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Abstract

Consider the heteroscedastic model Y = m(X) + σ(X)ε, where ε and X are

independent, Y is subject to right censoring, m(·) is an unknown but smooth lo-

cation function (like e.g. conditional mean, median, trimmed mean...) and σ(·) an

unknown but smooth scale function. In this paper we consider the estimation of

m(·) under this model. The estimator we propose is a Nadaraya-Watson type esti-

mator, for which the censored observations are replaced by ‘synthetic’ data points

estimated under the above model. The estimator offers an alternative for the com-

pletely nonparametric estimator of m(·), which cannot be estimated consistently in

a completely nonparametric way, whenever high quantiles of the conditional distri-

bution of Y given X = x are involved.

We obtain the asymptotic properties of the proposed estimator of m(x) and

study its finite sample behaviour in a simulation study. The method is also applied

to a study of quasars in astronomy.
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model; Nonparametric regression; Survival analysis.
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1 Introduction

Let (X, Y ) be a random vector, where X is a one-dimensional covariate and Y repre-

sents the response. We suppose that Y is subject to random right censoring, i.e. instead

of observing Y we only observe (Z,∆), where Z = min(Y, C), ∆ = I(Y ≤ C) and C

represents the censoring time, which is supposed to be independent of Y conditionally on

X. Let (Yi, Ci, Xi, Zi,∆i) (i = 1, . . . , n) be n independent copies of (Y, C,X, Z,∆). We

assume that the relation between X and Y is given by

Y = m(X) + σ(X)ε, (1.1)

where m(X) and σ(X) are some unknown but smooth location and scale functions and

the error term ε is independent of X. So, we assume that the conditional distribution of

Y given X depends on X only via its first and second conditional moment.

In this paper we study the estimation of the function m(·) under model (1.1). We do

not restrict this function to be the conditional mean, but allow it to be any L-functional

(see e.g. Serfling, 1980, p. 265) :

m(x) = a0

∫ 1

0
F−1(s|x)L(s) ds+

k∑

j=1

ajF
−1(sj|x), (1.2)

where F−1(s|x) = inf{y : F (y|x) ≥ s} is the quantile function of Y given x, L(s) is a given

weight function satisfying
∫ 1
0 L(s)ds = 1, L(s) ≥ 0 for all 0 ≤ s ≤ 1, k ≥ 0, a0, . . . , ak

are real numbers such that
∑k
j=0 aj = 1, and 0 ≤ s1, . . . , sk ≤ 1. This definition of m(x)

includes a very broad class of common location functions. For example, when L ≡ 1,

a0 = 1 and k = 0, m(x) equals the conditional mean and when a0 = 0, k = 1, a1 = 1 and

s1 = 1/2, we obtain the conditional median.

It is well known that the conditional mean E(Y |X) (and any other location function

that involves high quantiles of F (·|x)) cannot be consistently estimated in a completely

nonparametric way, due to the presence of right censoring. The estimator we propose

below attempts to solve this problem, by making use of model (1.1). In fact, when ε is

independent of X, the right tail of the distribution F (·|x) can be estimated well provided

there is a region in the support of the covariate where censoring is ‘light’ (this is because

we can estimate this right tail from the right tail of the error distribution, which is a global

distribution, and hence it can be better estimated than the local distribution F (·|x)). In

this way we are able to estimate relatively well the right tail of F (·|x) for any x, also for

those that belong to regions where censoring is heavy.

The method we propose consists in first consistently estimating the conditional distri-

bution F (y|x) under model (1.1), and second to plug-in the obtained estimator in (1.2).

To estimate F (·|x), we replace the censored observations by new ‘synthetic’ data points
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that are obtained under model (1.1), and we then estimate the distribution F (·|x) by

using a weighted empirical distribution function on the new data points. The method

uses model (1.1) only in the construction of synthetic data points, and does not use the

model in the construction of the estimator itself. So, in a sense, it is little sensitive to

the validity of model (1.1), and it can be expected that the estimator works well, even in

situations where model (1.1) does not hold.

The estimation of the conditional quantile or mean function with censored data has

been studied extensively in the literature. Dabrowska (1987, 1992b), Van Keilegom and

Veraverbeke (1997b, 1998), Chen, Dahl and Kahn (2005), among others, studied the

nonparametric estimation of the conditional quantile function, whereas Powell (1986),

Buchinski and Hahn (1998) and Portnoy (2003) estimated this function under the as-

sumption of a parametric model. For the estimation of the conditional mean function,

Doksum and Yandell (1982), Dabrowska (1987), Fan and Gijbels (1994), Kim and Truong

(1998) and Cai and Hong (2003) used a nonparametric approach, whereas a large number

of other papers, including e.g. Buckley and James (1979), Akritas (1994), Heuchenne and

Van Keilegom (2004) assumed a polynomial model for the regression function.

This paper is organized as follows. In the next section, we introduce some notations

and describe the estimation procedures in detail. In Section 3 we state the asymptotic

properties of the estimator of m(·) obtained in Section 2. As a byproduct we also obtain

the asymptotic properties of the estimator of F (·|x). Section 4 contains a simulation study,

in which the new estimator is compared with the completely nonparametric estimator,

and with an estimator proposed in Heuchenne and Van Keilegom (2005). In Section 5,

a data set on spectral energy distributions of quasars is analysed by means of the three

methods. Finally, the Appendix contains the proofs of the asymptotic results of Section

3.

2 Description of the method

We start with some notations and definitions. Let m0(·) be any location func-

tion and σ0(·) be any scale function, meaning that m0(x) = T (F (·|x)) and σ0(x) =

S(F (·|x)) for some functionals T and S that satisfy T (FaY+b(·|x)) = aT (FY (·|x)) + b and

S(FaY+b(·|x)) = aS(FY (·|x)), for all a ≥ 0 and b ∈ IR (here FaY+b(·|x) denotes the condi-

tional distribution of aY + b given X = x). Then, it can be easily seen that if model (1.1)

holds, the model Y = m0(X) + σ0(X)ε0 with ε0 independent of X, is also valid. Define

m0(x) =
∫ 1

0
F−1(s|x)J(s) ds, σ02(x) =

∫ 1

0
F−1(s|x)2J(s) ds−m02(x), (2.1)
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where J(s) is a given weight function satisfying
∫ 1

0 J(s) ds = 1 and J(s) ≥ 0 for all

0 ≤ s ≤ 1. We will choose J in such a way that m0(x) and σ0(x) can be estimated in a

consistent way (i.e. choose J in such a way that the right tail of F (·|x) does not need to be

estimated) and we will then use these estimators of m0(x) and σ0(x) in the construction

of an estimator of m(x).

Before explaining the estimator, let us introduce some notations. Define F (y|x) =

P (Y ≤ y|x), G(y|x) = P (C ≤ y|x), H(y|x) = P (Z ≤ y|x), Hδ(y|x) = P (Z ≤ y,∆ = δ|x),

and FX(x) = P (X ≤ x). Let Fε(y) = P (ε ≤ y) and Sε(y) = 1 − Fε(y) denote the

distribution and survival function of ε = (Y − m(X))/σ(X), where m and σ are the

location and scale functions of interest. Likewise, define F 0
ε and S0

ε for the distribution

and survival function of ε0 = (Y −m0(X))/σ0(X), where m0 and σ0 are defined in (2.1).

Next, for E = (Z − m(X))/σ(X) define Hε(y) = P (E ≤ y), Hεδ(y) = P (E ≤ y,∆ =

δ), Hε(y|x) = P (E ≤ y|x) and Hεδ(y|x) = P (E ≤ y,∆ = δ|x) (δ = 0, 1). Define

analogous functions H0
ε (y), H0

εδ(y), H0
ε (y|x) and H0

εδ(y|x) for E0 = (Z −m0(X))/σ0(X)

and G0
ε(y) = P (C0 ≤ y) for C0 = (C −m0(X))/σ0(X). The probability density functions

of the distributions defined above will be denoted with lower case letters, and RX denotes

the support of the variable X.

The idea of the proposed method is first to estimate the true unknown survival time of

censored observations by making use of model (1.1), and then to estimate m(x) by using

a kernel type estimator based on these new data. Replacing censored observations by

‘synthetic’ (or estimated) survival times, has been widely used in parametric regression

with censored data. See e.g. Buckley and James (1979), Koul, Susarla and Van Ryzin

(1981), Leurgans (1987) and Heuchenne and Van Keilegom (2004).

The extension of this idea to nonparametric estimation of any L-functional of the type

(1.2) is as follows. First, note that m(x) can be written as

m(x) = a0E[Y L(F (Y |x))|x] +
k∑

j=1

ajF
−1(sj|x),

and that F (y|x) = E[I(Y ≤ y)|x]. Let φ1(y|x) = yL(F (y|x)) and φ2t(y|x) = φ2(y|x) =

I(y ≤ t) for fixed t. The idea is now to replace E[φj(Y |x)|x] (j = 1, 2) by a kernel

estimator of the type
∑n
i=1 Wi(x, an)φ∗j(Zi,∆i|x), where Wi(x, an) are local weights defined

below, and φ∗j(Zi,∆i|x) (i = 1, . . . , n) are chosen in such a way that E[φ∗j(Zi,∆i|x)|x] =

E[φj(Yi|x)|x]. It is easy to check that this preservation of means is obtained for

φ∗j(z, δ|x) = φj(z|x)δ + E[φj(Y |x)|Y > z, x](1− δ)

= φj(z|x)δ +
1

1− F (z|x)

∫ +∞

z
φj(y|x)dF (y|x)(1− δ) (2.2)
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(see also Fan and Gijbels (1994), where a similar idea has been used in a completely

nonparametric context).

