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Abstract

In this paper, we study strong uniform consistency of a weighted average of
artificial data points. This is especially useful when information is incomplete (cen-
sored data, missing data . . . ). In this case, reconstruction of the information is
often achieved nonparametrically by using a local preservation of mean criterion
for which the corresponding mean is estimated by a weighted average of new data
points. The present approach enlarges the possible scope for applications beyond
just the incomplete data context and can also be useful to treat the estimation of the
conditional mean of specific functions of complete data points. As a consequence,
we establish the strong uniform consistency of the Nadaraya-Watson (1964) estima-
tor for general transormations of the data points. This result generalizes the one of
Härdle, Janssen and Serfling (1988). In addition, the strong uniform consistency of
a modulus of continuity will be obtained for this estimator. Applications of those
two results are detailed for some popular estimators.
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1



1 Introduction

In many regression contexts where the data are incomplete, one has to reconstruct

missing information by using other data points. In particular, if Z denotes a data point,

X the covariate and ∆ is a binary variable equal to 1 if the data point Z is complete

(in this case Z = Y, the true data point) and 0 if it is incomplete, a natural way to

reconstruct a function ϕt(Y |x) at X = x and for t ∈ I ⊆ IR is to take Γt(Z, ∆|x) =

(ϕt(Y |x))∗ = E[ϕt(Y |x)|x, Z, ∆] = ϕt(Y |x)∆ + E[ϕt(Y |x)|Y > Z, x](1 − ∆). (In the

case of missing data, Z = −∞ and therefore E[ϕt(Y |x)|Y > Z, x] = E[ϕt(Y |x)|x].) In

censored regression, this scheme with ϕt(Y |x) = Y has been used by Buckley and James

(1979), Koul, Susarla and Van Ryzin (1981), Leurgans (1987), Fan and Gijbels (1994)

and Heuchenne and Van Keilegom (2004) among others. In estimation with missing

data, this kind of new data points has been proposed by, e.g., Cheng (1994), Chu and

Cheng (1995) and Cheng and Chu (1996). As explained in Heuchenne and Van Keilegom

(2005) for nonparametric estimation with censored data, ϕt(Y |x) can be any function

of x, t and Y : e.g., Y, Y 2 or I(Y ≤ t), for fixed t ∈ I, if the objective is to estimate

E[Y |x], E[Y 2|x] or E[I(Y ≤ t)|x] = P (Y ≤ t|x), respectively. Therefore, there is a need

to construct a general asymptotic theory for a nonparametric estimator of E[ϕt(Y |x)|x]

(E[(ϕt(Y |x))∗|x]) in the complete (incomplete) data case.

More precisely, let {Γt, t ∈ I} be a family of real valued measurable functions on IR

and suppose we want to estimate

E[Γt(Z, ∆|x)|x] =
∑

δ=0,1

∫
Γt(z, δ|x)dHδ(z|x), (1.1)

where I is a possibly infinite or degenerate interval in IR, x ∈ RX , a compact interval in

IR and Hδ(y|x) = P (Z ≤ y, ∆ = δ|x) (δ = 0, 1). A natural nonparametric estimator for

this conditional mean is given by∑n
i=1 K(x−Xi

an
)Γt(Zi, ∆i|x)∑n

i=1 K(x−Xi

an
)

, (1.2)

where K(·) is a symmetric kernel density function and an is a sequence of nonnegative

numbers such that an → 0 when n →∞. These quantities (in the framework of this paper)

will be completely specified in Section 3. For easy reference to this estimator, we call it

W.A.E. (weighted average estimator). In the case Γt(Z, ∆|x) = Z, this estimator reduces

to the usual Nadaraya-Watson (1964) estimator and in the case Γt(Z, ∆|x) = I(Z ≤ t),

we obtain the Stone (1977) estimator.
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The objective of Section 3 is to provide the almost sure convergence of the W.A.E.

uniformly in x, t with the rate (nan)−1/2(log n)1/2. Now, suppose s, t ∈ I with |t−s| ≤ dn,

where dn is a sequence of nonnegative numbers such that dn → 0 when n → ∞. This

sequence will also be completely specified later (see assumption (A10) in Section 2). In

Section 4, we aim to obtain the almost sure convergence of the modulus of continuity based

on the W.A.E. uniformly in x, s, t, |t− s| ≤ dn, with the rate (nan)−1/2(log n)1/2d1/2
n . The

utility of these results is illustrated for some typical examples in Section 2.

2 Examples and Assumptions

Example 2.1 (Nonparametric estimation of conditional location and scale func-

tions for complete data)

Suppose Y1, . . . , Yn are n i.i.d. random variables corresponding to X1, . . . , Xn, n i.i.d.

covariates with distribution FX(x) = P (X1 ≤ x). Let F (t|x) = P (Y1 ≤ t|X1 = x) be the

conditional distribution of the response given the covariate. Standard location and scale

estimators are given by

m̂ST (x) =

1∫
0

F̂−1(s|x)L(s) ds, σ̂2
ST (x) =

1∫
0

F̂−1(s|x)2L(s) ds− m̂2
ST (x), (2.1)

where F̂ (t|x) is the Stone (1977) estimator (W.A.E. with Γt(Z, ∆|x) = Γt(Y, 1|x) =

I(Y ≤ t)), F̂−1(s|x) = inf{t : F̂ (t|x) ≥ s} and L(s) is a given score function satisfying∫ 1
0 L(s)ds = 1. If the objective is to estimate

1∫
0

F−1(s|x)L(s) ds (2.2)

and

1∫
0

F−1(s|x)2L(s) ds, (2.3)

it is clear that Γt1(Y, 1|x) = Y L(F (Y |x)) for (2.2) and Γt2(Y, 1|x) = Y 2L(F (Y |x)) for (2.3)

since, for monotonic non-decreasing functions F (·|x), E[Γti(Y, 1|x)|x] equals the function

to estimate (2.2) for i = 1 and (2.3) for i = 2. Since the data points Γti(Y, 1|x) depend

themselves on F (Y |x), they are estimated by Y L(F̂ (Y |x)) and Y 2L(F̂ (Y |x)) so that the

W.A.E. based on those data points corresponds to (2.1).
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Note that when L(s) = I(0 ≤ s ≤ 1), m̂ST (x) and σ̂2
ST (x) reduce to estimators of

the conditional mean and variance. Theorem 3.3 of the next section thus enables us to

prove at the same time the strong uniform consistency of estimators of any location and

scale functions defined by the score function L. This is achieved in two steps : first, an

application of Theorem 3.3 for data points I(Yi ≤ t) (i = 1, . . . , n) in order to delete

the Stone estimators in the expressions Y L(F̂ (Y |x)) and Y 2L(F̂ (Y |x)) and, second, an

application of the same theorem on the functions Γt1(Y, 1|x) and Γt2(Y, 1|x).

Example 2.2 (Nonparametric estimation of conditional location and scale func-

tions for censored data)

Now, suppose Y1, . . . , Yn are possibly right censored by C1, . . . , Cn n i.i.d. random vari-

ables with distribution function G(t|x) = P (C1 ≤ t|X = x). The observed random

variable for the covariate Xi is therefore the pair (Zi, ∆i), i = 1, . . . , n, with Zi = Yi ∧ Ci

and ∆i = I(Yi ≤ Ci). We will now assume independence of Yi and Ci conditionally on Xi.

