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PRINCIPES ET APPLICATIONS
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RESUME

Cette note décrit les principes de ’analyse en composantes principales et
donne deux exemples numériques d’applications.

SUMMARY

This note describes the principles of principal component analysis and gives
two examples.

1. INTRODUCTION

L’analyse en composantes principales est une technique descriptive permet-
tant d’étudier les relations qui existent entre des variables quantitatives, sans
tenir compte, a priori, d’une quelconque structure, ni des variables ni des indi-
vidus.

Les domaines d’application de cette méthode sont trés variés et de nom-
breux exemples sont proposés, notamment, par JACKSON [1991] et PRESS [1972].

L’objectif de cette note est de décrire et d’illustrer les principes de ’analyse
en composantes principales. Nous examinerons d’abord comment on détermine
les composantes (paragraphe 2) et nous détaillerons leur signification algébrique
et géométrique (paragraphe 3). Nous décrirons alors les représentations graphi-
ques (paragraphe 4). Le paragraphe 5 sera consacré & une application concréte
et nous terminerons par quelques informations complémentaires (paragraphe 6).

Une présentation de I'analyse en composantes principales peut étre trouvée
dans la plupart des livres relatifs & I’analyse multivariée et ’ouvrage de JACKSON
[1991] est entiérement consacré a ce sujet. Le lecteur y trouvera de nombreuses
informations complémentaires ainsi qu’une importante bibliographie.

*Chargé de cours associé a la Faculté universitaire des Sciences agronomiques de Gembloux.



2. DEFINITION DES COMPOSANTES PRINCIPALES

2.1. Objectifs poursuivis

Le point de départ d’une analyse en composantes principales est un tableau
de données quantitatives de n lignes et p colonnes. Les lignes correspondent aux
individus et les colonnes correspondent aux variables observées. Un tel tableau
peut comporter un trés grand nombre de cellules et on va s’efforcer de résumer
les données de maniére & prendre plus facilement connaissance de ’information
qu’elles contiennent.

Le calcul de la moyenne et de 1’écart-type donne, pour chaque variable,
des informations concernant ’ordre de grandeur et la dispersion des données.
De méme, le calcul de la matrice de corrélation des variables donne des indica-
tions sur ’évolution simultanée des variables prises deux & deux. Ces éléments
de statistique descriptive univariée et bivariée ne donnent cependant aucune
information sur le probléme lorsque les p variables sont considérées simultané-
ment. Cette étude simultanée des variables est précisément le but de I'analyse
en composantes principales.

De maniére & rendre la présentation aussi concréte que possible, nous allons
considérer un exemple relatif & trois variables et 16 individus. Les dimensions
réduites de cet exemple n’offriront sans doute pas 'opportunité de mettre claire-
ment en évidence 'utilité de ’analyse en composantes mais elles permettront de
bien illustrer les principes de ’analyse notamment par 1’établissement de nom-
breux tableaux. Une application plus pratique, sur un tableau de données plus
grand, sera présentée au paragraphe 5.

L’exemple que nous allons examiner concerne les teneurs en protéines, en
graisse et en lactose du lait de 16 mammiféres. Ces données ont été publiées
par HARTIGAN [1975] et sont reprises dans le tableau 1. L’examen de ce tableau
montre que, bien que les trois constituants soient exprimés en pour cent, la
variabilité des caractéristiques est assez différente. Comme nous le préciserons
au paragraphe 6.1, il se justifie de standardiser les trois variables, afin de leur
donner la méme importance :

wij = (i —95)/6; (i=1,...,n55=1,...,p).

Dans cette relation, §; et 6; sont, respectivement, la moyenne arithmétique
et D'écart-type estimé de la colonne j. Les variables ainsi standardisées sont
données dans le tableau 2.

Le principe de ’analyse en composantes principales est de définir des indices
synthétiques qui résument au mieux 'information contenue dans ce tableau.

Le premier indice synthétique, z;1, est défini de maniére & respecter les
contraintes suivantes :

— il doit, étre une combinaison linéaire des variables centrées réduites :

Zil = U11 T31 + U21 Ti2 + U31 X435



Tableau 1 — Teneurs en protéines, graisse et lactose du lait de 16 mammiféres :
résultats exprimés en pour cent (d’aprés HARTIGAN, 1975).

