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Abstract

In this paper, we study strong uniform consistency of a weighted average of
artificial data points. This is especially useful when information is incomplete (cen-
sored data, missing data ...). In this case, reconstruction of the information is
often achieved nonparametrically by using a local preservation of mean criterion
for which the corresponding mean is estimated by a weighted average of new data
points. The present approach enlarges the possible scope for applications beyond
just the incomplete data context and can also be useful to treat the estimation of the
conditional mean of specific functions of complete data points. As a consequence,
we establish the strong uniform consistency of the Nadaraya-Watson (1964) estima-
tor for general transormations of the data points. This result generalizes the one of
Haérdle, Janssen and Serfling (1988). In addition, the strong uniform consistency of
a modulus of continuity will be obtained for this estimator. Applications of those

two results are detailed for some popular estimators.

KEY WORDS: Kernel estimation; Nonparametric regression; Right censoring.

1 This research was supported by ‘Projet d’Actions de Recherche Concertées’, No. 98/03-217,
and by the IAP research network nr. P5/24 of the Belgian government.
2 The first author is now at the University of Liege, HEC-Managment School of ULg.



1 Introduction

In many regression contexts where the data are incomplete, one has to reconstruct
missing information by using other data points. In particular, if Z denotes a data point,
X the covariate and A is a binary variable equal to 1 if the data point Z is complete
(in this case Z = Y, the true data point) and 0 if it is incomplete, a natural way to
reconstruct a function ¢y(Y|z) at X = x and for ¢t € I C IR is to take ['\(Z, Alx) =
(V)" = Ele(Ylz)lz, Z,A] = @u(Y]2)A + Elp (Y)Y > Z,2](1 = A). (In the
case of missing data, Z = —oo and therefore Ep;(Y|z)|Y > Z,z] = E[p:(Y|z)|x].) In
censored regression, this scheme with ¢;(Y|z) =Y has been used by Buckley and James
(1979), Koul, Susarla and Van Ryzin (1981), Leurgans (1987), Fan and Gijbels (1994)
and Heuchenne and Van Keilegom (2004) among others. In estimation with missing
data, this kind of new data points has been proposed by, e.g., Cheng (1994), Chu and
Cheng (1995) and Cheng and Chu (1996). As explained in Heuchenne and Van Keilegom
(2005) for nonparametric estimation with censored data, ¢ (Y|r) can be any function
of z,t and Y: eg., Y, Y2 or I(Y < t), for fixed t € I, if the objective is to estimate
E[Y|xz], E[Y?|x] or E[I(Y < t)|x] = P(Y < t|x), respectively. Therefore, there is a need
to construct a general asymptotic theory for a nonparametric estimator of E[p(Y |x)|z]
(E[(@e(Y]z))*|x]) in the complete (incomplete) data case.

More precisely, let {I';,¢ € I} be a family of real valued measurable functions on IR

and suppose we want to estimate

EL(Z, Alz)|z] = ) /Ft(z,élx)ng(z]:z), (1.1)

§=0,1
where [ is a possibly infinite or degenerate interval in IR, * € Ry, a compact interval in
IR and Hs(ylz) = P(Z < y,A =6|z) (6 = 0,1). A natural nonparametric estimator for

this conditional mean is given by

P K(EX0T(Z;, Alz)

an

i K(55) ’

n

(1.2)

where K(-) is a symmetric kernel density function and a, is a sequence of nonnegative
numbers such that a,, — 0 when n — oo. These quantities (in the framework of this paper)
will be completely specified in Section 3. For easy reference to this estimator, we call it
W.A.E. (weighted average estimator). In the case I';(Z, A|x) = Z, this estimator reduces
to the usual Nadaraya-Watson (1964) estimator and in the case I'((Z, Alx) = I(Z < t),
we obtain the Stone (1977) estimator.



The objective of Section 3 is to provide the almost sure convergence of the W.A.E.
uniformly in x, ¢ with the rate (na,)~"/?(logn)'/2. Now, suppose s,t € I with |t —s| < d,,,
where d,, is a sequence of nonnegative numbers such that d, — 0 when n — oo. This
sequence will also be completely specified later (see assumption (A10) in Section 2). In
Section 4, we aim to obtain the almost sure convergence of the modulus of continuity based
on the W.A.E. uniformly in z, s,t, |t — s| < d,, with the rate (na, ) "/?(logn)'/2d}/?. The

utility of these results is illustrated for some typical examples in Section 2.

2 Examples and Assumptions

Example 2.1 (Nonparametric estimation of conditional location and scale func-
tions for complete data)

Suppose Yi,...,Y, are n ii.d. random variables corresponding to Xi,...,X,, n ii.d.
covariates with distribution Fix(z) = P(X; < z). Let F(t|x) = P(Y1 < t|X; = ) be the
conditional distribution of the response given the covariate. Standard location and scale

estimators are given by

mST

O\H
H

$)ds, Ghn(a) = [ F7(sl0)PLs) ds = iy (@), (21)

where F(t|z) is the Stone (1977) estimator (W.A.E. with T'\(Z,Alz) = T\(Y,1]z) =
I(Y < t), F~'(s|z) = inf{t : F(t|z) > s} and L(s) is a given score function satisfying
Ji L(s)ds = 1. If the objective is to estimate

/ FY(s|z)L(s) ds (2.2)
and
/ F(s|a)?L(s) ds, (2.3)

it is clear that I'y (Y, 1|x) = Y L(F (Y |z)) for (2.2) and T'y»(Y, 1|z) = Y2L(F (Y |x)) for (2.3)
since, for monotonic non-decreasing functions F(-|z), E[I'y;(Y, 1|z)|x] equals the function
to estimate (2.2) for ¢ = 1 and (2.3) for ¢ = 2. Since the data points I';;(Y, 1|x) depend
themselves on F(Y|z), they are estimated by Y L(F(Y|x)) and Y2L(F(Y|z)) so that the
W.A.E. based on those data points corresponds to (2.1).
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Note that when L(s) = I(0 < s < 1), mgr(x) and 62,(x) reduce to estimators of
the conditional mean and variance. Theorem 3.3 of the next section thus enables us to
prove at the same time the strong uniform consistency of estimators of any location and
scale functions defined by the score function L. This is achieved in two steps : first, an
application of Theorem 3.3 for data points I(Y; < t) (i = 1,...,n) in order to delete
the Stone estimators in the expressions Y L(F(Y|x)) and Y2L(F(Y|z)) and, second, an
application of the same theorem on the functions I'yy (Y, 1|z) and I'ip(Y, 1|x).

