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Abstract

Consider the polynomial regression model Y = β0 + β1X + . . .+ βpX
p + σ(X)ε,

where σ2(X) = Var(Y |X) is unknown, and ε is independent of X and has zero

mean. Suppose that Y is subject to random right censoring. A new estimation

procedure for the parameters β0, . . . , βp is proposed, which extends the classical

least squares procedure to censored data. The proposed method is inspired by

the method of Buckley and James (1979), but is, unlike the latter method, a non-

iterative procedure due to nonparametric preliminary estimation of the conditional

regression function. The asymptotic normality of the estimators is established.

Simulations are carried out for both methods and they show that the proposed

estimators have usually smaller variance and smaller mean squared error than the

Buckley-James estimators. The two estimation procedures are also applied to a

medical and an astronomical data set.
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1 Introduction

Suppose the random vector (X, Y ) satisfies the polynomial regression model

Y = β0 + β1X + . . .+ βpX
p + σ(X)ε, (1.1)

where σ2(X) = Var(Y |X), and the error term ε (with unknown distribution Fε) is inde-

pendent of X and has zero mean. We suppose that Y is subject to random right censoring,

i.e. instead of observing Y we only observe (Z,∆), where Z = min(Y, C), ∆ = I(Y ≤ C)

and the random variable C represents the censoring time, which is independent of Y ,

conditionally on X. Usually, Y is some known monotone transformation of the survival

time. In case this transformation is the logarithmic transformation, model (1.1) is called

the accelerated failure time model. Let (Yi, Ci, Xi, Zi,∆i) (i = 1, . . . , n) be n independent

copies of (Y, C,X, Z,∆) and let V = (X,Z,∆) denote the vector of observed random

variables.

A number of extensions to censored data of the least squares procedure for estimating

β0, . . . , βp have been studied in the literature. The list of ‘first-generation’ estimators

includes e.g. Miller (1976), Buckley and James (1979), Koul, Susarla and Van Ryzin

(1981), and Leurgans (1987), while more recent contributions have been made by Zhou

(1992), Stute (1993), Fygenson and Zhou (1994), Akritas (1994,1996) and Van Keilegom

and Akritas (2000). The idea of the estimator of Buckley and James (1979) is as follows.

Consider for simplicity the case where p = 1, and suppose that σ(X) ≡ 1. Then,

E(Y ∗i |Xi) = β0 + β1Xi,

where Y ∗i = Yi∆i + E(Yi|Yi > Ci, Xi)(1−∆i). The idea of Buckley and James (1979) is

to write

E(Yi|Yi > Ci, Xi) = β1Xi +
1

1− Fβ1(Zi − β1Xi)

∫ ∞

Zi−β1Xi
y dFβ1(y)

and next to estimate Y ∗i by the ‘synthetic’ data points

Ŷ ∗i (β1) = Yi∆i +
{
β1Xi +

1

1− F̂β1(Zi − β1Xi)

∫ ∞

Zi−β1Xi
y dF̂β1(y)

}
(1−∆i),

where Fβ1(y) is the distribution of Y − β1X and F̂β1(y) is the Kaplan-Meier (1958) esti-

mator of Fβ1(y) based on (Zi− β1Xi,∆i) (i = 1, . . . , n). Next, Buckley and James (1979)

estimate the parameters (β0, β1) from the normal equations :




n∑

i=1

(Ŷ ∗i (β1)− β0 − β1Xi) = 0,

n∑

i=1

(Ŷ ∗i (β1)− β0 − β1Xi)Xi = 0.
(1.2)
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A solution to these equations can be found in an iterative way. Ritov (1990) and Lai and

Ying (1991) obtained the asymptotic properties of a (slightly modified) version of this

estimator.

Although this estimator behaves usually well in practice, there are a number of disad-

vantages : (1) the iterative procedure suffers in certain cases from convergence problems

which lead to unstable solutions or no solution at all; and (2) the estimation method re-

stricts to homoscedastic models, while in practice the data often follow a heteroscedastic

model. In light of these drawbacks, we propose in this paper a variant of the Buckley-

James procedure, which does not suffer from the above disadvantages. The idea is to

estimate E(Yi|Yi > Ci, Xi) (and hence Y ∗i ) in a nonparametric way. This is done by using

kernel smoothing with an adaptively chosen bandwidth parameter. The advantage of this

is that, contrary to the Buckley-James procedure, the so-obtained ‘synthetic’ data points

do not depend on the unknown β-vector and hence the normal equations have an explicit

(non-iterative) solution. As will be seen in the simulations, this leads to more stable

solutions and hence to a smaller variance. Moreover, contrary to other methods which

construct ’synthetic’ data points (e.g. Koul, Susarla and Van Ryzin (1981), Leurgans

(1987), Akritas (1996)), the ’synthetic’ data points of the new method use information

from the whole model. The details of the proposed method are given in the next section.

This paper is organized as follows. In the next section, we introduce some notations

and describe the estimation procedure in detail. In Section 3 we state the asymptotic

normality result of the regression parameter estimators. Section 4 contains a simulation

study, in which the new procedure is compared with the Buckley-James method, while

in Section 5 two data sets on cancer of the larynx and on spectral energy distributions of

quasars are analyzed by means of the two methods. Finally, the Appendix contains the

proofs of the main results of Section 3.

2 Notations and description of the method

We assume throughout that regression model (1.1) holds. Let m(·) be any location

function and σ(·) be any scale function, meaning that m(x) = T (F (·|x)) and σ(x) =

S(F (·|x)) for some functionals T and S that satisfy T (FaY+b(·|x)) = aT (FY (·|x)) + b

and S(FaY+b(·|x)) = aS(FY (·|x)), for all a ≥ 0 and b ∈ IR (here FaY+b(·|x) denotes the

conditional distribution of aY + b given X = x). Then, it can be easily seen that if model

(1.1) holds, the model Y = m(X) + σ(X)ε with ε independent of X, is also valid. So

from now on, m and σ can denote any location and scale function, and are not restricted

to the conditional mean and variance. Also, we use the notation ε = (Y −m(X))/σ(X)

for any location function m and scale function σ. Define F (y|x) = P (Y ≤ y|x), G(y|x) =
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P (C ≤ y|x), H(y|x) = P (Z ≤ y|x), Hδ(y|x) = P (Z ≤ y,∆ = δ|x), H(y) = P (Z ≤ y),

FX(x) = P (X ≤ x), Fe(y) = P (ε ≤ y), Se(y) = 1−Fe(y), and for E = (Z−m(X))/σ(X)

we denote He(y) = P (E ≤ y), Heδ(y) = P (E ≤ y,∆ = δ), He(y|x) = P (E ≤ y|x)

and Heδ(y|x) = P (E ≤ y,∆ = δ|x) (δ = 0, 1). The probability density functions of the

distributions defined above will be denoted with lower case letters, and let RX denote the

support of the variable X.

