3), . . . , we conclude that

−d1 ≥ c1

−d2 ≥ c1 + c2

...
−di1 ≥ c1 + c2 + . . . + ci1

−di1+1 ≥
∑i1

j=1 cj + ci1+1

−di1+2 ≥
∑i1

j=1 cj + ci1+1 + ci1+2

...

−di2 ≥
∑i1

j=1 cj + ci1+1 + ci1+2 + . . . + ci2

...

−dir+1 ≥
∑ir

j=1 cj + cir+1

−dir+2 ≥
∑ir

j=1 cj + cir+1 + cir+2

...

−ds ≥
∑ir

j=1 cj + cir+1 + cir+2 + . . . + cs

Therefore, the inequality c>x + d>y ≤ γ = 0 is dominated by the
following conic combination of the inequalities (15c):

cir
×

(∑s
i=1 xi −

∑s
k=1 kyk −

∑n
k=s+1 syk ≤ 0

)
+ (cir − cir−1)×

(∑ir

i=1 xi −
∑ir

k=1 kyk −
∑n

k=ir+1 iryk ≤ 0
)

...

+ (ci1 − ci2)×
(∑i1

i=1 xi −
∑i1

k=1 kyk −
∑n

k=i1+1 i1yk ≤ 0
)

.

This completes the proof.

Theorem 11. The separation problem over the linking polyhedron Vi in the
case of identical coefficients can be solved in polynomial time.

Proof. Let (x∗,y∗) be a point satisfying the polynomially many constraints (15a,
15b, 15d). We show that, in polynomial time, we can decide whether (x∗,y∗)
satisfies the exponentially many inequalities (15c); if it does not, we can con-
struct a maximally violated inequality.

It is clear that among the inequalities (15c) with equal cardinality |T | = s,
a most violated inequality is the one where T is the index set of the s largest
components x∗j . Therefore it suffices to sort the variables x∗1, . . . , x

∗
|Ni| such that

x∗1 ≥ x∗2 ≥ · · · ≥ x∗s > 0 = xs+1 = · · · = x∗|Ni|.

Then we can simply evaluate the violation of inequality (15c) for the sets {1},
{1, 2}, {1, 2, 3}, . . . , {1, . . . , s} and pick the set which yields the maximal viola-
tion.

15

4 An application: The knapsack with three dis-
tinct coefficients

In this section, we show that the value-disjunction procedure is a tool to compute
complete descriptions in an extended space. As an example we consider the 0/1
knapsack problem with three distinct coefficients:∑

j∈N1

µxj +
∑

j∈N2

λxj +
∑

j∈N3

σxj ≤ β, (16)

where N1, N2, N3 are pairwise disjoint index sets. The convex hull of the fea-
sible solutions can have exponentially many vertices and facets. Moreover, the
complete facet description for (16) is not known in general. In [22], the case of
the knapsack with two different coefficients was solved. By applying the struc-
ture theorem for value disjunctions (Theorem 8), we are able to give a complete
description for an extended formulation of (16) using only polynomially many
variables.

We consider the extended formulation of (16),∑
j∈N1

µxj +
∑

j∈N2

λxj +
∑

j∈N3

σxj ≤ β

∑
j∈Ni

xj =
|Ni|∑
k=0

kyi
k for i = 1, 2, 3

|Ni|∑
k=0

yi
k = 1 for i = 1, 2, 3

x ∈ {0, 1}|N1|+|N2|+|N3|

yi ∈ {0, 1}|Ni|+1 for i = 1, 2, 3.

Theorem 8 provides us the framework to describe the convex hull of such an
extended formulation. It is given by the intersection of the linking polyhedron
and the aggregated polyhedron. The linking polyhedron was studied in the last
section. Theorem 10 gives a complete facet description of it. Concerning the
aggregated polyhedron, we will make use of a vertex description. It is the convex
hull of the set described by

µ

|N1|∑
k=1

kyN1,k + λ

|N2|∑
k=1

kyN2,k + σ

|N3|∑
k=1

kyN3,k ≤ β

|Ni|∑
k=0

yNi,k = 1 for i = 1, 2, 3

yNi ∈ {0, 1}|Ni|+1 for i = 1, 2, 3.

Clearly there are at most (1 + |N1|) · (1 + |N2|) · (1 + |N3|) vertices. We denote
them by v1, . . . ,vp ∈ {0, 1}|N1|+|N2|+|N3|+3.