To estimate the function φ∗j(z, δ|x), we need an estimator of F (·|x). Note that

F (y|x) = F 0
ε

(y −m0(x)

σ0(x)

)
,

and hence we need to estimate F 0
ε , m0 and σ0. The functions m0 and σ0 depend them-

selves also on F (·|x), which we estimate by means of the completely nonparametric kernel

estimator of Beran (1981) (in the case of no ties) :

F̃ (y|x) = 1−
∏

Zi≤y,∆i=1

{
1− Wi(x, an)

∑n
j=1 I(Zj ≥ Zi)Wj(x, an)

}
, (2.3)

where

Wi(x, an) =
Ka(x−Xi)∑n
j=1Ka(x−Xj)

(i = 1, . . . , n) are Nadaraya-Watson weights, Ka(·) = a−1
n K(·/an), K is a density function

(kernel) and {an} a bandwidth sequence. Note that this estimator reduces to the Kaplan-

Meier (1958) estimator when all weights Wi(x, an) equal n−1. This yields

m̂0(x) =
∫ 1

0
F̃−1(s|x)J(s) ds, σ̂02(x) =

∫ 1

0
F̃−1(s|x)2J(s) ds− m̂02(x) (2.4)

as estimators for m0(x) and σ02(x). In practice, the score function J will be chosen in

such a way that F̃ (·|x) is consistent on the support of J . Next, estimate the residual

distribution F 0
ε (suppose no ties) :

F̂ 0
ε (y) = 1−

∏

Ê0
(i)
≤y,∆(i)=1

(
1− 1

n− i+ 1

)
, (2.5)

where Ê0
i = (Zi− m̂0(Xi))/σ̂

0(Xi), Ê
0
(i) is the i-th order statistic of Ê0

1 , . . . , Ê
0
n and ∆(i) is

the corresponding censoring indicator. This estimator has been studied in detail by Van

Keilegom and Akritas (1999). Next, define

F̂1(y|x) = F̂ 0
ε

(y − m̂0(x)

σ̂0(x)

)
.

Now, let φ̂1(y|x) = yL(F̂1(y ∧ Tx|x)) and φ̂2t(y|x) = φ̂2(y|x) = I(y ≤ t), and let

φ̂∗j(z, δ|x) = φ̂j(z|x)δ +
1

1− F̂1(z ∧ Tx|x)

∫ Tx

z∧Tx
φ̂j(y|x)dF̂1(y|x)(1− δ), (2.6)

where Tx = Tσ0(x) +m0(x), T < τH0
ε (·) and τF (·) = inf{y : F (y) = 1} for any distribution

F . Note that we have to truncate the integral at Tx in the above definition. However,
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when τF 0
ε (·) ≤ τG0

ε(·), T can be chosen arbitrarily close to τF 0
ε (·). The estimator of m(x) is

now defined by

m̂T
1 (x)

= a0

n∑

i=1

Wi(x, an)φ̂∗1(Zi,∆i|x) +
k∑

j=1

aj[F̂
−1
φ2

(sj|x) ∧ Tx]

= a0

n∑

i=1

Wi(x, an)
[
YiL(F̂1(Yi ∧ Tx|x))∆i (2.7)

+
1

1− F̂1(Ci ∧ Tx|x)

∫ Tx

Ci∧Tx
yL(F̂1(y|x))dF̂1(y|x)(1−∆i)

]
+

k∑

j=1

aj[F̂
−1
φ2

(sj|x) ∧ Tx],

where

F̂φ2(t|x)

=
n∑

i=1

Wi(x, an)φ̂∗2t(Zi,∆i|x) (2.8)

=
n∑

i=1

Wi(x, an)

[
I(Yi ≤ t)∆i +

1

1− F̂1(Ci ∧ Tx|x)

∫ Tx

Ci∧Tx
I(y ≤ t)dF̂1(y|x)(1−∆i)

]
.

Note that m̂T
1 (x) is actually estimating

mT
1 (x) = a0E[φ̃∗1(Z,∆|x)|x] +

k∑

j=1

aj[F
−1
φ2

(sj|x) ∧ Tx],

where

φ̃∗j(z, δ|x) = φ̃j(z|x)δ +
1

1− F (z ∧ Tx|x)

∫ Tx

z∧Tx
φ̃j(y|x)dF (y|x)(1− δ),

φ̃1(y|x) = yL(F (y ∧ Tx|x)), φ̃2t(y|x) = φ2t(y|x) and Fφ2(t|x) = E[φ̃∗2t(Z,∆|x)|x]. As

before, mT
1 (x) and Fφ2(t|x) can be made arbitrarily close to m(x) and F (t|x) respectively,

provided τF 0
ε (·) ≤ τG0

ε(·).

For sake of comparison, the completely nonparametric estimator of m(x) is given by

m̃T (x) = a0

∫ T̃x

−∞
yL(F̃ (y|x)) dF̃ (y|x) +

k∑

j=1

aj[F̃
−1(sj|x) ∧ T̃x], (2.9)

where T̃x < τH(·|x). Note that we truncate at T̃x, because of the inconsistency of F̃ (y|x)

for y > T̃x (see e.g. Van Keilegom and Veraverbeke, 1997).

Note that in the definition of m̂T
1 (x) we have to truncate at the point Tx due to the

presence of right censoring. However, Tx is always greater than or equal to the truncation
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point T̃x used in the definition of m̃T (x), and the difference between the two truncation

points can be substantial, especially when the censoring proportion is not uniform over

x. Indeed, when there exists a region in the interval RX of ‘light’ censoring, then the

estimator F̂ 0
ε of the error distribution remains consistent upto far in the right tail (and

hence Tx will be large), whereas T̃x completely depends on the censoring proportion at

the point x. In heavy censored regions T̃x can therefore be quite small.

Finally, note that in Heuchenne and Van Keilegom (2005) an alternative estimator of

m(x) has been studied, which also makes use of model (1.1). The estimator is defined by

m̂T (x) = a0

∫ T̂x

−∞
yL(F̂1(y|x)) dF̂1(y|x) +

k∑

j=1

aj[F̂
−1
1 (sj|x) ∧ T̂x], (2.10)

where T̂x = T σ̂0(x) + m̂0(x) and T < τH0
ε (·). We will compare the here proposed estimator

m̂T
1 (x) with the estimators m̃T (x) and m̂T (x) in a simulation study (see Section 4).

3 Asymptotic results

We first give some asymptotic results for the estimator m̂T
1 (x) proposed in Section

2. We then state, as a by-product, some asymptotic results for the estimator F̂φ2(t|x)

defined in (2.8). The proofs of the results below, as well as the assumptions under which

they are valid, can be found in the Appendix.

3.1 Main results

Theorem 3.1 Assume (A1)–(A5), (A6) (i), (A7), L is continuously differentiable,
∫ 1

0 L(s)ds =

1 and L(s) ≥ 0 for all 0 ≤ s ≤ 1. Then,

sup
x∈RX

|m̂T
1 (x)−mT

1 (x)| = OP ((nan)−1/2(log a−1
n )1/2).

Theorem 3.2 Assume (A1)–(A7). Then,

m̂T
1 (x)−mT

1 (x) =
1

nan

n∑

i=1

K
(x−Xi

an

)
B1(Zi,∆i|x) +Rn(x),

where sup{|Rn(x)|; x ∈ RX} = oP ((nan)−1/2) and the function B1(z, δ|x) is given in the

Appendix.
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Theorem 3.3 Under the assumptions of Theorem 3.2,

(nan)1/2(m̂T
1 (x)−mT

1 (x))
d→ N(0, s2(x)),

where

s2(x) = fX(x)
∫
K2(u) du

∑

δ=0,1

∫
B2

1(z, δ|x) dHδ(z|x).

Proof. The result is obtained by using Lyapounov’s Theorem. It’s easy to check that

the Lyapounov ratio is O((nan)−1/2) since E[|Z|λ] < ∞ (λ is given in assumption (A3)

(iii) in the Appendix).

3.2 Distribution results

Theorem 3.4 Assume (A1), (A2), (A3) (i), (ii),(A4), (A5) and (A7). Then,

sup
x∈RX

sup
−∞<t<∞

|F̂φ2(t|x)− Fφ2(t|x)| = OP ((nan)−1/2(log a−1
n )1/2).

Theorem 3.5 Assume (A1), (A2), (A3) (i), (ii), (A4), (A5) and (A7). Then, for any

x ∈ RX ,

F̂φ2(t|x)− Fφ2(t|x) =
1

nan

n∑

i=1

K
(x−Xi

an

)
A(t, Zi,∆i|x) +Rn(t|x),

where sup{|Rn(t|x)|; x ∈ RX} = oP ((nan)−1/2) and the function A(t, z, δ|x) is given in the

Appendix.

Theorem 3.6 Under the assumptions of Theorem 3.5,

(nan)1/2(F̂φ2(t|x)− Fφ2(t|x))
d→ N(0, s2(t|x)),

where

s2(t|x) = fX(x)
∫
K2(u) du

∑

δ=0,1

∫
A2(t, z, δ|x) dHδ(z|x).

Proof. The result is obtained by using Lyapounov’s Theorem.

Theorem 3.7 Assume (A1), (A2), (A3) (i)-(ii), (A4), (A5) and (A7). Then,

sup
x∈RX , |t−s|≤dn

|F̂φ2(t|x)− Fφ2(t|x)− F̂φ2(s|x) + Fφ2(s|x)| = oP ((nan)−1/2),
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where dn ∼ (nan)−1/2(log a−1
n )1/2.