Location and scale estimators are given by

m̂B(x) =

T̃∫
−∞

yL(F̃ (y|x)) dF̃ (y|x) (2.4)

and

σ̂2
B(x) =

T̃∫
−∞

y2L(F̃ (y|x)) dF̃ (y|x)− m̂2
B(x), (2.5)

where F̃ (·|·) is the Beran (1981) estimator defined as

F̃ (t|x) = 1−
∏

Zi≤t,∆i=1

{
1− Wi(x, an)∑n

j=1 I(Zj ≥ Zi)Wj(x, an)

}
I(t < Z(n)), (2.6)

with

Wi(x, an) =
K

(
x−Xi

an

)
∑n

j=1 K
(

x−Xj

an

) , (2.7)

the Nadaraya-Watson weights, K(·) and an defined as in (1.2) for the W.A.E. and L(s) is a

given score function satisfying
∫ 1
0 L(s)ds = 1. In order to avoid consistency problems in the

right tails of the Beran estimator, T̃ is chosen smaller than infx τH(·|x), where H(y|x) =

P (Z ≤ y|x) and τF (·) = inf{t : F (t) = 1} for some F. Seeing that the objective is to
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estimate E[Y I(Y ≤ T̃ )L(F (Y |x))|x] and E[Y 2I(Y ≤ T̃ )L(F (Y |x))|x] with an estimator

of the Nadaraya-Watson type, we rewrite (2.4) and (2.5) as

m̂B(x) =
n∑

i=1

Wi(x, an)Γ̂t3(Zi, ∆i|x), (2.8)

and

σ̂2
B(x) =

n∑
i=1

Wi(x, an)Γ̂t4(Zi, ∆i|x)− m̂2
B(x), (2.9)

where

Γ̂t3(Zi, ∆i|x) = ZiI(Zi ≤ T̃ )L(F̃ (Zi|x))∆i +

∫ T̃
Zi∧T̃ yL(F̃ (y|x))dF̃ (y|x)

1− F̃ (Zi ∧ T̃ |x)
(1−∆i),

and

Γ̂t4(Zi, ∆i|x) = Z2
i I(Zi ≤ T̃ )L(F̃ (Zi|x))∆i +

∫ T̃
Zi∧T̃ y2L(F̃ (y|x))dF̃ (y|x)

1− F̃ (Zi ∧ T̃ |x)
(1−∆i).

Note that Γ̂t3(Z, ∆|x) and Γ̂t4(Z, ∆|x) actually estimate

Γt3(Z, ∆|x) = ZI(Z ≤ T̃ )L(F (Z|x))∆ +

∫ T̃
Z∧T̃ yL(F (y|x))dF (y|x)

1− F (Z ∧ T̃ |x)
(1−∆),

and

Γt4(Z, ∆|x) = Z2I(Z ≤ T̃ )L(F (Z|x))∆ +

∫ T̃
Z∧T̃ y2L(F (y|x))dF (y|x)

1− F (Z ∧ T̃ |x)
(1−∆),

respectively. It is easy to check that

E[Γt3(Z, ∆|x)|x] = E[Y I(Y ≤ T̃ )L(F (Y |x))|x],

and

E[Γt4(Z, ∆|x)|x] = E[Y 2I(Y ≤ T̃ )L(F (Y |x))|x].

As for the complete data case, Theorem 3.3 enables us to prove the strong uniform

consistency of estimators of any location and scale functions (truncated by T̃ ) defined by

the score function L. Note that in order to use Theorem 3.3 with the functions Γt3(Z, ∆|x)

and Γt4(Z, ∆|x), we first need to delete the Beran estimators that appear in Γ̂t3(Z, ∆|x)

and Γ̂t4(Z, ∆|x). This can be done by using Proposition 4.3 of Van Keilegom and Akritas
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(1999).

Example 2.3 (Estimation of a conditional distribution function under the het-

eroscedastic model)

Now, suppose in the previous example that we want to estimate the conditional distri-

bution function of the response given the covariate under the model Y = m(X) + σ(X)ε

with ε independent of X. The corresponding preservation of means criterion is: construct

new indicators for which the conditional mean equals the asked conditional distribution

function and which use the above heteroscedastic model. More precisely, this estimator

is a weighted sum of data points Γ̂t5(Zi, ∆i|x), i = 1, . . . , n, that approximate

Γt5(Zi, ∆i|x) = I(Zi ≤ t)∆i +
Fε(

t−m(X)
σ(X)

∧ T )− Fε(
Zi∧t−m(X)

σ(X)
∧ T )

1− Fε(
Zi−m(X)

σ(X)
∧ T )

(1−∆i), (2.10)

where Fε(y) = P (ε ≤ y), T < τHε(·) and Hε(y) = P (Z−m(X)
σ(X)

≤ y). We refer the reader

to Heuchenne and Van Keilegom (2005) for a complete description and explanation of

this estimator. The same paper also provides strong uniform consistency proofs for the

estimator based on those new data points and a corresponding modulus of continuity.

Those proofs largely use Theorems 3.3 and 4.3.

Example 2.4 (Nonparametric regression with missing data)

Suppose in Example 2.1 that some Yi, i = 1, . . . n, are possibly missing. In this case,

∆i = 0 if Yi is a missing data and ∆i = 1 otherwise. Moreover, the MAR (missing at

random) assumption requires that

P (∆ = 1|X, Y ) = P (∆ = 1|X) = p(X) (2.11)

(see Little and Rubin, 1987, p.14). In this context, a simple idea (similar to the one

developed by Chu and Cheng, 1995) to estimate a regression function is to construct a

Nadaraya-Watson estimator with new data points given by

Ŷ ∗
i = Yi∆i + m̂S(Xi)(1−∆i), i = 1, . . . , n,

where m̂S(x) is the Nadaraya-Watson estimator based on the complete pairs:∑n
i=1 K(x−Xi

an
)Yi∆i∑n

i=1 K(x−Xi

an
)∆i
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with K(·) and an as defined before. Therefore, two applications of Theorem 3.3 with

data points Γt6(Z, ∆|x) = Y ∆ and Γt7(Z, ∆|x) = ∆ along with assumption (2.11) al-

low us to prove the uniform strong consistency of m̂S(x). Next, if fX(x) = dFX(x)
dx

and

p(x) are uniformly Lipshitz continuous and mS(x) = E[Y |X = x] is two times con-

tinuously differentiable, the uniform strong consistency of the W.A.E. with data points

Γt8(Z, ∆|x) = Y ∗
i = Yi∆i+mS(Xi)(1−∆i) is obtained in two steps. First, replace mS(Xi)

by mS(x)+(Xi−x)m′
S(x)+O(a2

n) (using appropriate assumptions on the support of K sat-

isfied for example by the assumptions of Theorem 3.3). Then, by similar developments as

in Corollary 1 (ii) of Theorem 2 in Masry (1996), m′
S(x)

∑n
i=1 Wi(x, an)(Xi−x)(1−∆i) =

O(a2
n) a.s. Second, a third application of Theorem 3.3 allows us to obtain the result.

The assumptions we need for the proofs of the results of Sections 3 and 4 are listed

below.

(A1) γt(·, ·|·) is Lipshitz on RX (compact) uniformly in t ∈ I :

sup
|x−xj |≤d, x,xj∈RX

sup
t∈I

|γt(z, δ|x)− γt(z, δ|xj)| ≤ L0(z, δ|xj)d, z ∈ IR, δ = 0, 1,

where L0(·, ·|·) is a (positive) function independent of t such that E[L0(Z, ∆|x)6] ≤ L6 <

∞ for all x ∈ RX .

(A2) 0 ≤ γt(z, δ|x) ≤ γt′(z, δ|x), t < t′ ∈ I, for all x, z and δ = 0, 1.

(A3) g(t|x) = E[γt(Z, ∆|x)] is a continuous function of t ∈ I for all x.

(A4) For t∗ = inf{t : t ∈ I}, t∗ ≥ −∞ and t∗ = sup{t : t ∈ I}, t∗ ≤ ∞, the limit functions

γt∗= limt→t∗ γt and γt∗= limt→t∗ γt exist and are finite a.s. (w.r.t. H(z) = P (Z ≤ z)) for

all x.

(A5) There is a λ ∈]2, +∞[ such that, for all x, E[γt∗(Z, ∆|x)6λ] ≤ M6λ < ∞; in the case

λ = +∞, supx,z,δ |γt∗(z, δ|x)| < ∞.