Theorem 12. The complete facet description of (16) in an extended space is

16

given by:

y =
p∑

j=1

vjzj

p∑
j=1

zj = 1

zj ≥ 0 for j = 1, . . . , p∑
j∈Ni

xNi
j =

|Ni|∑
k=0

kyNi,k for i = 1, 2, 3

∑
j∈T

xNi
j ≥

∑
k∈{1,...,|Ni|}:
|T |+k>|Ni|

(|T |+ k − |Ni|)yNi,k for i = 1, 2, 3 and ∅ 6= T ⊂ Ni

x ∈ R|N1|+|N2|+|N3|

y ∈ R|N1|+|N2|+|N3|+3

z ∈ Rp.

Proof. This follows from Theorem 8.

It is straightforward to extend our construction to binary integer programs
with a fixed number of different columns.

5 Branching on value disjunctions

So far we have presented the value-disjunction technique as a theoretical tool to
define extended formulations which may yield more tractable polyhedral descrip-
tions. Clearly it would be too much to expect general results on the existence or
constructability of an intermediate representation for an arbitrary integer pro-
gram that is better than the original formulation. The more modest goal of this
section is to provide evidence for the practical usefulness of the value-disjunction
technique, using a limited set of computational experiments.

We shall restrict ourselves to experiments where we perform branching on
the new binary variables of the extended formulation. We first need to discuss
the situations for which we propose to make use of our new technique, so as to
complement the existing branch-and-cut techniques.

On the simplification effect of branching. Today mixed-integer linear
programs are solved using branch-and-cut algorithms, i.e., such an algorithm
consists of the combination of two techniques, the cutting technique (with the
objective to tighten a current formulation) and the branching technique (with
the objective to split a problem into a disjunction of subproblems with fewer
variables). However as of today there are essentially no mathematical arguments
available that help to decide when it is more efficient to branch or to cut. This
question is fundamental since computational experiments clearly reveal that
neither a pure branch-and-bound algorithm nor a pure cutting plane algorithm
can solve the instances that the combination of the two can manage to solve.
One partial answer to this question is given by the fact that branching does

17

not only generate subproblems with fewer variables, but, more importantly, the
polyhedral description of each of the two subproblems is significantly easier than
the original facet description. We illustrate this point through an example.

Example 13. We consider the feasible region

7x1 + 5x2 − x3 − x4 − 2x5 − 3x6 − 4x7 − 6x8 ≤ 1

xi ∈ {0, 1}.

The non-trivial facets of the convex hull are shown in Table 4. If we consider the four
subproblems where the variables x7 and x8 are fixed to the possible values, we obtain
much simpler facet descriptions; see Table 5.

This example illustrates why branching is such an important tool in solving
mixed-integer programs. The question emerges how to obtain branching deci-
sions such that the polyhedral description for each of the branches becomes as
easy as possible. Thus, when we compare branching decisions in our experi-
ments, we shall use the following definition.

Definition 14. The complete description size of an n-way branching decision
is defined as the sum of the numbers of facets in the complete descriptions of
the n subproblems.

Clearly this definition should only be used for comparing branching decisions
with an equal number of subproblems. For our experiments, we used PORTA

[9], version 1.3, to enumerate the feasible solutions and to compute the facet
description of their convex hull. As the computation times for problems of higher
dimension would be prohibitive, we had to restrict ourselves to experiments with
very small integer programs. Specifically, we generated dense 0/1 problems with
twelve binary variables and two rows. The four test instances are shown in
Table 6.

On the limitations of current LP-based branching schemes. A single-
variable branching scheme, which is used in today’s branch-and-cut systems, is
usually driven by information obtained from the current LP relaxation (“most
infeasible variable selection”), by look-ahead-based techniques (“strong branch-
ing”), and history-based prediction (“pseudo-cost branching”). There is a large
class of problems that are extremely difficult to solve for current branch-and-
cut systems because none of the above criteria provides a meaningful basis for a
branching decision. An extreme example for this are the market split instances
by Cornuéjols and Dawande [10]: Here the LP relaxations of all subproblems
have the value 0, until most of the variables have already been fixed. How-
ever, it was shown that branch-and-bound is indeed the right tool for solving
the market split instances: While LP-based single-variable branching fails, it is
very successful to branch on certain general disjunctions that can be derived
from the problem structure via lattice basis reduction [2]. Though this tech-
nique has proved very successful for solving market split problems [1] and also
for the so-called banker’s problem [15], it has not become a general tool for
branch-and-cut systems.

