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Abstract

Consider the heteroscedastic model Y = m(X) + o(X)e, where ¢ and X are
independent, Y is subject to right censoring, m(-) is an unknown but smooth lo-
cation function (like e.g. conditional mean, median, trimmed mean...) and o(:) an
unknown but smooth scale function. In this paper we consider the estimation of
m(-) under this model. The estimator we propose is a Nadaraya-Watson type esti-
mator, for which the censored observations are replaced by ‘synthetic’ data points
estimated under the above model. The estimator offers an alternative for the com-
pletely nonparametric estimator of m(-), which cannot be estimated consistently in
a completely nonparametric way, whenever high quantiles of the conditional distri-
bution of Y given X = x are involved.

We obtain the asymptotic properties of the proposed estimator of m(z) and
study its finite sample behaviour in a simulation study. The method is also applied

to a study of quasars in astronomy.
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1 Introduction

Let (X,Y) be a random vector, where X is a one-dimensional covariate and Y repre-
sents the response. We suppose that Y is subject to random right censoring, i.e. instead
of observing Y we only observe (Z,A), where Z = min(Y,C), A = I(Y < C) and C
represents the censoring time, which is supposed to be independent of Y conditionally on
X. Let (Y;,Ci, Xy, Z;, A;) (i = 1,...,n) be n independent copies of (Y,C, X, Z, A). We

assume that the relation between X and Y is given by
Y =m(X) + o(X)e, (1.1)

where m(X) and o(X) are some unknown but smooth location and scale functions and
the error term ¢ is independent of X. So, we assume that the conditional distribution of
Y given X depends on X only via its first and second conditional moment.

In this paper we study the estimation of the function m(-) under model (1.1). We do
not restrict this function to be the conditional mean, but allow it to be any L-functional
(see e.g. Serfling, 1980, p. 265) :

1
x) :ao/ F~'(s|x)L ds—l—ZaJ (sjlz), (1.2)
0

where F~!(s|z) = inf{y : F(y|x) > s} is the quantile function of Y given x, L(s) is a given
weight function satisfying [, L(s)ds = 1, L(s) > 0 for all 0 < s < 1, k > 0, ao,...,a
are real numbers such that Z?:o aj =1,and 0 < sq,...,s; < 1. This definition of m(z)
includes a very broad class of common location functions. For example, when L = 1,
ap = 1 and k = 0, m(x) equals the conditional mean and when ay = 0,k = 1,a; = 1 and
s1 = 1/2, we obtain the conditional median.

It is well known that the conditional mean E(Y|X) (and any other location function
that involves high quantiles of F'(:|z)) cannot be consistently estimated in a completely
nonparametric way, due to the presence of right censoring. The estimator we propose
below attempts to solve this problem, by making use of model (1.1). In fact, when € is
independent of X, the right tail of the distribution F'(-|z) can be estimated well provided
there is a region in the support of the covariate where censoring is ‘light’ (this is because
we can estimate this right tail from the right tail of the error distribution, which is a global
distribution, and hence it can be better estimated than the local distribution F(:|z)). In
this way we are able to estimate relatively well the right tail of F(-|x) for any z, also for
those that belong to regions where censoring is heavy.

The method we propose consists in first consistently estimating the conditional distri-
bution F(y|x) under model (1.1), and second to plug-in the obtained estimator in (1.2).

To estimate F'(-|x), we replace the censored observations by new ‘synthetic’ data points
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that are obtained under model (1.1), and we then estimate the distribution F(:|x) by
using a weighted empirical distribution function on the new data points. The method
uses model (1.1) only in the construction of synthetic data points, and does not use the
model in the construction of the estimator itself. So, in a sense, it is little sensitive to
the validity of model (1.1), and it can be expected that the estimator works well, even in
situations where model (1.1) does not hold.

The estimation of the conditional quantile or mean function with censored data has
been studied extensively in the literature. Dabrowska (1987, 1992b), Van Keilegom and
Veraverbeke (1997b, 1998), Chen, Dahl and Kahn (2005), among others, studied the
nonparametric estimation of the conditional quantile function, whereas Powell (1986),
Buchinski and Hahn (1998) and Portnoy (2003) estimated this function under the as-
sumption of a parametric model. For the estimation of the conditional mean function,
Doksum and Yandell (1982), Dabrowska (1987), Fan and Gijbels (1994), Kim and Truong
(1998) and Cai and Hong (2003) used a nonparametric approach, whereas a large number
of other papers, including e.g. Buckley and James (1979), Akritas (1994), Heuchenne and
Van Keilegom (2004) assumed a polynomial model for the regression function.

This paper is organized as follows. In the next section, we introduce some notations
and describe the estimation procedures in detail. In Section 3 we state the asymptotic
properties of the estimator of m(-) obtained in Section 2. As a byproduct we also obtain
the asymptotic properties of the estimator of F'(-|z). Section 4 contains a simulation study,
in which the new estimator is compared with the completely nonparametric estimator,
and with an estimator proposed in Heuchenne and Van Keilegom (2005). In Section 5,
a data set on spectral energy distributions of quasars is analysed by means of the three
methods. Finally, the Appendix contains the proofs of the asymptotic results of Section
3.

2 Description of the method

We start with some notations and definitions. Let m°(-) be any location func-
tion and ¢°(-) be any scale function, meaning that m®(z) = T(F(-|r)) and ¢%(z) =
S(F(-|z)) for some functionals T and S that satisfy T'(F,y1p(-|x)) = aT(Fy (-|x)) + b and
S(Fuyu(-|7)) = aS(Fy(-|x)), for all a > 0 and b € IR (here F,y,,(+|x) denotes the condi-
tional distribution of aY +b given X = z). Then, it can be easily seen that if model (1.1)
holds, the model Y = m°(X) + ¢%(X)e® with £° independent of X, is also valid. Define

mo(x):/olF_l(s]x)J(s)ds, 002(37):/OlF_l(s]x)QJ(s)ds—mog(x), (2.1)



where J(s) is a given weight function satisfying [} J(s)ds = 1 and J(s) > 0 for all
0 < s < 1. We will choose J in such a way that m°(z) and ¢%(z) can be estimated in a
consistent way (i.e. choose J in such a way that the right tail of F'(-|x) does not need to be
estimated) and we will then use these estimators of m®(x) and ¢°(x) in the construction
of an estimator of m(x).

Before explaining the estimator, let us introduce some notations. Define F(y|z) =
PY <ylx), Glylz) = P(C < ylz), H(y|z) = P(Z < ylx), Hs(ylz) = P(Z <y, A = 6lx),
and Fx(x) = P(X < z). Let F.(y) = P(e < y) and S:(y) = 1 — F.(y) denote the
distribution and survival function of ¢ = (Y — m(X))/o(X), where m and o are the
location and scale functions of interest. Likewise, define F? and S for the distribution
and survival function of € = (Y — m°(X))/0%(X), where m® and ¢° are defined in (2.1).
Next, for E = (Z — m(X))/o(X) define H.(y) = P(E < vy), Hs(y) = P(E < y,A =
6), Ho(ylz) = P(E < ylr) and Hos(ylz) = P(E < y,A = dl2) (6 = 0,1). Define
analogous functions H?(y), H%(y), HY(y|z) and H%(y|z) for E° = (Z — m°(X))/o%(X)
and G(y) = P(C° < y) for C° = (C' —m°(X))/o°%(X). The probability density functions
of the distributions defined above will be denoted with lower case letters, and Rx denotes
the support of the variable X.