Example 2.2 (Nonparametric estimation of conditional location and scale func-
tions for censored data)

Now, suppose Yi,...,Y, are possibly right censored by C,...,C, n ii.d. random vari-
ables with distribution function G(t|z) = P(C; < t|X = x). The observed random
variable for the covariate X; is therefore the pair (Z;, A;), i =1,...,n, with Z; = Y; A C;
and A; = I(Y; < C;). We will now assume independence of Y; and C; conditionally on Xj.

Location and scale estimators are given by

/yL (yle)) dF (y]) (2.4)
and
64(x) = [ PLIE(yle)) AR (ylz) — iy (x), (2:5)

where F(-|-) is the Beran (1981) estimator defined as

Wi(ﬂf, an)

F(tlz)=1— 1— I(t < Zw), 2.6
( ‘ ) Zi<gi:1{ ?=1 I(ZJ > Zl)WJ('xaan)} ( ( )) ( )
with
W) — o) (2.7
i\, ap) = X\ .
o K (50)

the Nadaraya-Watson weights, K (-) and a,, defined as in (1.2) for the W.A.E. and L(s) is a
given score function satisfying fol L(s)ds = 1. In order to avoid consistency problems in the
right tails of the Beran estimator, 7" is chosen smaller than inf, (.|, where H(y|z) =

P(Z < ylz) and 7py) = inf{t : F(t) = 1} for some F. Seeing that the objective is to



estimate E[YI(Y < T)L(F(Y|z))|z] and E[Y2I(Y < T)L(F(Y|x))|z] with an estimator
of the Nadaraya-Watson type, we rewrite (2.4) and (2.5) as

n

g(x) = ;m(x, an)Dis(Zi, A|2), (2.8)
and
5%(x) = zw< an)Dua(Zi, Adfe) =i (a), (2.9
where
i(Z Adlz) = Zi(Z0 < TYL(F(Zi])) A + ngiyfg(Zi'%ﬁ;y’x) (1-A)),
and
(2 Ala) = Z21(20 < DVP(Z e, + 22t EEGAFG)

Note that T'3(Z, Alz) and Ty (Z, Alz) actually estimate

It YUF @) AF@le) |

Pig(Z, Ale) = Z1(Z < T)L(F(Z]0)) A + 45— F(Z A Tl7)

and

IV LEWR)AF@lD) |y

Tu(Z, Alx) = Z*1(Z < T)L(F(Z|x))A + 1= F(ZAT|2)

respectively. It is easy to check that

E[l(Z, Alz)la] = BYI(Y < T)L(F(Y|x))],
and

E[Tu(Z,Alz)la] = B[Y?I(Y < T)L(F(Y|2))|z].

As for the complete data case, Theorem 3.3 enables us to prove the strong uniform
consistency of estimators of any location and scale functions (truncated by T ) defined by
the score function L. Note that in order to use Theorem 3.3 with the functions I'j5(Z, Alx)
and T'yy(Z, Alx), we first need to delete the Beran estimators that appear in I'y3(Z, Alz)
and I'y4(Z, Alx). This can be done by using Proposition 4.3 of Van Keilegom and Akritas



(1999).

Example 2.3 (Estimation of a conditional distribution function under the het-
eroscedastic model)

Now, suppose in the previous example that we want to estimate the conditional distri-
bution function of the response given the covariate under the model Y = m(X) + o(X)e
with € independent of X. The corresponding preservation of means criterion is: construct
new indicators for which the conditional mean equals the asked conditional distribution
function and which use the above heteroscedastic model. More precisely, this estimator
is a weighted sum of data points ft5(Zi, A;lx),i=1,...,n, that approximate

F(E2X AT — F (B0 A T)

Tys(Zi, Ailz) = 1(Z; < )A; + ——2X X) (1-124;), (2.10)

1— F(Z582 AT

where F.(y) = P(e < y), T < 7y and H.(y) = P(Z;&()X) < y). We refer the reader
to Heuchenne and Van Keilegom (2005) for a complete description and explanation of
this estimator. The same paper also provides strong uniform consistency proofs for the
estimator based on those new data points and a corresponding modulus of continuity.

Those proofs largely use Theorems 3.3 and 4.3.

Example 2.4 (Nonparametric regression with missing data)
Suppose in Example 2.1 that some Y;, i« = 1,...n, are possibly missing. In this case,
A; = 0 if Y; is a missing data and A; = 1 otherwise. Moreover, the MAR (missing at

random) assumption requires that
PA=1]X,Y)=PA=1|X) =pX) (2.11)

(see Little and Rubin, 1987, p.14). In this context, a simple idea (similar to the one
developed by Chu and Cheng, 1995) to estimate a regression function is to construct a

Nadaraya-Watson estimator with new data points given by

~

where mg(x) is the Nadaraya-Watson estimator based on the complete pairs:

Sy K(P7)YiA,
Ly K(2X)A,

an




with K(-) and a, as defined before. Therefore, two applications of Theorem 3.3 with
data points I';4(Z, Alz) = YA and I'i7(Z, Alx) = A along with assumption (2.11) al-

low us to prove the uniform strong consistency of mg(z). Next, if fx(x) = %;x) and
p(x) are uniformly Lipshitz continuous and mg(z) = E[Y|X = z] is two times con-

tinuously differentiable, the uniform strong consistency of the W.A.E. with data points
Dis(Z,Alz) =Y = YA +mg(X;)(1—4,) is obtained in two steps. First, replace mg(X;)
by mg(z)+(X;—z)mls(z)+0(a?) (using appropriate assumptions on the support of K sat-
isfied for example by the assumptions of Theorem 3.3). Then, by similar developments as
in Corollary 1 (ii) of Theorem 2 in Masry (1996), m/s(z) >r Wiz, a,)(X; —x)(1 = A;) =
O(a?) a.s. Second, a third application of Theorem 3.3 allows us to obtain the result.

The assumptions we need for the proofs of the results of Sections 3 and 4 are listed

below.

(A1) (-, -]-) is Lipshitz on Ry (compact) uniformly in ¢t € I :

sup sup |ve(z, 0|z) — ve(z, 0|z;)| < Lo(z,0|z;)d, z € R, § =0,1,

|z—x;|<d, z,x;€Rx t€l

where Lq(+,-|-) is a (positive) function independent of ¢ such that E[Ly(Z, A|z)%] < L¢ <

oo for all z € Rx.
(A2) 0 < y(2,90|z) < yw(z,0|x), t <t €I, for all z,z and § =0, 1.
(A3) g(t|z) = E[v(Z, Alx)] is a continuous function of ¢ € I for all x.