(A6) Let {cn} be a nonnegative sequence satisfying (i) 0 ≤ cn → 0, (ii) Ψn = ncn/ log n →
∞, (iii) c−1

n ≤ (n/ log n)1−2/λ, for λ as in (A5).

(A7)(i) FX(x) is differentiable with respect to x with derivative fX(x).

(ii) Hδ(x, y) = P (X ≤ x, Z ≤ y, ∆ = δ), x ∈ RX , y ∈ IR, δ = 0, 1, is differentiable with

respect to (x, y).

(iii) Hδ(y) = P (Z ≤ y, ∆ = δ), y ∈ IR, δ = 0, 1, is differentiable with respect to y.
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(iv) For the density fX|Z,∆(x|z, δ) of X given (Z, ∆), supx,z |fX|Z,∆(x|z, δ)| < ∞,

supx,z |ḟX|Z,∆(x|z, δ)| < ∞ and supx,z |f̈X|Z,∆(x|z, δ)| < ∞ (δ = 0, 1), where ḟX|Z,∆(x|z, δ)
(f̈X|Z,∆(x|z, δ)) denotes the first (second) derivative of fX|Z,∆(x|z, δ) with respect to x.

(A8) Define new data points as Γt(z, δ|x) =
∑i0

i=1 qiγti(z, δ|x), z ∈ IR, t ∈ I, x ∈ RX ,

δ = 0, 1, with fixed and finite i0, q1, . . . , qi0 and with families {γti, t ∈ I}, 1 ≤ i ≤ i0,

satisfying assumptions (A1)-(A5), with common λ in (A5).

(A9)(i) Consider kernel sequences of step-function form, Kn(u) =
∑jn

j=1 mnjI(−bnj ≤ u ≤
bnj), u ∈ IR, with {jn}, {mnj} and {bnj}, some sequences of constants ({jn} and {bnj}
nonnegative) such that |2 ∑jn

j=1 mnjbnj − 1| = O(max(Ψ−1/2
n , a2

n)), with jn = O(ns), s > 0

and Ψn = nan/ log n.

(ii) supn

∑jn
j=1 |mnj|b1/2

nj < ∞.

(iii) supn

∑jn
j=1 |mnj|b3

nj < ∞.

(A10) Let {cn} and {dn} two nonnegative sequences that satisfy (i) 0 ≤ cn, dn → 0, (ii)

Ψn = ncn/ log n →∞, (iii) c−1
n ≤ dn(n/ log n)1−2/λ for λ as in (A5).

(A11) The data points γt(Zi, ∆i|x), t ∈ I, x ∈ RX , i = 1, . . . , n, have the following

mean-Lipshitz properties when dn → 0:

(i) sup{x∈RX ,|t−s|≤dn,s,t∈I} |E[γt(Z, ∆|x)− γs(Z, ∆|x)]| ≤ CLdn,

(ii) sup{x∈RX ,|t−s|≤dn,s,t∈I} E[(γt(Z, ∆|x)− γs(Z, ∆|x))2] ≤ CL2dn, for n sufficiently large.

(A12)(i) − (iii) Consider kernel sequences of the same form and with the same assump-

tions as in (A9) except that |2 ∑jn
j=1 mnjbnj − 1| = O(max(Ψ−1/2

n d−1/2
n , a2

n)) in (A9) (i)

with dn as in (A10).

3 Strong uniform consistency of the weighted aver-

age of artificial data points

Strong uniform consistency and modulus of continuity proofs are achieved in three

steps. First, we consider new data points γt(Zi, ∆i|x), i = 1, . . . n, t ∈ I, x ∈ RX , and

kernels that are defined by indicators. Second, we combine those data points to obtain

the Γt(Zi, ∆i|x) used in the previous section and we sum indicators to construct kernels

of step-function form. Third, by using a number of indicators that tends to infinity in the
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step-function kernel, we show the announced results for the usual smooth kernels.

Proposition 3.1 Assume (A6), (A7). Then,

P (Mn(cn) > C0Ψ
−1/2
n + C1c

2
n) = O(n−2)

for some C0, C1 > 0, where

Mn(cn) = sup
x∈RX

sup
t∈I

| 1

2ncn

n∑
i=1

γt(Zi, ∆i|x)I(x− cn < Xi ≤ x + cn)

−
∑

δ=0,1

∫ ∞

−∞
γt(z, δ|x)hδ(x, z)dz|,

hδ(x, z) is the joint density of X and Z for δ = 0, 1 and γt(z, δ|x), t ∈ I, x ∈ RX , z ∈
IR, δ = 0, 1, satisfy assumptions (A1)-(A5).

Proposition 3.2 Assume (A7)-(A9) and that an satisfies (i) anBn → 0, (ii) nanbn/ log n

→ ∞ and (iii) a−1
n ≤ bn(n/ log n)1−2/λ, where bn = minj≤jn bnj, Bn = maxj≤jn bnj and λ

is given as in (A5). Then,

sup
x∈RX

sup
t∈I

|dtn(x)− dt(x)| = O(max(Ψ−1/2
n , a2

n)) a.s.,

where

dtn(x) =
1

nan

n∑
i=1

Γt(Zi, ∆i|x)Kn(
x−Xi

an

),

and

dt(x) =
∑

δ=0,1

∫ ∞

−∞
Γt(z, δ|x)hδ(x, z)dz.

Theorem 3.3 Assume (A7), (A8). For the sequence an, we suppose (i) an → 0, (ii)

na5/2
n / log n → ∞, (iii) a−5/2

n ≤ (n/ log n)1−2/λ, where λ is given as in (A5) and (iv)

na4
n → 0. The kernel K is assumed to be symmetric with bounded support, bounded first

derivative and
∫

K(u)du = 1. Then,

sup
x∈RX

sup
t∈I

|dtn(x)− dt(x)| = O(Ψ−1/2
n ) a.s.,

where dtn(x) and dt(x) are defined with kernel K and Ψn = nan/ log n. Moreover, if

infx∈RX
|fX(x)| > 0,

sup
x∈RX

sup
t∈I

|
∑n

i=1 K(x−Xi

an
)Γt(Zi, ∆i|x)∑n

i=1 K(x−Xi

an
)

− dt(x)

fX(x)
| = O(Ψ−1/2

n ) a.s.
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Remark 3.4 (density estimator) If we denote fnX(x) = (1/nan)
∑n

i=1 K(x−Xi

an
), the

classical kernel density estimator, we have using Theorem 3.3 with Γ(Zi, ∆i|x) = 1 that

supx∈RX
|fnX(x)− fX(x)| = O(Ψ−1/2

n ) a.s., since supx∈RX
|fX(x)| < ∞.

Remark 3.5 (moment conditions) For a number of artificial data points, the moment

conditions in (A1) and (A5) are not used. Indeed, those data points can often be of the

form γt∗(Zi, ∆i|x) ≤ γ∗t∗(Zi, ∆i) and such that L0(Zi, ∆i|x) ≤ L∗
0(Zi, ∆i). In this case,

the strong law of large numbers can be immediately used with (1/n)
∑n

i=1 γ∗λt∗ (Zi, ∆i) −
E[γ∗λt∗ (Z, ∆)] and (1/n)

∑n
i=1 L∗

0(Zi, ∆i)−E[L∗
0(Z, ∆)] in the appendix. The terms VnΨ

−1/2
nj

and 2WnΨ
−1/2
nj can then be treated outside Proposition 3.1 and be directly introduced in

(A.21) in the proof of Proposition 3.2 (see the appendix) such that the final result of

Theorem 3.3 is preserved.

Remark 3.6 (boundary effects) The degree of smoothing of fX|Z,∆(x|z, δ) allows us

via (A7) (iv) to obtain the artificial order O(Ψ−1/2
n ) near the boundaries of RX . If we

suppose for instance the weaker condition

sup
|x−x′|≤d, x,x′∈RX

sup
t∈I

|
∑

δ=0,1

∫
γt(z, δ|x)(hδ(x

′, z)− hδ(x, z))dz| ≤ Cd,

instead of (A7) (iv), then the more realistic rate O(an) can be obtained near the bound-

aries.