Remark 3.8 In order to select an appropriate bandwidth sequence an, the bootstrap

procedure proposed by Li and Datta (2001) can be used. First, generate X ∗1 , . . . , X
∗
n i.i.d.

from the empirical distribution ofX1, . . . , Xn. Next, for each i = 1, . . . , n, select at random

a Y ∗i from the distribution F̃ (·|X∗i ), and a C∗i from G̃(·|X∗i ) (which is the Beran (1981)

estimator of G(·|X∗i ) obtained by replacing ∆i by 1 − ∆i in the expression of F̃ (·|X∗i )).

For the generation of these bootstrap data we use a pilot bandwidth gn asymptotically

larger than the original an. Next, let Z∗i = min(Y ∗i , C
∗
i ) and ∆∗i = I(Y ∗i ≤ C∗i ). For each

resample {(Xj∗
i , Z

j∗
i ,∆

j∗
i ) : i = 1, . . . , n}, j = 1, . . . , B for some large B, let m̂∗jT1an (x) be

the estimator of mT
1 (x) obtained by using bandwidth an. From this, the integrated mean

squared error
∫
E[m̂T

1 (x)−mT
1 (x)]2 dx can be approximated by

IMSE∗(an) = B−1
B∑

j=1

∫
[m̂∗jT1an (x)− m̂T

1gn(x)]2 dx.

We now select the value of an that minimizes IMSE∗(an). The same bootstrap procedure

can also be used to approximate the distribution of m̂T
1 (x), instead of using the above

asymptotic distribution, which might be hard to estimate in practice.

Remark 3.9 A similar idea as the one developed above to estimate m(x), can be used

to better estimate any scale function σ(x). We can therefore propose

σ̂T2
1 (x) = a2

0

{
n∑

i=1

Wi(x, an)φ̂∗3(Zi,∆i|x)− m̂T2
1 (x)

}

+
k∑

j=1

a2
j

{
n∑

i=1

Wi(x, an)φ̂j∗4 (Zi,∆i|x)

}2

,

where φ̂3(y|x) = y2L(F̂1(y∧Tx|x)), φ̂j4(y|x) = ρj(y− F̂−1
φ2

(sj|x)∧Tx), φ̂j∗4 (z, δ|x) is defined

in the same way as (2.6) and ρj(u) = sjuI(u ≥ 0) + (sj − 1)uI(u < 0). The asymptotic

results for σ̂T2
1 (x) can be obtained along the same lines as for the estimator m̂T

1 (x).

4 Simulations

In this section, we compare the finite sample behaviour of the estimators m̂T
1 (x),

m̃T (x) and m̂T (x). We are interested in the behaviour of the integrated mean squared

error, defined by IMSE =
∫
E[(m̂(x) − m(x))2] dx for any estimator of m(x). The

simulations are carried out for samples of size n = 100 and the results are obtained by

using 250 simulations. We compare the three methods for four different locations : the
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conditional mean, the conditional truncated mean (L(s) = (1/0.9)I(0.05 < s ≤ 0.95)),

the conditional median and conditional third quartile.

We consider the same settings as in Heuchenne and Van Keilegom (2005) e.g. the same

kernel, same bandwidth selection procedure, same choice of the score function J, etc. We

therefore restrict here to giving the most important ones. More details can be found in

the latter paper. For the weights that appear in the Beran estimator F̃ (y|x), we choose a

biquadratic kernel function K(x) = (15/16)(1− x2)2I(|x| ≤ 1). The bandwidth sequence

an is selected for each estimator as the minimizer of an approximated IMSE among a

grid of 20 possible values of an. The weight function J(s) equals J(s) = I(s ≤ b)/b,

where b = min1≤i≤n F̃ (+∞|Xi) (as recommended above). The point (Tx − m̂0(x))/σ̂0(x),

respectively T̃x, is chosen larger than (or equal to) Ê0
(n), respectively Z(n) in order to

consider all the jumps of F̂1(y|x) and F̃ (y|x).

β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 σ2 mean trunc. mean median 3rd quartile

0 1 -1 1 30.1 0.089 0.090 0.098 0.110

4.1 -14 0 19.8 0.5 0.088 0.088 0.093 0.097

0.084 0.086 0.090 0.098

0 1 0 0 35.3 0.124 0.126 0.141 0.168

3.6 -10.5 0 12 1 0.123 0.124 0.133 0.144

0.115 0.120 0.126 0.142

0 1 -1 1 50.2 0.093 0.095 0.104 0.147

1.3 -6 4 3.2 0.5 0.091 0.092 0.098 0.110

0.085 0.087 0.093 0.109

0 0.4 0 0 37.1 0.326 0.331 0.349 0.404

-0.4 1 -0.05 0 0.5 0.320 0.322 0.336 0.365

0.322 0.325 0.341 0.377

0 0.4 0 0 58.8 0.390 0.396 0.454 0.569

0.24 0 0 0.02 0.5 0.390 0.388 0.408 0.507

0.393 0.394 0.412 0.508

0 0.4 0 0 71.1 0.394 0.414 0.507 0.718

-0.3 0 0 0.05 0.5 0.384 0.390 0.445 0.586

0.385 0.389 0.463 0.581

Table 1: Results for m̃T (x) (first line), m̂T (x) (second line) and m̂T
1 (x) (third line) for

model (4.1) with large optimal bandwidth an. RX is [0, 1] ([0, 3]) for the three first (last)

models.
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β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 σ2 mean trunc. mean median 3rd quartile

0 1 0 0 35.5 1.759 1.765 1.802 2.148

2 0 -0.2 0.09 0.5 1.749 1.747 1.762 1.772

1.766 1.759 1.777 1.849

0 1 0 0 38.2 1.333 1.347 1.392 1.604

0.3 1 0 0 0.5 1.299 1.303 1.319 1.354

1.305 1.318 1.351 1.438

0 1 0 0 58.0 1.631 1.681 1.862 1.926

0.5 0.13 0.2 0 0.5 1.517 1.525 1.547 1.676

1.512 1.516 1.596 1.766

0 1 0 0 72.0 1.760 1.832 2.091 2.015

0 0.4 0.1 0 0.5 1.618 1.626 1.698 1.824

1.616 1.623 1.745 1.853

Table 2: Results for m̃T (x) (first line), m̂T (x) (second line) and m̂T
1 (x) (third line) for

model (4.1) with moderately large optimal bandwidth an. RX is [0, 3].

The first model we consider is

Y = β0 + β1X + β2X
2 + β3X

3 + σε, (4.1)

for various choices of β0, β1, β2, β3 and σ, where X has a uniform distribution on the

interval [0, 1] or [0, 3], and the error term ε is a normal random variable with zero mean

and variance 1. The censoring variable C satisfies C = α0 + α1X + α2X
2 + α3X

3 + σε∗,

for certain choices of α0, α1, α2, and α3, where ε∗ has a normal distribution with zero

mean and variance 1. We further assume that ε and ε∗ are independent of X, that ε is

independent of ε∗, and that σ is known.

Tables 1, 2 and 3 summarize the simulation results for different values of α0, α1, α2, α3,

β0, β1, β2, β3 and σ. For fixed values of β0, β1, β2, β3 and σ, the values of α0, α1, α2 and

α3 are chosen in such a way that some variation in the censoring probability curves is

obtained (different proportions of censoring, censoring probability curves that do or do

not wiggle a lot,...). The proportion of censoring (in % and denoted by CP in the tables)

is computed as the average of P (∆ = 0|x) for an equispaced grid of values of x.

First, we compare m̂T
1 (x) with m̃T (x). The tables show that, in general, m̂T

1 (x) has

smaller IMSE than m̃T (x) for each of the four considered location functions. As for

m̂T (x), the higher the quantile, or the smaller the support of L, the worse the estimation

but m̂T
1 (x) resists better than m̃T (x). This is due to the locality of the Beran estimator
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and its inconsistency problems. On the other hand, m̂T
1 (x) is a global estimator and its

inconsistency problems are considerably less important than for the Beran estimator. As

a consequence, a more wiggly curve or an increase of the proportion of censoring affects

more m̃T (x) than m̂T
1 (x).