As already outlined in Section 1, the idea of the proposed method is to estimate

E(Yi|Yi > Ci, Xi) in a nonparametric way, in order to obtain a direct non-iterative esti-

mator for the β-coefficients. One can write

E(Yi|Yi > Ci, Xi) = m(Xi) +
σ(Xi)

1− Fe(Ei)
∫ ∞

Ei
y dFe(y). (2.1)

The main idea is now to estimate m(·), σ(·) and Fe(·) in a nonparametric way and to

plug-in the so-obtained estimator of E(Yi|Yi > Ci, Xi) into the formula of Y ∗i . Since these

new Y ∗i ’s do not depend on the β-coefficients, the resulting minimization problem and

normal equations (similar to equation (1.2)) yield explicit solutions for β. However, due

to the censoring mechanism, it is in general impossible to obtain consistent, nonparametric

estimators of the conditional mean and variance. We will therefore use location and scale

functions m(·) and σ(·) , that can be estimated in a consistent way under censoring

(and change Fe(·) accordingly). Since equation (2.1) remains valid when m and σ are any

location and scale function respectively, we can choose for them the following L-functions:

m(x) =

1∫

0

F−1(s|x)J(s) ds, σ2(x) =

1∫

0

F−1(s|x)2J(s) ds−m2(x), (2.2)

where F−1(s|x) = inf{y;F (y|x) ≥ s} is the quantile function of Y given x and J(s) is a

given score function satisfying
∫ 1

0 J(s) ds = 1. When J(s) is chosen appropriately (namely

put to zero in the right tail, there where the quantile function cannot be estimated in a

consistent way due to the right censoring), m(x) and σ(x) can be estimated consistently.

Now, replace the distribution F (y|x) in (2.2) by the Beran (1981) estimator, defined by :

F̂ (y|x) = 1−
∏

Zi≤y,∆i=1

{
1− Wi(x, an)

∑n
j=1 I(Zj ≥ Zi)Wj(x, an)

}
(2.3)

(in the case of no ties), where Wi(x, an) (i = 1, . . . , n) are the Nadaraya-Watson weights

Wi(x, an) =
K
(
x−Xi
an

)

∑n
j=1K

(
x−Xj
an

) ,

K is a kernel function and {an} a bandwidth sequence. Note that this estimator reduces
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to the Kaplan-Meier (1958) estimator when all weights Wi(x, an) equal n−1. This yields

m̂(x) =

1∫

0

F̂−1(s|x)J(s) ds, σ̂2(x) =

1∫

0

F̂−1(s|x)2J(s) ds− m̂2(x) (2.4)

as estimators for m(x) and σ2(x). Let

F̂e(y) = 1−
∏

Ê(i)≤y,∆(i)=1

(
1− 1

n− i+ 1

)
, (2.5)

denote the proposed Kaplan-Meier (1958) estimator of Fe (in the case of no ties), where

Êi = (Zi − m̂(Xi))/σ̂(Xi), Ê(i) is the i-th order statistic of Ê1, . . . , Ên and ∆(i) is the

corresponding censoring indicator. This estimator has been studied in detail by Van

Keilegom and Akritas (1999). This leads to

Ŷ ∗T i = Yi∆i +
{
m̂(Xi) +

σ̂(Xi)

1− F̂e(ÊT
i )

∫ Ŝi

ÊTi

y dF̂e(y)
}

(1−∆i) (2.6)

as an estimator of Y ∗i , where Ŝi = (TXi − m̂(Xi))/σ̂(Xi), Ê
T
i = Êi ∧ Ŝi, and for any x,

Tx ≤ Tσ(x) + m(x), where T < τHe and τF = inf{y : F (y) = 1} for any distribution F .

Note that due to the right censoring, we have to truncate the integral in the definition

of Ŷ ∗T i (however, when τFe ≤ τGe , the bound Ŝi can be chosen arbitrarily close to τFe for

n sufficiently large). Finally, define the estimator of β = (β0, . . . , βp) by the usual least

squares estimator based on the pairs (Xi, Ŷ
∗
T i) (i = 1, . . . , n) and denote these estimators

by β̂T = (β̂T0, . . . , β̂Tp). As it is clear from the definition of Ŷ ∗T i, β̂T0, . . . , β̂Tp are actually

estimating βT = (βT0, . . . , βTp)
′ = (X ′X )−1X ′E(Y ∗T i|Xi)

n
i=1 (conditionally on X1, . . . , Xn),

where the element (i, j) of the matrix X equals X j−1
i (i = 1, . . . , n; j = 1, . . . , p+ 1),

Y ∗T i = Yi∆i +
{
m(Xi) +

σ(Xi)

1− Fe(ET
i )

∫ Si

ETi

y dFe(y)
}

(1−∆i),

Si = (TXi−m(Xi))/σ(Xi) and ET
i = (Zi∧TXi−m(Xi))/σ(Xi) = Ei∧Si. As before, these

coefficients βT0, . . . , βTp can be made arbitrarily close to β0, . . . , βp, provided τFe ≤ τGe .

Another way to construct new data points should be to replace each data point Yi

by an estimation of its conditional location function m(Xi). This alternative estimation

method has been studied by Akritas (1996) (Biometrics). The method of Akritas offers

the advantage of being more robust to outliers, since all observations are transformed,

whereas in our method we only change the censored observations. On the other hand,

our method has the advantage of making use of the model Y = m(X) + σ(X)ε in the

construction of the synthetic data points, and so it uses the model in a more efficient

way. In particular, this leads to an estimator that is less sensible to regions with heavy

censoring.
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3 Asymptotic results

We start with developing an asymptotic representation for β̂Tj − βTj (j = 0, . . . , p). This

representation is useful to obtain afterwards the asymptotic normality of the estimators.

The assumptions and notations used in the results below, as well as the proof of the first

result, are given in the Appendix.

Theorem 3.1 Assume (A1)-(A8), Then,




β̂T0 − βT0

...

β̂Tp − βTp


 = M−1n−1

n∑

i=1

ρ(Xi, Zi,∆i) +




oP (n−1/2)
...

oP (n−1/2)


 ,

where M = (Mjk) (j, k = 1, . . . , p+ 1), Mjk = E(Xj+k−2), ρ = (ρ0, . . . , ρp)
′,

ρj(Xi, Zi,∆i) =
∫

RX
xjσ(x)

∫ +∞

−∞

{
ϕ(Xi, Zi,∆i, e

T
x (z))

(1− Fe(eTx (z)))2

∫ Sx

eTx (z)
u dFe(u)

+
1

1− Fe(eTx (z))

∫ Sx

eTx (z)
u dϕ(Xi, Zi,∆i, u)

}
dH0(z|x)dFX(x)

+fX(Xi)
∫
Bj(z, Zi,∆i|Xi) dH0(z|Xi) +Xj

i (Y
∗
T i − E[Y ∗T i|Xi])

(j = 0, . . . , p; i = 1, . . . , n).

Theorem 3.2 Under the assumptions of Theorem 3.1, n1/2(β̂T0−βT0, . . . , β̂Tp−βTp)′ d→
N(0,Σ), where

Σ = M−1E[ρ(X,Z,∆)ρ′(X,Z,∆)]M−1.

The proof of this result follows readily from Theorem 3.1.

Remark 3.3 (Homoscedastic model) Note that when model (1.1) is homoscedastic

(i.e. σ ≡ 1), the representation in Theorem 3.1 simplifies. In fact, it is easily seen that

the function ζ equals zero in that case.

Remark 3.4 (Bandwidth choice) The choice of the bandwidth parameter can be

carried out through the minimization of the function

min
an

n∑

i=1

(Ŷ ∗T i(an)− β̂T0(an)− . . .− β̂Tp(an)Xp
i )2, (3.1)

over a specific grid of values of the smoothing parameter an. The rationale of this band-

width rule is to minimize the least squares criterium function, not only with respect to
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the parameters βT , but also with respect to the bandwidth an. This idea has been used in

other contexts as well, see e.g. Härdle, Hall and Ichimura (1993) where a similar principle

is used in the context of single index models. Note that the argument an is added to Ŷ ∗T i
and β̂Tj (i = 1, . . . , n; j = 0, . . . , p) in order to highlight the dependence on an of these

quantities. This procedure to select the bandwidth is illustrated in Section 4 on some

finite sample simulations.