The idea of the proposed method is first to estimate the true unknown survival time of
censored observations by making use of model (1.1), and then to estimate m(x) by using
a kernel type estimator based on these new data. Replacing censored observations by
‘synthetic’ (or estimated) survival times, has been widely used in parametric regression
with censored data. See e.g. Buckley and James (1979), Koul, Susarla and Van Ryzin
(1981), Leurgans (1987) and Heuchenne and Van Keilegom (2004).

The extension of this idea to nonparametric estimation of any L-functional of the type

(1.2) is as follows. First, note that m(z) can be written as

m(z) = agE]Y L(F(Y |x))|z] + Zaj '(s4]2),
7j=1
and that F(ylz) = E[I(Y < y)lz]. Let ¢1(ylr) = yL(F(y|z)) and du(ylr) = da(ylr) =
I(y < t) for fixed t. The idea is now to replace E[¢;(Y|z)|z] (j = 1,2) by a kernel
estimator of the type >-i"; Wi(z, a,)$}(Z;, Ailx), where Wi(x, a,,) are local weights defined
below, and ¢7(Z;, Aq|z) (z = 1,...,n) are chosen in such a way that E[¢7(Z;, Ai|z)|z] =

El¢;(Y;|z)|z]. It is easy to check that this preservation of means is obtained for
9j(2,0|x) = ¢;(2[x)d + Elg;(Y|2)[Y > z,2](1 - 9)

[ sdFen0 -6 (22)

= @(z\x)é + m i



(see also Fan and Gijbels (1994), where a similar idea has been used in a completely
nonparametric context).

To estimate the function ¢7(z,d|z), we need an estimator of F(-|z). Note that

Folo) = (™).

and hence we need to estimate F°, m® and ¢°. The functions m° and ¢° depend them-

selves also on F'(+|z), which we estimate by means of the completely nonparametric kernel

estimator of Beran (1981) (in the case of no ties) :

i I/Vi(xvan)
Fylz) =1 1— — | 2.3)
Zig?;]’lizl{ i 1(Z; > Zz‘)VVj(l',a,n)}
where p .
Wi(x,a,n) = a(l' — Z)

?:1 Ka(z — Xj)

(i =1,...,n) are Nadaraya-Watson weights, K,(-) = a,, ' K(-/a,), K is a density function
(kernel) and {a,} a bandwidth sequence. Note that this estimator reduces to the Kaplan-
Meier (1958) estimator when all weights W;(x, a,,) equal n~!. This yields

0(x) = /OIF—l(st(s)ds, 592(z) = /OlF_l(s|x)2J(s)ds—m02(x) (2.4)

as estimators for m®(z) and o%(z). In practice, the score function J will be chosen in
such a way that F(-|z) is consistent on the support of J. Next, estimate the residual

distribution F? (suppose no ties) :

By=1- I (1-——). (25)

R n—1i+1

where E? = (Z; —m°(X;))/6°(X;), E?i) is the -th order statistic of E?, ..., E9 and A is
the corresponding censoring indicator. This estimator has been studied in detail by Van
Keilegom and Akritas (1999). Next, define

Filn) = (55

Now, let ¢y (y|z) = yL(Fi(y A Te|x)) and dor(ylz) = da(ylz) = I(y < 1), and let

1
1 — Fy(z ATy|x)

[ bl -s. (@0

2N\T,

91(2,8]z) = ¢;(2]x)d +

where T, = To"(z) + m®(z), T < 7go(y and 7p() = inf{y : F(y) = 1} for any distribution

F. Note that we have to truncate the integral at T, in the above definition. However,
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when 7o) < 7go(), T' can be chosen arbitrarily close to 7po(y. The estimator of m(z) is

now defined by

iy ()

n

k
= qy ZVVZ(x, an)gzg*{(Zi, Aglx) + Zaj[ﬁ(;(sﬂx) AT,

i=1 j=1
= a9y Wi(w, an) [ViL(Fy(Yi A Tilx)) A (2.7)
=1
! - g dF 3 T
_ )(1-A ) A
MR /m L(Ey (y|2))dE () ( J; sle) AT,
where
Fy, (t]x)
=" Wi, an)03(Zi, Al) (2.8)
=1
n A L T dF; A
=S Wilw, an) |I(Y; < )A, . / <t 1- A
; (z,a,) |1( ) +1_F1(CMT$‘$) s (y < t)dFi(y|o)( )

Note that m? (z) is actually estimating

ml(z) = aOE[é”{(Z, Alzx)|z] + Z aj[F(;(sﬂx) ATy,

where

- N 1 Ta
53(2:01) = 51400 + 5 e S, SOl (1= 0),

o1(ylx) = yL(F(y A Telw)), dailylz) = daulyle) and Fy,(tlr) = E[03,(Z, Alx)|a].
before, m! (x) and Fy,(t|z) can be made arbitrarily close to m(z) and F(t|z) respectively,
provided Tpo() < Tgo(,).

For sake of comparison, the completely nonparametric estimator of m(z) is given by

T
(@) = a0 [ yL(F(yla)) dF(yl) + S 0y 5 (s,l) AL, (2.9)
_ =
where T, < Tp(|»)- Note that we truncate at T}, because of the inconsistency of F(y|x)
for y > T, (see e.g. Van Keilegom and Veraverbeke, 1997).
Note that in the definition of m? (x) we have to truncate at the point T}, due to the

presence of right censoring. However, T}, is always greater than or equal to the truncation
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point T}, used in the definition of m” (z), and the difference between the two truncation
points can be substantial, especially when the censoring proportion is not uniform over
x. Indeed, when there exists a region in the interval Ry of ‘light’ censoring, then the
estimator FEO of the error distribution remains consistent upto far in the right tail (and
hence T, will be large), whereas T, completely depends on the censoring proportion at
the point x. In heavy censored regions T, can therefore be quite small.

Finally, note that in Heuchenne and Van Keilegom (2005) an alternative estimator of

m(x) has been studied, which also makes use of model (1.1). The estimator is defined by
~T T,
m'(x) = ao/ yL(Fy(y|z)) dEy(y|x) + Za] “H(silz) ATy, (2.10)
J=1

where T, = T6°(x) 4 m°(x) and T < Tro(y- We will compare the here proposed estimator

ml (x) with the estimators 7’ (z) and 7 (z) in a simulation study (see Section 4).

3 Asymptotic results

We first give some asymptotic results for the estimator m7 (x) proposed in Section
2. We then state, as a by-product, some asymptotic results for the estimator F¢2 (t|z)
defined in (2.8). The proofs of the results below, as well as the assumptions under which

they are valid, can be found in the Appendix.

3.1 Main results

Theorem 3.1 Assume (A1)-(A5), (A6) (i), (A7), L is continuously differentiable, [, L(s)ds =
1 and L(s) >0 for all 0 < s < 1. Then,

sup 1] () —m{ (z)| = Op((na,)~*(loga,")"/?).

TERX

Theorem 3.2 Assume (A1)-(A7). Then,

ml (z) = m¥ (z) = —ZK( )Bl(Zi,Ai|x)+Rn(:c),

nay ;4

where sup{| R, (z)|;z € Rx} = op((na,) /%) and the function By(z,6|z) is given in the
Appendiz.