We also refer to the recent work [12] where a branching method along general
disjunctions is proposed. Here the quality of a disjunction (branching direction)
is measured by the depth of the intersection cut corresponding to the disjunc-
tion; among the best disjunctions, strong branching is used to select one. The

18

Table 4: Full description of Example 13

c1 c2 c3 c4 c5 c6 c7 c8 γ c1 c2 c3 c4 c5 c6 c7 c8 γ

−1 −1 −1 ≤ 0 3 2 −1 −1 −1 −1 −1 −2 ≤ 1
−1 −1 −1 ≤ 0 2 2 −1 −1 −2 −2 −1 ≤ 1

−1 −1 −1 −1 ≤ 0 3 2 −1 −1 −2 −2 −2 ≤ 1
−1 −1 −1 −1 ≤ 0 3 1 −1 −1 −2 −2 −2 ≤ 1

−1 −1 −1 −1 ≤ 0 3 3 −1 −1 −2 −1 −2 −2 ≤ 1
1 −1 −1 −1 −1 ≤ 0 3 2 −1 −1 −1 −1 −3 ≤ 1
1 −1 −1 −1 −1 ≤ 0 3 2 −1 −1 −1 −1 −3 ≤ 1
1 −1 −1 −1 −1 ≤ 0 3 2 −1 −1 −2 −3 ≤ 1
1 −1 −1 −1 −1 −1 ≤ 0 3 3 −1 −1 −2 −3 −2 ≤ 1

2 1 −1 −1 −1 −1 −2 ≤ 0 3 3 −1 −1 −2 −3 −2 ≤ 1
2 1 −1 −1 −1 −1 −2 ≤ 0 4 2 −1 −2 −1 −2 −3 ≤ 1
2 1 −1 −1 −2 −2 ≤ 0 4 2 −1 −2 −1 −2 −3 ≤ 1
2 1 −1 −1 −1 −2 −2 ≤ 0 4 3 −1 −1 −2 −1 −2 −3 ≤ 1
3 2 −1 −1 −1 −1 −2 −3 ≤ 0 4 3 −1 −1 −2 −3 −3 ≤ 1
3 2 −1 −1 −2 −2 −3 ≤ 0 4 3 −1 −1 −2 −3 −3 ≤ 1
3 2 −1 −1 −2 −2 −3 ≤ 0 4 2 −1 −1 −2 −3 −3 ≤ 1
3 2 −1 −1 −2 −3 −3 ≤ 0 4 4 −1 −1 −1 −3 −3 −3 ≤ 1
3 3 −1 −1 −1 −2 −3 −3 ≤ 0 4 3 −1 −1 −1 −1 −2 −4 ≤ 1
6 4 −1 −1 −2 −3 −4 −6 ≤ 0 4 3 −1 −1 −2 −2 −4 ≤ 1
4 3 −1 −1 −1 −2 −3 −4 ≤ 0 4 3 −1 −1 −2 −2 −4 ≤ 1
5 3 −1 −1 −2 −2 −3 −5 ≤ 0 7 5 −1 −1 −2 −3 −4 −6 ≤ 1

1 −1 −1 ≤ 1 5 4 −1 −1 −1 −3 −3 −4 ≤ 1
1 −1 −1 ≤ 1 5 5 −1 −1 −2 −3 −4 −4 ≤ 1
1 −1 −1 ≤ 1 5 4 −1 −1 −1 −2 −3 −5 ≤ 1
1 −1 −1 ≤ 1 6 4 −1 −1 −2 −2 −3 −5 ≤ 1
1 −1 −1 ≤ 1 6 4 −1 −2 −3 −4 −5 ≤ 1
1 −1 −1 ≤ 1 6 4 −1 −2 −3 −4 −5 ≤ 1

2 1 −1 −1 −1 ≤ 1 3 2 −1 −1 −1 −2 ≤ 2
1 −1 −1 −1 ≤ 1 3 2 −1 −1 −1 −2 ≤ 2
1 −1 −1 −1 ≤ 1 3 2 −1 −1 −1 −3 ≤ 2