We next compare the new estimator m̂T
1 (x) with its competitor m̂T (x). The main

motivation for m̂T
1 (x) with respect to m̂T (x) is as follows. The use of global information

sometimes penalizes the estimation procedure since the amount of local information is

decreased by reducing the support of the score function J. These instability problems es-

pecially arise when the censoring probability curve contains some peaks in certain regions

of the covariate space. Although both estimators m̂T (x) and m̂T
1 (x) are based on m̂0(·)

and σ̂0(·) (and can thus suffer from small supports of J), m̂T
1 (x) only uses them in the

estimation of censored synthetic data points and not in the construction of the estimator

itself. Hence, it preserves uncensored local information and is less sensitive to these in-

β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 σ2 mean trunc. mean median 3rd quartile

4 -7.5 6 -1.3 31.7 1.139 1.159 1.260 1.570

3.5 -7.45 7 -1.6 0.5 1.081 1.085 1.100 1.165

1.059 1.067 1.125 1.276

4 -7.5 6 -1.3 38.2 1.047 1.066 1.161 1.513

4.3 -7.5 6 -1.3 0.5 1.030 1.034 1.043 1.111

1.025 1.038 1.086 1.209

4 -7.5 6 -1.3 38.3 1.262 1.286 1.371 1.628

3.4 -7.45 7 -1.6 1 1.239 1.248 1.283 1.373

1.231 1.248 1.313 1.450

4 -7.5 6 -1.3 51.3 1.251 1.314 1.508 1.559

3.2 -7.6 7 -1.6 0.5 1.142 1.158 1.188 1.315

1.112 1.118 1.212 1.389

4 -7.5 6 -1.3 56.4 1.336 1.392 1.553 2.043

3 -7.6 7 -1.6 1 1.296 1.321 1.391 1.620

1.283 1.308 1.423 1.665

4 -7.5 6 -1.3 74.7 1.493 1.590 2.412 2.119

3 -7.6 6 -1.3 1 1.512 1.576 2.005 2.176

1.493 1.544 2.006 2.176

Table 3: Results for m̃T (x) (first line), m̂T (x) (second line) and m̂T
1 (x) (third line) for

model (4.1) with small optimal bandwidth an. RX is [0, 3].
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stability problems. This explains why m̂T
1 (x) often outperforms m̂T (x) for the estimation

of the mean and truncated mean. Note that the instability problems also depend on the

shape of the curve to estimate and the amount of censoring. Therefore, Table 1 shows

approximately the same results for both estimators since the chosen models are relatively

flat. In Table 2, m̂T
1 (x) outperforms m̂T (x) for large proportions of censoring and more

wiggly models while m̂T
1 (x) is the best one in Table 3 at all censoring levels. On the

other hand, the estimator m̂T (x) behaves better for quantile estimation. This is because

m̂T
1 (x) is highly based on F̂φ2(·|x) which uses less homogeneous information (true data

points mixed with data estimated by means of the general heteroscedastic model) than

the global F̂ 0
ε (·) used by m̂T (x).

Next, we consider the case where model (1.1) is not satisfied. For this, we generate

random response and censoring variables from Weibull distributions with the following

parameters

Y |X = x ∼ Weibull(x, d),

C|X = x ∼ Weibull((0.3 + x)/ξ, d), (4.2)

d1 CP IMSE

ξ mean trunc. mean median 3rd quartile

0 36.58 1.488 1.672 1.507 3.882

1 1.479 0.999 1.412 3.271

1.314 0.993 1.308 2.909

1 38.27 0.576 1.205 0.794 1.473

0.71 0.566 0.737 0.648 1.076

0.517 0.605 0.622 1.022

2 38.03 0.362 1.069 0.515 0.769

0.55 0.348 0.754 0.388 0.602

0.318 0.538 0.390 0.603

3 38.13 0.270 1.006 0.386 0.536

0.42 0.258 0.804 0.282 0.422

0.241 0.541 0.288 0.448

4 38.28 0.235 0.953 0.319 0.377

0.32 0.218 0.843 0.221 0.346

0.195 0.574 0.229 0.361

Table 4: Results for m̃T (x) (first line), m̂T (x) (second line) and m̂T
1 (x) (third line) for

model (4.2)
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where X has a uniform distribution on the interval [0, 3] and d and ξ are chosen to be

positive for all 0 ≤ x ≤ 3. From the conditional independence between Y and C for

given X, it follows that the censoring probability curve is given by P (∆ = 0|X = x) =

(0.3 + x)/((ξ + 1)x + 0.3). Using conditional mean and standard deviation for Weibull

distributions, we obtain

P (ε ≤ t|x) = 1− exp(−{t[Γ(1 + 2d−1)− Γ2(1 + d−1)]1/2 + Γ(1 + d−1)}d).

Therefore, choosing for instance d = 2 + d1x enables to remove Y in (4.2) from model

(1.1).

Table 4 shows the simulation results for model (4.2) with different values of d1 and

ξ. ξ is chosen such that the censoring probability curve is approximately the same for

each d1. m̂
T (x) and m̂T

1 (x) don’t seem to be very sensitive to model assumption (1.1)

since Beran’s method obtains the largest IMSE for all values of d1. When the value of

d1 increases, m̂T
1 (x) seems to resist better than m̂T (x) for conditional mean or truncated

mean estimation whereas m̂T (x) continues to outperform m̂T
1 (x) in quantile estimation.

This can also be explained by the fact that the data set on which F̂φ2(·|x) is constructed

becomes more and more heterogeneous as d1 increases.

The final setting we consider is a normal heteroscedastic regression model

Y = β0 + β1X + β2X
2 + β3X

3 + (γX + 0.1)ε, (4.3)

where X has a uniform distribution on [0, 1] or on [0, 3], and ε has a normal distribution

with zero mean and variance equal to one. The censoring variable is given by C =

β0 β1 β2 β3 CP IMSE

α0 α1 α2 α3 γ2 mean trunc. mean median 3rd quartile

0 0.4 0 0 58.2 0.365 0.377 0.425 0.957

-0.1 0 0 0.1 0.1 0.338 0.347 0.335 0.943

0.346 0.345 0.358 0.990

0 1 6 -4 48.9 0.621 0.631 0.638 0.950

0.5 1 -5 9 1 0.570 0.566 0.557 0.866

0.582 0.563 0.566 0.922

0 1 6 -4 56.8 1.040 1.066 1.152 2.546

0.5 0.8 -6 8.5 5 1.032 1.032 1.069 2.161

1.010 1.039 1.061 2.196

Table 5: Results for m̃T (x) (first line), m̂T (x) (second line) and m̂T
1 (x) (third line) for

model (4.3). RX is [0, 3] for the first model and [0, 1] for the two other ones.
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α0 + α1X + α2X
2 + α3X

3 + γε∗, where ε∗ has a normal distribution with zero mean and

variance equal to one. We further assume that ε and ε∗ are independent of X, and that

ε is independent of ε∗. The variance of Y given X is now supposed to be unknown. The

results are in Table 5. Similar conclusions as above hold in this heteroscedastic case.

5 Data analysis

In this section, we add the new estimator m̂T
1 (x) to the analysis of the data set on

spectral energy distributions of quasars described in Heuchenne and Van Keilegom (2004).

The choice of the bandwidth is achieved with the bootstrap procedure of Remark 3.8

(adapted to each estimator). The selected bandwidth is approximately the same for the

three methods. The results are given in Figures 1 to 4. The estimator m̂T
1 (x) also suggests

to use linear functions for the four proposed locations. As expected, m̂T
1 (x) is less smooth

than m̂T (x), especially for the first quartile.

29 29.5 30 30.5 31 31.5 32 32.5
24

24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

Figure 1: Estimated conditional mean for the quasars data. The estimators m̃T (x), m̂T (x)

and m̂T
1 (x) are indicated by ·, ◦ and ∗ respectively. Uncensored data points are represented

by ×, and (left) censored observations by 5.
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Figure 2: Estimated conditional truncated mean for the quasars data (5 percent of trun-

cation at both sides). The estimators m̃T (x), m̂T (x) and m̂T
1 (x) are indicated by ·, ◦

and ∗ respectively. Uncensored data points are represented by ×, and (left) censored

observations by 5.

Appendix : Proofs of main results

The following functions enter the asymptotic representation of m̂T (x)−mT (x) which

we established in Section 3.

ξ(z, δ, y|x) = (1− F (y|x))



−

y∧z∫

−∞

dH1(s|x)

(1−H(s|x))2
+
I(z ≤ y, δ = 1)

1−H(z|x)



 ,

η(z, δ|x) =

+∞∫

−∞
ξ(z, δ, v|x)J(F (v|x)) dv (σ0)−1(x),

ζ(z, δ|x) =

+∞∫

−∞
ξ(z, δ, v|x)J(F (v|x))

v −m0(x)

σ0(x)
dv (σ0)−1(x),

hx,y(z, δ) =
[
η(z, δ|x) + ζ(z, δ|x)

y −m0(x)

σ0(x)

]
f 0
ε (
y −m0(x)

σ0(x)
)f−1
X (x),

A(t, z, δ|x)

= E

[
I(∆ = 0){hx,ZTx (z, δ)

F (Tx ∧ t|x)− F (ZT
x ∧ t|x)

(1− F (ZT
x |x))2

+
hx,Tx∧t(z, δ) + hx,ZTx ∧t(z, δ)

1− F (ZT
x |x)

}
]

16



29 29.5 30 30.5 31 31.5 32 32.5
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Figure 3: Estimated conditional median for the quasars data. The estimators m̃T (x),

m̂T (x) and m̂T
1 (x) are indicated by ·, ◦ and ∗ respectively. Uncensored data points are

represented by ×, and (left) censored observations by 5.
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Figure 4: Estimated conditional first quartile for the quasars data. The estimators m̃T (x),

m̂T (x) and m̂T
1 (x) are indicated by ·, ◦ and ∗ respectively. Uncensored data points are

represented by ×, and (left) censored observations by 5.
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+f−1
X (x)[φ̃∗2t(z, δ|x)− E{φ̃∗2t(Z,∆|x)|x}],

B1(z, δ|x) = a0E
[
I(∆ = 1)ZL′(F (ZT

x |x))hx,ZTx (z, δ)

+I(∆ = 0)hx,ZTx (z, δ)
{∫ Tx

ZTx
M(y|x) dF (y|x)

(1− F (ZT
x |x))2

− M(ZT
x |x)

1− F (ZT
x |x)

}

+I(∆ = 0)hx,Tx(z, δ)
M(Tx|x)

1− F (ZT
x |x)

− I(∆ = 0)

∫ Tx
ZTx
hx,y(z, δ)L(F (y|x)) dy

1− F (ZT
x |x)




+a0f
−1
X (x)[φ̃∗1(z, δ|x)− E{φ̃∗1(Z,∆|x)|x}]

−
k∑

j=1

ajA(F−1(sj|x), z, δ|x)I(sj ≤ F (Tx|x))

f(F−1(sj|x)|x)
,

where ZT
x = Z ∧ Tx and M(y|x) = yL(F (y|x)).

