

50 Years of contrasted residue management in an agricultural crop: impacts on the soil carbon budget and on heterotrophic respiration.

Pauline Buysse¹, Christian Roisin², Marc Aubinet¹.

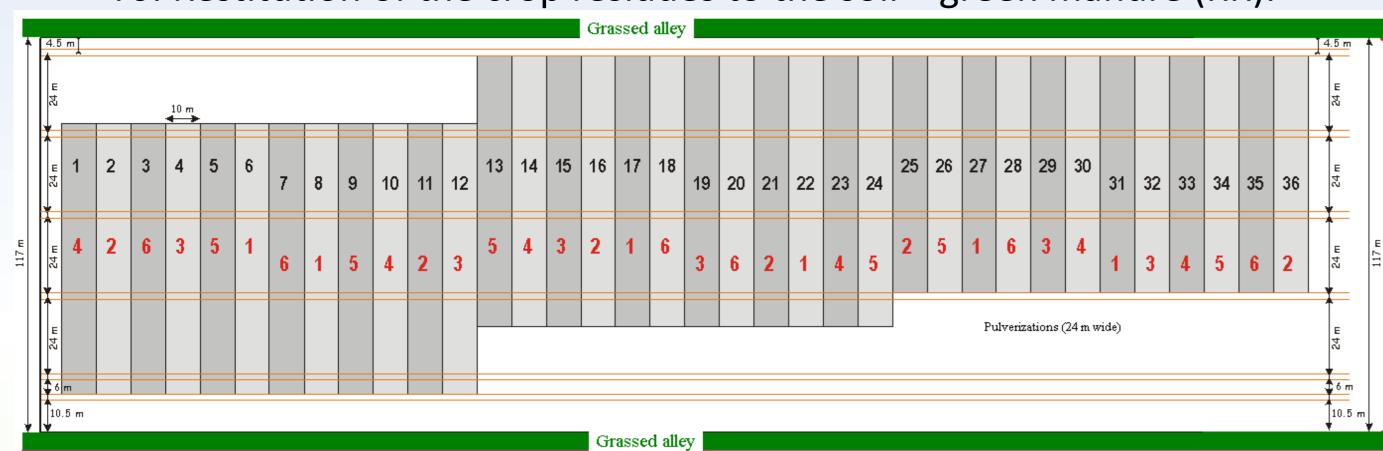
¹Unit of Biosystem Physics, University of Liege – Gembloux Agro-Bio Tech, Belgium;

²Walloon Agricultural Research Centre, Gembloux, Belgium.

1. Introduction.

- Agricultural soils are potentially large sources of CO₂, on which crop management has a considerable influence.
- Long-term carbon (C) budgets on croplands are scarce, but they are necessary to understand crop management influences on soil C dynamics.

OBJECTIVE:


→ What is the impact of 50 years of differentiated residue management treatments on soil organic C (SOC) stocks and C outputs?

A. Experimental design:

- Longs Tours site, close to Gembloux.
- Soil = Luvisol with clay/silt/sand fractions of 12/85/3 %.
- 6 different crop residue management treatments (1 -> 6, Fig. 1),
- Since 1959.
- 6 plots (repetitions) in each treatment: 10 by 70 (or 60) m.
- All plots ploughed over 0-25 cm depth.

B. Studied treatments:

- T1: Exportation of crop Residues (RE).
- T4: Farm Yard Manure inputs every 3-4 years (FYM).
- T6: Restitution of the crop residues to the soil + green manure (RR).

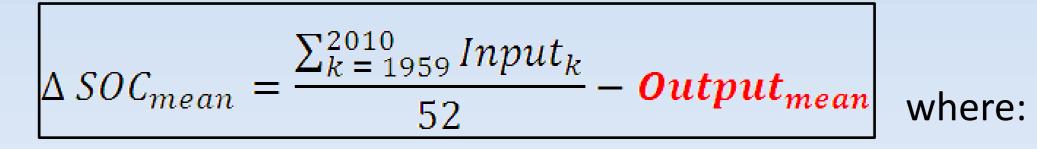
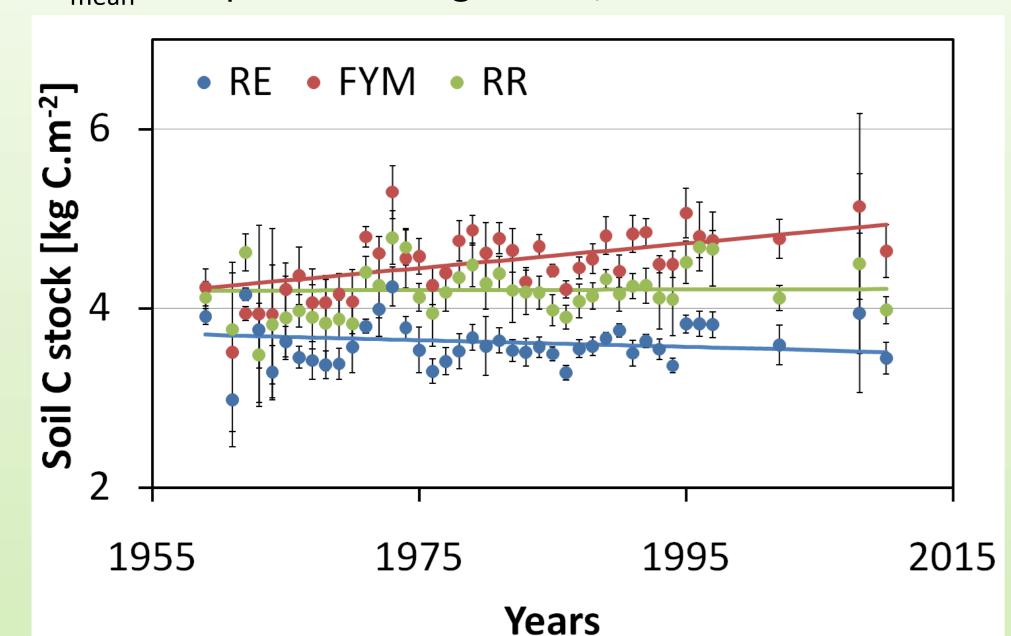