Theorem 3.3 Under the assumptions of Theorem 3.2,
(nay)' (] () — m{ (x)) % N(0,5*(x)),

where

() :fX(x)/Kz(u) du Y /Bf(z,a\x) dH;(2|z).

§=0,1
Proof. The result is obtained by using Lyapounov’s Theorem. It’s easy to check that
the Lyapounov ratio is O((na,)~"/?) since E[|Z|*] < co (X is given in assumption (A3)
(iii) in the Appendix).

3.2 Distribution results

Theorem 3.4 Assume (Al), (A2), (A3) (i), (ii),(A4), (A5) and (A7). Then,

sup  sup | Fy, (t|z) — Fy, (tla)] = Op((na,) ™ (log a;,")'/%).

rERx —oo<t<oo

Theorem 3.5 Assume (A1), (A2), (A3) (i), (ii), (A4), (A5) and (A7). Then, for any
r € Ry,
. 1 & ~ X,
Fyu(tlr) = Fon(tle) = — 3K (=

n j=1 n

JA(t, Zi, Aile) + Ra(t]z),

where sup{| R, (t|)|; 2 € Rx} = op((na,)~?) and the function A(t,z,8|z) is given in the
Appendiz.

Theorem 3.6 Under the assumptions of Theorem 3.5,
(nan) V2 (Fy (t]2) = Fop (t]2)) 5 N(0, s*(t])).
where

32(t|x):fx(x)/K2(u) du 3 /A?(t, 2, 0x) dH(2|x).

5=0,1

Proof. The result is obtained by using Lyapounov’s Theorem.
Theorem 3.7 Assume (A1), (A2), (A3) (i)-(ii), (A4), (A5) and (A7). Then,

SUp  |Fyy(ta) = Fu(tle) = Fyg(sle) + Foo(sle)| = op((na,) /%),

zERx, [t—s|<dn



where d,, ~ (na,)~"?(loga;*)"/2.

Remark 3.8 In order to select an appropriate bandwidth sequence a,, the bootstrap
procedure proposed by Li and Datta (2001) can be used. First, generate X7, ..., X i.i.d.
from the empirical distribution of X, ..., X,,. Next, foreachi =1,..., n, select at random
a Y/ from the distribution F(-|X7), and a C? from G(-|X;) (which is the Beran (1981)
estimator of G(-|X}) obtained by replacing A; by 1 — A; in the expression of F(-|X})).
For the generation of these bootstrap data we use a pilot bandwidth g,, asymptotically
larger than the original a,,. Next, let ZF = min(Y;*, C}) and A} = I(Y;* < C). For each
resample {(X7*, Z/*, AI*) :i=1,...,n}, j = 1,..., B for some large B, let 7}’ (z) be
the estimator of mI (z) obtained by using bandwidth a,,. From this, the integrated mean

squared error [ E[mT (z) — m¥(z)]? dz can be approximated by
IMSE*(a,) = B'Y / T () — il (2)]? da.

We now select the value of a,, that minimizes I M.SE*(a,,). The same bootstrap procedure
can also be used to approximate the distribution of m7 (), instead of using the above

asymptotic distribution, which might be hard to estimate in practice.

Remark 3.9 A similar idea as the one developed above to estimate m(x), can be used

to better estimate any scale function o(z). We can therefore propose
o0 = {3 Wit 085120 8010) — o) |

k n ) 2
3 { S Wi w)df (2,000
=1 U=
where da(yl) = v Ly (y A1), G(yle) = oy (y— B (s510) AT, 812, 6]2) s defined
in the same way as (2.6) and p;(u) = s;ul(u > 0) + (s; — 1)ul(u < 0). The asymptotic
results for 67%(z) can be obtained along the same lines as for the estimator m] (z).

4 Simulations

In this section, we compare the finite sample behaviour of the estimators m?(z),
m?(z) and 7’ (x). We are interested in the behaviour of the integrated mean squared
error, defined by IMSE = [ E[(m(x) — m(z))?]dz for any estimator of m(z). The
simulations are carried out for samples of size n = 100 and the results are obtained by

using 250 simulations. We compare the three methods for four different locations : the
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conditional mean, the conditional truncated mean (L(s) = (1/0.9)1(0.05 < s < 0.95)),
the conditional median and conditional third quartile.

We consider the same settings as in Heuchenne and Van Keilegom (2005) e.g. the same
kernel, same bandwidth selection procedure, same choice of the score function J, etc. We
therefore restrict here to giving the most important ones. More details can be found in
the latter paper. For the weights that appear in the Beran estimator F (y|z), we choose a
biquadratic kernel function K (z) = (15/16)(1 — 2%)?I(|z| < 1). The bandwidth sequence
a, is selected for each estimator as the minimizer of an approximated IMSE among a
grid of 20 possible values of a,. The weight function J(s) equals J(s) = I(s < b)/b,
where b = min;<;<, F(+00|X;) (as recommended above). The point (T, —m°(x))/6°(z),
respectively 7., is chosen larger than (or equal to) E?n), respectively Z,) in order to
consider all the jumps of Fi(y|z) and F(y|x).

Bo B fo PBs CP IMSE
Qg aq Qy 3 0?2 | mean trunc. mean median 37¢ quartile
0 1 -1 1 30.10.089 0.090 0.098 0.110
4.1 -14 0 19.8 0.5 | 0.088 0.088 0.093 0.097
0.084 0.086 0.090 0.098
0 1 0 0 35.3]0.124 0.126 0.141 0.168
3.6 -10.5 0 12 1 10.123 0.124 0.133 0.144
0.115 0.120 0.126 0.142
0 1 -1 1 50.2 | 0.093 0.095 0.104 0.147
1.3 -6 4 3.2 0.5 ]0.091 0.092 0.098 0.110
0.085 0.087 0.093 0.109
0 0.4 0 0 37.110.326 0.331 0.349 0.404
-0.4 1 -0.05 0 0.5 | 0.320 0.322 0.336 0.365
0.322 0.325 0.341 0.377
0 0.4 0 0 5881 0.390 0.396 0.454 0.569
0.24 0 0 0.02 0.5 | 0.390 0.388 0.408 0.507
0.393 0.394 0.412 0.508
0 0.4 0 0 71.1]0.394 0.414 0.507 0.718
-0.3 0 0 0.05 0.5 | 0.384 0.390 0.445 0.586
0.385 0.389 0.463 0.581

Table 1: Results for m” (z) (first line), m* (x) (second line) and mT (x) (third line) for
model (4.1) with large optimal bandwidth a,. Rx is [0,1] ([0, 3]) for the three first (last)

models.
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Bo B P2 B3 CP IMSE
g o Q9 Q3 0% | mean trunc. mean median 37 quartile
1 0 0 355 1.759 1.765 1.802 2.148
0 -02 0.09 05 |1.749 1.747 1.762 1.772
1.766 1.759 1777 1.849
0 1 0 0 38.2] 1.333 1.347 1.392 1.604
0.3 1 0 0 0.5 | 1.299 1.303 1.319 1.354
1.305 1.318 1.351 1.438
0 1 0 0 58.0 1.631 1.681 1.862 1.926
0.5 0.13 0.2 0 0.5 | 1.517 1.525 1.547 1.676
1.512 1.516 1.596 1.766
1 0 0 72.0] 1.760 1.832 2.091 2.015
0 04 0.1 0 0.5 | 1.618 1.626 1.698 1.824
1.616 1.623 1.745 1.853

Table 2: Results for m™ (x) (first line), ™ (x) (second line) and ¥ (x) (third line) for
model (4.1) with moderately large optimal bandwidth a,,. Rx is [0, 3].