(A4) For t, = inf{t: t € I}, t, > —oo and t* = sup{t : t € I}, t* < oo, the limit functions
~er=limy 4« 7y, and 7y, = lim,_;, 7y, exist and are finite a.s. (w.r.t. H(z) = P(Z < z)) for

all x.

(A5) There is a A €]2, +o00o[ such that, for all z, E[y(Z, Alx)%] < Mgy < oo; in the case
A = 400, sup, , 5 |V (2, 0]x)| < co.

(A6) Let {c, } be a nonnegative sequence satisfying (i) 0 < ¢, — 0, (ii) ¥,, = nc,/logn —

o0, (iii) c;t < (n/logn)'=2/* for X as in (A5).

(A7)(i) Fx(z) is differentiable with respect to x with derivative fx(z).

(i) Hs(z,y) = P(X <z, Z <y,A=9),x € Rx,y € IR, § = 0,1, is differentiable with
respect to (z,vy).

(1ii) Hs(y) = P(Z <y,A =9),y € IR, § = 0,1, is differentiable with respect to y.
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(iv) For the density fxjza(z|z,6) of X given (Z,A), sup,, |fx|za(z|z,6)] < oo,
sup, , |fX|Z7A(ZL‘|Z,(S)| < oo and sup, , |f"X‘Z7A(x|z,5)| < o0 (6 =0,1), where fX|Z,A(x|z,5)

(fxiza(x]2,0)) denotes the first (second) derivative of fx|z.a(2|z,d) with respect to .

(A8) Define new data points as T'y(z,60]z) = X9, ¢ivu(2,6|z), 2 € R, t € I, € Ry,
0 = 0,1, with fixed and finite ig, q,...,q, and with families {y;, t € I}, 1 < i < i,
satisfying assumptions (A1)-(A5), with common A in (A5).

(A9)(7) Consider kernel sequences of step-function form, K, (u) = Zgil Ml (=bn; < u <
bnj), u € IR, with {j,}, {m,;} and {b,;}, some sequences of constants ({j,} and {b,;}
nonnegative) such that 2%, my,;b,; — 1| = O(max(¥,; /2, a2)), with j, = O(n®), s >0

and V,, = na,/logn.
(i) $up,, X7y [malby < oo.

(1ii) sup,, ;":1 \mnj\bij < 00.

(A10) Let {¢,} and {d,} two nonnegative sequences that satisfy (i) 0 < ¢,,d, — 0, (i)
W, = nc,/logn — oo, (iii) ¢;' < d,(n/logn)'=2/* for A as in (A5).

(A11) The data points v(Z;, Ailz), t € I, x € Rx, ¢ = 1,...,n, have the following
mean-Lipshitz properties when d,, — 0:

(1) SUPGecrin st micry BT (2. Ale) = (2. Ala)] < Cud,

(1) SUD{pepy ft—s|<dn.siery EL(7(Z, Alz) = 74(Z, Alx))?] < CL,d,, for n sufficiently large.

(A12)(i) — (i4i) Consider kernel sequences of the same form and with the same assump-
tions as in (A9) except that |2 302 mp b, — 1| = O(max(¥;Y/2d;1/2,62)) in (A9) (4)
with d,, as in (A10).

3 Strong uniform consistency of the weighted aver-

age of artificial data points

Strong uniform consistency and modulus of continuity proofs are achieved in three
steps. First, we consider new data points v4(Z;, A;|x), i = 1,...n,t € I, © € Ry, and
kernels that are defined by indicators. Second, we combine those data points to obtain
the I't(Z;, A;|z) used in the previous section and we sum indicators to construct kernels

of step-function form. Third, by using a number of indicators that tends to infinity in the



step-function kernel, we show the announced results for the usual smooth kernels.
Proposition 3.1 Assume (A6), (A7). Then,
P(Mn(cn) > Oolpgl/z + Clci) = O(TL_Q)

for some Cy, Cy > 0, where

1 n
M, (¢, = sup su Zi, Ni|le) [ (x — ¢, < X; <x+cp
() = sup suple Sl Ze A )

- > / Ye(z,0|z)hs(x, 2)dz|,
§=0,1" "
hs(z, z) is the joint density of X and Z for § = 0,1 and v(z,0|x), t € I, x € Rx, z €
R, § = 0,1, satisfy assumptions (A1)-(A5).

Proposition 3.2 Assume (A7)-(A9) and that a,, satisfies (i) a, B, — 0, (i) na,b,/logn

1-2/A

— o0 and (iit) a;* < by(n/logn) , where b, = min;<; b,;, B, = max;<j, b,; and X

is given as in (A5). Then,
sup sup |dy, () — dy(z)] = O(max (V% a2)) a.s.,
rzeERx tel
where
1 " Tr — Xz
din() = — Y To(Z;, Aj]2) Ko

),

and

d(x)= Y /O; Ty(2, 8|2)hs(x, 2)d=.

§=0,1"~

Theorem 3.3 Assume (A7), (A8). For the sequence a,, we suppose (i) a, — 0, (i7)
na’?/logn — oo, (iii) a;>/* < (n/logn)'=2* where \ is given as in (A5) and (iv)
nat — 0. The kernel K is assumed to be symmetric with bounded support, bounded first
derivative and [ K(u)du = 1. Then,

sup sup|don () — di ()] = O(W;"/2) a.s.,

r€Rx tel "
where dy,(x) and di(x) are defined with kernel K and V,, = na,/logn. Moreover, if
infer, |fx(z)] >0,

P K(EE5OT(Zi, Adle)  dy(2)
sup sup | n

zeRx tel ?:1 K(%) B fx<l’>

| = O(¥,;*?) a.s.



Remark 3.4 (density estimator) If we denote f,x(x) = (1/na,) X" 1K(I;—fi), the

classical kernel density estimator, we have using Theorem 3.3 with I'(Z;, A;|z) = 1 that

SUD,cry | fax () — fx ()] = O(¥;1/?) a.s., since SUP,cpy |fx(2)] < o0.

Remark 3.5 (moment conditions) For a number of artificial data points, the moment
conditions in (A1) and (A5) are not used. Indeed, those data points can often be of the
form v(Z;, Aj|x) < 75 (Z;, A;) and such that Lo(Z;, Aj|lz) < L§(Z;, A;). In this case,
the strong law of large numbers can be immediately used with (1/n) X", v (Z;, A;) —

ElyNZ, M) and (1/n) X, Li(Zs, A) — E[Li(Z, A)] in the appendix. The terms V, ¥, />
and 2Wn\11,:j1/ ? can then be treated outside Proposition 3.1 and be directly 1ntr0duced in
(A.21) in the proof of Proposition 3.2 (see the appendix) such that the final result of

Theorem 3.3 is preserved.