Remark 3.7 (bandwidth assumptions) The bandwidth parameter an could tend to

zero more slowly. Indeed, the condition na4
n → 0 of Theorem 3.3 can be written with

another power on an. By example, if na5
n(log n)−1 = O(1), Theorem 3.3 also holds if

na3
n/ log n →∞ and a−3

n ≤ (n/ log n)1−2/λ.

Remark 3.8 (artificial data representation) The representation

Γt(z, δ|x) =
i0∑

i=1

qiγti(z, δ|x),

needed in the above proofs, requires nonnegative γti(z, δ|x), i = 1, . . . , i0. This assump-

tion is not restrictive since any random variable X with real values can be represented

by X = max(X, 0)−(−min(X, 0)), where the two terms of this difference are nonnegative.
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Remark 3.9 (Extension to local linear estimator with conditional new data

points) The extension of Theorem 3.3 to local linear estimator is easily obtained by

similar developments as in Corollary 1 (ii) of Theorem 2 in Masry (1996) and if fX(x) is

uniformly Lipshitz continuous. Indeed, using those arguments the local linear estimator

reduces to the classical weighted sum of conditional new data points discussed above.

4 Modulus of continuity for the weighted average of

conditional synthetic data points

The development of this section is similar to Section 3. The strong uniform consistency

of the modulus of continuity is established via two preliminary results.

Proposition 4.1 Assume (A7), (A10). Then,

P (Mn(cn) > C0Ψ
−1/2
n d1/2

n + C1c
2
ndn) = O(n−2),

for some C0, C1 > 0, where

Mn(cn) = sup
x∈RX

sup
|t−s|≤dn, s,t∈I

| 1

2ncn

n∑
i=1

(γt(Zi, ∆i|x)− γs(Zi, ∆i|x))I(x− cn < Xi ≤ x + cn)

−
∑

δ=0,1

∫ ∞

−∞
(γt(z, δ|x)− γs(z, δ|x))hδ(x, z)dz|,

and γt(z, δ|x), t ∈ I, x ∈ RX , z ∈ IR, δ = 0, 1, satisfies assumptions (A1)-(A5) and

(A11).

Proposition 4.2 Assume (A7), (A8), (A11), (A12) and that an and dn satisfy (i) anBn →
0, dn → 0, (ii) nanbn/ log n → ∞ and (iii) a−1

n ≤ bndn(n/ log n)1−2/λ, where bn =

minj≤jn bnj, Bn = maxj≤jn bnj, and λ is given as in (A5). Then,

sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|dstn(x)− dst(x)| = O(max(Ψ−1/2
n d1/2

n , a2
ndn)) a.s.,

where

dstn(x) =
1

nan

n∑
i=1

(Γt(Zi, ∆i|x)− Γs(Zi, ∆i|x))Kn(
x−Xi

an

),

dst(x) =
∑

δ=0,1

∫ ∞

−∞
(Γt(z, δ|x)− Γs(z, δ|x))hδ(x, z)dz.

11



Proof. The proof is along the same lines as the proof of Proposition 3.2.

Theorem 4.3 Assume (A7), (A8), (A11) and that an and dn satisfy (i) an → 0, dn → 0,

(ii) na5/2
n d−1/2

n / log n →∞, (iii) a−5/2
n ≤ d1/2

n (n/ log n)1−2/λ, where λ is given as in (A5),

(iv) log n/nandn = O(1) and (v) na4
n → 0. The kernel K is symmetric with bounded

support, bounded first derivative and
∫

K(u)du = 1. Then,

sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|dstn(x)− dst(x)| = O(Ψ−1/2
n d1/2

n ) a.s.,

where dstn(x) and dst(x) are defined with kernel K and Ψn = nan/ log n. Moreover, if

na5/2
n / log n →∞ and infx∈RX

|fX(x)| > 0,

sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|
∑n

i=1 K(x−Xi

an
)Γts(Zi, ∆i|x)∑n

i=1 K(x−Xi

an
)

− dst(x)

fX(x)
| = O(Ψ−1/2

n d1/2
n ) a.s.,

where Γts(Zi, ∆i|x) = Γt(Zi, ∆i|x)− Γs(Zi, ∆i|x).

Remark 4.4 (bandwidth assumptions) If na5
n(log n)−1 = O(1), Theorem 4.3 also

holds if na3
n/ log n →∞ and a−3

n ≤ d1/2
n (n/ log n)1−2/λ.

Appendix : Proofs of main results

Proof of Proposition 3.1. Let fn = Ψ−1/2
n cn. We have, for M0n(cn) = Mn(cn) in

Proposition 3.1,

M0n(cn) = sup
x∈RX

sup
t∈I

| 1

2ncn

n∑
i=1

γt(Zi, ∆i|x)I(x− cn < Xi ≤ x + cn)

− 1

2cn

∫ x+cn

x−cn

∑
δ=0,1

∫ ∞

−∞
γt(z, δ|x)hδ(u, z)dzdu|

+ sup
x∈RX

sup
t∈I

| 1

2cn

∫ x+cn

x−cn

∑
δ=0,1

∫ ∞

−∞
γt(z, δ|x)hδ(u, z)dzdu

−
∑

δ=0,1

∫ ∞

−∞
γt(z, δ|x)hδ(x, z)dz|

= sup
x∈RX

sup
t∈I

|M1tn(x)|+ sup
x∈RX

sup
t∈I

|M2tn(x)|.

First, we treat the term M2tn(x). It is given by

∑
δ=0,1

∫ ∞

−∞
γt(z, δ|x)

{
1

2cn

∫ x+cn

x−cn

hδ(u, z)du− hδ(x, z)
}

dz.

12



Using two Taylor developments of order three around x, we get

1

2cn

∫ x+cn

x−cn

hδ(u, z)du− hδ(x, z) = (c2
n/12)[f̈X|Z,∆(θ1|z, δ) + f̈X|Z,∆(θ2|z, δ)]hδ(z),

where θ1 (θ2) is between x + c and x (x and x − c). Since supx,z |f̈X|Z,∆(x|z, δ)| < ∞
(δ = 0, 1) and sup{x∈RX , t∈I} E[γt(Z, ∆|x)] < ∞ with γt(Z, ∆|x) ≥ 0,

sup
{x∈RX , t∈I}

|M2tn(x)| ≤ C1c
2
n. (A.1)

Let LX be the length of RX and divide RX into [2LX

fn
] intervals of length smaller than

or equal to fn ([x] denotes the integer part of x). Define x0 = inf{x : x ∈ RX} and

let IX be the set of points {xk = x0 + k[2LX

fn
]−1LX , 1 ≤ k ≤ [2LX

fn
] − 1 = Ln

X} and

xLn
X+1 = sup{x : x ∈ RX} which limit the intervals. Using the Lipshitz condition (A1),

we can rewrite for 1 ≤ j ≤ Ln
X ,

sup
x∈RX

sup
t∈I

|M1tn(x)|

≤ max
xj∈IX

sup
x∈[xj−1,xj+1]

sup
t∈I

| 1

2ncn

n∑
i=1

γt(Zi, ∆i|xj)I(x− cn < Xi ≤ x + cn)

− 1

2cn

∫ x+cn

x−cn

∑
δ=0,1

∫ ∞

−∞
γt(z, δ|xj)hδ(u, z)dzdu|+ max

xj∈IX

(E[L0(Z, ∆|xj)] + |Vn(xj)|)Ψ−1/2
n ,

(A.2)

where Vn(xj) = (1/2n)
∑n

i=1 L0(Zi, ∆i|xj)− (E[L0(Z, ∆|xj)]/2). For simplicity, we rewrite

the term on the right hand side of the above equality as

(2cn)−1 max
xj∈IX

sup
x∈[xj−1,xj+1]

sup
t∈I

|M3tn(xj, x)|+ max
xj∈IX

(E[L0(Z, ∆|xj)] + |Vn(xj)|)Ψ−1/2
n .