The first model we consider is
Y =By + X + (X + 3:X° + o¢, (4.1)

for various choices of (3, (1, G2, 3 and o, where X has a uniform distribution on the
interval [0,1] or [0, 3], and the error term ¢ is a normal random variable with zero mean
and variance 1. The censoring variable C satisfies C' = ag + a1 X + o X? + a3 X3 + oe*,
for certain choices of ag, aq, g, and a3, where €* has a normal distribution with zero
mean and variance 1. We further assume that ¢ and ¢* are independent of X, that ¢ is
independent of £*, and that ¢ is known.

Tables 1, 2 and 3 summarize the simulation results for different values of g, a1, as, a,
0o, B1, B2, B3 and o. For fixed values of (g, 81, 52, 03 and o, the values of ag, a1, as and
as are chosen in such a way that some variation in the censoring probability curves is
obtained (different proportions of censoring, censoring probability curves that do or do
not wiggle a lot,...). The proportion of censoring (in % and denoted by CP in the tables)
is computed as the average of P(A = 0|z) for an equispaced grid of values of z.

First, we compare m? (x) with m”(x). The tables show that, in general, 7! (z) has
smaller IMSE than m”(x) for each of the four considered location functions. As for
mT(z), the higher the quantile, or the smaller the support of L, the worse the estimation

but 7! (x) resists better than m” (). This is due to the locality of the Beran estimator
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and its inconsistency problems. On the other hand, m7 () is a global estimator and its
inconsistency problems are considerably less important than for the Beran estimator. As
a consequence, a more wiggly curve or an increase of the proportion of censoring affects
more M’ (z) than ¥ (z).

We next compare the new estimator 7! (x) with its competitor 7’ (x). The main

motivation for 7! (x) with respect to m” (z) is as follows. The use of global information
sometimes penalizes the estimation procedure since the amount of local information is
decreased by reducing the support of the score function J. These instability problems es-
pecially arise when the censoring probability curve contains some peaks in certain regions
of the covariate space. Although both estimators m? (x) and 7! (z) are based on m°(-)
and 6°(-) (and can thus suffer from small supports of J), m! (x) only uses them in the
estimation of censored synthetic data points and not in the construction of the estimator

itself. Hence, it preserves uncensored local information and is less sensitive to these in-

Bo O B p3 CP IMSE
Qg o 9 Q3 0?2 | mean trunc. mean median 3"¢ quartile
4 75 6 -1.3 31.7|1.139 1.159 1.260 1.570
3.5 -745 7 -1.6 0.5 | 1.081 1.085 1.100 1.165
1.059 1.067 1.125 1.276
4 75 6 -1.3 38.2 ] 1.047 1.066 1.161 1.513
43 -75 6 -1.3 0.5 | 1.030 1.034 1.043 1.111
1.025 1.038 1.086 1.209
4 75 6 -1.3 383 1.262 1.286 1.371 1.628
34 -745 7 -16 1 1.239 1.248 1.283 1.373
1.231 1.248 1.313 1.450
4 75 6 -1.3 51.3]|1.251 1.314 1.508 1.559
32 76 7 -1.6 0.5 | 1.142 1.158 1.188 1.315
1.112 1.118 1.212 1.389
4 75 6 -1.3 564 | 1.336 1.392 1.553 2.043
3 76 7 -16 1 1.296 1.321 1.391 1.620
1.283 1.308 1.423 1.665
4 75 6 -1.3 74.7]| 1.493 1.590 2.412 2.119
3 76 6 -13 1 1.512 1.576 2.005 2.176
1.493 1.544 2.006 2.176

Table 3: Results for m™ (x) (first line), m* (x) (second line) and ¥ (x) (third line) for
model (4.1) with small optimal bandwidth a,. Rx is [0, 3].
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stability problems. This explains why /7 (z) often outperforms m? (x) for the estimation
of the mean and truncated mean. Note that the instability problems also depend on the
shape of the curve to estimate and the amount of censoring. Therefore, Table 1 shows
approximately the same results for both estimators since the chosen models are relatively
flat. In Table 2, m? (z) outperforms 7! (z) for large proportions of censoring and more
wiggly models while 7 (z) is the best one in Table 3 at all censoring levels. On the
other hand, the estimator 7’ (z) behaves better for quantile estimation. This is because
¥ (x) is highly based on Fj,(-|z) which uses less homogeneous information (true data
points mixed with data estimated by means of the general heteroscedastic model) than
the global FO(-) used by m7(z).

Next, we consider the case where model (1.1) is not satisfied. For this, we generate
random response and censoring variables from Weibull distributions with the following

parameters

Y|X =2 ~ Weibull(z,d),

C|X =2 ~ Weibull((0.3 4 z)/&, d), (4.2)
dy CP IMSFE
& mean trunc. mean median 3" quartile
0  36.58 | 1.488 1.672 1.507 3.882
1 1.479 0.999 1.412 3.271
1.314 0.993 1.308 2.909
1 38.27 | 0.576 1.205 0.794 1.473
0.71 0.566 0.737 0.648 1.076
0.517 0.605 0.622 1.022
2 38.03 | 0.362 1.069 0.515 0.769
0.55 0.348 0.754 0.388 0.602
0.318 0.538 0.390 0.603
3 38.13 | 0.270 1.006 0.386 0.536
0.42 0.258 0.804 0.282 0.422
0.241 0.541 0.288 0.448
4 38.28 | 0.235 0.953 0.319 0.377
0.32 0.218 0.843 0.221 0.346
0.195 0.574 0.229 0.361

Table 4: Results for m” (z) (first line), m* (x) (second line) and mT (x) (third line) for
model (4.2)
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where X has a uniform distribution on the interval [0, 3] and d and ¢ are chosen to be
positive for all 0 < x < 3. From the conditional independence between Y and C' for
given X, it follows that the censoring probability curve is given by P(A = 0|X = z) =
(0.3 4 x)/((€ + 1)z + 0.3). Using conditional mean and standard deviation for Weibull

distributions, we obtain
Ple <tlz) =1 —exp(={t[L(A +2d7") =T?(1 4+ d )2 +T(1 +d"1)}%).

Therefore, choosing for instance d = 2 + dyz enables to remove Y in (4.2) from model
(1.1).

Table 4 shows the simulation results for model (4.2) with different values of d; and
¢. € is chosen such that the censoring probability curve is approximately the same for
each d;. m”(z) and mT(x) don’t seem to be very sensitive to model assumption (1.1)
since Beran’s method obtains the largest IMSE for all values of d;. When the value of
dy increases, ! (x) seems to resist better than m” (z) for conditional mean or truncated
mean estimation whereas m” (z) continues to outperform 7! (z) in quantile estimation.
This can also be explained by the fact that the data set on which Fj,(-|z) is constructed
becomes more and more heterogeneous as d; increases.