Remark 3.6 (boundary effects) The degree of smoothing of fx|za(z|z,0) allows us
via (A7) (iv) to obtain the artificial order O(¥;'/2) near the boundaries of Rx. If we
suppose for instance the weaker condition

sup sup| Y /% z,0]x)(hs(2', 2) — he(z, 2))dz| < Cd,

|lz—a’|<d, z,@’cRx t€l §_ 0,1

instead of (A7) (iv), then the more realistic rate O(a,) can be obtained near the bound-

aries.

Remark 3.7 (bandwidth assumptions) The bandwidth parameter a,, could tend to
zero more slowly. Indeed, the condition nal — 0 of Theorem 3.3 can be written with
another power on a,. By example, if na2(logn)™* = O(1), Theorem 3.3 also holds if

nal /logn — oo and a;® < (n/logn)'=2/*,

Remark 3.8 (artificial data representation) The representation

Ft<Z, 5|I‘> == Z Qifyti(za 5"7:)7
i=1

needed in the above proofs, requires nonnegative v, (z,d|z), i = 1,...,4. This assump-
tion is not restrictive since any random variable X with real values can be represented

by X = max(X,0)—(—min(X,0)), where the two terms of this difference are nonnegative.
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Remark 3.9 (Extension to local linear estimator with conditional new data
points) The extension of Theorem 3.3 to local linear estimator is easily obtained by
similar developments as in Corollary 1 (ii) of Theorem 2 in Masry (1996) and if fx(x) is
uniformly Lipshitz continuous. Indeed, using those arguments the local linear estimator

reduces to the classical weighted sum of conditional new data points discussed above.

4 Modulus of continuity for the weighted average of

conditional synthetic data points

The development of this section is similar to Section 3. The strong uniform consistency

of the modulus of continuity is established via two preliminary results.
Proposition 4.1 Assume (A7), (A10). Then,
P(M,(c,) > CoU, Y 2dY? + Cy2d,) = O(n™?),

for some Cy, Cy > 0, where

1 n
M,(c,) = sup sup \ Z(%(Zi, Aj|x) —vs(Zi, Nja)) [ (x — ¢ < X <+ ¢y)

T€RX |t—s|<dn, s,tel 2ney i=1

= 5 [ Gulz0la) = vz 00 o, ),

5=0,1""

and v(z,0lx), t € I, © € Rx, z € IR, 6 = 0,1, satisfies assumptions (A1)-(A5) and
(Al1).

Proposition 4.2 Assume (A7), (A8), (A11), (A12) and that a,, and d,, satisfy (i) a, B, —
0, d, — 0, (ii) na,b,/logn — oo and (iii) a;' < bud,(n/logn)'=%* where b, =

n

min;<;, by;, By, = max,<;, by;, and X is given as in (A5). Then,

sup sup |dgtn () — dy(2)] = O(max(V;V2dY? a2d,,)) a.s.,

n n 1 %n
zERx |t—s|<dy, s,tel

where

duon() = —— ST Z M) — Tu(Ze, Al K (PN

n =1

),

Qn

du(z) = 3 / O:O(Ft(z,§|m)—Fs(z,5|x))h5(x, 2)dz.

6=0,1""
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Proof. The proof is along the same lines as the proof of Proposition 3.2.

Theorem 4.3 Assume (A7), (A8), (A11) and that a,, and d,, satisfy (i) a, — 0, d,, — 0,
(i1) na®?d;1/?/logn — oo, (iii) a;>? < d“?(n/logn)' =2/}, where X is given as in (A5),
(iv) logn/na,d, = O(1) and (v) nal — 0. The kernel K is symmetric with bounded
support, bounded first derivative and [ K(u)du = 1. Then,

sup sup |y () — dgy(2)] = O(F;Y/2dY?) a.s

z€ERX |t—s|<dn, s,tel

where dg,(x) and dg(x) are defined with kernel K and ¥, = na,/logn. Moreover, if

naZ/Q/logn — 00 and infxeRx |fx(£l§')| > O’

K (X0 (Z, Adlz)  d
sup sup | S KR a | >— St(x)|:O(\I/;1/2d}/2) a.s

TERY |t—5|<dn, sitel 1 K(%) fx(z)

Where FtS(Zi7 AZ|.T,') = Ft<Zi7 Al‘l’) — FS(ZZ', AZ’.Z')

Remark 4.4 (bandwidth assumptions) If na’(logn)™* = O(1), Theorem 4.3 also

holds if na? /logn — oo and a;® < dY/?(n/logn)'~2/*,

Appendix : Proofs of main results

Proof of Proposition 3.1. Let f, = ¥;'2¢c,. We have, for My,(c,) = M,(c,) in
Proposition 3.1,

Mon(c,) = sup sup| S w(Zi, Ailz)(z — ¢ < Xi <4 ¢y)

zeRx tel 2nc Cn i=1

T+cn
~5a / / Ye(z, 0|z)hs(u, z)dzdul

e §=0,1
T+cn
+ sup sup]—/ / Ye(z, 6|x)hs(u, 2)dzdu
r€ERx tel T—Cn s 0,1

- > / Ye(z,0|x)hs(x, 2)dz|

6=0,1

= sup sup | My, (z)| + sup sup | Mo, (7)|.
rERx tel r€ERx tel

First, we treat the term My, (z). It is given by

Z/ Yi(z,0|z) { n/:”rcn ha(u,z)dU—hg(:U,z)}dz.