For a (sub)distribution function L(y|x) we will use the notations l(y|x) = L′(y|x) =

(∂/∂y)L(y|x), L̇(y|x) = (∂/∂x)L(y|x) and similar notations will be used for higher order

derivatives.

The assumptions needed for the results of Section 3 are listed below.

(A1)(i) na4
n → 0 and na3+2δ

n (log a−1
n )−1 →∞ for some δ < 1/2.

(ii) RX is a compact interval.

(iii) K is a symmetric density with compact support, and K is twice continuously differ-

entiable.

(A2)(i) There exist 0 ≤ sa ≤ sb ≤ 1 such that sb ≤ infx F (T̃x|x), sa ≤ inf{s ∈ [0, 1]; J(s) 6=
0}, sb ≥ sup{s ∈ [0, 1]; J(s) 6= 0} and infx∈RX infsa≤s≤sb f(F−1(s|x)|x) > 0.

(ii) J is twice continuously differentiable,
∫ 1
0 J(s)ds = 1 and J(s) ≥ 0 for all 0 ≤ s ≤ 1.

(A3)(i) FX is three times continuously differentiable and infx∈RX fX(x) > 0.

(ii) m0 and σ0 are twice continuously differentiable and infx∈RX σ
0(x) > 0.

(iii) E|Z|λ <∞, with λ ≥ (12 + 8δ)/(1 + 4δ) and δ chosen as in (A1)(i).

(A4) η(z, δ|x) and ζ(z, δ|x) are twice continuously differentiable with respect to x and

their first and second derivatives (with respect to x) are bounded, uniformly in x ∈ RX ,

z < T̃x and δ.

(A5) For L(y|x) = H(y|x), H1(y|x), H0
ε (y|x) or H0

ε1(y|x) : L′(y|x) is continuous in (x, y)

and supx,y |y2L′(y|x)| <∞, and the same holds for all other partial derivatives of L(y|x)

with respect to x and y up to order three.

(A6)(i) Let sα < F 0
ε (T ) and sβ be such that 0 < sα < sj < sβ < 1 for all j = 1, . . . , k and
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let Q = [sα, sβ ∧ F 0
ε (T )]. Then, infs∈Q f 0

ε ((F 0
ε )−1(s)) > 0.

(ii) L is twice continuously differentiable,
∫ 1
0 L(s)ds = 1, L(s) ≥ 0 for all 0 ≤ s ≤ 1.

(A7) For the density fX|Z,∆(x|z, δ) of X given (Z,∆), supx,z |fX|Z,∆(x|z, δ)| < ∞,

supx,z |ḟX|Z,∆(x|z, δ)| <∞, supx,z |f̈X|Z,∆(x|z, δ)| <∞ (δ = 0, 1).

For the proofs below, we will use throughout the abbreviated notations T̂ x = (Tx −
m̂0(x))/σ̂0(x), T x = (Tx − m0(x))/σ0(x) = T, Ê0

ix = (Zi − m̂0(x))/σ̂0(x), E0
ix = (Zi −

m0(x))/σ0(x), Ê0T
ix = Ê0

ix∧ T̂ x, E0T
ix = E0

ix∧T, Ê0Tt
ix = (Zi∧Tx∧ t− m̂0(x))/σ̂0(x), E0Tt

ix =

(Zi∧Tx∧ t−m0(x))/σ0(x), T̂ xt = (Tx∧ t−m̂0(x))/σ̂0(x) and T xt = (Tx∧ t−m0(x))/σ0(x).

Proof of Theorem 3.1. Consider the expression m̂T
1 (x)−mT

1 (x) = Ω1(x)+Ω2(x), where

Ω1(x) = a0

n∑

i=1

Wi(x, an)[φ̂∗1(Zi,∆i|x)− φ̃∗1(Zi,∆i|x)]

+a0

n∑

i=1

Wi(x, an)[φ̃∗1(Zi,∆i|x)− E{φ̃∗1(Z,∆|x)|x}]

= Ω11(x) + Ω12(x),

and

Ω2(x) =
k∑

j=1

aj(F̂
−1
φ2 (sj|x) ∧ Tx)−

k∑

j=1

aj(F
−1
φ2 (sj|x) ∧ Tx).

First, we treat Ω11(x).

Ω11(x) = a0

n∑

i=1

Wi(x, an)
{
I(∆i = 1)Yi[L(F̂ 0

ε (Ê0T
ix ))− L(F 0

ε (E0T
ix ))]

I(∆i = 0)
[
∫ T̂x
Ê0T
ix

(m̂0(x) + σ̂0(x)e)L(F̂ 0
ε (e))dF̂ 0

ε (e)

1− F̂ 0
ε (Ê0T

ix )

−
∫ T
E0T
ix

(m0(x) + σ0(x)e)L(F 0
ε (e))dF 0

ε (e)

1− F 0
ε (E0T

ix )

]




= a0

n∑

i=1

Wi(x, an) {A1i(x) + A2i(x)} .

We have supx,z
∣∣∣F̂ 0
ε

{
z∧Tx−m̂0(x)

σ̂0(x)

}
− F 0

ε

{
z∧Tx−m0(x)

σ0(x)

}∣∣∣ = OP ((nan)−1/2(log a−1
n )1/2). This is

shown as follows. Write

F̂ 0
ε (
z ∧ Tx − m̂0(x)

σ̂0(x)
)− F 0

ε (
z ∧ Tx −m0(x)

σ0(x)
)

= F̂ 0
ε (
z ∧ Tx − m̂0(x)

σ̂0(x)
)− F 0

ε (
z ∧ Tx − m̂0(x)

σ̂0(x)
)
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+F 0
ε (
z ∧ Tx − m̂0(x)

σ̂0(x)
)− F 0

ε (
z ∧ Tx −m0(x)

σ̂0(x)
)

+F 0
ε (
z ∧ Tx −m0(x)

σ̂0(x)
)− F 0

ε (
z ∧ Tx −m0(x)

σ0(x)
)

= α1
n(z, x) + α2

n(z, x) + α3
n(z, x). (A.1)

Using Corollary 3.2 in VKA (1999), supx,z |α1
n(z, x)| is Op(n

−1/2). For the two other terms,

we use two first order Taylor developments

α2
n(z, x) + α3

n(z, x) = −m̂
0(x)−m0(x)

σ̂0(x)
f 0
ε (Ax)−

σ̂0(x)− σ0(x)

σ̂0(x)

z ∧ Tx −m0(x)

σ0(x)
f 0
ε (Bx),

for some Ax (Bx) between z∧Tx−m0(x)
σ̂0(x)

and z∧Tx−m̂0(x)
σ̂0(x)

( z∧Tx−m
0(x)

σ0(x)
and z∧Tx−m0(x)

σ̂0(x)
). Using

Proposition 4.5 of VKA (1999) and the fact that supe |ef 0
ε (e)| < +∞, α2

n(z, x)+α3
n(z, x) =

O((nan)−1/2(log a−1
n )1/2) a.s. Therefore, since E[|Z|] <∞,

sup
x
|
n∑

i=1

Wi(x, an)A1i(x)| = OP ((nan)−1/2(log(an)−1)1/2).

Next, write

A2i(x) = I(∆i = 0)





(F̂ 0
ε (Ê0T

ix )− F 0
ε (E0T

ix ))
∫ T̂x
Ê0T
ix

(m̂0(x) + σ̂0(x)e)L(F̂ 0
ε (e))dF̂ 0

ε (e)

(1− F̂ 0
ε (Ê0T

ix ))(1− F 0
ε (E0T

ix ))

+

∫ E0T
ix

Ê0T
ix

(m̂0(x) + σ̂0(x)e)L(F̂ 0
ε (e))dF̂ 0

ε (e)

1− F 0
ε (E0T

ix )
+

∫ T̂x
T (m̂0(x) + σ̂0(x)e)L(F̂ 0

ε (e))dF̂ 0
ε (e)

1− F 0
ε (E0T

ix )

+
1

1− F 0
ε (E0T

ix )

∫ T

E0T
ix

[(m̂0(x)−m0(x)) + (σ̂0(x)− σ0(x))e]

×[L(F̂ 0
ε (e))− L(F 0

ε (e))]dF̂ 0
ε (e)

+
1

1− F 0
ε (E0T

ix )

∫ T

E0T
ix

[(m̂0(x)−m0(x)) + (σ̂0(x)− σ0(x))e]L(F 0
ε (e))dF̂ 0

ε (e)

+
1

1− F 0
ε (E0T

ix )

∫ T

E0T
ix

(m0(x) + σ0(x)e)[L(F̂ 0
ε (e))− L(F 0

ε (e))]dF̂ 0
ε (e)

+
1

1− F 0
ε (E0T

ix )

∫ T

E0T
ix

(m0(x) + σ0(x)e)L(F 0
ε (e))d(F̂ 0

ε (e)− F 0
ε (e))

}

= I(∆i = 0)
7∑

j=1

Bji. (A.2)

Using Corollary 3.2 and Proposition 4.5 of Van Keilegom and Akritas (1999) (hereafter

denoted by VKA), the above-mentioned uniform consistency of F̂ 0
ε (·), the continuous
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differentiability of L and the fact that supe |ef 0
ε (e)| <∞, it is easy to check that A2i(x) =

|E0T
ix |OP ((nan)−1/2(log a−1

n )1/2) such that

sup
x
|
n∑

i=1

Wi(x, an)A2i(x)| = OP ((nan)−1/2(log a−1
n )1/2).