Remark 3.5 (Bootstrap approximation) For the computation of the variance of the

estimator β̂T the bootstrap procedure proposed by Li and Datta (2001) can be used. First,

generate X∗1 , . . . , X
∗
n i.i.d. from the empirical distribution of X1, . . . , Xn. Next, for each

i = 1, . . . , n, select at random a Y ∗i from the distribution F̂ (·|X∗i ), and a C∗i from Ĝ(·|X∗i )

(which is the Beran (1981) estimator of G(·|X∗i ) obtained by replacing ∆i by 1−∆i in the

expression for F̂ (·|X∗i )). Finally, let Z∗i = min(Y ∗i , C
∗
i ) and ∆∗i = I(Y ∗i ≤ C∗i ). For each

so-obtained resample {(X∗i , Z∗i ,∆∗i ) : i = 1, . . . , n}, calculate a bootstrap estimator of the

regression parameters. Repeat this for a large number of bootstrap samples (say B). The

variance of these B bootstrap estimates is then an approximation of the variance of the

estimator β̂T . In a similar way, the bootstrap can also be used to approximate the full

distribution of β̂T .

Remark 3.6 (Practical implementation) The proposed estimator can be easily im-

plemented in practice. In fact, the parameters on which the estimator depends, can all

be chosen in an adaptive way. The finite sample performance of β̂T for these adaptively

chosen parameters is illustrated in the next section. Programs (written in Matlab) of the

estimator β̂T can be obtained by simple request to the authors. First of all, for the score

function J, we recommend the choice

J(s) = b−1I(0 ≤ s ≤ b) (0 ≤ s ≤ 1),

where b = min1≤i≤n F̂ (+∞|Xi). In this way, the region where the Beran estimators

F̂ (·|X1), . . . , F̂ (·|Xn) are inconsistent is not used, and on the other hand, we exploit

to a maximum the ”consistent” region. For the bandwidth, the procedure explained in

Remark 3.4 is completely data-driven and easy to implement whereas the choice of the

kernel K is of minor importance. Finally, Ŝi (i = 1, . . . , n) can be chosen larger (or equal)

than the last order statistic Ê(n) of the estimated residuals. In this way, all the Kaplan-

Meier jumps of the integral (2.6) are considered.

Remark 3.7 (Extensions) The estimation procedure and the methodology used to

obtain the results of this section could be used as a basis for a number of more general
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models. For instance, it could be studied how the proposed estimation method can be

adapted to any (non)linear parametric regression model with censored data. Also, the

extension to situations where the covariate is subject to censoring could be considered (in

that case the Beran estimator will need to be replaced by e.g. the estimator proposed in

Van Keilegom (2003)). Finally, it would be interesting to extend the obtained results to

semiparametric regression models, like partial linear or single index models.

4 Simulations

In this section we compare the finite sample behavior of the Buckley-James (1979)

estimator with the estimator proposed in this paper by means of Monte Carlo simulations.

We are primarily interested in the behavior of the bias and variance of the two estimators.

The simulations are carried out for samples of size n = 100 and the results are obtained

by using 500 simulations.

In the first setting, we generate i.i.d. data from the normal homoscedastic regression

model

Y = β0 + β1X + σε, (4.1)

for various choices of β0, β1 and σ, where X has a uniform distribution on the unit interval

and the error term ε is a standard normal random variable. The censoring variable C

satisfies C = α0 +α1X+σε∗, for certain choices of α0 and α1 and where ε∗ has a standard

normal distribution. We further assume that ε and ε∗ are independent of X, and that ε

is independent of ε∗. It is easy to see that, under this model,

P (∆ = 0|X = x) = 1− Φ
(α0 − β0 + (α1 − β1)x√

2σ

)
.

For the weights that appear in the Beran estimator F̂ (y|x), we choose a biquadratic

kernel function K(x) = (15/16)(1 − x2)2I(|x| ≤ 1). In order to improve the behavior

near the boundaries of the covariate space, we work with the boundary corrected kernels

proposed by Müller and Wang (1994). As a consequence of the fact that these boundary

corrected kernels can become negative, the Beran estimator decreases at certain time

points. In these cases, the estimator is redefined as being constant until it starts increasing

again.

For the bandwidth sequence an, we select the minimizer of (3.1) among a grid of 20

possible values between 0 and 1. For small values of an, the window [x − an, x + an] at

a point x does sometimes not contain any Xi (i = 1, . . . , n) for which the corresponding

Yi is uncensored (and in that case estimation of F (·|x) is impossible). We enlarge the
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window in that case such that it contains at least one uncensored data point in its interior.

It also happens sometimes that the bandwidth an at a point x is larger than the distance

from x to both the left and right endpoint of the interval. In such cases, the bandwidth

is redefined as the maximum of these two distances.

In a number of situations, the iterative Buckley-James method does not converge, but

oscillates around two or more values. In such cases, the estimator is defined as the average

of these values.

Table 1 summarizes the simulation results for different values of α0, α1, β0, β1 and σ.

For fixed values of β0, β1 and σ, the values of α0 and α1 are chosen in such a way that

some variation in the censoring probability curves is obtained (different proportions of

censoring, different degrees of smoothness of the censoring probability curve,...). The

table shows that, in general, the Buckley-James estimator has a larger variance but a

smaller bias than the newly proposed estimator. In most cases the effect of the bias on

the mean squared error is however small (relative to the variance). As a consequence,

the new estimator has in most cases a smaller mean squared error than the Buckley-

James estimator. These facts can be explained in the following way. First, that the

new estimator has a larger bias than the Buckley-James estimator is due to the use of

smoothing methods. They imply a certain inherent bias, but the contribution of this bias

to the mean squared error is in most cases small. Second, the smoothing parameter an

gives an additional possibility to fine-tune the new estimation procedure. The dependence

on a bandwidth an can thus be considered as an advantage for the new method, since it

allows to optimize the estimation procedure. Third, the Buckley-James estimator suffers

in certain cases from instability problems that are inherent to this method, as explained

in Section 1.

Next, suppose that Y and C are distributed according to

Y |X = x ∼ Weibull(exp[−d(γ0 + γ1x + γ2x
2)], d),

C|X = x ∼ Weibull(exp[−d(α0 + α1x+ α2x
2)], d)

and are independent conditionally on X. The covariate X is uniformly distributed on

[0, 1]. It is easy to check that

log Y |X = x ∼ F (y|x) = 1− exp(− exp[d(y − γ0 − γ1x− γ2x
2)]), (4.2)

logC|X = x ∼ G(y|x) = 1− exp(− exp[d(y − α0 − α1x− α2x
2)]).