§=0,1 —Cn
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Using two Taylor developments of order three around x, we get

1 /ch hs(u, 2)du — hs(x, 2) = (¢;/12)[fx1z.a(6112,0) + fxiz.a(Bel2, 0)]hs(2),

26y Jo—en
where 0, (0,) is between x + ¢ and x (z and = — ¢). Since sup, , |f'X|Z7A(x|z,6)| < 00
(5 = 07 ]-) and Sup{zGRx, tel} Eh/t(ZaA|x)] < 00 with ’Yt(Z7A|w) Z Oa

sup | Moy, (2)| < C1c2. (A1)
{z€Rx, tel}

Let Lx be the length of Rx and divide Ry into [%] intervals of length smaller than
or equal to f, ([x] denotes the integer part of x). Define oy = inf{z : z € Rx} and
let Ix be the set of points {z) = zo + k[QJ’%—nX]*lLX, 1 <k< [QJ’E—HX} —1= L%} and
rrn 41 = sup{z : z € Rx} which limit the intervals. Using the Lipshitz condition (A1),

we can rewrite for 1 < 7 < L%,

sup sup | My, ()|
r€Rx tel

Z%(Zi, ANz (x — e, < X; <z +cp)

zjelx z€lzj_1,xj41) tEI 2ncey, i=1

< max sup  sup|

_1/a:+cn 5 /00 (2,0|z;)hs(u, 2)dzdu| + max (E[Lo(Z, Alz;)] + |V(z;) ) ¥, /2
2¢p Jz—cn §—0.17/ T\Z, O1% )8, z;€lx A J nitj n o
(A.2)

where V,(z;) = (1/2n) X1 Lo(Z;, Ai|xj) — (E[Lo(Z, Alz;)]/2). For simplicity, we rewrite
the term on the right hand side of the above equality as

(2¢,) ! max sup  sup | Msp,(z;, )| + flea}}i(E[LO(Z’ Alz;)] + |Vn(xj)|)\lf;1/2.

zjelx x€lxj_1,xj41] tEL

We then have

P(max (E[Lo(Z, Alz;)] + |Va(z;)]) > 2Cs)

ijIX

< D AP(R2Va(w))| > 2C2) + P(E[Lo(Z, Alx;)] > Ca)},

where the second term on the right hand side of the above expression is zero when
Cy > Ly°. (A.3)
For the first term, we use an extension of Chebyshev’s inequality :
Pln™ 3 Lo(Ze Ade,) = EULn(Z, Al > 202)

1

<
- (27102)6

B (Lo(Ze, Adlay) — ElLo(Z, Alz,))}] = O(n~?),

=1
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since E[Lo(Z,Alz;)%] < Lg < co. Then, with L%O(n™3) = o(n™?),

P(max (E[Lo(Z, Alay)] + Va(z;)]) > 2C3) = o(n”),
for which, using the Borel-Cantelli Lemma, we obtain
V, = max (E[Lo(Z, Alz;)] + |Va(z;)]) = O(1) a.s. (A.4)

J,‘jEIX

To treat the first term on the right hand side of (A.2), we introduce some additional

notation. Let
Gn(zj,x) = nt Z’Yt(Zz‘, Ailz) (X < ),
i=1
and

Gi(xj,x) = E[G(zj, @ / / Ye(z, 6|xj)hs(u, z)dzdu.

06=0,1

Therefore,

|M3in (25, 7)| = |G, 7 + cn) — Gealwj, 7 — n) — [Gi(x5, 0 + ¢) — Gi(z5, 7 — ¢
< 2|S|gp |th(xjvx +2) — th(xjvx) - [Gt(xj’x +z) — Gt(xjvw)”

=2 sup My, (z;,x,2). (A.5)

|z[<cn

By conditions (A2) — (A5), the functions g(t|z;), j = 1,...,L%, are nondecreasing,
continuous in ¢ with finite limits g(¢*|x;) and g¢(t.|z;) as ¢ — t* and t,. For each z;,
j = 1,..., L%, define I,; as the grid of values of ¢, {t.,t1,...,tn,;,t"} which is such
that |g(t1]z;) — g(tlzj)| < fa, [9Qkialz;) — g(telzy)| < fo, for k& = 1,... Nyj — 1,
l9(t*|x;) — g(tn,,|z;)| < fo. Clearly, I is divided into O(f,?) intervals. Next, let I be
the set {(t.,t1), (t1,t2), ..., (tn,,;,t")}. Clearly, the cardinality N,; + 1 of I}; is bounded
by

Q(g(t*|$j)f; g(t*|xj))‘ (AG)

Also, for fixed j, x, z, n, the functions Gy, (z;, v+2) — G, (2, ) and Gy(xj, z+2)— Gz, x)

are monotone in ¢t and have finite limits as t — t,,t*. We therefore have
My (xj, 2, 2) < max My (xj, 2, 2)
nj

4+ max
(s,t)el’

Gi(zj, x4+ 2) — Gs(xj, o + 2) — [Gi(z;,2) — Go(z4, 2)]]. (A7)

14



It is easily shown that the second term on the right hand side of the above expression is

bounded by

2[ % [ ulz00e5) = 3z, 8l)ha(u, 2)dzdu
Rx g1/~

=2 % [ (ulz8le5) — 2u(z0la)hs ()

5=0,1""
< 2(g(tlay) — glsla;)) < 2fn.

using monotonicity of v; with respect to t. Therefore,

max  sup  sup sup My, (z;,2,2)
zjelx z€lzj_1,xj1] tEL |z|<cp

< max Sup  max sup My (25,2, 2) + 2. (A.8)
TiEIX peaj_y,xi1) 1IN |2|<cn
We have
max  sup max sup My, (z;,z, 2) (A.9)
T EIX zefw; 1,@541] 1IN 2] <en
< max (mz}x sup  max sup My (25,7, 2),
TEIX wefwj 1,3j41] oI atz€fzj—1,2541]
max sup max sup My (xj, 2, 2),
IjGIX\{mL}}a:E[xj,ijrl] t€ln; x+2z€[xj41,x+Cn)
max sup max sup My (25,2, 2),
z;€lx \{z1} z€[x),x 1) t€ln; r+z€[T—cn,Tj-1]
max sup max sup My (25, %, 2),
IjGIX\{xL;L(} x€lxj_1,x;] t€ln; T+zE€[Tj41,2+Cn]
max sup max sup My (xj, 2, 2)).
z;€lx \{z1} r€[x;_1,T4) t€ln; r+zE€[r—Cn,Tj_1]
Introducing Gy, (z;, j4%) and Gy(z;, xj1x) for k= —1,0 or 1, it is easily shown that

max  sup  max sup Muy,(z;,z,2)
zjelx TE€[Tj_1,7541] te€ln; |z|<cn

< 2max max max sup My, (T, Tjik, 2 A.10
< ks Z)- :
w€lx 1€y ke{~1.0.1} |5|<cr n(T5: Tt 2) ( )

Now, put Q,, = My f; /O~ where, for all z, (E[(y~(Z, Alz))*])Y* < M) < oo for some
A, 2 < XA < oo. In the case A = 00, My, denotes then sup, , s |[y+(2,6|z)|. Also, put

Hpn(zj,2) = 0 3 Zi, Ay L ((Zi, Ailzy) < Qn)I(X; < ),

=1

15



and define My, (z;, x, z) by substitution of Hy, for Gy, and E[Hy,| for Gy in My, (z;, x, 2).
Recalling (A.2), (A.4), (A.5), (A.8) and (A.10), this is seen to yield

sup sup | M, (7)] < 2¢,' max max max  sup Ms, (2, Tk, 2)
z€Rx tel zj€lx t€lnj ke{-1,0,1} |3|<c,