2 1 −1 −1 −1 −1 ≤ 1 3 3 −1 −1 −1 −1 −3 ≤ 2
2 1 −1 −1 −1 −1 ≤ 1 4 3 −1 −1 −1 −1 −1 −3 ≤ 2

1 −1 −1 −1 −1 ≤ 1 5 3 −1 −2 −1 −2 −4 ≤ 2
2 1 −1 −1 −1 −1 −1 ≤ 1 5 3 −1 −2 −1 −2 −4 ≤ 2
2 2 −1 −1 −1 −1 −1 −1 ≤ 1 5 4 −1 −1 −2 −1 −2 −4 ≤ 2
2 1 −1 −1 −2 ≤ 1 5 4 −1 −1 −2 −3 −4 ≤ 2
2 2 −1 −1 −1 −2 ≤ 1 5 4 −1 −1 −2 −3 −4 ≤ 2
2 2 −1 −1 −1 −2 ≤ 1 6 5 −1 −1 −1 −3 −3 −5 ≤ 2
2 2 −1 −1 −1 −2 ≤ 1

19

Table 5: Full description of the subproblems of Example 13

Branch x7 = 0, x8 = 0 Branch x7 = 1, x8 = 0

c1 c2 c3 c4 c5 c6 γ c1 c2 c3 c4 c5 c6 γ

1 −1 ≤ 0 1 −1 −1 −1 ≤ 0
1 −1 ≤ 0 1 −1 −1 −1 ≤ 0
1 −1 −1 ≤ 0 1 ≤ 1
2 1 −1 −1 ≤ 0 1 1 −1 ≤ 1
1 1 −1 −1 ≤ 0 1 1 −1 ≤ 1
1 1 −1 −1 ≤ 0 1 1 −1 ≤ 1
2 1 −1 −1 −1 ≤ 0 1 1 −1 ≤ 1
3 2 −1 −1 −2 ≤ 0 3 2 −1 −1 −1 ≤ 2
4 3 −1 −1 −1 −2 ≤ 0 3 2 −1 −1 −1 ≤ 2

Branch x7 = 0, x8 = 1 Branch x7 = 1, x8 = 1

c1 c2 c3 c4 c5 c6 γ c1 c2 c3 c4 c5 c6 γ

1 ≤ 1 1 1 −1 −1 −1 −1 ≤ 1
1 1 −1 ≤ 1
1 1 −1 −1 ≤ 1
1 1 −1 −1 ≤ 1

Table 6: Randomly generated problem instances. Instances 1 and 2 have been
generated randomly by drawing the coefficients independently and uniformly
from the set {−20, . . . ,+20}. The right-hand side is always 0. Instance 3
has been modified manually, so that the first three variables have identical
coefficients. Finally, instance 4 is a variation of instance 3 where the coefficients
of the first three variables are very close to each other.

Matrix data

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 b

Instance 1

11 −7 9 10 −2 7 14 −15 4 −5 −2 −19 ≤ 0
6 18 −4 −9 17 −11 5 −12 5 3 −18 7 ≤ 0

Instance 2

3 −7 0 8 12 −1 7 −14 13 20 −18 2 ≤ 0
9 11 −13 19 8 −15 −5 3 7 18 −6 −10 ≤ 0

Instance 3

7 7 7 15 −21 −15 −23 −12 12 −6 11 10 ≤ 0
10 10 10 −21 4 −3 4 13 −1 −14 2 −6 ≤ 0

Instance 4

7 6 7 15 −21 −15 −23 −12 12 −6 11 10 ≤ 0
10 10 9 −21 4 −3 4 13 −1 −14 2 −6 ≤ 0

20

computational results for many benchmark problems from MIPLIB are very
promising. However, for a few instances the proposed branching scheme fails
to close any gap. This includes the market split instances markshare1 and
markshare2.

A branching scheme based on value disjunctions. We propose a new
branching scheme based on value disjunctions, which we hope is general enough
to be useful as a branching scheme for general integer programs. It is purely
based on the analysis of the structure of the integer program, and is designed
to complement the above mentioned LP-based prediction methods.

The basic idea of the new branching scheme is to partition the set N of
problem variables into blocks Ni and to move over to the extended formulation
given by the value disjunction. In addition to the original variables, we can then
branch on the newly introduced binary variables. In fact, because exactly one
binary variable of each block can be set to 1, we can perform SOS branching on
these variables. The question, of course, is how to construct a suitable partition
of N .