It follows that log Y has, conditionally on X = x, an extreme value distribution and

hence E(log Y |X = x) = −D/d + γ0 + γ1x + γ2x
2 = β0 + β1 + β2x

2 and V ar(logY |X =

x) = π2/(6d2), where β0 = −D/d + γ0, β1 = γ1, β2 = γ2 and D = 0.5772 is the Euler
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β0 β1 β̂0 β̂1

α0 α1 σ2 Bias Var MSE Bias Var MSE

0 1 -.004 .022 .022 -.009 .068 .069

0.6 0.85 0.5 .005 .021 .021 -.019 .065 .066

0 1 -.013 .026 .026 -.011 .084 .084

0.27 0.45 0.5 -.009 .024 .024 -.043 .075 .077

0 1 -.006 .041 .041 -.015 .141 .141

1.5 -0.5 1 .002 .040 .040 -.052 .135 .137

0 1 -.018 .050 .050 -.013 .169 .169

0.6 -0.2 1 -.008 .047 .047 -.074 .153 .158

0 5 -.004 .021 .021 -.011 .069 .069

1 4.1 0.5 .008 .021 .021 -.050 .067 .069

0 5 -.013 .025 .025 -.006 .088 .088

0.5 4 0.5 .011 .025 .025 -.079 .086 .092

0 5 -.006 .042 .042 -.014 .138 .138

1.3 3.9 1 .009 .041 .041 -.067 .130 .135

0 5 -.015 .047 .047 -.004 .186 .186

1 3 1 .033 .047 .048 -.170 .171 .200

Table 1: Results for the Buckley-James estimator (first line) and the new estimator (sec-

ond line) for model (4.1).
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constant. It easily follows that if m(x) = E(log Y |x) and σ2(x) = Var(logY |x), then

P (ε ≤ y|x) = P ((logY −m(x))/σ(x) ≤ y|x) = 1 − exp(− exp(yπ/
√

6 −D)). Since this

is independent of x, model (1.1) holds. Further, with ax = exp(−d(γ0 + γ1x+ γ2x
2)) and

bx = exp(−d(α0 + α1x + α2x
2)), the conditional censoring probability curve is given by

P (∆ = 0|X = x) = bx/(ax + bx).

The bias, variance and mean squared error of the new and the Buckley-James estimator

for 16 sets of parameters are given in Table 2. The results are similar (but even more

pronouncing) than in Table 1 : in most cases, the new estimator has a slightly larger

bias, but a much smaller variance, which leads to a substantial smaller mean squared

error compared to the Buckley-James estimator. Other choices of the parameters lead to

similar results.

The final setting we consider is a normal heteroscedastic regression model

Y = β0 + β1X + γXε, (4.3)

with β0 = 0, β1 = 10, X has a uniform distribution on [0, 1], ε has a standard normal

distribution, and γ equals 1, 2, 3 or 5. The censoring variable is given by C = α0 +α1X +

%ε∗, where ε∗ has a standard normal distribution. We further assume that ε and ε∗ are

independent of X, and that ε is independent of ε∗. As the Buckley-James estimator is

limited to homoscedastic models, we continue using the same estimator as before, while

the new estimator is now taking the heteroscedasticity into account. Therefore, we expect

the Buckley-James estimator to behave poorly when there is much heteroscedasticity in

the model. This is indeed confirmed by the results in Table 3, which show deteriorating

results for the Buckley-James estimator for increasing values of γ.

A final remark on the choice of the bandwidth : simulations have shown that the

estimator proposed in this paper is not very sensitive (relatively to other situations where

kernel smoothing is used) to the choice of the bandwidth. This is because the estimators

of the regression parameters are obtained by taking a weighted average of the artificial

data points Ŷ ∗i (i = 1, . . . , n). In this way, the effect of the choice of the bandwidth

is in some way averaged out. This is a typical phenomenon in situations where kernel

smoothing is used in the construction of a root-n consistent estimator.

5 Data analysis

We illustrate the proposed method on two data sets. The first one is about 90 male

larynx cancer patients, diagnosed and treated during the period 1970-1978 in a peripheral

hospital in the Netherlands (see Kardaun (1983) for more details). The variable of interest

is the time interval (in years) between first treatment and death of the patient. At the
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γ0 γ1 γ2 β̂0 β̂1 β̂2

α0 α1 α2 d Bias Var MSE Bias Var MSE Bias Var MSE

7.6 1 1 .013 .069 .069 -.053 1.66 1.66 .043 1.62 1.62

8.7 -0.2 1 5/3 -.014 .064 .064 .172 1.45 1.48 -.248 1.35 1.41

7.6 1 1 .013 .085 .085 -.064 2.32 2.32 .067 2.41 2.41

8.2 -0.2 1 5/3 -.032 .073 .074 .323 1.72 1.82 -.452 1.60 1.81

7.6 1 1 .022 .200 .201 -.088 4.70 4.71 .061 4.50 4.50

9 -0.2 1 1 -.014 .182 .183 .174 4.07 4.10 -.257 3.78 3.85

7.6 1 1 .027 .255 .255 -.117 6.43 6.45 .100 6.36 6.37

8.2 -0.2 1 1 -.046 .205 .207 .381 4.60 4.75 -.507 4.27 4.53

7.6 5 1 .013 .070 .070 -.054 1.66 1.66 .040 1.60 1.60

8.6 4 1 5/3 -.004 .069 .069 .121 1.56 1.57 -.185 1.44 1.48

7.6 5 1 .014 .087 .087 -.072 2.31 2.31 .069 2.35 2.35

8.1 4 1 5/3 -.006 .090 .090 .212 2.17 2.22 -.316 2.05 2.15

7.6 5 1 .020 .202 .203 -.083 4.73 4.73 .058 4.50 4.50

8.9 4 1 1 -.007 .190 .190 .162 4.27 4.29 -.252 3.94 4.01

7.6 5 1 .027 .264 .265 -.115 6.49 6.51 .099 6.32 6.33

8.1 4 1 1 -.025 .236 .237 .357 5.28 5.41 -.513 4.79 5.06

6.7 5 5 .017 .127 .127 -.064 2.97 2.97 .044 2.84 2.84

7.9 4 5 5/4 -.001 .126 .126 .131 2.84 2.86 -.188 2.63 2.66

6.7 5 5 .021 .161 .161 -.093 4.09 4.10 .082 4.06 4.06

7.2 4 5 5/4 -.007 .166 .167 .288 3.94 4.02 -.370 3.70 3.84

6.7 5 5 .044 .840 .842 -.170 19.0 19.1 .120 17.8 17.8

8.9 4 5 0.5 -.022 .789 .789 .333 17.4 17.5 -.463 15.9 16.1

6.7 5 5 .076 1.14 1.15 -.303 25.9 25.9 .246 24.2 24.2

7.2 4 5 0.5 -.069 .971 .976 .782 21.2 21.8 -1.00 19.2 20.2

6.7 1 5 .016 .085 .086 -.064 1.83 1.84 .047 1.68 1.68

7 2 4 5/3 -.002 .081 .081 .103 1.69 1.70 -.142 1.51 1.53

6.7 1 5 .031 .127 .128 -.128 2.62 2.63 .104 2.37 2.38

6.5 2 4 5/3 -.006 .110 .110 .236 2.16 2.21 -.307 1.90 1.99

6.7 1 5 .027 .332 .332 -.103 7.48 7.49 .073 7.04 7.04

7.9 2 3 0.8 -.033 .305 .306 .336 6.63 6.75 -.441 6.04 6.24

6.7 1 5 .054 .463 .466 -.241 10.8 10.8 .212 10.5 10.5

6.8 2 3 0.8 -.077 .377 .383 .727 8.05 8.58 -.928 7.28 8.14

Table 2: Results for the Buckley-James estimator (first line) and the new estimator (sec-

ond line) for model (4.2).
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β̂0 β̂1

α0 α1 % γ Bias Var MSE Bias Var MSE

0.7 9.85 1 1 .085 .007 .014 .181 .049 .082

.063 .006 .010 .135 .048 .066

1.5 9.5 2 2 .166 .027 .054 .366 .197 .331

.100 .023 .033 -.266 .190 .260

2.4 10 4 3 .230 .061 .114 .475 .466 .692

.119 .052 .066 -.326 .444 .550

2.6 10 4 5 .465 .172 .388 .967 1.20 2.13

.201 .136 .177 -.569 1.16 1.48

Table 3: Results for the Buckley-James estimator (first line) and the new estimator (sec-

ond line) for model (4.3).

end of the study (1 March 1981) 40 patients were alive, and their survival time was

therefore censored to the right. We are interested in studying the relationship between