+2fnc (1 + Vo /2 + W, 4+ 6,), (A.11)
where

W, = max max max sup |Mgm(z:, i1k
f zjelx teln; ke{-1,0,1} z|<c, | n( irLith: >|7

Men(xj, 2, 2) = Gn(xj, ¢ + 2) — Gz, ) — [Hin(zj, 2 + 2) — Hip (25, 2)],
and

O = I I oy S (B UMl 2 2]

Using (A2), (A4) and the fact that f, ' = (Q,/M,)*"!, we have

M'W, <@y maxn® Z%* Zi, Ailwy) I (v (Zi, i) > Qn)

xEIX -1

S max 7 IZ’YL‘* zaAi|xj))\7

.Z’]EIX

if A <ooand W, =0if A = co. Next, for A < oo,

P(max n IZ%* Z,Ai|xj)’\ > ()

JTJEIX

<> AP Z’Yt*(ZmAi\-’Bj)A — E[=(2, Alz)Y] > Cs/2)

j i=1
+P(Elye(Z, Alz;)*] > C3/2)},

where the second term on the right hand side of the above expression is zero when

Cs/2 > M3, (A.12)

For the first term, we also use the extension of Chebyshev’s inequality :

n! Z%* Zi, A\ |$y - E[%*(ZaAWj)A] > (C3/2)

g P e (Ze Ale) = Bl (2, 81, D)) = 0(n ™),
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since B[y (Z, Alx;)%] < Mgy < 0o. Then, with L% O(n™3) = o(n™?),

P(max n=" Yy (Z;, Aglaj) > Cs) = o(n™?),

ijIX i—1
for which, using the Borel-Cantelli Lemma, we obtain
W, =0(1) a.s. (A.13)

We also see that
maxy,ery B[y (Z, Alz;)Y]

en S M))\\_l S M)\, (A14)
if A< ooand @, =0if A = oco.
Now, define
2Qncn
Wy, = +1

=)

and
rcp
Mrjkr = Tjk + o forr=—w,,—w,+1,... w,.

n

We then have

sup Msin (%), Tjrp, 2) < max My, (2, Tjpp, ren/wy)
|z|<cn —wn <r<wn,

+  max |E[Huw (), Mnjeeri1))] — E[Hn (5, Mnjer)]|-

—wn <r<wp—1

The second term of the right hand side of the above expression is bounded by

Qn  max /%jkwl) > /Oo hs(u, z)dzdu
n 0

—wWn <r<wp—1 ik s—01”’—
-

Mnjk(r+1)
S Qn max / ’ fX(u)du S Qn04(77njk(r+1) - nnjkr) S C4fn/27
n

—wn <r<wp—1 ik

where Cj is the Lipshitz constant of Fx(-). The goal is therefore to calculate, using (A.11),
(A.14) and the above last inequality,

P(sup sup [ My, (z)| > Co0,'/?)

rERx tel
< P(2 gHtl%}i Msin (2, jpp, rCn/wn) + fu(2W, + V) > (Co — 2 — Cy — 2M)\) f)
< Zk P(M5tn(xj,xj+k; TCn/U)n) > (1/6)(00 —2— 04 — 2M)\>fn)

7,6k,

+P(Wn > (1/6)(00 -2 — C4 — QM)\))

+P(V, > (1/3)(Co — 2 — Cy = 2M,)),

17



where Cy, Cy and Cs can be chosen to satisfy 2M, < (Cs/M;y™") < (1/6)(Co—Cy—2My—2)

and Lé/6 < Cy < (1/6)(Cy — Cy — 2M, — 2). In this way, using (A.3), (A.4), (A.12) and

(A.13), we only have to treat the first term on the right hand side of the above expression.
Defining C{, = (1/6)(Cy — 2 — Cy — 2M,), we have by Bernstein’s inequality,

P(Mf)tn(xj,xj—i-karcn/wn) > C(/)fn) S 26Xp(_ytjkn7‘)a

where
12,,2 £2
CO n fn
2 2 ! )
2n0-tjknr + gnCOann

Vijknr =
and oyjgn, = Var[Dyjgn,| for
Dyjinr = (Z, Alzj) 1(0(Z, Alzy) < Qn)(L(X < mojir) — 1X < wj4)).
We have

NnjkrVTj4+k o]
O < ElDR,) < [ S | A Ola) Iz, 0l) < Q. 2)dzdu

G+ N\Nnjkr §=0,1""

< CsMjen, (A.15)

using (A5), condition (A7) (iv) and where C5s = max;sup, . |fx|za(x|z,d)|. Using (A6)
(i),

Quf = Myf{ /00 = a8

YAZD2O-D < My, (A.16)
We thus have by (A.15) and (A.16) that

1
Vtjknr 2 O() logn7

with
Cy 3L¢"
C) = 0 > max , 6 .
O 2M\(C5 My + 1C) <3O5 + 27 M, (6M\Cs + zLé/ﬁ))
Therefore,
L%
S° P(Mipn(25, 1k, 7C0 /wn) > Chfn) <65 (Npj + 2)(2w,, + 1)n=%, (A.17)
Itk j=1

where C{ has to be chosen large enough so that the right hand side of (A.17) tends to
zero sufficiently fast. Thus, the highest order term on the right hand side of (A.17) is

LXM)\QnCn

96(——

)=, (A.18)
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where

QnCn n x
=M n 2(0—1)
fn A (cn logn)
and
N, < 29(t"|;) < QMA’
Jf fa
using (A.6) and the fact that E[v;-(Z, Alz;)] < M,. Using (A6) (iii), (A.18) is bounded
by
n 3X—2 " n 1"
L 30— . —C <L 2., —Cy
)‘(cnlogn) Calt 0 S ’\<logn) "

where Ly = 96M3 Lx. Therefore, choosing C§ > 4 allows us to write

P(sup sup | My, ()| > Co¥,1/?) = O(n72).

reERx tel

By (A.1) and (A.19), we finally obtain

P(sup sup | My, (z) + My, ()| > Co¥, Y2 + C1c2) = O(n72).

r€ERx tel

(A.19)

(A.20)