Claim 1. One should choose a set of variables whose columns are structurally
similar and perform a value disjunction according to a relaxation where we re-
place the original coefficients by simpler ones.

For our experiment, we decided to pick three of the twelve binary variables,
xi, xj , xk, say. We then add the (redundant) constraint xi + xj + xk ≤ 3.
When we construct a value disjunction with respect to this constraint, we need
to introduce four variables y0, y1, y2, y3, corresponding to the possible values
of the form xi + xj + xk. Performing SOS branching on y0 + y1 + y2 + y3 = 1
yields four subproblems. To compute the complete description size of the value
disjunction branching on xi, xj , xk, we sum up the numbers of facets in each of
these four subproblems. To make a comparison with traditional single-variable
branching, we need to consider a branching strategy that yields the same number
of subproblems. To this end, we pick two original variables, xp, xq say, and
consider the subproblems where we fix these variables to the possible values.

We next defined a “ranking formula” for the selection of the three variables
xi, xj , xk that give rise to the value disjunction. Let Ai, Aj , Ak denote the
columns of these variables. Then let

R({i, j, k}) = min2
r=1

(max{Ar,i, Ar,j , Ar,k} −min{Ar,i, Ar,j , Ar,k})2

2 + |med{Ar,i, Ar,j , Ar,k}|

where med{Ar,i, Ar,j , Ar,k} denotes the median of the three values. The formula
was designed so that (i) columns that have “similar” coefficients in at least one of
the rows yield a low (good) result; (ii) columns with large coefficients yield a low
result. The rationale of this ranking is that, intuitively, the value disjunction for
a selection of similar columns should lead to simpler subproblems; also columns
with large coefficients should have a larger impact on the rest of the problem
than columns with small coefficients.

Example 15. For test instance 4, selecting the variables x1, x2, x3 has the rank
R({1, 2, 3}) = 0.083; selecting the variables x7, x9, x10 has the rank R({7, 9, 10}) =
108.

21

1500 2000 2500 3000 3500 4000
0

5

3 best ranked choices

1500 2000 2500 3000 3500 4000
0

5

10
5 best ranked choices

1500 2000 2500 3000 3500 4000
0

20

40
10% best ranked choices

1500 2000 2500 3000 3500 4000
0

20

40
30% best ranked choices

1500 2000 2500 3000 3500 4000
0

20

40
100% best ranked choices

1500 2000 2500 3000 3500 4000
0

20

40
Two variables branching

Figure 2: Branching on value disjunctions vs. 2-variable branching (instance 1).
The figure shows histograms of the total number of facets in the subproblems;
the vertical line is the average.

For all possible branching decisions (i.e., the
(
12
3

)
choices of three variables),

we now computed the rank and the complete description size. We grouped the
branching decisions according to their rank into sets of the 5 best ranked, 10 %
best ranked, 30 % best ranked, etc. choices. For each of the test instances, we
show histograms of the complete description sizes corresponding to branching
decisions within these rankings in Figures 2–5. As a comparison, the bottom
part in each figure shows a histogram of the complete description sizes obtained
by the

(
12
2

)
possible choices for two-variable branching. In each histogram the

vertical line shows the average (arithmetic mean) of the complete description
sizes.

From the computational results, we can draw the following conclusions:

1. It is possible to use the rank formula to predict which branching decisions
will lead to low complete description sizes.

2. For instances 1 and 2 that do not contain selections of very low rank, two-
variable branching performs better than branching on value disjunctions.
However, instances 3 and 4 that contain selections of very low rank, it
is possible to take branching decisions that are better than two-variable
branching decisions by making use of the rank formula.

We have to remark that there is room for improvement of the proposed
ranking formula. Clearly it needs to be generalized for blocks of different cardi-
nalities. It would also need adjustment for unequally scaled rows.