Y = log(survival time) and X = log(age of the patient at diagnosis (in years)). The data

shown in Figure 1 suggest that a linear model might be appropriate :

Y = β0 + β1X + ε, (5.1)

where ε and X are independent and E(ε) = 0. The Buckley-James (1979) algorithm

and the new method yield respectively the values -1.03 and -0.97 for the slope parameter

and 5.64 and 5.39 for the intercept parameter. It was observed that the Buckley-James

method does not converge to a single value of the slope parameter, but oscillates be-

tween three values. The estimator is defined as the average of these values. For the new

method, boundary corrected kernels are used. The bandwidth is selected from a grid of

16 bandwidths, according to the method described in Remark 3.4. From Figure 1 it is

clear that the regression lines (and also the new data points) obtained from the Buckley-

James method and the new method are very close to each other. By using the bootstrap

method explained in Remark 3.5, the variance of the slope respectively intercept of the

new method is given by 1.05 respectively 18.32. Confidence intervals obtained from the

percentile bootstrap method are [−3.10, 0.92] for the slope and [−2.65, 14.00] for the in-

tercept. The intervals obtained from the normal approximation are very similar, which

suggests that the asymptotic normality result is accurate here.

The second data set comes from a study of quasars in astronomy. To date, many

studies have focused on the dependence on luminosity and redshift of quasar ultraviolet-

to-X-ray spectral energy distributions (characterized by means of the spectral index αox =

13
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Figure 1: Linear regression for the larynx cancer data. The solid, respectively, dashed line

represents the estimated regression line for the new, respectively, Buckley-James method.

Uncensored data points are given by ×, and censored observations by 4. The new data

points obtained from the new, respectively, Buckley-James method are represented by ∗,
respectively +.

0.384 log(L2 keV /L
2500 Å

), where luv = logL
2500 Å

and lx = logL2 keV denote the rest-

frame 2500 Å and 2 keV luminosity densities) (see Vignali, Brandt and Schneider (2003)).

This allows to obtain information and to validate the proposed mechanism driving quasar

broad-band emission (accretion disk onto a super-massive black hole). Due to technical

constraints of the used instruments, only upper bounds on 69 of the 137 values of lx are

observed, leading thus to left censoring. Right-censored data points are next obtained by

replacing the left-censored lx,i by Zi = (maxj:j=1,...,137(lx,j)− lx,i), i = 1, . . . , 137. We show

in Figure 2 the results of the regression of lx on luv for both the new and the Buckley-

James algorithm, assuming that model (5.1) is valid (where the latter is again obtained by

taking the average of the values around which it oscillates). We observe a big similarity

between the two regression lines. For both methods there is a strong correlation between

the two variables. The slope and intercept are respectively 0.75 and 3.48 for the new

method and 0.74 and 3.76 for the Buckley-James method. The variance of the slope

and intercept for the new method equal 0.006 and 5.68 respectively, while the percentile

14
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Figure 2: Linear regression for the quasar data. The solid, respectively, dashed line

represents the estimated regression line for the new, respectively, Buckley-James method.

Uncensored data points are given by ×, and censored observations by 5. The new data

points obtained from the new, respectively, Buckley-James method are represented by ∗,
respectively +.

bootstrap confidence intervals are given by [0.52, 0.83] and [0.98, 10.57] respectively.

Finally, note that direct comparison of the parametric estimator with the nonpara-

metric estimator m̂(x) is not possible, since the latter function estimates m(x) defined

in (2.2) and the former estimates the conditional mean function. It would be interesting

to compare the parametric estimator with a nonparametric estimator of the conditional

mean. This can be done by means of the Beran estimator defined in (2.3). However,

since the Beran estimator is inconsistent in the right tail, the so-obtained estimator of

the conditional mean will be inconsistent. Alternatively, a more elaborated estimator

can be used which makes use of the independence between ε and X to overcome these

inconsistency problems.
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Appendix : Proofs of main results

The following functions enter the asymptotic representation of β̂Tj − βTj (j = 0, . . . , p),

which we established in Section 3.

ξe(z, δ, y) = (1− Fe(y))



−

y∧z∫

−∞

dHe1(s)

(1−He(s))2
+
I(z ≤ y, δ = 1)

1−He(z)



 ,

ξ(z, δ, y|x) = (1− F (y|x))



−

y∧z∫

−∞

dH1(s|x)

(1−H(s|x))2
+
I(z ≤ y, δ = 1)

1−H(z|x)



 ,

η(z, δ|x) =

+∞∫

−∞
ξ(z, δ, v|x)J(F (v|x)) dv σ−1(x),

ζ(z, δ|x) =

+∞∫

−∞
ξ(z, δ, v|x)J(F (v|x))

v −m(x)

σ(x)
dv σ−1(x),

γ1(y|x) =

y∫

−∞

he(s|x)

(1−He(s))2
dHe1(s) +

y∫

−∞

d he1(s|x)

1−He(s)
,

γ2(y|x) =

y∫

−∞

she(s|x)

(1−He(s))2
dHe1(s) +

y∫

−∞

d (she1(s|x))

1−He(s)
,

ϕ(x, z, δ, y) = ξe

(
z −m(x)

σ(x)
, δ, y

)
− Se(y)η(z, δ|x)γ1(y|x)− Se(y)ζ(z, δ|x)γ2(y|x),

αi(v) =

∫ Si
v u dFe(u)

1− Fe(v)
,

Bk(z, Zj,∆j|Xi) = Xk
i f
−1
X (Xi)σ(Xi)

{[
α′i(e

T
i (z))− 1 +

Sife(Si)

1− Fe(eTi (z))

]
η(Zj,∆j|Xi)

+

[
eTi (z)α′i(e

T
i (z))− αi(eTi (z)) +

S2
i fe(Si)

1− Fe(eTi (z))

]
ζ(Zj,∆j|Xi)

}
,

(k = 0, . . . , p; i, j = 1, . . . , n) where Si = SXi, e
T
i (z) = eTXi(z) and for any x ∈ RX ,

Sx = (Tx −m(x))/σ(x) and eTx (z) = (z ∧ Tx −m(x))/σ(x).

Let T̃x be any value less than the upper bound of the support of H(·|x) such that

infx∈RX (1−H(T̃x|x)) > 0. For a (sub)distribution function L(y|x) we will use the nota-

tions l(y|x) = L′(y|x) = (∂/∂y)L(y|x), L̇(y|x) = (∂/∂x)L(y|x) and similar notations will

be used for higher order derivatives.

The assumptions needed for the results of Section 3 are listed below.

(A1)(i) na4
n → 0 and na3+2δ

n (log a−1
n )−1 →∞ for some δ < 1/2.

(ii) RX is compact, convex and its interior is not empty.
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(iii) K is a density with compact support,
∫
uK(u)du = 0 and K is twice continuously

differentiable.

(iv) det(M) 6= 0.

(A2)(i) There exist 0 ≤ s0 ≤ s1 ≤ 1 such that s1 ≤ infx F (T̃x|x), s0 ≤ inf{s ∈
[0, 1]; J(s) 6= 0}, s1 ≥ sup{s ∈ [0, 1]; J(s) 6= 0} and infx∈RX infs0≤s≤s1 f(F−1(s|x)|x) > 0.

(ii) J is twice continuously differentiable,
∫ 1
0 J(s)ds = 1 and J(s) ≥ 0 for all 0 ≤ s ≤ 1.

(iii) The function x→ Tx (x ∈ RX) is twice continuously differentiable.

(A3)(i) FX is three times continuously differentiable and infx∈RX fX(x) > 0.