The final setting we consider is a normal heteroscedastic regression model
Y = fo+ 01X 4 foX? 4 05X + (X +0.1)e, (4.3)

where X has a uniform distribution on [0, 1] or on [0, 3], and ¢ has a normal distribution

with zero mean and variance equal to one. The censoring variable is given by C' =

Bo O P2 B3 CP IMSE
ap a; oy a3 ~? | mean trunc. mean median 3"¢ quartile
0 04 0 0 582)0.365 0.377 0.425 0.957
-0.1 0 0 01 0.1 ]0.338 0.347 0.335 0.943
0.346 0.345 0.358 0.990
0 1 6 -4 48.90.621 0.631 0.638 0.950
05 1 -5 9 1 10570 0.566 0.557 0.866
0.582 0.563 0.566 0.922
0 1 6 -4 56.8]1.040 1.066 1.152 2.546
05 08 -6 85 5 1.032 1.032 1.069 2.161
1.010 1.039 1.061 2.196

Table 5: Results for m” (z) (first line), m* (x) (second line) and mT (x) (third line) for
model (4.3). Rx is [0, 3] for the first model and [0, 1] for the two other ones.
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ap + a1 X + s X? + a3 X3 4 ve*, where £* has a normal distribution with zero mean and
variance equal to one. We further assume that € and €* are independent of X, and that
¢ is independent of €*. The variance of Y given X is now supposed to be unknown. The

results are in Table 5. Similar conclusions as above hold in this heteroscedastic case.

5 Data analysis

In this section, we add the new estimator 77 (x) to the analysis of the data set on

spectral energy distributions of quasars described in Heuchenne and Van Keilegom (2004).
The choice of the bandwidth is achieved with the bootstrap procedure of Remark 3.8
(adapted to each estimator). The selected bandwidth is approximately the same for the
three methods. The results are given in Figures 1 to 4. The estimator /T (x) also suggests
to use linear functions for the four proposed locations. As expected, m] () is less smooth

than m7 (x), especially for the first quartile.
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Figure 1: Estimated conditional mean for the quasars data. The estimators m” (z), m* (z)
and mT (x) are indicated by -, o and x respectively. Uncensored data points are represented

by x, and (left) censored observations by /.
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Figure 2: Estimated conditional truncated mean for the quasars data (5 percent of trun-
cation at both sides). The estimators m” (x), m”™(z) and m!(z) are indicated by -, o
and * respectively. Uncensored data points are represented by x, and (left) censored

observations by /.
Appendix : Proofs of main results

The following functions enter the asymptotic representation of m” (z) — m” (x) which
we established in Section 3.

YNz

£(z,0,ylz) = (1 — F(y|x)) {_ / (161_}[[;((‘9!?))2 + [(f—gl%(éz;)l) } ’

—+00

n(z,0lr) = /§(2>5,v!$)J(F(v!$))dv(do)*l(x),

v—m’(z)
O’O(l') dv( ) (:L‘)v

hao(2,6) = [ (200 + (e 8) L ] o (P )

F(Tm A\ t|l’) — F(Z}; A\ t|l') hx,Tz/\t(za 6) + hz,Zg/\t(Z7 (5)}
(1= F(Z7|x))? 1 - F(Z]|x)

= B[ 1A = 0){hr )
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Figure 3: Estimated conditional median for the quasars data. The estimators m'(x),
m”(z) and mT(x) are indicated by -, o and * respectively. Uncensored data points are

represented by X, and (left) censored observations by /.
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Figure 4: Estimated conditional first quartile for the quasars data. The estimators m” (x),
m”(z) and mT(x) are indicated by -, o and * respectively. Uncensored data points are

represented by X, and (left) censored observations by /.
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+f5x (@032, 0]a) — E{d3(Z, Alx)|a}],
Bi(2,0]z) = aoE [I(A = 1) ZL'(F(Z]|2))hq,z1 (2, )

28 Myle) dF(yle) — M(Z7|x) }
(1= F(Z]|x))? 1= F(Z]|x)

M(T ) T by (2 ) L(F () dy
R 21 R e A B /77 P
Faof @65 (2 0le) — E(G1(Z, Ale)[}]
& AP (sl0). 2, 8w (s; < F(T]x))

2 FF (sa)l) ’

where ZI' = Z AT, and M(y|x) = yL(F(y|z)).

+I(A = 0)hy 27 (2,0){

+I(A =0)hy1,(2,0)

For a (sub)distribution function L(y|z) we will use the notations l(y|z) = L'(y|z) =
(8/0y)L(y|z), L(y|x) = (8/8x)L(y|x) and similar notations will be used for higher order
derivatives.

The assumptions needed for the results of Section 3 are listed below.

(A1)(4) nat — 0 and na3*®(loga; 1)~ — oo for some § < 1/2.

(77) Rx is a compact interval.

i11) K is a symmetric density with compact support, an is twice continuously differ-
i) K i tric density with t t, and K is twi ti ly diff

entiable.

(A2)(i) There exist 0 < s, < s, < 1such that s, < inf, F(T,|x), s, < inf{s € [0,1]; J(s) #
0}, sp > sup{s € [0,1]; J(s) # 0} and inf g, inf,, <s<s, f(F~(s]z)|x) > 0.
(i) J is twice continuously differentiable, [} J(s)ds = 1 and J(s) > 0 for all 0 < s < 1.

A3)(i) Fx is three times continuously differentiable and inf,ep, fx(x) > 0.

(
(ii) m® and 0¥ are twice continuously differentiable and inf,cg, 0%(x) > 0.
(ii1) E|Z|» < oo, with A > (12 +80)/(1 + 45) and § chosen as in (A1)(4).
(

A4) n(z,0|z) and ((z,d|z) are twice continuously differentiable with respect to x and

their first and second derivatives (with respect to x) are bounded, uniformly in = € Ry,
2z < T, and é.

(Ab) For L(y|z) = H(y|x), Hi(y|z), H (y|z) or HY (y|z) : L'(y|z) is continuous in (z,y)
and sup, , |y>L'(y|z)| < oo, and the same holds for all other partial derivatives of L(y|z)

with respect to x and y up to order three.

(A6) (i) Let s, < F2(T) and sz be such that 0 < s, < s; < sg < 1lforallj=1,... k and
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let @ = [sa, 58 A F(T)]. Then, infseq fO((F2)*(s)) > 0.
(i) L is twice continuously differentiable, [y L(s)ds =1, L(s) >0 for all 0 < s < 1.

(A7) For the density fx|za(z|z,6) of X given (Z,A), sup,.|fx|za(z|z,6)] < oo,
sup, . | fxjz.a(x]z,0)] < oo, sup, . |fx|za(z[z,0)] < oo (6 =0,1).

For the proofs below, we will use throughout the abbreviated notations Te = (T, —
il (2))/6%(x), T* = (T — m°(x))/0°(x) = T, Ef, = (Zi —m°(x))/6"(x), B, = (Zi —
m®(z))/o%(x), BT = EY, /\Tm EYT = EQ AT, EXF = (Z; ATy At —m° (2))/6° ( ), B)f =
(ZiNT ANt—mP(2)) /o (x), TF = (Ty At —m°(x))/6%(z) and T = (T, At—m°(x)) /0% ().
Proof of Theorem 3.1. Con51der the expression mT () —mT (x) = Q1 (2) + Q2 (), where

0(2) = a0 S Wile, a)[61(Ze, Adlr) — 3(Zs, Aule)]

i=1

o> Wil ) [31(Zi M) — E{G}(Z, Al)|z}]

i=1

=M1 (2) + Q2(2),

and

k
Qo(z) =) ay( F¢2 (sjlz) N T%) Z (Fy5' (sjlz) AT).

J=1

First, we treat ().