We then have

P (max
xj∈IX

(E[L0(Z, ∆|xj)] + |Vn(xj)|) > 2C2)

≤
∑
j

{P (|2Vn(xj)| > 2C2) + P (E[L0(Z, ∆|xj)] > C2)},

where the second term on the right hand side of the above expression is zero when

C2 > L
1/6
6 . (A.3)

For the first term, we use an extension of Chebyshev’s inequality :

P (|n−1
n∑

i=1

L0(Zi, ∆i|xj)− E[L0(Z, ∆|xj)]| > 2C2)

≤ 1

(2nC2)6
E[{

n∑
i=1

(L0(Zi, ∆i|xj)− E[L0(Z, ∆|xj)])}6] = O(n−3),

13



since E[L0(Z, ∆|xj)
6] ≤ L6 < ∞. Then, with Ln

XO(n−3) = o(n−2),

P (max
xj∈IX

(E[L0(Z, ∆|xj)] + |Vn(xj)|) > 2C2) = o(n−2),

for which, using the Borel-Cantelli Lemma, we obtain

Vn = max
xj∈IX

(E[L0(Z, ∆|xj)] + |Vn(xj)|) = O(1) a.s. (A.4)

To treat the first term on the right hand side of (A.2), we introduce some additional

notation. Let

Gtn(xj, x) = n−1
n∑

i=1

γt(Zi, ∆i|xj)I(Xi ≤ x),

and

Gt(xj, x) = E[Gtn(xj, x)] =
∫ x

x0

∑
δ=0,1

∫ ∞

−∞
γt(z, δ|xj)hδ(u, z)dzdu.

Therefore,

|M3tn(xj, x)| = |Gtn(xj, x + cn)−Gtn(xj, x− cn)− [Gt(xj, x + cn)−Gt(xj, x− cn)]|

≤ 2 sup
|z|≤cn

|Gtn(xj, x + z)−Gtn(xj, x)− [Gt(xj, x + z)−Gt(xj, x)]|

= 2 sup
|z|≤cn

M4tn(xj, x, z). (A.5)

By conditions (A2) − (A5), the functions g(t|xj), j = 1, . . . , Ln
X , are nondecreasing,

continuous in t with finite limits g(t∗|xj) and g(t∗|xj) as t → t∗ and t∗. For each xj,

j = 1, . . . , Ln
X , define Inj as the grid of values of t, {t∗, t1, . . . , tNnj

, t∗} which is such

that |g(t1|xj) − g(t∗|xj)| ≤ fn, |g(tk+1|xj) − g(tk|xj)| ≤ fn, for k = 1, . . . , Nnj − 1,

|g(t∗|xj) − g(tNnj
|xj)| ≤ fn. Clearly, I is divided into O(f−2

n ) intervals. Next, let I∗nj be

the set {(t∗, t1), (t1, t2), . . . , (tNnj
, t∗)}. Clearly, the cardinality Nnj + 1 of I∗nj is bounded

by

2(g(t∗|xj)− g(t∗|xj))

fn

. (A.6)

Also, for fixed j, x, z, n, the functions Gtn(xj, x+z)−Gtn(xj, x) and Gt(xj, x+z)−Gt(xj, x)

are monotone in t and have finite limits as t → t∗, t
∗. We therefore have

M4tn(xj, x, z) ≤ max
t∈Inj

M4tn(xj, x, z)

+ max
(s,t)∈I∗nj

|Gt(xj, x + z)−Gs(xj, x + z)− [Gt(xj, x)−Gs(xj, x)]|. (A.7)
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It is easily shown that the second term on the right hand side of the above expression is

bounded by

2
∫

RX

∑
δ=0,1

∫ ∞

−∞
(γt(z, δ|xj)− γs(z, δ|xj))hδ(u, z)dzdu

= 2
∑

δ=0,1

∫ ∞

−∞
(γt(z, δ|xj)− γs(z, δ|xj))hδ(z)dz

≤ 2(g(t|xj)− g(s|xj)) ≤ 2fn,

using monotonicity of γt with respect to t. Therefore,

max
xj∈IX

sup
x∈[xj−1,xj+1]

sup
t∈I

sup
|z|≤cn

M4tn(xj, x, z)

≤ max
xj∈IX

sup
x∈[xj−1,xj+1]

max
t∈Inj

sup
|z|≤cn

M4tn(xj, x, z) + 2fn. (A.8)

We have

max
xj∈IX

sup
x∈[xj−1,xj+1]

max
t∈Inj

sup
|z|≤cn

M4tn(xj, x, z) (A.9)

≤ max (max
j∈IX

sup
x∈[xj−1,xj+1]

max
t∈Inj

sup
x+z∈[xj−1,xj+1]

M4tn(xj, x, z),

max
xj∈IX\{xLn

X
}

sup
x∈[xj ,xj+1]

max
t∈Inj

sup
x+z∈[xj+1,x+cn]

M4tn(xj, x, z),

max
xj∈IX\{x1}

sup
x∈[xj ,xj+1]

max
t∈Inj

sup
x+z∈[x−cn,xj−1]

M4tn(xj, x, z),

max
xj∈IX\{xLn

X
}

sup
x∈[xj−1,xj ]

max
t∈Inj

sup
x+z∈[xj+1,x+cn]

M4tn(xj, x, z),

max
xj∈IX\{x1}

sup
x∈[xj−1,xj ]

max
t∈Inj

sup
x+z∈[x−cn,xj−1]

M4tn(xj, x, z)).

Introducing Gtn(xj, xj+k) and Gt(xj, xj+k) for k = −1, 0 or 1, it is easily shown that

max
xj∈IX

sup
x∈[xj−1,xj+1]

max
t∈Inj

sup
|z|≤cn

M4tn(xj, x, z)

≤ 2 max
xj∈IX

max
t∈Inj

max
k∈{−1,0,1}

sup
|z|≤cn

M4tn(xj, xj+k, z). (A.10)

Now, put Qn = Mλf
−1/(λ−1)
n , where, for all x, (E[(γt∗(Z, ∆|x))λ])1/λ ≤ Mλ < ∞ for some

λ, 2 < λ < ∞. In the case λ = ∞, M∞ denotes then supx,z,δ |γt∗(z, δ|x)|. Also, put

Htn(xj, x) = n−1
n∑

i=1

γt(Zi, ∆i|xj)I(γt(Zi, ∆i|xj) ≤ Qn)I(Xi ≤ x),
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and define M5tn(xj, x, z) by substitution of Htn for Gtn and E[Htn] for Gt in M4tn(xj, x, z).

Recalling (A.2), (A.4), (A.5), (A.8) and (A.10), this is seen to yield

sup
x∈RX

sup
t∈I

|M1tn(x)| ≤ 2c−1
n max

xj∈IX

max
t∈Inj

max
k∈{−1,0,1}

sup
|z|≤cn

M5tn(xj, xj+k, z)

+2fnc
−1
n (1 + Vn/2 + Wn + θn), (A.11)

where

Wn = f−1
n max

xj∈IX

max
t∈Inj

max
k∈{−1,0,1}

sup
|z|≤cn

|M6tn(xj, xj+k, z)|,

M6tn(xj, x, z) = Gtn(xj, x + z)−Gtn(xj, x)− [Htn(xj, x + z)−Htn(xj, x)],

and

θn = f−1
n max

xj∈IX

max
t∈Inj

max
k∈{−1,0,1}

sup
|z|≤cn

|E[M6t(xj, xj+k, z)]|.