(ii) m and σ are twice continuously differentiable and infx∈RX σ(x) > 0.

(iii) In the model Y = m(X) + σ(X)ε, E[ε2] <∞ and E[E4] <∞.

(A4)(i) η(z, δ|x) and ζ(z, δ|x) are twice continuously differentiable with respect to x and

their first and second derivatives (with respect to x) are bounded, uniformly in x ∈ RX ,

z < T̃x and δ.

(ii) The first derivatives of η(z, δ|x) and ζ(z, δ|x) with respect to z are of bounded varia-

tion and the variation norms are uniformly bounded over all x.

(A5) The function y → P (m(X) + eσ(X) ≤ y) (y ∈ IR) is differentiable for all e ∈ IR and

the derivative is uniformly bounded over all e ∈ IR.

(A6) For L(y|x) = H(y|x), H1(y|x), He(y|x) or He1(y|x) : L′(y|x) is continuous in (x, y)

and supx,y |y2L′(y|x)| <∞, the same holds for all other partial derivatives of L(y|x) with

respect to x and y up to order three, and supx,y |y3L′′′(y|x)| <∞.

(A7) (i) supx,z
∫ |B′k(t, z, δ|x)|h(t)dt <∞ (k = 0, . . . , p; δ = 0, 1).

(ii) supz
∫

supx |B′′k(t, z, δ|x)|h(t)dt < ∞ (k = 0, . . . , p; δ = 0, 1), where B
′(′)
k (t, z, δ|x)

equals the first (second) derivative of Bk(t, z, δ|x) with respect to x when t 6= Tx and

equals 0 otherwise.

(A8) For the density fX|Z,∆(x|z, δ) of X given (Z,∆), supx,z |fX|Z,∆(x|z, δ)| < ∞,

supx,z |ḟX|Z,∆(x|z, δ)| <∞, supx,z |f̈X|Z,∆(x|z, δ)| <∞ (δ = 0, 1).

Proof of Theorem 3.1. Let β∗T = (β∗T0, . . . , β
∗
Tp) be the least squares estimator obtained

from the pairs (Xi, Y
∗
T i) (i = 1, . . . , n). We will first consider

β̂T − β∗T = (n−1X ′X )−1n−1X ′(Ŷ∗ − Y∗),
where Y∗ = (Y ∗T1, . . . , Y

∗
Tn)′, and Ŷ∗ = (Ŷ ∗T1, . . . , Ŷ

∗
Tn)′. The (k+1)th element (k = 0, . . . , p)

of the vector n−1X ′(Ŷ∗ − Y∗) equals

n−1
∑

∆i=0

Xk
i

{
[m̂(Xi)−m(Xi)] +

σ̂(Xi)

1− F̂e(ÊT
i )

∫ Ŝi

ÊTi

u dF̂e(u)− σ(Xi)

1− Fe(ET
i )

∫ Si

ETi

u dFe(u)

}
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= n−1
∑

∆i=0

Xk
i {A1i + A2i + A3i}.

The asymptotic representation given in Proposition 4.8 of Van Keilegom and Akritas

(1999) (hereafter abbreviated by VKA) yields

A1i = −(nan)−1f−1
X (Xi)σ(Xi)

n∑

j=1

K(
Xi −Xj

an
)η(Zj,∆j|Xi) + oP (n−1/2),

uniformly in i = 1, . . . , n. Next, write

n−1
∑

∆i=0

Xk
i {A1i + A2i + A3i} (A.1)

= n−1
∑

∆i=0

Xk
i {A1i + A2i + A3i}I(Ei ≤ Un) + n−1

∑

∆i=0

Xk
i {A1i + A2i + A3i}I(Ei > Un),

where Un < 0 is defined by Un = −n1/2a1+γ
n for some γ > 0 to be determined later. First,

let us show that the first sum of this expression is asymptotically negligible. Let Vn be

the number of residuals Ei that are less than or equal to Un. Then, by the law of the

iterated logarithm (see e.g. Serfling (1980), page 35),

Vn − nHe(Un) ≤ 2[He(Un)(1−He(Un))n log log n]1/2 a.s..

Since |Un|4He(Un) ≤ ∫ Un
−∞ |y|4 dHe(y) → 0, it follows that He(Un) ≤ Cn|Un|−4 for some

sequence Cn → 0. From this, we have that Vn = o(n|Un|−4 + |Un|−2n1/2(log log n)1/2) a.s.

Next, A1i +A2i +A3i is bounded in probability, which follows from Lemma A.1, the fact

that E|ε| <∞, the uniform consistency of m̂(·) and σ̂(·) given by Proposition 4.5 in VKA

(1999) and the consistency of supx,z |F̂e( z∧Tx−m̂(x)
σ̂(x)

)− Fe( z∧Tx−m(x)
σ(x)

)| which is obtained as

follows.

F̂e(
z ∧ Tx − m̂(x)

σ̂(x)
)− Fe(

z ∧ Tx −m(x)

σ(x)
) = F̂e(

z ∧ Tx − m̂(x)

σ̂(x)
)− Fe(

z ∧ Tx − m̂(x)

σ̂(x)
)

+ Fe(
z ∧ Tx − m̂(x)

σ̂(x)
)− Fe(

z ∧ Tx −m(x)

σ̂(x)
)

+ Fe(
z ∧ Tx −m(x)

σ̂(x)
)− Fe(

z ∧ Tx −m(x)

σ(x)
)

= α1
n(z, x) + α2

n(z, x) + α3
n(z, x).

Using Corollary 3.2 of VKA (1999), supx,z |α1
n(z, x)| is Op(n

−1/2). For the two other terms,

we use two first order Taylor developments

α2
n(z, x) + α3

n(z, x) = −m̂(x)−m(x)

σ̂(x)
fe(Ax)−

σ̂(x)− σ(x)

σ̂(x)

z ∧ Tx −m(x)

σ(x)
fe(Bx),
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for some Ax (Bx) between z∧Tx−m(x)
σ̂(x)

and z∧Tx−m̂(x)
σ̂(x)

( z∧Tx−m(x)
σ(x)

and z∧Tx−m(x)
σ̂(x)

). Using

Proposition 4.5 of VKA (1999) and the fact that supe |efe(e)| < +∞, α2
n(z, x)+α3

n(z, x) =

O((nan)−1/2(log a−1
n )1/2) a.s. Therefore, the first term on the right hand side of (A.1) is

oP (|Un|−4) = oP (n−1/2) for γ small enough. We next consider the second term on the

right hand side of (A.1). Write

A2i + A3i =
σ̂(Xi)− σ(Xi)

1− F̂e(ÊT
i )

∫ Ŝi

ÊTi

u dF̂e(u) + σ(Xi)
F̂e(Ê

T
i )− Fe(ET

i )

(1− F̂e(ÊT
i ))(1− Fe(ET

i ))

∫ Ŝi

ÊTi

u dF̂e(u)

+
σ(Xi)

1− Fe(ET
i )

∫ ETi

ÊTi

u dF̂e(u) +
σ(Xi)

1− Fe(ET
i )

∫ Si

ETi

u d(F̂e(u)− Fe(u))

+
σ(Xi)

1− Fe(ET
i )

∫ Ŝi

Si
u dF̂e(u)

=
5∑

j=1

Bji

First consider
∫ Ŝi

ÊTi

u dF̂e(u) =
∫ Si

ETi

u dFe(u) +
∫ Si

ETi

u d(F̂e(u)− Fe(u)) (A.2)

+
∫ ETi

ÊTi

u dF̂e(u) +
∫ Ŝi

Si
u dF̂e(u),

which appears in B1i and B2i. By using integration by parts, the third term of (A.2) can

be rewritten as

[ET
i (F̂e(E

T
i )− Fe(ET

i ))] + [ET
i Fe(E

T
i )− (ÊT

i )Fe(E
T
i )]

+[(ÊT
i )(Fe(E

T
i )− F̂e(ÊT

i ))]−
∫ ETi

ÊTi

F̂e(u)du. (A.3)

By Corollary 3.2 in VKA (1999) and the order of Un, the first term of (A.3) is OP (a1+γ
n ),

while from Proposition 4.5 in VKA (1999) it follows that the second and fourth term

are OP (a1/2+γ
n (log a−1

n )1/2). Using the fact that supx,z |F̂e( z∧Tx−m̂(x)
σ̂(x)

) − Fe(
z∧Tx−m(x)

σ(x)
)| =

OP ((nan)−1/2(log a−1
n )1/2) yields that the order of the third term is OP (a1/2+γ

n (log a−1
n )1/2).