O (o —%sz%Hm»ﬂmw@@%wuww%n

&€ 1T

fEOT( O(x) + 6°(x)e) L(F2(e))dF2(e)
I(A; = )[ O
f;ingJT( O(x) + o%(x)e) L ( O(e))dF(e)
=0 ) Wi, ) {Au(e) + An(o)}
We have sup, , FS{%&O@)} FO{%@)(@H = Op((na,)*?(loga;*)*/?). This is

shown as follows. Write
0,2 NTp, —mO(z) 2 AT, — m°(x)
z—?( ~0 ) - FEO( 0 )
6%(x) o%(x)
2 NT, —mo(x)) B FO(Z/\Tw —mO(ZL‘))
6%(x) : 6%(x)

= FY(
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2 NT, —m°(z) 0 2 AT, — m°(x)
o ) e )

2 NT, — m°(z) Z/\Tx—mo(x))
9(x) o%(x)

=ah(z,2) +a2(z,2) + a(z, ). (A.1)

+FY(

£

+F( ) = F2(

£

Using Corollary 3.2 in VKA (1999), sup, . |al(z, z)| is Op(n~"/?). For the two other terms,

we use two first order Taylor developments

%x) — o%x) 2 AT, — m°(x)
o°(x) o°(x) o°(x)

for some A, (B,) between %{g(x) nd ZAT;jO(x) (=) (Z/\T;O_(’:)O(x) nd Z/\Tgo( )(w)). Using

Proposition 4.5 of VKA (1999) and the fact that sup, |ef2(e)| < +o0, a2 (z,z)+a3(z,x) =
O((na,)~?(log a;')/?) a.s. Therefore, since E[|Z]] < oo,

m(x) -

2 (z,7) +ad(zz) = — i) o4, - 1By,

SUP|ZW 2, a) Ai()] = Op((nan) ™" (log(an) ™))

=1

Next, write

Agi(z) = I(A; = 0)

(FOEXT) = FOESD)) ffor (m°(x) + 6°(x)e) L(F2 () dF2(e)
(1= FO(ET))(1 - FA(ED)

[t () + (@) LIELE)AEL(E) [T (50(a) 4 6 (w)e) L(ED(e))dEO(c)
i 1= FO(EY) - 1= FO(EYT)

TRE 00 ) ) )
1 T 0 0 ~0 0 L(F° dFO
T o °0) — 1(0)) 4 (0°(0) = o0l LF2(e) (e

T o )+ P @NLUE) — L(F )

£

*T?ﬁ%@ﬂ/q“#@»+&@wﬂwﬂamwﬂ@—fﬂ@ﬁ

By
7
—=0)Y Bji. (A.2)
j=1

Using Corollary 3.2 and Proposition 4.5 of Van Keilegom and Akritas (1999) (hereafter

denoted by VKA), the above-mentioned uniform consistency of FO(-), the continuous
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differentiability of L and the fact that sup, |ef2(e)| < oo, it is easy to check that Ay;(z) =
|EYT|Op((nay) =2 (log a;)Y/?) such that

sup | Y Wi(x, an) Agi(z)| = Op((na,)*(log a,")'/?).
T =1

We also have by Theorem 3.3 of Heuchenne (2005)

sup [Qua(2)] = O((na,)"*(loga,,")'?) a.s.,

TERX

since E[|Z|*] < co. Next, we treat Qy(z).
First, we show that sup,cp |F¢’21(s]\x) AT,| = Op(1). Define

€= inf (m*(x) +0°() (F)(s0)) = inf F!(salo).

TERX
We have
. A—1 ]
P( inf (Fgy (s]2) ANT) < &a) (A.3)

< P(sup |Fp(Fp (silz) ATulz) — 55 A Foa(Ty|2)| > 55 A Fo(To|z) — sa)

TERX

< P(sup |Foo(Fy (s5lw) A Tolw) = Fyn(Fp! (s]2) A Tol)| = (55 A Foa(Tulz) = 50)/2)

TERX

+P(sup |Fya(Fpt(s5]7) A Tela) — 85 A Fa(Tel2)| = (55 A Fa(Tal2) = 54)/2).

TERX
Using Theorem 3.4, the first term on the right hand side of (A.3) tends to zero. For the
second term on the right hand side of (A.3), write
P(sup [Dy;(z)] > &ja)

TERX

< P(D sup I(s; < Fg(Ty|x), 85 > Fyo(To|)) > £ja/4)

rERX

+P(D sup I(s; > Fyo(Tu|v), 85 < Fyo(To|)) > £ju/4)

TERX

+P(sup (| Fpa(Fy' (s]2)|7) = 551(s5 < Fya(Tolz), 85 < Fa(To|x))) > €5a/4)

TERX

+P(sup (|Foa(Tolz) = Foo(Tol)[1(s; > Fya(Tol), 55 > Foa(To|2))) = €ja/4)

TERX

= Dy + D3 + Dy + Ds,

where Dy;(x) = F¢2(Fq;21(8j|l') NTilx) — 85 N Fpo(Th|z), €jo = (55 N Fpa(Th|z) — 50)/2
and D = max;(sup,cp, |D1;(2)|). D2, D3 and Djs tend to zero using Theorem 3.4. Dy is
bounded by

P(sup sup |f7’¢2(y|x) — F¢2(y —|x)| > €ja/4),

TERx —oo<y<oo
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for which Theorem 3.7 is used. Since infyep, (Fj5'(sjla) ATy) > infoen, (Fp'(selr)) = &a,
we have

sup \Fg (sjlx) AT, — F¢>2 (sjlx) NT;| = sup |Dg;(z)| = Op(1).

r€Rx TzERX

() is therefore rewritten as

Qo(z) = Z:%Dtsj(f)f(sj < Fp(To|x), 55 > Fyo(Ty|x))

k
+ > a;Dg;(2)(s; < Fyo(Ty|x), 55 < Fyo(To|x))

=1
k A
+ > a;Dej(x)I(s; > Fyo(T|x), 5 < Fyo(To|)), (A.4)
j=1

where the suprema of the first and third terms are negligible, using the same arguments
as for Dy and Ds. Note that when s; > FO(T) for all j, j =1...,k, only the first term of

(A.4) is considered and treated with Theorem 3.4. Next, sup,cp, [€22(z)| is now bounded
by

k
Z la;| sup (| De;(2)|1(s; < Foa(Telw), 5; < Foa(Tulw), Fon(F i (s5]7) A Tilz) € Q)

rERx

+Z laj] sup (|De;(2)|1(s; < Foa(Tulz), 55 < Foo(Talw), Foa(Fy! (s5l2) A Telz) € Q))

j=1 TERX

+0p((na,)~"*(loga,")'/?)

= D7+ Dy + Op((na,) *(loga, ")),
where Dyg is negligible by Theorems 3.4 and 3.7. Now, we define

Dyj(w) = F~H(max(F(Eg) (sile) A Tile), sa) A (55 A F2(T))|2)
— P (Fyy (sjl) A Tola)|z),

such that

Z g sup (|Do;(@)|1(s; < Fyn(Tulx), 85 < Foa(Tul), Foa(F! (s5]0) A Tale) € Q).

j=1 TERX

Therefore, using a Taylor development

1

Poil®) < 5510, 10T

| Fao(Fp5 (si|2) A Tol) — Fo(Fpg (silw) A Tolz),
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where 0}, is between maX(F(F(;Ql(sj|x)/\Tm|x), Sa) A(sg NFO(T)) and F(F ) (s;|x) ATy |x).
Finally, the desired order is obtained with a successive application of Theorems 3.4 and
3.7.