22

400 500 600 700 800 900 1000 1100 1200 1300
0

5

10
5 best ranked choices

400 500 600 700 800 900 1000 1100 1200 1300
0

20

40

10% best ranked choices

400 500 600 700 800 900 1000 1100 1200 1300
0

20

40

30% best ranked choices

400 500 600 700 800 900 1000 1100 1200 1300
0

20

40

100% best ranked choices

400 500 600 700 800 900 1000 1100 1200 1300
0

20

40

Two variables branching

Figure 3: Branching on value disjunctions vs. 2-variable branching (instance 2)

500 1000 1500 2000 2500 3000 3500
0

1

2

Best choice

500 1000 1500 2000 2500 3000 3500
0

5

10
5 best ranked choices

500 1000 1500 2000 2500 3000 3500
0

50

10% best ranked choices

500 1000 1500 2000 2500 3000 3500
0

50

30% best ranked choices

500 1000 1500 2000 2500 3000 3500
0

50

100% best ranked choices

500 1000 1500 2000 2500 3000 3500
0

50

Two variables branching

Figure 4: Branching on value disjunctions vs. 2-variable branching (instance 3)

23

1000 1500 2000 2500 3000 3500 4000 4500
0

1

2

Best choice

1000 1500 2000 2500 3000 3500 4000 4500
0

5

10
5 best ranked choices

1000 1500 2000 2500 3000 3500 4000 4500
0

50

10% best ranked choices

1000 1500 2000 2500 3000 3500 4000 4500
0

50

30% best ranked choices

1000 1500 2000 2500 3000 3500 4000 4500
0

50

100% best ranked choices

1000 1500 2000 2500 3000 3500 4000 4500
0

50

Two variables branching

Figure 5: Branching on value disjunctions vs. 2-variable branching (instance 4)

Value-disjunction branching on larger problems. Based on the evidence
obtained with the above experiments, we tried to use the new branching scheme
to solve larger test problems. Our set of test instances consists of instances with
several dense rows (multi-knapsack problems). We focused on problems where
the solutions to LP relaxations of subproblem only give little information for
taking branching decisions. The test instances are:

• Six randomly generated market split instances with 35 and 40 variables.

• The models mas74 and mas76 from the MIPLIB.

It seems difficult to apply Theorem 8 directly to these problems. The reason
is that typically many constraints in a model are present. In this case the
probability that we can come up with a block decomposition such that some
values repeat, is quite low. Hence, one may expect that in such cases the value-
reformulation requires to introduce as many variables as we have subsets in each
of the elements of the partition N1, . . . , NK . Therefore, we decided to perform
the following steps:

1. We consider one of the dense rows at a time. We add a relaxation of this
row that we obtain by replacing the coefficients by simpler ones. From
the row

n∑
i=1

aixi +
d∑

j=1

gjwj ≤ b,

we generate the relaxation
n∑

i=1

f(ai)xi ≤ M,

24

Table 7: Branching on value disjunctions for the market split and mas instances.
Computation times are given in CPU seconds on a Sun Fire V890 with 1200 MHz
UltraSPARC-IV processors

CPLEX 9.1 Value Disjunctions

Name Rows Cols Nodes (106) Time (s) Nodes (106) Time (s)

corn535-1 5 40 13.8 2 431 3.8 809
corn535-2 5 40 11.9 2 084 4.2 865
corn535-3 5 40 17 2 946 9.8 1 970
corn540-4 5 45 321 55 918 105 20 873
corn540-5 5 45 231 39 787 87 17 267
corn540-6 5 45 188 30 532 97 19 162
mas74 13 151 4.4 2 463 1.2 1 194
mas76 12 151 0.667 289 0.063 35

where f(x) is a non-linear function of the type

f(x) =

 1 if x ≥ U
0 if L < x < U
−1 if x ≤ L.

2. We reformulate the problem using a value disjunction for each of the new
rows separately. Because of the simple structure of the coefficients of the
new rows, only a linear number of variables is added.

3. Finally, we manually perform SOS branching on the new variables. Then
we solve each of the subproblems with the standard branch-and-cut system
CPLEX 9.1 [11] using the default settings of the Callable Library. We use
the optimal solution value from a subproblem as a primal bound for the
remaining subproblems.

The results of this approach on the set of test instances are shown in Table 7. It
can be seen that the approach provides a clear gain on all these instances. Both
the number of nodes and the computation times are reduced in comparison to
the performance of CPLEX 9.1 (with the default settings of the Callable Library)
on the original problem.

25

Acknowledgment. The authors wish to thank the anonymous referees for
their helpful comments.