Hence, the third term of (A.2) is OP (a1/2+γ
n (log a−1

n )1/2), uniformly in i = 1, . . . , n. In a

similar way it can be shown that the second and fourth term of (A.2) are of this order,

which implies that

B1i +B2i =
σ̂(Xi)− σ(Xi)

1− Fe(ET
i )

∫ Si

ETi

u dFe(u) + σ(Xi)
F̂e(Ê

T
i )− Fe(ET

i )

(1− Fe(ET
i ))2

∫ Si

ETi

u dFe(u) + oP (n−1/2).

B1i + B2i can now be written as a sum of i.i.d. terms (up to the oP (n−1/2) remainder

term), by applying the representation for σ̂(Xi)−σ(Xi) given by Proposition 4.9 in VKA
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(1999) and using the fact that

F̂e(Ê
T
i )− Fe(ET

i ) = (nan)−1
n∑

j=1

K(
Xi −Xj

an
)f−1
X (Xi)[η(Zj,∆j|Xi) + ζ(Zj,∆j|Xi)E

T
i ]fe(E

T
i )

+n−1
n∑

j=1

ϕ(Xj, Zj,∆j, E
T
i ) + oP (n−1/2), (A.4)

where this development is obtained after two Taylor expansions and by applying Theorem

3.1, Lemma B.1 and Propositions 4.8 and 4.9 in VKA (1999). For B3i write

∫ ETi

ÊTi

u dF̂e(u) =
∫ ETi

ÊTi

u dFe(u) +
∫ ETi

ÊTi

u d(F̂e(u)− Fe(u)).

Integrating by parts the second term of the expression above and using Corollary 3.2 in

VKA (1999) and the fact that |ÊT
i − ET

i | = OP (a1/2+γ
n (log a−1

n )1/2), we obtain

ET
i [F̂e(E

T
i )− Fe(ET

i )− F̂e(ÊT
i ) + Fe(Ê

T
i )]−

∫ ETi

ÊTi

(F̂e(u)− Fe(u)) du+ oP (n−1/2).

It is easy to see that the integral in this expression is also oP (n−1/2). As a consequence

of Theorem 3.1 and Lemma B.1 in VKA (1999), the first term is oP (|ET
i |n−1/2). Hence,

B3i = − σ(Xi)

1− Fe(ET
i )

[ ∫ ÊTi

0
u dFe(u)−

∫ ETi

0
u dFe(u)

]
+ oP (|ET

i |n−1/2)

= [m̂(Xi)−m(Xi) + ET
i (σ̂(Xi)− σ(Xi))]

ET
i fe(E

T
i )

1− Fe(ET
i )

+ oP (|ET
i |n−1/2) + oP (n−1/2)

using a Taylor expansion. Note that the term oP (n−1/2) in the expression above is obtained

from the fact that supz |zfe(z)| <∞ and supz |z2f ′e(z)| <∞. Next, the term B4i is given

by

B4i =
σ(Xi)

1− Fe(ET
i )

{
Si[F̂e(Si)− Fe(Si)]− ET

i [F̂e(E
T
i )− Fe(ET

i )]−
∫ Si

ETi

(F̂e(u)− Fe(u)) du

}
.

Finally, the term B5i is treated in the same way as the term B3i, leading to

B5i = −[m̂(Xi)−m(Xi) + Si(σ̂(Xi)− σ(Xi))]
Sife(Si)

1− Fe(ET
i )

+ oP (|Si|n−1/2) + oP (n−1/2).

It now follows that the complete asymptotic representation for the (k + 1)th component

of n−1X ′(Ŷ∗ − Y∗) can be written as

n−1
∑

∆i=0

Xk
i I(Ei > Un)






− ET

i fe(E
T
i )

1− Fe(ET
i )

+
fe(E

T
i )
∫ Si
ETi
u dFe(u)

(1− Fe(ET
i ))2

− 1 +
Sife(Si)

1− Fe(ET
i )



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×(nan)−1f−1
X (Xi)σ(Xi)

n∑

j=1

K
(Xi −Xj

an

)
η(Zj,∆j|Xi)

+



ET
i fe(E

T
i )
∫ Si
ETi
u dFe(u)

(1− Fe(ET
i ))2

−
∫ Si
ETi
u dFe(u)

1− Fe(ET
i )
− (ET

i )2fe(E
T
i )

1− Fe(ET
i )

+
S2
i fe(Si)

1− Fe(ET
i )




×(nan)−1f−1
X (Xi)σ(Xi)

n∑

j=1

K
(Xi −Xj

an

)
ζ(Zj,∆j|Xi)

+σ(Xi)



∫ Si
ETi
u dFe(u)

(1− Fe(ET
i ))2

− ET
i

1− Fe(ET
i )


n−1

n∑

j=1

ϕ(Xj, Zj,∆j, E
T
i )

+
σ(Xi)Si

1− Fe(ET
i )
n−1

n∑

j=1

ϕ(Xj, Zj,∆j, Si)

− σ(Xi)

1− Fe(ET
i )
n−1

n∑

j=1

∫ Si

ETi

ϕ(Xj, Zj,∆j, u)du



+ oP (n−1/2), (A.5)

where use is made of the representations for F̂e(·), m̂(·) and σ̂(·) given by Theorem 3.1

and Propositions 4.8 and 4.9 in VKA (1999) respectively, and of the representation for

F̂e(Ê
T
i )− Fe(ET

i ) given in (A.4).

We can rewrite the sum of the first two terms of equation (A.5) as

(n2an)−1
∑

j 6=i
(1−∆i)I(Ei > Un)Bk(Zi, Zj,∆j|Xi)K(

Xi −Xj

an
) + oP (n−1/2). (A.6)

Using a similar development as for the first term of (A.1) it is easily shown that (A.6)

can be written as

(n2an)−1
∑

j 6=i
(1−∆i)Bk(Zi, Zj,∆j|Xi)K(

Xi −Xj

an
) + oP (n−1/2)

= (n2an)−1
∑

j 6=i
{A∗k(Vi, Vj) + E[Ak(Vi, Vj)|Vi] + E[Ak(Vi, Vj)|Vj]− E[Ak(Vi, Vj)]}

+oP (n−1/2)

= T1 + T2 + T3 + T4 + oP (n−1/2),

where

Ak(Vi, Vj) = (1−∆i)Bk(Zi, Zj,∆j|Xi)K(
Xi −Xj

an
),

A∗k(Vi, Vj) = Ak(Vi, Vj) − E[Ak(Vi, Vj)|Vi] − E[Ak(Vi, Vj)|Vj] + E[Ak(Vi, Vj)] and Vi =