We also have by Theorem 3.3 of Heuchenne (2005)

sup
x∈RX

|Ω12(x)| = O((nan)−1/2(log a−1
n )1/2) a.s.,

since E[|Z|λ] <∞. Next, we treat Ω2(x).

First, we show that supx∈RX |F̂−1
φ2 (sj|x) ∧ Tx| = OP (1). Define

ξα = inf
x∈RX

(m0(x) + σ0(x)(F 0
ε )−1(sα)) = inf

x∈RX
F−1
φ2

(sα|x).

We have

P ( inf
x∈RX

(F̂−1
φ2 (sj|x) ∧ Tx) < ξα) (A.3)

≤ P ( sup
x∈RX

|Fφ2(F̂−1
φ2 (sj|x) ∧ Tx|x)− sj ∧ Fφ2(Tx|x)| ≥ sj ∧ Fφ2(Tx|x)− sα)

≤ P ( sup
x∈RX

|Fφ2(F̂−1
φ2 (sj|x) ∧ Tx|x)− F̂φ2(F̂−1

φ2 (sj|x) ∧ Tx|x)| ≥ (sj ∧ Fφ2(Tx|x)− sα)/2)

+P ( sup
x∈RX

|F̂φ2(F̂−1
φ2 (sj|x) ∧ Tx|x)− sj ∧ Fφ2(Tx|x)| ≥ (sj ∧ Fφ2(Tx|x)− sα)/2).

Using Theorem 3.4, the first term on the right hand side of (A.3) tends to zero. For the

second term on the right hand side of (A.3), write

P ( sup
x∈RX

|D1j(x)| ≥ εjα)

≤ P (D sup
x∈RX

I(sj ≤ F̂φ2(Tx|x), sj > Fφ2(Tx|x)) ≥ εjα/4)

+P (D sup
x∈RX

I(sj > F̂φ2(Tx|x), sj ≤ Fφ2(Tx|x)) ≥ εjα/4)

+P ( sup
x∈RX

(|F̂φ2(F̂−1
φ2 (sj|x)|x)− sj|I(sj ≤ F̂φ2(Tx|x), sj ≤ Fφ2(Tx|x))) ≥ εjα/4)

+P ( sup
x∈RX

(|F̂φ2(Tx|x)− Fφ2(Tx|x)|I(sj > F̂φ2(Tx|x), sj > Fφ2(Tx|x))) ≥ εjα/4)

= D2 +D3 +D4 +D5,

where D1j(x) = F̂φ2(F̂−1
φ2 (sj|x) ∧ Tx|x) − sj ∧ Fφ2(Tx|x), εjα = (sj ∧ Fφ2(Tx|x) − sα)/2

and D = maxj(supx∈RX |D1j(x)|). D2, D3 and D5 tend to zero using Theorem 3.4. D4 is

bounded by

P ( sup
x∈RX

sup
−∞<y<∞

|F̂φ2(y|x)− F̂φ2(y − |x)| ≥ εjα/4),
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for which Theorem 3.7 is used. Since infx∈RX (F−1
φ2 (sj|x)∧Tx) ≥ infx∈RX (F−1

φ2 (sα|x)) = ξα,

we have

sup
x∈RX

|F̂−1
φ2 (sj|x) ∧ Tx − F−1

φ2 (sj|x) ∧ Tx| = sup
x∈RX

|D6j(x)| = OP (1).

Ω2(x) is therefore rewritten as

Ω2(x) =
k∑

j=1

ajD6j(x)I(sj ≤ F̂φ2(Tx|x), sj > Fφ2(Tx|x))

+
k∑

j=1

ajD6j(x)I(sj ≤ F̂φ2(Tx|x), sj ≤ Fφ2(Tx|x))

+
k∑

j=1

ajD6j(x)I(sj > F̂φ2(Tx|x), sj ≤ Fφ2(Tx|x)), (A.4)

where the suprema of the first and third terms are negligible, using the same arguments

as for D2 and D3. Note that when sj > F 0
ε (T ) for all j, j = 1 . . . , k, only the first term of

(A.4) is considered and treated with Theorem 3.4. Next, supx∈RX |Ω2(x)| is now bounded

by

k∑

j=1

|aj| sup
x∈RX

(|D6j(x)|I(sj ≤ F̂φ2(Tx|x), sj ≤ Fφ2(Tx|x), Fφ2(F̂−1
φ2 (sj|x) ∧ Tx|x) ∈ Q))

+
k∑

j=1

|aj| sup
x∈RX

(|D6j(x)|I(sj ≤ F̂φ2(Tx|x), sj ≤ Fφ2(Tx|x), Fφ2(F̂−1
φ2 (sj|x) ∧ Tx|x) /∈ Q))

+OP ((nan)−1/2(log a−1
n )1/2)

= D7 +D8 +OP ((nan)−1/2(log a−1
n )1/2),

where D8 is negligible by Theorems 3.4 and 3.7. Now, we define

D9j(x) = F−1(max(F (F̂−1
φ2 (sj|x) ∧ Tx|x), sα) ∧ (sβ ∧ F 0

ε (T ))|x)

−F−1(F (F−1
φ2 (sj|x) ∧ Tx|x)|x),

such that

D7 =
k∑

j=1

|aj| sup
x∈RX

(|D9j(x)|I(sj ≤ F̂φ2(Tx|x), sj ≤ Fφ2(Tx|x), Fφ2(F̂−1
φ2 (sj|x) ∧ Tx|x) ∈ Q)).

Therefore, using a Taylor development

D9j(x) ≤ 1

f(F−1(θjx|x)|x)
|Fφ2(F̂−1

φ2 (sj|x) ∧ Tx|x)− Fφ2(F−1
φ2 (sj|x) ∧ Tx|x)|,
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where θjx is between max(F (F̂−1
φ2 (sj|x)∧Tx|x), sα)∧(sβ∧F 0

ε (T )) and F (F−1
φ2 (sj|x)∧Tx|x).

Finally, the desired order is obtained with a successive application of Theorems 3.4 and

3.7.

Proof of Theorem 3.2. First, consider Ω11(x).

n∑

i=1

Wi(x, an)A1i(x) (A.5)

=
n∑

i=1

Wi(x, an)I(∆i = 1)YiL
′(F 0

ε (E0T
ix ))(F̂ 0

ε (Ê0T
ix )− F 0

ε (E0T
ix )) + oP ((nan)−1/2),

using the uniform consistency of F̂ 0
ε (·) as in (A.1) and a second order Taylor expansion.

Next, using Proposition 4.5 in VKA (1999), and the fact that supy |y2f 0′
ε (y)| < ∞ and

supy |yf 0
ε (y)| <∞,

F 0
ε (Ê0T

ix )− F 0
ε (E0T

ix )

= (Ê0T
ix − E0T

ix )f 0
ε (E0T

ix ) + oP ((nan)−1/2)

= −m̂
0(Xi)−m0(Xi)

σ0(Xi)
f 0
ε (E0T

ix )− σ̂0(Xi)− σ0(Xi)

σ0(Xi)
E0T
ix f

0
ε (E0T

ix ) + oP ((nan)−1/2).(A.6)

The asymptotic representation for F̂ 0
ε (Ê0T

ix )− F 0
ε (E0T

ix ) is therefore given by

(nan)−1
n∑

j=1

K(
x−Xj

an
)hx,Zi∧Tx(Zj,∆j) + oP ((nan)−1/2), (A.7)

where use is made of Propositions 4.8, 4.9 and Corollary 3.2 of VKA (1999). Next,

consider the expression
∫ T̂x
Ê0T
ix

(m̂0(x) + σ̂0(x)e)L(F̂ 0
ε (e))dF̂ 0

ε (e) which appears in the term

B1i of (A.2). We have

∫ T̂x

Ê0T
ix

m̂0(x)L(F̂ 0
ε (e))dF̂ 0

ε (e) (A.8)

= m0(x)

{∫ T

E0T
ix

L(F 0
ε (e))dF 0

ε (e) +
∫ T

E0T
ix

L(F 0
ε (e))d(F̂ 0

ε (e)− F 0
ε (e))

}

+OP ((nan)−1/2(log a−1
n )1/2),

using uniform consistency of m̂0(·) and F̂ 0
ε (·). By using integration by parts, the second

term is |E0T
ix |OP (n−1/2). In the same way,

∫ T̂x

Ê0T
ix

σ̂0(x)eL(F̂ 0
ε (e))dF̂ 0

ε (e) (A.9)

= σ0(x)

{∫ T

E0T
ix

eL(F 0
ε (e))dF 0

ε (e) +
∫ T

E0T
ix

eL(F 0
ε (e))d(F̂ 0

ε (e)− F 0
ε (e))

+
∫ E0T

ix

Ê0T
ix

eL(F̂ 0
ε (e))dF̂ 0

ε (e) +
∫ T̂x

T
eL(F̂ 0

ε (e))dF̂ 0
ε (e)

}
+ |E0T

ix |OP ((nan)−1/2(log a−1
n )1/2).
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Using the fact that supe |ef 0
ε (e)| <∞, it is easily shown that the second, third and fourth

terms are |E0T
ix |OP ((nan)−1/2(log a−1

n )1/2). From this, we conclude

n∑

i=1

Wi(x, an)I(∆i = 0)B1i (A.10)

=
n∑

i=1

Wi(x, an)I(∆i = 0)×




(F̂ 0
ε (Ê0T

ix )− F 0
ε (E0T

ix ))[m0(x)
∫ T
E0T
ix
L(F 0

ε (e))dF 0
ε (e) + σ0(x)

∫ T
E0T
ix
eL(F 0

ε (e))dF 0
ε (e)]

(1− F 0
ε (E0T

ix ))2





+oP ((nan)−1/2),

where the representation (A.7) will be used for F̂ 0
ε (Ê0T

ix ) − F 0
ε (E0T

ix ). Next, consider the

expression B2i. Easy calculations show that

B2i =

∫ E0T
ix

Ê0T
ix

(m0(x) + σ0(x)e)L(F 0
ε (e))dF̂ 0

ε (e)

1− F 0
ε (E0T

ix )
+ |E0T

ix |oP ((nan)−1/2).