Code Nom Protéines Graisse Lactose
a anesse 1,7 1.4 6,2
b baleine 111 21,2 1.6
C biche 10,4 19,7 2,6
d brebis 5,6 6,4 4.7
e buffle 5,9 7,9 4,7
f chamelle 3,5 3,4 4.8
g cobaye 7.4 7,2 2,7
h jument 2,6 1,0 6,9
i lama 3,9 3,2 5,6
] lapine 12,3 13,1 1,9
k mule 2,0 1,8 5,5
1 rate 9,2 12,6 3,3
m renarde 6,6 5,9 4,9
n renne 10,7 20,3 2,5
o) truie 7,1 5,1 3,7
p zébre 3,0 4.8 5,3

Moyennes 6,44 8,44 4,18
Ecarts-types 3,50 6,87 1,60

— les coefficients u;1 qui interviennent dans cette combinaison linéaire doivent
étre tels que :

2 2 2 .

uly +uyy +uz =1

— les coefficients u;; doivent, en outre, étre tels que la variance des z;; soit
maximum.

La seconde contrainte est une forme de normalisation, sans laquelle la troi-
siéme contrainte serait dénuée d’intérét. On pourrait, en effet, toujours augmen-
ter la variance des z;1, en multipliant tous les coefficients u;; par une constante
arbitrairement grande.

La solution numérique du probléme qui vient d’étre posé est la suivante :
u1p = —0,585, w9y = —0,569 et wugz; =0,578.
et nous verrons, au paragraphe 2.2, comment elle est obtenue.

Disposant de ces coefficients, on peut déterminer les valeurs de I'indice pour
chacun des individus (tableau 3). Ainsi, par exemple, pour I’anesse on a :

211 = (—0,585)(—1,354) + (—0,569)(—1,024) + (0,578)(1,263) = 2,105 .

Comme nous le préciserons par la suite (paragraphes 3.1 et 3.2), cette
combinaison linéaire est celle qui résume au mieux le tableau 2. La variance



Tableau 2 — Teneurs en protéines, graisse et lactose du lait de 16 mammiféres :
données centrées et réduites.

COd_Q Nom Ti1 xTio T3

a anesse -1,354 -1,024 1,263
b baleine 1,332 1,858 -1,615
¢ biche 1,132 1,639 -0,990
d brebis -0,239 -0,297 0,325
e buffle -0,154 0,078 0,325
f chamelle | -0,839 -0,733 0,387
g cobaye 0,275 -0,180 -0,927
h jument -1,096 -1,083 1,701
i lama -0,725 -0,762 0,888
j lapine 1,675 0,679 —1428
k mule -1,268 -0,966 0,825
1 rate 0,789 0,606 -0,551
m renarde 0,046 -0,369 0,450
n renne 1,218 1,727 -1,052
o} truie 0,189 -0,486 —0,301
p zébre -0,982 -0,529 0,700

de cette combinaison linéaire est égale a 2,801. Comme nous le préciserons au
paragraphe 3, le rapport entre la variance de l'indice et la somme des variances
des trois variables du tableau 2, qui est égale & trois du fait de la standardisation,
représente la part de la variance des variables initiales qui est prise en compte
par la combinaison linéaire. Cette part est égale & :

2,801/3=0,930u93 %.

Si on souhaite prendre en compte une part plus grande encore de la variabi-
lité des colonnes du tableau 2, il faut définir un deuxiéme indice, z;2, déterminé
de la maniére suivante :

— il doit étre une combinaison linéaire des variables centrées réduites :
Zi2 = U12 T3l + U22 Ti2 + U32 T43 ;

— les coefficients u ;2 qui interviennent dans cette combinaison linéaire doivent
étre tels que :

2 2 2 .
Ujg +Usy + U3y =1 et  wyyuro + u21 U2z + uszg uza =0

— les coeflicients u ;o doivent étre tels que la variance des z;o soit maximum
tout en respectant les contraintes ci-dessus.