(Xi, Zi,∆i). Consider

E[Ak(Vi, Vj)|Vi]
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= (1−∆i)
∑

δ=0,1

∫ ∫
Bk(Zi, z, δ|Xi)K(

Xi − x
an

)hδ(z|x)fX(x) dz dx

= an(1−∆i)
∑

δ=0,1

∫ ∫
Bk(Zi, z, δ|Xi)K(u)(hδ(z|Xi)− anuḣδ(z|Xi) +O(a2

n))

×(fX(Xi)− anuf ′X(Xi) +O(a2
n)) dz du

= an(1−∆i)fX(Xi)
∑

δ=0,1

∫
Bk(Zi, z, δ|Xi)hδ(z|Xi) dz +O(a3

n) = O(a3
n),

since E[η(Z,∆|X)|X] = E[ζ(Z,∆|X)|X] = 0, where ḣδ(z|x) denotes the derivative of

hδ(z|x) with respect to x. Hence, we also have that E[Ak(Vi, Vj)] = O(a3
n). In a similar

way we have for E[Ak(Vi, Vj)|Vj], using three Taylor expansions of order 2,

E[Ak(Vi, Vj)|Vj] = anfX(Xj)
∑

δ=0,1

(1− δ)
∫
Bk(z, Zj,∆j|Xj) dHδ(z|Xj) +O(a3

n).

It follows that

T2 + T3 + T4 = n−1
n∑

i=1

fX(Xi)
∫
Bk(z, Zi,∆i|Xi) dH0(z|Xi) +O(a2

n).

For T1, note that E[T1] = 0 and hence, by Chebyshev’s inequality,

P (|T1| > K(nan)−1E[A∗k(V1, V2)2]1/2)

≤ K−2(nan)2E[A∗k(V1, V2)2]−1E[T 2
1 ]

= K−2n−2E[A∗k(V1, V2)2]−1
∑

j 6=i

∑

m6=l
E[A∗k(Vi, Vj)A

∗
k(Vl, Vm)]. (A.7)

Since E[A∗k(Vi, Vj)] = 0, the terms for which i, j 6= l, m are zero. The terms for which

either i or j equals l or m and the other differs from l and m, are also zero, because, for

example when i = l and j 6= m,

E[A∗k(Vi, Vj)E[A∗k(Vi, Vm)|Vi, Vj]] = 0.

Thus, only the 2n(n−1) terms for which (i, j) equals (l, m) or (m, l) stay such that, (A.7)

is bounded by 2K−2, which can be made arbitrarily small for K large enough. Since

A∗k(V1, V2) is bounded by K(X1−X2

an
)C + O(an) for some constant C > 0, independent of

X1 and X2, we have that E[A∗k(V1, V2)2] ≤ C2an
∫
f 2
X(x) dx

∫
K2(u) du + O(a2

n) = O(an)

(and similarly for E[A∗k(V1, V2)A∗k(V2, V1)]). It now follows that T1 = OP (n−1a−1/2
n ) =

oP (n−1/2).

We next consider the third, fourth and fifth term of (A.5). Their sum equals

n−1
∑

∆i=0

I(Ei > Un)Xk
i





∫ Si
ETi
u dFe(u)

(1− Fe(ET
i ))2

n−1σ(Xi)
n∑

j=1

ϕ(Xj, Zj,∆j, E
T
i )
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+
σ(Xi)

1− Fe(ET
i )

∫ Si

ETi

un−1
n∑

j=1

dϕ(Xj, Zj,∆j, u)





= n−2
∑

j 6=i
hk(Vi, Vj) + oP (n−1/2), (A.8)

where

hk(Vi, Vj) = (1−∆i)X
k
i





∫ Si
ETi
u dFe(u)

(1− Fe(ET
i ))2

σ(Xi)ϕ(Xj, Zj,∆j, E
T
i )

+
σ(Xi)

1− Fe(ET
i )

∫ Si

ETi

u dϕ(Xj, Zj,∆j, u)

}
,

using arguments similar as before. Defining h∗k(Vi, Vj) = hk(Vi, Vj) + hk(Vj, Vi), (A.8) can

be written as

n− 1

2n


 n

2



−1
∑

j>i

h∗k(Vi, Vj) + oP (n−1/2).

Using the Hájek-projection of a U-statistic on its conditional expectations (see e.g. Serfling

(1980), page 189), this expression equals

n−1
n∑

i=1

E[h∗k(Vi, Vj)|Vi] + oP (n−1/2)

= n−1
n∑

i=1

∫
xkσ(x)

∫ {
ϕ(Xi, Zi,∆i, e

T
x (z))

(1− Fe(eTx (z)))2

∫ Sx

eTx (z)
u dFe(u)

+
1

1− Fe(eTx (z))

∫ Sx

eTx (z)
u dϕ(Xi, Zi,∆i, u)

}
dH0(z|x)dFX(x) + oP (n−1/2).

It remains to consider β∗T − βT , which equals

M−1




n−1 ∑n
i=1(Y ∗T i − E[Y ∗T i|Xi])

...

n−1∑n
i=1 X

p
i (Y ∗T i − E[Y ∗T i|Xi])


+




oP (n−1/2)
...

oP (n−1/2)


 ,

using standart arguments. This finishes the proof.

Lemma A.1 Assume (A1)(i) − (iii), (A2)(i), (ii), (A3)(ii), FX is twice continuously

differentiable , infx∈RX fX(x) > 0, for L(y|x) = H(y|x) or H1(y|x), L(y|x) is con-

tinuous, L̇(y|x) and L̈(y|x) exist, are continuous in (x, y), supx,y |yL̇(y|x)| < ∞ and

supx,y |y2L̈(y|x)| < ∞, H ′e(y|x) exists, is continuous in (x, y), supx,y |yH ′e(y|x)| < ∞ and

E[|ε|] <∞. Then, for any T < τHe ,
∫ T

−∞
|u| dF̂e(u)

is bounded in probability.
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Proof. We have for T < τHe ,

∫ T

−∞
|u|dF̂e(u) =

∑

∆i=1

|Yi − m̂(Xi)

σ̂(Xi)
|Wi I(

Yi − m̂(Xi)

σ̂(Xi)
≤ T ),

where Wi are the Kaplan-Meier jumps of F̂e. First, let us show that the jumps of F̂e are

uniformly OP (n−1). It is easily seen that the jump of F̂e at the j-th order statistic of

Êi = (Yi − m̂(Xi))/σ̂(Xi) (i = 1, . . . , n) is bounded by (n − j + 1)−1 ≤ (n − a + 1)−1,

where a is the number of Êi’s smaller than or equal to T . From Proposition A.3 in VKA

(1999) we know that

Ĥe(T ) = He(T ) + oP (1),

where Ĥe is the empirical distribution function of the Êi’s. Thus, a = nHe(T ) + oP (n)

and (n− a + 1)−1 = OP (n−1). It follows that, for n sufficiently large,

∑

∆i=1

|Yi − m̂(Xi)

σ̂(Xi)
|WiI(

Yi − m̂(Xi)

σ̂(Xi)
≤ T ) ≤ OP (n−1)

∑

∆i=1

|Yi −m(Xi)

σ(Xi)
|+ oP (1)

= OP (1)
∫
|y|dH̃e1(y) + oP (1)

= OP (1)[
∫
|y|dHe1(y) + oP (1)] + oP (1)

= OP (1),

where H̃e1(y) = n−1∑n
i=1 I(Yi−m(Xi)

σ(Xi)
≤ y,∆i = 1), and provided that

∫ |y|dHe1 = E[|ε|I(∆ =

1)] ≤ E[|ε|] <∞.
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