We have

∫ E0T
ix

Ê0T
ix

(m0(x) + σ0(x)e)L(F 0
ε (e))dF̂ 0

ε (e)

=
∫ E0T

ix

Ê0T
ix

(m0(x) + σ0(x)e)L(F 0
ε (e))dF 0

ε (e)

+
∫ E0T

ix

Ê0T
ix

(m0(x) + σ0(x)e)L(F 0
ε (e))d(F̂ 0

ε (e)− F 0
ε (e)).

The second term on the right hand side of the equation above is |E0T
ix |OP (n−1/2), which

follows, using integration by parts, from Corollary 3.2 and proposition 4.5 of VKA (1999)

and the fact that supe |ef 0
ε (e)| <∞. Hence,

B2i =

∫ E0T
ix

0 (m0(x) + σ0(x)e)L(F 0
ε (e))dF 0

ε (e)− ∫ Ê
0T
ix

0 (m0(x) + σ0(x)e)L(F 0
ε (e))dF 0

ε (e)

1− F 0
ε (E0T

ix )

+|E0T
ix |oP ((nan)−1/2)

=
[m̂0(x)−m0(x) + E0T

ix (σ̂0(x)− σ0(x))]

σ0(x)(1− F 0
ε (E0T

ix ))
(m0(x) + σ0(x)E0T

ix )L(F 0
ε (E0T

ix ))f 0
ε (E0T

ix )

+|E0T
ix |oP ((nan)−1/2),

using a Taylor expansion. Note that the term |E0T
ix |oP ((nan)−1/2) in the expression above

is obtained from the fact that supe |ef 0
ε (e)| < ∞ and supe |e2f 0′

ε (e)| < ∞. A similar

24



expression for B3i is obtained such that

n∑

i=1

Wi(x, an)I(∆i = 0)(B2i +B3i) (A.11)

=
n∑

i=1

Wi(x, an)I(∆i = 0)×
{

[m̂0(x)−m0(x) + E0T
ix (σ̂0(x)− σ0(x))]

σ0(x)(1− F 0
ε (E0T

ix ))
(m0(x) + σ0(x)E0T

ix )L(F 0
ε (E0T

ix ))f 0
ε (E0T

ix )

+
[m0(x)− m̂0(x) + T (σ0(x)− σ̂0(x))]

σ0(x)(1− F 0
ε (E0T

ix ))
(m0(x) + σ0(x)T )L(F 0

ε (T ))f 0
ε (T )

}

+oP ((nan)−1/2).

B4i and B6i are |E0T
ix |oP ((nan)−1/2). For B5i, F̂

0
ε (e) is replaced by F 0

ε (e) and the remaining

terms are |E0T
ix |oP ((nan)−1/2) using integration by parts, the uniform consistency of m̂0(·),

σ̂0(·) and F̂ 0
ε (·) and the fact that supe |ef 0

ε (e)| <∞. Then, use is made of the asymptotic

representations of Propositions 4.8 and 4.9 of VKA (1999) such that B5i is given by

−(nan)−1f−1
X (x)σ(x)

1− F 0
ε (E0T

ix )
{
∫ T

E0T
ix

L(F 0
ε (e))dF 0

ε (e)
n∑

j=1

K(
x−Xj

an
)η(Zj,∆j|x)

+
∫ T

E0T
ix

eL(F 0
ε (e))dF 0

ε (e)
n∑

j=1

K(
x−Xj

an
)ζ(Zj,∆j|x)}

+|E0T
ix |oP ((nan)−1/2). (A.12)

Finally, B7i is |E0T
ix |OP (n−1/2) using integration by parts.

From those developments, we can write

Ω11(x) = a0

n∑

i=1

Wi(x, an)B̃1(Zi,∆i|x)× 1

nan

n∑

j=1

K(
x−Xj

an
)η(Zj,∆j|x)

+a0

n∑

i=1

Wi(x, an)B̃2(Zi,∆i|x)× 1

nan

n∑

j=1

K(
x−Xj

an
)ζ(Zj,∆j|x)

+oP ((nan)−1/2), (A.13)

where

B̃1(Zi,∆i|x) = f−1
X (x)

{
I(∆i = 1)ZiL

′(F (ZT
ix|x))f 0

ε (E0T
ix )

+I(∆i = 0)


f 0

ε (E0T
ix )(

∫ Tx
ZTix

yL(F (y|x))dF (y|x)

(1− F (ZT
ix|x))2

−Z
T
ixL(F (ZT

ix|x))

1− F (ZT
ix|x)

) + f 0
ε (T )

TxL(F (Tx|x))

1− F (ZT
ix|x)
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−σ0(x)

∫ T
E0T
ix
L(F 0

ε (e))dF 0
ε (e)

1− F 0
ε (E0T

ix )





 ,

B̃2(Zi,∆i|x) = f−1
X (x)

{
I(∆i = 1)ZiL

′(F (ZT
ix|x))f 0

ε (E0T
ix )E0T

ix

+I(∆i = 0)


f 0

ε (E0T
ix )E0T

ix (

∫ Tx
ZTix

yL(F (y|x))dF (y|x)

(1− F (ZT
ix|x))2

−Z
T
ixL(F (ZT

ix|x))

1− F (ZT
ix|x)

) + f 0
ε (T )T

TxL(F (Tx|x))

1− F (ZT
ix|x)

−σ0(x)

∫ T
E0T
ix
eL(F 0

ε (e))dF 0
ε (e)

1− F 0
ε (E0T

ix )





 ,

and ZT
ix = Zi ∧Tx, i = 1, . . . , n. Using Theorem 3.3 of Heuchenne (2005) for the new data

points B̃1(Z,∆|x), B̃2(Z,∆|x), η(Z,∆|x) and ζ(Z,∆|x), the asymptotic representation of

Ω11(x) is

1

nan

n∑

j=1

K(
x−Xj

an
)B̃3(Zj,∆j|x) +Rn1(x), (A.14)

where

B̃3(Z,∆|x) = a0(E[B̃1(Z,∆|x)|x]η(Z,∆|x) + E[B̃2(Z,∆|x)|x]ζ(Z,∆|x)),

and sup{|Rn1(x)|; x ∈ RX} = oP ((nan)−1/2). Note that this rate can be obtained since

E[η(Z,∆|x)|x] = E[ζ(Z,∆|x)|x] = 0. For Ω12(x), we readily obtain, using Theorem 3.3

of Heuchenne (2005) with new data points equal to 1 and φ̃∗1(Zi,∆i|x)−E[φ̃∗1(Z,∆|x)|x],

a0

nanfX(x)

n∑

i=1

K(
x−Xi

an
)(φ̃∗1(Zi,∆i|x)− E[φ̃∗1(Z,∆|x)|x]) +Rn2(x), (A.15)

where sup{|Rn2(x)|; x ∈ RX} = oP ((nan)−1/2).

Next, rewrite the second term on the right hand side of (A.4) as

k∑

j=1

aj(D6j(x)−D10j(x))I(sj ≤ Fφ2(Tx|x), sj ≤ F̂φ2(Tx|x))

+
k∑

j=1

ajD10j(x)I(sj ≤ Fφ2(Tx|x), sj ≤ F̂φ2(Tx|x)) = Ω21(x) + Ω22(x),

where D6j(x) = F̂−1
φ2 (sj|x) ∧ Tx − F−1

φ2 (sj|x) ∧ Tx and

D10j(x) =
sj ∧ Fφ2(Tx|x)− F̂φ2(F−1

φ2 (sj|x) ∧ Tx|x)

f(F−1
φ2 (sj|x) ∧ Tx|x)

.
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Using Theorem 3.7, sj ∧Fφ2(Tx|x) can be replaced by F̂φ2(F̂−1
φ2 (sj|x)∧Tx|x) in D10j(x) of

Ω21(x). We next rewrite Ω21(x) as

k∑

j=1

aj(D11j(x) +D12j(x))

f(F−1
φ2 (sj|x) ∧ Tx|x)

I(sj ≤ Fφ2(Tx|x), sj ≤ F̂φ2(Tx|x)), (A.16)

where

D11j(x) = f(F−1
φ2 (sj|x) ∧ Tx|x)D6j(x)− (F (F̂−1

φ2 (sj|x) ∧ Tx|x)− F (F−1
φ2 (sj|x) ∧ Tx|x)),

and

D12j(x) = Fφ2(F̂−1
φ2 (sj|x) ∧ Tx|x)− Fφ2(F−1

φ2 (sj|x) ∧ Tx|x)

−F̂φ2(F̂−1
φ2 (sj|x) ∧ Tx|x) + F̂φ2(F−1

φ2 (sj|x) ∧ Tx|x).