Using (A2), (A4) and the fact that f−1
n = (Qn/Mλ)

λ−1, we have

Mλ−1
λ Wn ≤ Qλ−1

n max
xj∈IX

n−1
n∑

i=1

γt∗(Zi, ∆i|xj)I(γt∗(Zi, ∆i|xj) > Qn)

≤ max
xj∈IX

n−1
n∑

i=1

γt∗(Zi, ∆i|xj)
λ,

if λ < ∞ and Wn = 0 if λ = ∞. Next, for λ < ∞,

P (max
xj∈IX

n−1
n∑

i=1

γt∗(Zi, ∆i|xj)
λ > C3)

≤
∑
j

{P (n−1
n∑

i=1

γt∗(Zi, ∆i|xj)
λ − E[γt∗(Z, ∆|xj)

λ] > C3/2)

+P (E[γt∗(Z, ∆|xj)
λ] > C3/2)},

where the second term on the right hand side of the above expression is zero when

C3/2 > Mλ
λ . (A.12)

For the first term, we also use the extension of Chebyshev’s inequality :

P (n−1
n∑

i=1

γt∗(Zi, ∆i|xj)
λ − E[γt∗(Z, ∆|xj)

λ] > C3/2)

≤ 64

(nC3)6
E[{

n∑
i=1

(γt∗(Zi, ∆i|xj)
λ − E[γt∗(Z, ∆|xj)

λ])}6] = O(n−3),
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since E[γt∗(Z, ∆|xj)
6λ] ≤ M6λ < ∞. Then, with Ln

XO(n−3) = o(n−2),

P (max
xj∈IX

n−1
n∑

i=1

γt∗(Zi, ∆i|xj)
λ > C3) = o(n−2),

for which, using the Borel-Cantelli Lemma, we obtain

Wn = O(1) a.s. (A.13)

We also see that

θn ≤
maxxj∈RX

E[γt∗(Z, ∆|xj)
λ]

Mλ−1
λ

≤ Mλ, (A.14)

if λ < ∞ and θn = 0 if λ = ∞.

Now, define

wn = [
2Qncn

fn

+ 1]

and

ηnjkr = xj+k +
rcn

wn

, for r = −wn,−wn + 1, . . . , wn.

We then have

sup
|z|≤cn

M5tn(xj, xj+k, z) ≤ max
−wn≤r≤wn

M5tn(xj, xj+k, rcn/wn)

+ max
−wn≤r≤wn−1

|E[Htn(xj, ηnjk(r+1))]− E[Htn(xj, ηnjkr)]|.

The second term of the right hand side of the above expression is bounded by

Qn max
−wn≤r≤wn−1

∫ ηnjk(r+1)

ηnjkr

∑
δ=0,1

∫ ∞

−∞
hδ(u, z)dzdu

≤ Qn max
−wn≤r≤wn−1

∫ ηnjk(r+1)

ηnjkr

fX(u)du ≤ QnC4(ηnjk(r+1) − ηnjkr) ≤ C4fn/2,

where C4 is the Lipshitz constant of FX(·). The goal is therefore to calculate, using (A.11),

(A.14) and the above last inequality,

P ( sup
x∈RX

sup
t∈I

|M1tn(x)| > C0Ψ
−1/2
n )

≤ P (2 max
j,t,k,r

M5tn(xj, xj+k, rcn/wn) + fn(2Wn + Vn) > (C0 − 2− C4 − 2Mλ)fn)

≤
∑

j,t,k,r

P (M5tn(xj, xj+k, rcn/wn) > (1/6)(C0 − 2− C4 − 2Mλ)fn)

+P (Wn > (1/6)(C0 − 2− C4 − 2Mλ))

+P (Vn > (1/3)(C0 − 2− C4 − 2Mλ)),
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where C0, C2 and C3 can be chosen to satisfy 2Mλ < (C3/M
λ−1
λ ) ≤ (1/6)(C0−C4−2Mλ−2)

and L
1/6
6 < C2 ≤ (1/6)(C0 − C4 − 2Mλ − 2). In this way, using (A.3), (A.4), (A.12) and

(A.13), we only have to treat the first term on the right hand side of the above expression.

Defining C ′
0 = (1/6)(C0 − 2− C4 − 2Mλ), we have by Bernstein’s inequality,

P (M5tn(xj, xj+k, rcn/wn) > C ′
0fn) ≤ 2 exp(−νtjknr),

where

νtjknr =
C ′2

0 n2f 2
n

2nσ2
tjknr + 2

3
nC ′

0fnQn

,

and σtjknr = V ar[Dtjknr] for

Dtjknr = γt(Z, ∆|xj)I(γt(Z, ∆|xj) ≤ Qn)(I(X ≤ ηnjkr)− I(X ≤ xj+k)).

We have

σ2
tjknr ≤ E[D2

tjknr] ≤
∫ ηnjkr∨xj+k

xj+k∧ηnjkr

∑
δ=0,1

∫ ∞

−∞
γ2

t (z, δ|xj)I(γt(z, δ|xj) ≤ Qn)hδ(u, z)dzdu

≤ C5M
2
λcn, (A.15)

using (A5), condition (A7) (iv) and where C5 = maxδ supx,z |fX|Z,∆(x|z, δ)|. Using (A6)

(iii),

Qnfn = Mλf
(λ−2)/(λ−1)
n = Mλ(

cn log n

n
)(λ−2)/2(λ−1) ≤ Mλcn. (A.16)

We thus have by (A.15) and (A.16) that

νtjknr ≥ C ′′
0 log n,

with

C ′′
0 =

C ′2
0

2Mλ(C5Mλ + 1
3
C ′

0)
> max(

6

3C5 + 2
,

3L
1/3
6

Mλ(6MλC5 + 2L
1/6
6 )

).

Therefore,

∑
j,t,k,r

P (M5tn(xj, xj+k, rcn/wn) > C ′
0fn) ≤ 6

Ln
X∑

j=1

(Nnj + 2)(2wn + 1)n−C′′
0 , (A.17)

where C ′′
0 has to be chosen large enough so that the right hand side of (A.17) tends to

zero sufficiently fast. Thus, the highest order term on the right hand side of (A.17) is

96(
LXMλQncn

f 3
n

)n−C′′
0 , (A.18)
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where

Qncn

fn

= Mλcn(
n

cn log n
)

λ
2(λ−1)

and

Nnj ≤
2g(t∗|xj)

fn

≤ 2
Mλ

fn

,

using (A.6) and the fact that E[γt∗(Z, ∆|xj)] ≤ Mλ. Using (A6) (iii), (A.18) is bounded

by

Lλ(
n

cn log n
)

3λ−2
2(λ−1) cnn

−C′′
0 ≤ Lλ(

n

log n
)2n−C′′

0 ,

where Lλ = 96M2
λLX . Therefore, choosing C ′′

0 ≥ 4 allows us to write

P ( sup
x∈RX

sup
t∈I

|M1tn(x)| > C0Ψ
−1/2
n ) = O(n−2). (A.19)

By (A.1) and (A.19), we finally obtain

P ( sup
x∈RX

sup
t∈I

|M1tn(x) + M2tn(x)| > C0Ψ
−1/2
n + C1c

2
n) = O(n−2). (A.20)

Proof of Proposition 3.2. First, define new data points as Γt(z, δ|x) =
∑i0

i=1 qiγti(z, δ|x),

z ∈ IR, t ∈ I, x ∈ RX , δ = 0, 1, with fixed and finite i0, q1, . . . , qi0 and with families

{γti, t ∈ I}, 1 ≤ i ≤ i0, satisfying assumptions (A1)-(A5), with common λ in (A5). If

we consider kernel sequences of step-function form, Kn(u) =
∑jn

j=1 mnjI(−bnj ≤ u ≤ bnj),

u ∈ IR, with {jn}, {mnj}, {bnj} sequences of constants characterized in assumption (A9),

the expression of Proposition 3.2 can be bounded by

sup
x∈RX

sup
t∈I

|dtn(x)− dt(x)| ≤
i0∑

i=1

|qi|(S(1)
ni + S

(2)
ni ),

where

S
(1)
ni = 2

jn∑
j=1

|mnj|bnjM
(i)
0n (cnj), (A.21)

M
(i)
0n (cnj) = sup

x∈RX

sup
t∈I

| 1

2ncnj

n∑
k=1

γti(Zk, ∆k|x)I(x− cnj < Xk ≤ x + cnj)

−
∑

δ=0,1

∫ ∞

−∞
γti(z, δ|x)hδ(x, z)dz|, i = 1, . . . , i0,
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(M
(i)
0n (cnj) is simply M0n(cn) that appeared in the proof of Proposition 3.1 with γt and cn

replaced by γti and cnj, respectively, i = 1, . . . , i0, j = 1, . . . , jn), cnj = anbnj and

S
(2)
ni = sup

x∈RX

sup
t∈I

|(2
jn∑

j=1

mnjbnj − 1)
∑

δ=0,1

∫ ∞

−∞
γti(z, δ|x)hδ(x, z)dz|

≤ C5Mλ|(2
jn∑

j=1

mnjbnj − 1)|.