Proof of Theorem 3.2. First, consider €, (z).

Zn: Wiz, a,) A (T) (A.5)

i=1

= S Wil @) (A = DY/ (FES)(EX(E) — FY(E) + op((na,) 7).

using the uniform consistency of F2(-) as in (A.1) and a second order Taylor expansion.
Next, using Proposition 4.5 in VKA (1999), and the fact that sup, 12 fY ()| < oo and

sup, [yf2(y)] < oo,
FAES) = FAEL)
= (B} — B} FAEY) + op((na
M’ (Xi) —

_ m*(X,) o, por
= D -

)2
¢%(Xi) — 0%(Xy)
0.6

EY 2B + op((nag)~'/?)(A.6)
The asymptotic representation for F, O(EQT) — FO(EPT) is therefore given by
(nay)~ Z K

where use is made of Prop051t10ns 4.8, 4.9 and Corollary 3.2 of VKA (1999). Next,
consider the expression fEOT( 0(z) + 6%(z)e) L(F°(e))dEP(e) which appears in the term
By; of (A.2). We have

hazont, (25, ;) + op((nay) ™?), (A7)

TL

[, @ L) aF(e) (A9

EOT
ix

T T ~
— () { [ LEeNare) + [ L) d(Fo(e) ~ F£<e>>}
Eiac
+O0p((na,)~*(loga,")'/?),
using uniform consistency of m°(-) and FEO(-). By using integration by parts, the second

term is |E9|Op(n~'/?). In the same way,

A TT 6°(a)eL(FO(e))dEY (e) (A.9)
= @) { [}, entropare) + EfT L(FY()A(E(e) ~ F2()
+ [ 7 eL(FEYe) + /. er " L)) dEY e }+ E|Op((na,) "2 (log a;")/2).
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Using the fact that sup, |efY(e)| < oo, it is easily shown that the second, third and fourth
terms are |EYT|Op((nay,)~Y2(loga;*)'/?). From this, we conclude

M=

1

-
Il

Zm x,a,)I(A; = 0) x
(FO(EX) — FA(EXD)[m° (x) fgor L(F2(€))dF2(e) + 0°(x) [por eL(F2(e))dF(e)]
(1= Fo(EY))?

+op((na,) %),

where the representation (A.7) will be used for FO(EYT) — FO(ET). Next, consider the
expression Bsy;. Easy calculations show that

[ (mO(@) + o (2)e) L(FO()dF () »
By = —= + |Ej; lop((nay) / ).

1- FEO(EZOE)
We have

The second term on the right hand side of the equation above is |EY|Op(n~1/2), which
follows, using integration by parts, from Corollary 3.2 and proposition 4.5 of VKA (1999)
and the fact that sup, |ef2(e)| < co. Hence,

b @)+ @) LI ()AFYe) — Jy™* (mP(x) + o (x)e) LF())AFL(e)
g 1= F(EY)

+ EL lop((nay)™"?)

)

[ (z) — (:v)+E°T( “(z) = 0°(2))]
(
)

oO(a)(1 — FA(E{)) (m"(2) + o° (@) BT ) LI (EYD) SA(EY)

+ B Jop((nan)~'/?),

using a Taylor expansion. Note that the term |EYT|op((na,)~"/?) in the expression above
is obtained from the fact that sup, |ef2(e)] < oo and sup, [e2f% (e)] < co. A similar
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expression for Bs; is obtained such that

> Wi, a)I(A; = 0)(By + By) (A1)

)+E?95T(&O(x)_ao(x)>] m(z) - o9(x) ET 0T\ £0 ( 0T
(L= Ee(Ee) (m" (@) + o°(w) BT L(E2(EXT) £2(EY)

[m°(z) — () + T(o%(x) — 6°(x))], . o
1 — FO(ET)) (m”(2) + o™ (2)T)L(FE(T)) (T)}

3
3

By, and Bg; are |EYT |op((na,)~'/2). For Bs;, F9(e) is replaced by F2(e) and the remaining
terms are |EYT|op((na,)~'/?) using integration by parts, the uniform consistency of m°(-),
6°(-) and FO(-) and the fact that sup, |ef%(e)| < oo. Then, use is made of the asymptotic
representations of Propositions 4.8 and 4.9 of VKA (1999) such that Bj; is given by

—(nan) " fx'(x)o(x) 0
TRy Uy LR iz Agle)
+ /ETT eL(F°(e))dF (e if((‘” ;nXﬂ‘)g(zj, Ajla)}
+|EX |op((nay)~?). (A.12)

Finally, By; is |EYT|Op(n~Y/?) using integration by parts.
From those developments, we can write

z— X,
! )n(Zja Aj|x)

Qyi(z) = aozn:Wi(x,an)Bl(Zi,Aﬂx) X L zn:K(

i=1 nan ;- n

T (2,0 )

n B 1
+GOZM/¢(5E>an)B2(Zia Az|l') X — ZK(

+op((na,) V%), (A.13)
where
Bi(Zi, Ailx) = fx' (@) {I(A = 1)Z L' (F(Z]|x)) (B
55 yL(F(y|2))dF (y]2)
(1= F(Z%|x))

ZLL(F(ZL18) | | oo TeL(F(T, )
Rz ) O Rz

+I(A; = 0) | 2B )(
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Jfor L(F2(e))dFY(e)
I~ FO(ET)

—0 \T

I

Bo(Zi, Ailz) = f5' () {1(Ai = 1) ZiL/(F(ZL|2)) £ (B B

25 yL(F (y]2))dF (y])
(- F(ZLJ0)y

o(p p LL(E(T:|2))

|

and ZL = Z;AT,,i=1,...,n. Using Theorem 3.3 of Heuchenne (2005) for the new data
points By(Z, A|z), Bo(Z, Alx), n(Z, Alx) and ((Z, Alx), the asymptotic representation of
911(517) is

O(ES )BT

ZLUP(ZL), |
F(Z]a)
Jior eL(FO(e))dF (c)

1~ FO(ET)

_ZK X

na, i an

(Zj’Aj|x) +Rn1($)v (A14)

where
By(Z,Alx) = ao(E[By(Z, Al)|e]n(Z, Ala) + E[By(Z, Alw)[a]¢(Z, Alr)),

and sup{|R,1(7)|;z € Rx} = op((na,)~/?). Note that this rate can be obtained since
En(Z,Alx)|z] = E[((Z,Alz)|x] = 0. For Qi2(z), we readily obtain, using Theorem 3.3
of Heuchenne (2005) with new data points equal to 1 and ¢%(Z;, A;|z) — E[¢1(Z, Alz)|],

n

ZK (S5 (Zi Ailz) = E[67(Z, Alz)[a]) + Rus (), (A.15)

TLCLan z:l Qp

where sup{|R,2(z)|;z € Rx} = op((na,)~/?).
Next, rewrite the second term on the right hand side of (A.4) as

;%(Dm’(x) — Digj())I(s; < Fa(Tilz), 55 < Fa(To|))

+ 3" a;Dig;(2)I(sj < Fyo(To|2), 55 < Fyo(Ti|z)) = Qor () + Qaa(2),

where Dgj(x) = f%}l(sﬂx) AT, — Fp5'(sjlz) AT, and

5; N Foa(Tolw) = Fya(Fpg' (sy]2) A To)
F(Fg (sjla) A Tel)
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Using Theorem 3.7, s; A Fya(T|x) can be replaced by F¢2(qu21(sj|x) ATy|x) in Dyg;(z) of