Using a second order Taylor expansion, we get

D11j(x) = −f
′(θjx|x)

2
D6j(x)2,

where θjx is between F̂−1
φ2 (sj|x) ∧ Tx and F−1

φ2 (sj|x) ∧ Tx. Thus, using the proof of The-

orem 3.1, the first term of (A.16) is OP ((nan)−1 log a−1
n ) since supx,y |f ′(y|x)| < ∞ and

infx f(F−1
φ2 (sj|x) ∧ Tx|x) > 0. Next, we treat the second term of (A.16). First, define

D13j(x) as

D12j(x)

f(F−1
φ2 (sj|x) ∧ Tx|x)

I(sj ≤ Fφ2(Tx|x), sj ≤ F̂φ2(Tx|x)).

The second term of (A.16) can then be rewritten as

k∑

j=1

ajD13j(x)I(|D6j(x)| > dn) +
k∑

j=1

ajD13j(x)I(|D6j(x)| ≤ dn),

where dn ∼ (nan)−1/2(log a−1
n )1/2. The first term of this expression is negligible using

Theorem 3.1 and the second one is oP ((nan)−1/2) using Theorem 3.7. Finally, Ω22(x) can

be written as
k∑

j=1

ajD10j(x)I(sj ≤ Fφ2(Tx|x)) + oP ((nan)−1/2),

where use is made of Theorems 3.4 and 3.5.

Proof of Theorem 3.4. Write

F̂φ2(t|x)− Fφ2(t|x) =
n∑

i=1

Wi(x, an){I(∆i = 0)[

∫ T̂xt
Ê

0Tt
ix

dF̂ 0
ε (e)

1− F̂ 0
ε (Ê0T

ix )
−
∫ Txt
E

0Tt
ix

dF 0
ε (e)

1− F 0
ε (E0T

ix )
]}

+
n∑

i=1

Wi(x, an){φ̃∗2t(Zi,∆i|x)− E[φ̃∗2t(Z,∆|x)|x]}

=
n∑

i=1

Wi(x, an){I(∆i = 0)Ω3t(Zi,∆i|x) + Ω4t(Zi,∆i|x)}.
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First, we treat Ω3t(Zi,∆i|x). We have

Ω3t(Zi,∆i|x) = (F̂ 0
ε (Ê0T

ix )− F 0
ε (E0T

ix ))

∫ T̂xt
Ê

0Tt
ix

dF̂ 0
ε (e)

(1− F̂ 0
ε (Ê0T

ix ))(1− F 0
ε (E0T

ix ))

+
F̂ 0
ε (T̂ xt )− F 0

ε (T xt ) + F 0
ε (E0Tt

ix )− F̂ 0
ε (Ê0Tt

ix )

1− F 0
ε (E0T

ix )

= Ω31t(Zi,∆i|x) + Ω32t(Zi,∆i|x).

Since by (A.1), we showed

sup
x,t,z
|F̂ 0
ε (
z ∧ Tx ∧ t− m̂0(x)

σ̂0(x)
)− F 0

ε (
z ∧ Tx ∧ t−m0(x)

σ0(x)
)| = OP ((nan)−1/2(log a−1

n )1/2),

we have

sup
x,t
|
n∑

i=1

Wi(x, an){I(∆i = 0)(Ω31t(Zi,∆i|x) + Ω32t(Zi,∆i|x))}|

= OP ((nan)−1/2(log a−1
n )1/2).

For Ω4t(Zi,∆i|x), we use Theorem 3.3 of Heuchenne (2005) with new data points φ̃∗2t(Zi,∆i|x)

and we obtain the result.

Proof of Theorem 3.5. An asymptotic representation for the numerator of Ω32t(Zi,∆i|x)

is given by

1

fX(x)nan

n∑

j=1

K(
x−Xj

an
)
{

[f 0
ε (T xt ) + f 0

ε (E0Tt
ix )]η(Zj,∆j|x)

[f 0
ε (T xt )T xt + f 0

ε (E0Tt
ix )E0Tt

ix ]ζ(Zj, δj|x)
}

+oP ((nan)−1/2). (A.17)

For Ω31t(Zi,∆i|x), it is straightforward that

Ω31t(Zi,∆i|x) = (F̂ 0
ε (Ê0T

ix )− F 0
ε (E0T

ix ))

∫ Txt
E

0Tt
ix

dF 0
ε (e)

(1− F 0
ε (E0T

ix ))2
+ oP ((nan)−1/2). (A.18)

Therefore, with (A.17) and (A.18), we obtain

n∑

i=1

Wi(x, an)I(∆i = 0)Ω3t(Zi,∆i|x)

=
n∑

i=1

Wi(x, an)B̃4t(Zi,∆i|x)× 1

nan

n∑

j=1

K(
x−Xj

an
)η(Zj,∆j|x)

+
n∑

i=1

Wi(x, an)B̃5t(Zi,∆i|x)× 1

nan

n∑

j=1

K(
x−Xj

an
)ζ(Zj,∆j|x)

+oP ((nan)−1/2), (A.19)
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where

B̃4t = fX(x)−1I(∆i = 0)

{
f 0
ε (T xt ) + f 0

ε (E0Tt
ix )

1− F 0
ε (E0T

ix )

+
F 0
ε (T xt )− F 0

ε (E0Tt
ix )

(1− F 0
ε (E0T

ix ))2
f 0
ε (E0T

ix )

}
,

and

B̃5t = fX(x)−1I(∆i = 0)

{
f 0
ε (T xt )T xt + f 0

ε (E0Tt
ix )E0Tt

ix

1− F 0
ε (E0T

ix )

+
F 0
ε (T xt )− F 0

ε (E0Tt
ix )

(1− F 0
ε (E0T

ix ))2
E0T
ix f

0
ε (E0T

ix )

}
.

Using Theorem 3.3 of Heuchenne (2005) for the new data points B̃4t(Z,∆|x), B̃5t(Z,∆|x),

η(Z,∆|x) and ζ(Z,∆|x), the asymptotic representation for (A.19) is

1

nan

n∑

j=1

K(
x−Xj

an
)B̃6t(Zj,∆j|x) +Rn1(t|x), (A.20)

where

B̃6t(Z,∆|x) = E[B̃4t(Z,∆|x)|x]η(Z,∆|x) + E[B̃5t(Z,∆|x)|x]ζ(Z,∆|x), (A.21)

and sup{|Rn1(t|x)|; x ∈ RX} = oP ((nan)−1/2). For Ω4t(Zi,∆i|x), we use Theorem 3.3 of

Heuchenne (2005) with new data points equal to 1 and φ̃∗2t(Zi,∆i|x) − E[φ̃∗2t(Z,∆|x)|x]

such that we obtain
n∑

i=1

Wi(x, an)Ω4t(Zi,∆i|x)

=
1

nanfX(x)

n∑

i=1

K(
x−Xi

an
)(φ̃∗2t(Zi,∆i|x)− E[φ̃∗2t(Z,∆|x)|x]) +Rn2(t|x), (A.22)

where sup{|Rn2(t|x)|;−∞ < t <∞, x ∈ RX} = oP ((nan)−1/2).

Proof of Theorem 3.7. First, the expression in the theorem is written in terms of new

data points :

sup
x∈RX , |t−s|≤dn

|
n∑

i=1

Wi(x, an)
{
φ̂∗2t(Zi,∆i|x)− φ̂∗2s(Zi,∆i|x)

−φ̃∗2t(Zi,∆i|x) + φ̃∗2s(Zi,∆i|x)
}
|

sup
x∈RX , |t−s|≤dn

|
n∑

i=1

Wi(x, an)
{
φ̃∗2t(Zi,∆i|x)− φ̃∗2s(Zi,∆i|x)

−E[φ̃∗2t(Z,∆|x)|x] + E[φ̃∗2s(Z,∆|x)|x]
}
|

= D1 +D2.
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D2 = oP ((nan)−1/2) using Theorem 4.3 of Heuchenne (2005)Using classical arguments,

we then obtain

φ̂∗2t(Zi,∆i|x)− φ̂∗2s(Zi,∆i|x)− φ̃∗2t(Zi,∆i|x) + φ̃∗2s(Zi,∆i|x)

= I(∆i = 0)
{

(F̂ 0
ε (Ê0T

ix )− F 0
ε (E0T

ix ))

×F
0
ε (T xt )− F 0

ε (T xs )− F 0
ε (E0Tt

ix ) + F 0
ε (E0Ts

ix )

(1− F̂ 0
ε (Ê0T

ix ))(1− F 0
ε (E0T

ix ))

+
F̂ 0
ε (T̂ xt )− F 0

ε (T xt )− F̂ 0
ε (T̂ xs ) + F 0

ε (T xs )

1− F 0
ε (E0T

ix )

+
F 0
ε (E0Tt

ix )− F̂ 0
ε (Ê0Tt

ix ) + F̂ 0
ε (Ê0Ts

ix )− F 0
ε (E0Ts

ix )

1− F 0
ε (E0T

ix )

}
+OP ((nan)−1 log a−1

n )

= D21 +D22 +D23 +OP ((nan)−1 log a−1
n ).

supx∈RX , |t−s|≤dn |D21| = OP ((nan)−1 log a−1
n ) using two Taylor developments and the fact

that supe |f 0
ε (e)| <∞. Easy calculations show that

D22 =
I(∆i = 0)

1− F 0
ε (E0T

ix )

{
m̂0(x)−m0(x)

σ̂0(x)
(f 0
ε (T xs )− f 0

ε (T xt ))

+
σ̂0(x)− σ0(x)

σ̂0(x)
((T xs − T xt )f 0

ε (T xs )− T xt (f 0
ε (T xt )− f 0

ε (T xs )))

}
+ oP ((nan)−1/2),

such that supx∈RX , |t−s|≤dn |D22| = oP ((nan)−1/2). D23 is treated in a similar way and this

finishes the proof.
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