Next, define

εn = 2C0Ψ
−1/2
n

jn∑
j=1

|mnj|b1/2
nj + 2C1a

2
n

jn∑
j=1

|mnj|b3
nj.

Then,

P (S
(1)
ni > εn) ≤

jn∑
j=1

P (M
(i)
0n (cnj) > C0Ψ

−1/2
nj + C1c

2
nj),

with Ψnj = Ψnbnj and cnj = anbnj. By using (A.20), we thus obtain

P (S
(1)
ni > εn) ≤ O(jnn

−2).

For s in (A9) (i) smaller than 1 (jn = O(ns), s > 0) and using the Borel-Cantelli Lemma,

we obtain

S
(1)
ni = O(εn) a.s.,

for which εn = O(max(Ψ−1/2
n , a2

n)).

Proof of Theorem 3.3. Let bnj = ja3/2
n and mnj = K(ja3/2

n )−K((j + 1)a3/2
n ) in (A9).

Then (A9) (i) becomes

|(2
jn∑

j=1

mnjbnj − 1)| ≤
∫
|Kn(u)−K(u)|du ≤ Ca3/2

n ,

for some C > 0 and since
∫

Kn(u)du = 2
∑jn

j=1 mnjbnj, (A9) (ii) and (A9) (iii) become

sup
n

a9/4
n

jn∑
j=1

j1/2|K ′(θnj)| < ∞

and

sup
n

a6
n

jn∑
j=1

j3|K ′(θnj)| < ∞,
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where θnj is between ja3/2
n and (j + 1)a3/2

n . Therefore, we can choose 0 < s < 1 such that

jn = O(a−3/2
n ).

Next, if we denote dtn(x) using kernel K by dtn(x, K), it is clear that

sup
x∈RX

sup
t∈I

|dtn(x, K)− dtn(x, Kn)|

≤ sup
x∈RX

sup
t∈I

(
Da3/2

n

nan

n∑
i=1

|Γt(Zi, ∆i|x)|I(x− an < Xi ≤ x + an)) = O(a3/2
n ) a.s., (A.22)

for some constant D > 0, a kernel support equal to [−1, 1] and where Proposition 3.1 is

used with cn = an (with cn = (L/2)an if L is the length of the support).

Finally, write

sup
x∈RX

sup
t∈I

|
∑n

i=1 K(x−Xi

an
)Γt(Zi, ∆i|x)∑n

i=1 K(x−Xi

an
)

− dt(x)

fX(x)
| ≤ sup

x∈RX

sup
t∈I

|dtn(x, K)− dt(x)

fnX(x)
|

+ sup
x∈RX

sup
t∈I

|dt(x)(fX(x)− fnX(x))

fX(x)fnX(x)
|.

If we use the fact that infx∈RX
|fX(x)| > 0 in addition to the obtained results for dtn(x, K)

in (A.22) and dtn(x, Kn) in Proposition 3.2, both terms on the right hand side of the above

expression are O(Ψ−1/2
n ) a.s. since supx∈RX

supt∈I |dt(x)| is bounded (using the definition

(A8) of the points Γ(·, ·|·)).

Proof of Proposition 4.1. For M7n(cn) = Mn(cn) in Proposition 4.1, let

M7n(cn) = sup
x∈RX

sup
|t−s|≤dn, s,t∈I

| 1

2ncn

n∑
i=1

(γt(Zi, ∆i|x)

−γs(Zi, ∆i|x))I(x− cn < Xi ≤ x + cn)

− 1

2cn

∫ x+cn

x−cn

∑
δ=0,1

∫ ∞

−∞
(γt(z, δ|x)− γs(z, δ|x))hδ(u, z)dzdu|

+ sup
x∈RX

sup
|t−s|≤dn, s,t∈I

| 1

2cn

∫ x+cn

x−cn

∑
δ=0,1

∫ ∞

−∞
(γt(z, δ|x)− γs(z, δ|x))hδ(u, z)dzdu

−
∑

δ=0,1

∫ ∞

−∞
(γt(z, δ|x)− γs(z, δ|x))hδ(x, z)dz|

= sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|M8stn(x)|+ sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|M9stn(x)|.

First, M9stn(x) is treated as M2tn(x) in Proposition 3.1 such that

sup
{x∈RX ,|t−s|≤dn, s,t∈I}

|M9stn(x)| ≤ Cm1dnc
2
n, (A.23)
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using (A11). This inequality corresponds to (A.1) in Proposition 3.1.

Divide RX into [ 2LX

fnd
1/2
n

] intervals of length smaller than or equal to fnd
1/2
n . Denote

by JX the set of points {xk = x0 + k[ 2LX

fnd
1/2
n

]−1LX , 1 ≤ k ≤ [ 2LX

fnd
1/2
n

] − 1 = Ldn

X } and

xLdn
X +1 = sup{x : x ∈ RX} which limit the intervals. Then, M8stn(x) is treated like (A.2)

in Proposition 3.1, where γt(·, ·|·) is replaced by γt(·, ·|·) − γs(·, ·|·), Vn(xj) by V d
n (xj) =

(1/n)
∑n

i=1 L0(Zi, ∆i|xj) − E[L0(Z, ∆|xj)] and Vn by V d
n = maxxj∈JX

(2E[L0(Z, ∆|xj)] +

|V d
n (xj)|). Using Chebyshev’s inequality, P (V d

n > Cm2) = o(n−2) with Cm2 chosen larger

than 4L
1/6
6 . A development similar to (A.5) and (A.9) is used to obtain

sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|M8stn(x)|

≤ 2c−1
n max

xj∈JX

max
|t−s|≤dn, s,t∈I

max
k∈{−1,0,1}

sup
|z|≤cn

M10stn(xj, xj+k, z) + V d
n Ψ−1/2

n d1/2
n , (A.24)

where

M10stn(xj, x, z) = |Gstn(xj, x + z)−Gstn(xj, x)− [Gst(xj, x + z)−Gst(xj, x)]|,

Gstn(xj, x) = n−1
n∑

i=1

(γt(Zi, ∆i|xj)− γs(Zi, ∆i|xj))I(Xi ≤ x),

and

Gst(xj, x) = E[Gstn(xj, x)] =
∫ x

x0

∑
δ=0,1

∫ ∞

−∞
(γt(z, δ|xj)− γs(z, δ|xj))hδ(u, z)dzdu.