Proof of Proposition 3.2. First, define new data points as I'y(z, §|z) = X, ¢ivu(z, 0|x),

z€ R, tel, e Rx,d =0,1, with fixed and finite 79, q1,...,¢o and with families
{Vi, t € I}, 1 < i < i, satisfying assumptions (A1)-(A5), with common X in (A5). If

we consider kernel sequences of step-function form, K, (u) = Z;’;l Ml (=bn; < u < by,),

u € R, with {j,}, {mn;}, {bn;} sequences of constants characterized in assumption (A9),

the expression of Proposition 3.2 can be bounded by

sup sup |dy, () — di(2)] <3 |aal (S + SE),
=1

re€Rx tel

where

Jn ;
S — o > 1700 b MG, (€ ).

ni
j=1

(4) _
Mo, (cnj) = sup sup|
zeRyx tel 4NCpj 3

-> /oo Y1i(2,0|x)hs(z, 2)dz|, i =1,... i,

6=0,1""

19
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(Mé;) (€nj) is simply Mo, (c,) that appeared in the proof of Proposition 3.1 with 4, and ¢,

replaced by 74; and ¢,;, respectively, i = 1,...,ip, j =1,...,jn), Cnj = anb,; and

Jn
S = sup supl2 Y magby = 1) X [ (e o), )z

reRx tel j=1 §=0,1

Jn
< C5ML(2) - by — 1))

j=1
Next, define
n =200 U?}:pmww”2+nxza2§fhmﬁw;u
J=1 J=
Then,
P@%m@gimmmw>%‘w+q@y
j=1

with U,,; = U,,b,; and ¢,,; = a,b,;. By using (A.20), we thus obtain
P(SL) > £,) < O(jun ™).

For s in (A9) (i) smaller than 1 (j, = O(n®), s > 0) and using the Borel-Cantelli Lemma,

we obtain

S = 0(e,) a.s.,

nt

for which &, = O(max (¥, /2 a2)).

Proof of Theorem 3.3. Let b,; = ja¥/? and m,,; = K(ja¥/?) — K((j + 1)a’/?) in (A9).
Then (A9) (i) becomes

jn
2 mnsbos = VI < [ 1Kalu) = K (w)ldu < Calf?,
=1
for some C' > 0 and since [ K,,(u)du = 22?’;1 Minibn;, (A9) (ii) and (A9) (iii) become

supa9/4231/2|[(’( 0,;)] < o0
7j=1

and
Supa62j ’K/ nj)' < 0,

7j=1
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where 6,,; is between ja? and (j + 1)a®/2. Therefore, we can choose 0 < s < 1 such that
— O( 73/2)
Next, if we denote dy, () using kernel K by d;,(x, K), it is clear that
sup sup |dy, (x, K) — dy, (2, K,,)|

reERx tel

D 3/2 n
< sup sup( O ST Zi, Aj2)| I (z — an < X; <z +ay)) = 0(a3?) a.s.,(A.22)
rz€Rx tel MNap i=1

for some constant D > 0, a kernel support equal to [—1, 1] and where Proposition 3.1 is
used with ¢, = a,, (with ¢, = (L/2)a,, if L is the length of the support).

Finally, write

i=1 K<I;j(i)rt(zi,Ai’$)  dy(z)

din(z, K) — di(x)

B N = Pl S SRS w
di(2)(fx(z) = fux(z))
R L s e

If we use the fact that inf,cp, |fx(z)| > 0 in addition to the obtained results for d;,(x, K)
in (A.22) and d;,,(x, K,,) in Proposition 3.2, both terms on the right hand side of the above

expression are O(W,, /%) a.s. since sup,cp, Supe; |di(2)| is bounded (using the definition
(A8) of the points I'(-,|-)).

Proof of Proposition 4.1. For Mz,(c,) = M,(c,) in Proposition 4.1, let

1 n
c Z(%(Zz’,Az“x)
n =1

—Vs(Ziy Nj|x)) [ (x — ¢ < X; <+ ¢y)

_1/m+Cn 3 /O:O(’yt(z,ﬂx)—fys(z,§|x))h5(u, 2)dzdul

Mzy(c,) = sup  sup |
z€ERx |t—s|<dp, s;tel 4T

2Cn T—Cn (510,1 -
x+cn
+ sup sup / / (ve(z,0)|z) — vs(2, 8]x)) hs(u, 2)dzdu
TERx |t—s|<dp, sitel 2671 T—Cn 50,1

= 3 [ Oul812) = iz, Sla)hs(a, )z

6=0,1

= sup sup | Mgsen ()] + sup sup | Mysen ().
TERX [t—s|<dn, s,tel zeRx |t—s|<dn, s,tel

First, Mg, (z) is treated as My, () in Proposition 3.1 such that

sup | Mogin ()| < C’mldnci, (A.23)

{z€Rx ,|t—s|<dn, s,tel}
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using (A11). This inequality corresponds to (A.1) in Proposition 3.1.

Divide Rx into [f f‘/Q] intervals of length smaller than or equal to f,dY2. Denote

7LTL

by Jx the set of points {z) = x¢ + k[;zf‘m] Lx, 1<k < [f2§f(/2] 1= L%} and

Tpan g = sup{z : € Rx} which limit the intervals. Then, Mgy, () is treated like (A.2)

in Proposition 3.1, where (-, -|-) is replaced by (-, ") — vs(-, :|), Va(x;) by V.(z;) =
(1/n) Xy Lo(Zi, Ailxy) — E[Lo(Z, Alx;)] and V, by V¢ = max, e, (2E[Lo(Z, Alz;)] +
|V4(z;)|). Using Chebyshev’s inequality, P(V4 > C,,5) = o(n™2) with C,,s chosen larger
than 4L¢/®. A development similar to (A.5) and (A.9) is used to obtain

sup sup | Mgstn ()]
TERX |t—s|<dn, s,tel

<20 I e ey 0 Moo (T e ) VTR, (A24)
where
Miosin(xj, @, 2) = |Gt (T, @ + 2) — Gon(5,7) — [Ge(xj, 0 + 2) — Gse(j, )],
Gan(aj,x) =n”" é(%(zi, Ailzs) —vs(Ziy Al 2y)) 1(X; < ),
and

Ga(zj,x) = E[Gan(z;, )] :/x / (7e(2,0)|z5) — vs(z, 8|xj)) he(u, 2)dzdu.