References

[1] Karen Aardal, Robert E. Bixby, Cor A. J. Hurkens, Arjen K. Lenstra, and
Job W. Smeltink, Market split and basis reduction: towards a solution of
the Cornuéjols-Dawande instances, INFORMS J. Comput. 12 (2000), no. 3,
192–202.

[2] Karen Aardal, Cor A. J. Hurkens, and Arjen K. Lenstra, Solving a system
of diophantine equations with lower and upper bounds on the variables,
Mathematics of Operations Research 25 (2000), 427–442.

[3] Egon Balas, Intersection cuts – a new type of cutting planes for integer
programming, Operations Research 19 (1971), 19–39.

[4] , Disjunctive programming: Cutting planes from logical conditions,
Nonlinear Programming 2 (O. L. Mangasarian et al., ed.), Academic Press,
London, 1975, pp. 279–312.

[5] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols, A lift-and-project cut-
ting plane algorithm for mixed 0−1 programs, Mathematical Programming
58 (1993), 295–324.

[6] Daniel Bienstock and Mark Zuckerberg, Subset algebra lift operators for
0-1 programming, Tech. Report 1, CORC, 2002.

[7] S. Chopra and M. R. Rao, The Steiner tree problem I: Formulations, com-
positions and extension of facets, Mathematical Programming 64 (1994),
no. 2, 209–229.

[8] , The Steiner tree problem II: Properties and classes of facets, Math-
ematical Programming 64 (1994), no. 2, 231–246.

[9] Thomas Christof and Andreas Löbel, PORTA – polyhedron representation
transformation algorithm, available electronically from URL http://www.
zib.de/Optimization/Software/Porta/.

[10] Gérard Cornuéjols and Milind Dawande, A class of hard small 0-1 pro-
grams, Integer programming and combinatorial optimization (Houston,
TX, 1998), Lecture Notes in Computer Science, vol. 1412, Springer, Berlin,
1998, pp. 284–293. MR 2000h:90042

[11] ILOG, CPLEX, 1997–2004, http://www.ilog.com/products/cplex/.

[12] Miroslav Karamanov and Gérard Cornuéjols, Branching on general dis-
junctions, Manuscript, 2005.

[13] J. Krarup and O. Bilde, Plant location, set covering and economic lot sizes:
an O(mn) algorithm for structured problems, Optimierung bei graphenthe-
oretischen und ganzzahligen Problemen (L. Collatz et al., ed.), Birkhäuser-
Verlag, Basel, 1977, pp. 155–180.

26

http://www.zib.de/Optimization/Software/Porta/
http://www.zib.de/Optimization/Software/Porta/
http://www.ilog.com/products/cplex/

[14] Monique Laurent, A comparison of the Sherali–Adams, Lovász–Schrijver
and Lasserre relaxations for 0-1 programming, Mathematics of Operations
Research 28 (2003), no. 3, 470–496.

[15] Quentin Louveaux and Laurence A. Wolsey, Combining problem structure
with basis reduction to solve a class of hard integer programs, Mathematics
of Operations Research 27 (2002), no. 3, 470–484.

[16] László Lovász and Alexander Schrijver, Cones of matrices and set-functions
and 0–1 optimization, SIAM Journal on Optimization 1 (1991), 166–190.

[17] R. Kipp Martin, Generating alternative mixed-integer programming models
using variable redefinition, Operations Research 35 (1987), 331–359.

[18] , Using separation algorithms to generate mixed integer model re-
formulations, Operations Research Letters 10 (1991), 119–128.

[19] R. L. Rardin and U. Choe, Tighter relaxations of fixed charge network
flow problems, report J-79-18, Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, Georgia, 1979.

[20] Hanif D. Sherali and Warren P. Adams, A hierarchy of relaxations between
the continuous and convex hull representations for zero-one programming
problems, SIAM Journal of Discrete Mathematics 3 (1990), 411–430.

[21] Hanif D. Sherali and J. Cole Smith, Improving discrete model representa-
tions via symmetry considerations, Management Science 47 (2001), no. 10,
1396–1407.

[22] Robert Weismantel, Hilbert bases and the facets of special knapsack poly-
topes, Mathematics of Operations Research 21 (1996), 886–904.

27

	Introduction
	Value disjunctions
	A special family of linking polyhedra
	An application: The knapsack with three distinct coefficients
	Branching on value disjunctions