Fig.1: Experimental design at Liroux site. Numbers in red colour represent the residue treatments(1 \Rightarrow 6).

2. Material and Methods.

C. Crop characteristics:

- From 1959 to 1974: 4-year rotation cycle: Sugar beet Cereals Legume Cereals
- From 1975 onwards: 3-year rotation cycle: Sugar beet Winter wheat Winter barley
- D. Soil carbon budget calculations in each treatment.



- Δ SOC_{mean} is the mean annual soil C sequestration rate over 1959-2010;
- **→** Estimated from yearly SOC data compiled since 1959.
- Input_k is the amount of C entering the soil on year k;
- **→** Estimated from:
 - 1. Yearly crop residue input data (fresh biomass basis)
 - 2. <u>Green manure input data (fresh biomass basis)</u>
 - 3. <u>Left-over residue</u> amounts (roots, rhizodeposits, weeds, residues eventually not exported) (estimated from the literature)
- Output_{mean} is the mean annual rate of C loss by heterotrophic respiration
- \rightarrow Based on all this information, Output_{mean} could be estimated for each treatment.

A. Estimation of Δ SOC_{mean}

• Weighted least squares regressions applied to the yearly SOC data.

• ΔSOC_{mean} = slope of each regression, for each treatment.

Treatments	Slopes = ΔSOC_{mean} (gC.m ⁻² .year ⁻¹)	p (slope = 0)
RE	- 4 (5)	0.15 (NS)
FYM	14 (6)	0.00 (***)
RR	0.3 (6)	0.91 (NS)

- → Significant C sequestration in the FYM treatment only.
- B. Estimation of crop residue and green manure inputs.

Yearly crop residue (<u>fresh biomass</u>) estimates (field data: 1959-2010)

	Crop residue		% dry matter	% C
	% dry matter, % C (from literature)	Wheat	86.4 ± 6.7	44.7 ± 2.2
		Sugar beet	15.2 ± 5.3	33.3 ± 1.8
		Manure	32.0 ± 7.0	35.6 ± 10.0

Yearly crop residue <u>carbon</u> inputs

- C. Left-over residue carbon inputs
- Same amounts in the three treatments
- Based on a literature survey

	Annual C amounts (gC.m ⁻² .year ⁻¹)
Roots	126 ± 30
Rhizodeposits	71 ± 17
Weeds	72 ± 39
Residues not actually exported	75 ± 25
Total	344 ± 58

3. Results

D. Soil carbon budgets

Mean annual	Units	RE	FYM	RR
C budget terms				
ΔSOC_{mean}	gC.m ⁻² .year ⁻¹	- 4 ± 5	14 ± 6	0.3 ± 6
Crop residue C input	gC.m ⁻² .year ⁻¹	0	154 ± 19	141 ± 5
Left-over C input	gC.m ⁻² .year ⁻¹	344 ± 58	344 ± 58	344 ± 58
Green manure C input	gC.m ⁻² .year ⁻¹	0	0	17 ± 0.3
C output _{mean}	gC.m ⁻² .year ⁻¹	348 ± 58	484 ± 61	502 ± 59
Daily mean C output	gC.m ⁻² .day ⁻¹	0.9 ± 0.2	1.3 ± 0.2	1.4 ± 0.2

4. Discussion

- **Δ**SOCmean:
- C sequestration only in FYM
- Large uncertainties for RE and RR
- ☐ Carbon inputs:
 - More than 2/3 of the total inputs come from the left-over residues.
- Same amounts of crop residues were brought to the soil in FYM and RR.
- ☐ C Output_{mean}:
- In agreement with the literature.
- In agreement with field measurements of soil respiration carried out at the seasonal scale (2010, 2011) and extrapolated at the annual scale.
- Virtually no difference between FYM and RR.
- ☐ About 2.8 ± 1.5 % of the total C inputs are sequestered annually, on average, in the FYM treatment.
- ☐ What about the actual C dynamics over the 50 years? (here, mean values)

5. Conclusion and perspectives

- ☐ Importance of left-over residues
- Both in terms of mean values and uncertainties
- Literature-based → more investigations needed
- SOC sequestration only in FYM
- Even if FYM and RR received the same amounts of crop residues
- → Importance of substrate quality, aggregate formation?
- ☐ Further investigations:
- Microbial biomass, labile C
- Aggregate formation and SOC protection against deciomposition
- Field measurements (heterotrophic respiration)