0§=0,1

Partition I into O(f;'d;%?) intervals such that for each z;, j = 0,...,L% + 2,
g(t*|z;) — g(t|z;) is divided into m; = [W] intervals of length Cy,3(x;)Crd,,
1 < Cps(z;) < 2. In this way we can construct |g(t.|z;) — g(ti]|z;)| = Cms(z;)Crdn,
|9(tatr]z;) — g(talz))] = Cms(z;)Crdn, a = 1,....m; — 2, |g(t*]x;) — g(tm,—1|7;)] =
Cn3(25)CLdn, to = ts, ty, = t* for all j. Let [ = [g(ta-1]7)), 9(tasi]z))], @ =1,... ,m;—
1. For each s,t € I with |[t—s| < d,, there exists an interval [}, such that g(s|z;), g(t|z;) €

Cm3(z;)Crdn
ms(25)Cr 76__pn7"'7pn7Where

I;,. Partition each I}, by a grid g(tag|z;) = g(ta|z;)+5
pn = [WY/2dY/2+1]. Using (A7) (iv), (A4), (A5) and the monotomclty of v(Z,Alzr), (A.24)

is majorized by

2¢ ' max max max max sup Mios .+ T, Tith, 2 A.25
n zj€dx ke{— 101}1<oz<mjfl—pn<ﬁC<pn| |<en al a,@n( 7 Lg+k ) ( )

-1 , dygy 1/2 1/2
+4c, nax Kg%gf;_l_pnrgnﬁaglgn_lCscn\g(ta<ﬁ+1>l%) g(taplzs)| + VoW, V=d,

where C5 is defined as in (A.15) and the second term of the above expression equals
4C; S 2)CL < 0 V212, where Cly = 8C5CL
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Now, put T, = M,(f;1d;¥/2)x1. Define M, for 2 < A < oo as in the proof of

Proposition 3.1, Hy,(x;, z) by
n Y (0 Zi, Ailay) = 76(Zs Alep))V (1 Zi, Aily) = v6(Ziy Ailaey) | < To) (X < ),
i=1
and My, (z;, x, 2) by substitution of Hy,, for G, and E[Hg,,) for Gg. Then, (A.25) is
majorized by

2¢-! max max max max  sup Miy 4 T, Titk, 2
" aedx ke{-101) 1<a<mi—1 —pu<BL<pn o<, oan {5 Ty 2)

20, fudi (W2 + 02 + (V2 + Croa) U, 2dY2, (A.26)

where W¢ and 69 are defined similarly to W,, and 6, in the proof of Proposition 3.1. Tt
is easy to check that P(2W¢? > C,.5) = o(n™2) and 20¢ < C,6, where C,,5 and Ci,g are
chosen such that C,,5 > 2 2M, and C,,s = 2 ' M,

Next, consider

rc
Rnjkr = Ttk + p7n7 fOT’ = —Pn, —Pn + 17 <5 Dn-
n

For ﬁxed j7 ka «, /67 <7 n, Htagtaﬂn(‘rja xj-i-k_'—Z) _Hta(taﬁn('rja x]-i-k) and E[Htactaﬁn(xja xj+k+
2)|—=E[Hy, .1, (2}, 7j11)] are monotone with respect to z and have finite limits in z;,4+c,
and x4, — ¢,. Therefore,

SUP M1ty ctoon () Tjrr: 2)

z[<cn

< max Mlltagtagn(xﬁ'Ij—i-k?Tcn/pn)

—pn<r<pn
r+1)c, rCp
+_ max  |E[Hectoen (2, @ik + trtleny) ElHiqctogn (@5 T+ —=)]l;

where the second term on the right hand side of the above expression is bounded by
4C;,Cse, U, 2dl 2,
Therefore, (A.26) is majorized by
+@2WE + V& 4 Crpg + Crg + Crr) ¥, /2d?, (A.27)

where C,,,; = 8C1.Cs.
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Next,

P( sup sup | Mgsin ()| > Cmg\ll,jl/zd,llﬂ)
z€Rx |t—s|<dn, s,tel

< > P(Muggetosn (@, Tjan e /Pn) > Cong fudy!/?)
7.k,0,8,¢,r

+P(We >l )+ P(VE>20 ), (A.28)

where C7 , = (1/6)(Cyo — 16C5Cy, — 221 My) and C.y0, Cyz and C,,5 can be chosen such

m0

that C7, is larger than C,,2/2 and C,,,5/2 in order to satisfy
max (22 My, 2Lé/6) < Cl o
By Bernstein’s inequality,

P(Mlltagtagn(xj; Ttk 7’Cn/pn) > C;nofnd}“/Q) < 26Xp<_¢ntagtaﬁjk7’)7

where
Ontoctagikr = Cono Jnch 127
2n0’r21tactaﬁjkr+ 2nCho fudi! " T,
Ugtagtagjkr = Var[QntaCtaﬁjkr] and
Qutoctapirr = Vg (£, Alxj) — 1o (2, Alzj))

XA (V05 (25 Alg) = V1o (2, Alg) | < To)(H(X < Rongrr) = 1X < 54)).

Using (A11) (ii), o2

ntactagikr

< O1,Cs¢,d,,, and (A10) (i), T, ¥, /2 < dl/2. Therefore,

1
¢nta<tagjkr Z Cmo 1Og n,

with
"o 0;30 )
™ 2(CrCs + 5C)
Finally,

n
Lg( 1 mj—1

Z P(Mlltactagn(wﬁxj-‘rk}aTcn/pn) > C;nofndql—/Q) S 2 Z Z Z Z n_szO’

j,k,O{,B,C,T’ ]:1 k=—1 a=1 7pn§187<77’§pn
for which the highest order term on the right hand side is

LxM "
96qu,’216;1n_07"0 S 96
Cr

LxM,\ n2

~Cho
Cr (logn)? " '
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Choosing C7, sufficiently large finishes the proof.

Proof of Theorem 4.3. Let b,; = ja’/?d;'/? and m,; = K(ja}/?d;'/?) — K((j +
1)a®/2d;'/?) in (A12). Then, (A12) (i) becomes

jn
(23 mnjba; = DI < [ [Kul) = K (u)ldu < Ca?fd, 2,
j=1

for some C' > 0. Assumptions (A12) (ii) and (A12) (iii) are easily satisfied using j, =
O(a;3/2d"/?) such that s can then be chosen between 0 and 1.
Next, let us denote dg, () using the kernel K by dg,(z, K). It is clear that
Sup sup |dstn($a K) - dstn(-r? Kn)’
T€RX |t—s|<dn, s,tel
Da3/24-1/2 1
< sup sup  (— " D (Zs, Al @) [ (@ — a, < Xi < 7+ ay))

 ERX [t—s|<dn, s,tel nan i=1

= 0(a?*d}?) a.s.,

for which we use Proposition 4.1 with ¢, = a, (for a kernel support equal to [—1,1]).
Finally, the proof of the second expression in Theorem 4.3 is along the same lines as in

the proof of Theorem 3.3.
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