Q91 (x). We next rewrite (29 (z) as

k a;j(D11j(x) + Digj(x)) . Do < i
Z FEL o0 ATy L < ForlTalw). 55 < Foo(Tal)), (A.16)

where
Duj(x) = f(Fgg'(slz) A Tol2) Dej(x) — (F(F (s5]a) A Tolw) — F(Fp!(syla) A Tolx),
and
Duaj(x) = Fpo(Fp5 (silw) A Tola) — Fa(Fy' (silx) A Tol)
—Fpa (g (s]2) A Tolar) + Fya(Fig) (s5]2) A Tol).
Using a second order Taylor expansion, we get

Dyyj(z) = —W
where 6, is between f%}l(sﬂx) AT, and F(;Ql(sj|x) A T,. Thus, using the proof of The-
orem 3.1, the first term of (A.16) is Op((na,)~'loga,") since sup,, | f'(y|z)| < oo and
inf, f(F,' (sjlz) A Tylz) > 0. Next, we treat the second term of (A.16). First, define
Di3i(x) as

Dg;(x)?,

Dg;(z)
FFR (sjlz) A Telx)

The second term of (A.16) can then be rewritten as

I(3; < Fyo(To|7), 85 < Fgo(Ti|)).

;%Dlz’,j(fﬂ(ww(wﬂ > dy) + ) a;Disj(2)1(| Dej ()] < dy),

j=1
where d, ~ (na,) "/?(loga;')/2. The first term of this expression is negligible using
Theorem 3.1 and the second one is 0p((na,)~*/?) using Theorem 3.7. Finally, Qg (z) can

be written as
k
3" a;Digj(x)1(s; < Fyo(To|x)) + 0p((na,)~?),
j=1

where use is made of Theorems 3.4 and 3.5.
Proof of Theorem 3.4. Write

: n Jpom dF2(e) [ in dF2(e)
Fooltl) = Feoltle) = 32 Wil an{1(8 = O 5o ~ 7= agory)

3 Wl 00) (51 b) — ELG(2. Al
= Xn: Wiz, ap){I(A; = 0)Qu:(Zi, Ailz) + Qui(Zs, Ailw) )

i=1
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First, we treat Q3,(Z;, A;|x). We have
o i, dF2(e)
(2, M) = (F(EE) = FXE)) et e
FATy) — FA(T7) + FA(EY) — FA(EX)
1 — FO(ER)
= Qg14(Zi, Ailx) + Q30(Zs, Ai|).

_|_

Since by (A.1), we showed

0,2 NTy Nt — 1% () 2 AT, Nt —m°
Sup|F50( ~0 )_ z—?( 0
o,z o0 () a°(x)

we have

)\ = Op((nan) 2 (0g a;) 1)

sup | Wiz, an){I(A; = 0)(Qs1:(Zi, Ai|z) + Q304(Zs, Ai2)) }|
bt =1

= Op((na,)""*(log a,")"/?).

For Q4(Z;, Ai|z), we use Theorem 3.3 of Heuchenne (2005) with new data points ¢, (Z;, A;|z)
and we obtain the result.
Proof of Theorem 3.5. An asymptotic representation for the numerator of Q30,(Z;, A;|x)

is given by

e {[fO(T””) + U n(Z;, Ajl)

fx(x)nan] | n,
FTOTE + LB ERC(Z;, 65]) |
+op((na,) ). (A.17)
For Q314(Z;, A|x), it is straightforward that
gom dF2(e)
(1= FO(ED))

a1e(Zi, Ailz) = (FA(EL) — FA(EL)) +op((na,)™'?).  (A.18)
Therefore, with (A.17) and (A.18), we obtain

=1
n n x Xj
= 2 Wi, an) Bu(Zi, Alz) x — 3 K( J1(Zj, Ajl)
n ~ n xr X]
+2Wz(xaan)B5t(Zqu‘x> X TZK( a )C( j?AJ‘x)
+op((nay) '), (A.19)
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where
JUTE) + fAEN)
1-— FO(EQT)

FS(T””) FO(EOTt) 0(poT

B4t = fx(l')ilf(Al = O) {

and
FATHTY + f2(E ) By
1 — FO(EIT)
F(TF) — FO(EN
5( ) (T )EOTfO(EZOxT) ]
(1 - FE))?
Using Theorem 3.3 of Heuchenne (2005) for the new data points By(Z, Al|z), Bs(Z, Alz),
n(Z,Alx) and ((Z, A|z), the asymptotic representation for (A.19) is

Boy = fula) (A = 0) {

—ZK B6t( Zj, Aj|7) + Ry (t]2), (A.20)

TLCLnj 1 G

where
Ba(Z, Alw) = E[Bu(Z, Al)|aln(Z, Ale) + E[By(Z, Al2)|]((Z.Ale),  (A.21)

and sup{|R.1(t|z)];2 € Rx} = op((na,)~'/?). For Qu(Z;, As|z), we use Theorem 3.3 of
Heuchenne (2005) with new data points equal to 1 and ¢%,(Z;, Aj|z) — E[¢3,(Z, Alx)|z]
such that we obtain

Z VVz‘(% a’n)Q4t(Zia Az|90)

i=1
Z K(S=20(05(Z0, Adlw) — Bl03(Z, Alw)a]) + Rua(tz), (A22)
nanfx ) =

where sup{| R,z (t|z)]; —00 <t < 00,2 € Rx} = op((na,)~"/?).

Proof of Theorem 3.7. First, the expression in the theorem is written in terms of new
data points :

sup | D Wi, an) {05(Zi, Ailz) — 63,(Z:, Ail)

2€Rx, |t—s|<dn =1

— 03 (Zis Ail) + 65,(Zi, Ail) } |

swp | Wile, an) {3(Ze Adla) — 33.(Z Adla)

zERx, |t—s|<dn =1
E[§3(Z, Alz)|2] + E[3,(Z, Alw)|a]} |
= D1 -+ DQ.
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Dy = op((nan)~*/?) using Theorem 4.3 of Heuchenne (2005)Using classical arguments,

we then obtain

O (Zis Nil7) — 635(Zs, Aiw) — 3(Ziy Ai|2) + G (Zi, A )

=1(A;=0) {(FS(E%T) — F2(EYD))
FO(TF) — FO(T®) — FO(EN®) + FO(EN®)

(1— FO(EYT))(1 — FO(EXT))
+F€0(j}m) — FY(Ty) — FO(T?) + FO(T?)
1 — FO(ET)
FO(EX") — FO(EY) + FO(EX") — FO(EX™) 1 1

+ 1— FaO(E?mT) —I—Op((nan) logan )

= Dy + Day + Dag + Op((na,) 'loga,*).

X

SUD,c Ry, [1—s|<d, | D21] = Op((na,)~"loga, ') using two Taylor developments and the fact

that sup, | f2(e)| < co. Easy calculations show that

_ I(A; =0) m’(z) —m°(x) 0/ 0/
Du = [ { Tl ) - )

6%(x) — o%(x)
7% ()

(T3 = T (19 = TP (f2(T7) = ff(Té’”)))} +op((nay) %),

such that sup,cp, |1 sj<d, [D22| = 0p((nay) /). Dys is treated in a similar way and this

finishes the proof.
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