Partition I into O(f−1
n d−3/2

n ) intervals such that for each xj, j = 0, . . . , Ldn

X + 2,

g(t∗|xj) − g(t∗|xj) is divided into mj = [g(t∗|xj)−g(t∗|xj)

CLdn
] intervals of length Cm3(xj)CLdn,

1 ≤ Cm3(xj) ≤ 2. In this way we can construct |g(t∗|xj) − g(t1|xj)| = Cm3(xj)CLdn,

|g(tα+1|xj) − g(tα|xj)| = Cm3(xj)CLdn, α = 1, . . . ,mj − 2, |g(t∗|xj) − g(tmj−1|xj)| =

Cm3(xj)CLdn, t0 = t∗, tmj
= t∗ for all j. Let Ijα = [g(tα−1|xj), g(tα+1|xj)], α = 1, . . . ,mj−

1. For each s, t ∈ I with |t−s| ≤ dn, there exists an interval Ijα such that g(s|xj), g(t|xj) ∈
Ijα. Partition each Ijα by a grid g(tαβ|xj) = g(tα|xj)+β Cm3(xj)CLdn

pn
, β = −pn, . . . , pn, where

pn = [Ψ1/2
n d1/2

n +1]. Using (A7) (iv), (A4), (A5) and the monotonicity of γt(Z, ∆|x), (A.24)

is majorized by

2c−1
n max

xj∈JX

max
k∈{−1,0,1}

max
1≤α≤mj−1

max
−pn≤β,ζ≤pn

sup
|z|≤cn

M10tαζtαβn(xj, xj+k, z) (A.25)

+4c−1
n max

xj∈JX

max
1≤α≤mj−1

max
−pn≤β≤pn−1

C5cn|g(tα(β+1)|xj)− g(tαβ|xj)|+ V d
n Ψ−1/2

n d1/2
n ,

where C5 is defined as in (A.15) and the second term of the above expression equals

4C5
Cm3(xj)CLdn

pn
≤ Cm4Ψ

−1/2
n d1/2

n , where Cm4 = 8C5CL.
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Now, put Tn = Mλ(f
−1
n d−1/2

n )
1

λ−1 . Define Mλ for 2 < λ ≤ ∞ as in the proof of

Proposition 3.1, Hstn(xj, x) by

n−1
n∑

i=1

(γt(Zi, ∆i|xj)− γs(Zi, ∆i|xj))I(|γt(Zi, ∆i|xj)− γs(Zi, ∆i|xj)| ≤ Tn)I(Xi ≤ x),

and M11stn(xj, x, z) by substitution of Hstn for Gstn and E[Hstn] for Gst. Then, (A.25) is

majorized by

2c−1
n max

xj∈JX

max
k∈{−1,0,1}

max
1≤α≤mj−1

max
−pn≤β,ζ≤pn

sup
|z|≤cn

M11tαζtαβn(xj, xj+k, z)

+2c−1
n fnd

1/2
n (W d

n + θd
n) + (V d

n + Cm4)Ψ
−1/2
n d1/2

n , (A.26)

where W d
n and θd

n are defined similarly to Wn and θn in the proof of Proposition 3.1. It

is easy to check that P (2W d
n > Cm5) = o(n−2) and 2θd

n < Cm6, where Cm5 and Cm6 are

chosen such that Cm5 > 2λ+2Mλ and Cm6 = 2λ+1Mλ.

Next, consider

κnjkr = xj+k +
rcn

pn

, for r = −pn,−pn + 1, . . . , pn.

For fixed j, k, α, β, ζ, n, Htαζtαβn(xj, xj+k+z)−Htαζtαβn(xj, xj+k) and E[Htαζtαβn(xj, xj+k+

z)]−E[Htαζtαβn(xj, xj+k)] are monotone with respect to z and have finite limits in xj+k+cn

and xj+k − cn. Therefore,

sup
|z|≤cn

M11tαζtαβn(xj, xj+k, z)

≤ max
−pn≤r≤pn

M11tαζtαβn(xj, xj+k, rcn/pn)

+ max
−pn≤r≤pn−1

|E[Htαζtαβn(xj, xj+k +
(r + 1)cn

pn

)]− E[Htαζtαβn(xj, xj+k +
rcn

pn

)]|,

where the second term on the right hand side of the above expression is bounded by

4CLC5cnΨ−1/2
n d1/2

n .

Therefore, (A.26) is majorized by

2c−1
n max

xj∈JX

max
k∈{−1,0,1}

max
1≤α≤mj−1

max
−pn≤β,ζ,r≤pn

M11tαζtαβn(xj, xj+k, rcn/pn)

+(2W d
n + V d

n + Cm4 + Cm6 + Cm7)Ψ
−1/2
n d1/2

n , (A.27)

where Cm7 = 8CLC5.
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Next,

P ( sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|M8stn(x)| > Cm0Ψ
−1/2
n d1/2

n )

≤
∑

j,k,α,β,ζ,r

P (M11tαζtαβn(xj, xj+k, rcn/pn) > C ′
m0fnd

1/2
n )

+P (W d
n > C ′

m0) + P (V d
n > 2C ′

m0), (A.28)

where C ′
m0 = (1/6)(Cm0− 16C5CL − 2λ+1Mλ) and Cm0, Cm2 and Cm5 can be chosen such

that C ′
m0 is larger than Cm2/2 and Cm5/2 in order to satisfy

max(2λ+1Mλ, 2L
1/6
6 ) < C ′

m0.

By Bernstein’s inequality,

P (M11tαζtαβn(xj, xj+k, rcn/pn) > C ′
m0fnd

1/2
n ) ≤ 2 exp(−φntαζtαβjkr),

where

φntαζtαβjkr =
C ′2

m0n
2f 2

ndn

2nσ2
ntαζtαβjkr + 2

3
nC ′

m0fnd
1/2
n Tn

,

σ2
ntαζtαβjkr = V ar[Ωntαζtαβjkr] and

Ωntαζtαβjkr = (γtαβ
(Z, ∆|xj)− γtαζ

(Z, ∆|xj))

×I(|γtαβ
(Z, ∆|xj)− γtαζ

(Z, ∆|xj)| ≤ Tn)(I(X ≤ κnjkr)− I(X ≤ xj+k)).

Using (A11) (ii), σ2
ntαζtαβjkr ≤ CL2C5cndn, and (A10) (iii), TnΨ−1/2

n ≤ d1/2
n . Therefore,

φntαζtαβjkr ≥ C ′′
m0 log n,

with

C ′′
m0 =

C ′2
m0

2(CL2C5 + 1
3
C ′

m0)
.

Finally,

∑
j,k,α,β,ζ,r

P (M11tαζtαβn(xj, xj+k, rcn/pn) > C ′
m0fnd

1/2
n ) ≤ 2

Ldn

X∑
j=1

1∑
k=−1

mj−1∑
α=1

∑
−pn≤β,ζ,r≤pn

n−C′′
m0 ,

for which the highest order term on the right hand side is

96
LXMλ

CL

Ψ2
nc

−1
n n−C′′

m0 ≤ 96
LXMλ

CL

n2

(log n)2
n−C′′

m0 .
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Choosing C ′′
m0 sufficiently large finishes the proof.

Proof of Theorem 4.3. Let bnj = ja3/2
n d−1/2

n and mnj = K(ja3/2
n d−1/2

n ) − K((j +

1)a3/2
n d−1/2

n ) in (A12). Then, (A12) (i) becomes

|(2
jn∑

j=1

mnjbnj − 1)| ≤
∫
|Kn(u)−K(u)|du ≤ Ca3/2

n d−1/2
n ,

for some C > 0. Assumptions (A12) (ii) and (A12) (iii) are easily satisfied using jn =

O(a−3/2
n d1/2

n ) such that s can then be chosen between 0 and 1.

Next, let us denote dstn(x) using the kernel K by dstn(x, K). It is clear that

sup
x∈RX

sup
|t−s|≤dn, s,t∈I

|dstn(x, K)− dstn(x, Kn)|

≤ sup
x∈RX

sup
|t−s|≤dn, s,t∈I

(
Da3/2

n d−1/2
n

nan

n∑
i=1

|Γts(Zi, ∆i|x)|I(x− an < Xi ≤ x + an))

= O(a3/2
n d1/2

n ) a.s.,

for which we use Proposition 4.1 with cn = an (for a kernel support equal to [−1, 1]).

Finally, the proof of the second expression in Theorem 4.3 is along the same lines as in

the proof of Theorem 3.3.
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