Par rapport & la définition du premier indice synthétique, une contrainte
supplémentaire a été ajoutée : la somme des produits des coefficients des deux



combinaisons linéaires est nulle, ce qui se traduira par la non corrélation entre
les valeurs du premier indice et les valeurs du second indice : le second indice
contiendra donc une information non redondante par rapport au premier indice.

La solution du probléme est la suivante :
u1g = —0,233, w92 =0,801 et wuzs =0,552,

et on peut, comme ci-dessus, calculer les valeurs de cet indice pour chaque indi-
vidu. Les résultats sont repris dans le tableau 3. La variance de ce second indice
est égale & 0,142 et la part de la variabilité des variables centrées réduites prise
en compte par cet indice est de :

0,142/3 =0,047 ou 5%.

La prise en compte simultanée des deux indices permet donc de retrouver
98 % de la variabilité des variables x1, x> et x3.

On peut encore calculer un troisiéme indice, z;3, en rajoutant aux contraintes
équivalentes & celles imposées lors du calcul de z;; les deux contraintes suivantes :

U1 w13 +u21 U2z +uzg uzz =0 et w2 Uiz + usp Uz +us2uzz =0,

qui assurent la non-corrélation des z;3 et z;1 d’une part, et des z;3 et z;5 d’autre
part. La solution obtenue s’écrit :

w13 = 0,777; w93 = —0,188 et wug3 =0,601.

La variance des z;3 vaut 0,057 ; elle correspond & 2 % de la variance cumulée
des variables x1, xs et x3. Les valeurs z;3 sont données dans le tableau 3.

De facon plus générale, pour un tableau de données comportant p colonnes,
on pourra définir p indices synthétiques, d’importance décroissante et non corré-
lés. Ces indices sont appelés scores ou valeurs des composantes principales. La
méthode de calcul de ces composantes est précisée au paragraphe 2.2.

En pratique, on ne s’intéressera le plus souvent qu’aux premiéres compo-
santes principales qui, comme nous venons de le voir, contiennent I’essentiel de
I'information. Ce point sera développé aux paragraphes 2.3 et 6.2.

2.2. Valeurs et vecteurs propres de la matrice de corrélation

Au paragraphe précédent, nous avons donné les principes a la base de la
détermination des valeurs des composantes principales, dans le cas de trois varia-
bles. Nous allons maintenant préciser comment on détermine numériquement les
coefficients qui interviennent dans ces combinaisons linéaires et ce, quel que soit
le nombre de variables initiales.

Le point de départ est la matrice de corrélation, R, des p variables initiales.
Cette matrice carrée est de dimensions px p, de rang r (r < p) et admet r valeurs
propres positives :

ll 2122217'7



Tableau 3 — Valeurs des composantes principales.

Code Nom Zil Zio Zi3
a anesse 2,105 0,193 -0,100
b baleine | —2,770 0,285 -0,285
C biche -2,167 0,502 -0,023
d brebis 0,496 -0,002 0,065
e buffle 0,322 0,152 0,090
f chamelle | 1,132 -0,177 -0,282
g cobaye -0,594 -0,720 -0,310
h jument 2,241 0,328 0,374
i lama 1,371 0,049 0,113
j lapine -2,191 -0,636 0,316
k mule 1,768 -0,022 -0,308
1 rate -1,125 -0,004 0,168
m renarde 0,443 -0,058 0,376
n renne -2,303 0,517 0,010
o truie -0,008 —-0,599 0,057
P zébre 1,280 0,192 -0,243
auxquelles sont associés r vecteurs propres ui ,us, ..., .

Les valeurs propres sont les variances des valeurs des composantes princi-
pales :
s, =li,...,8, =1,

et, lorsqu’il est normé & 'unité, le vecteur propre u;, relatif & une valeur [;, a
comme éléments les coefficients de la combinaison linéaire de la composante z; :

Upj

Les n valeurs de la composante, z;;, s’obtiennent par le produit matriciel
suivant, :
zj = X u;,

X étant la matrice des données centrées et réduites.

En utilisant les matrices partitionnées, on peut aussi écrire :
Z=(21...2,)=X(u1...u,) = XU,

ol Z est la matrice obtenue par la juxtaposition des r colonnes z; et U est la
matrice obtenue par la juxtaposition des r vecteurs propres u;.



Tableau 4 — Corrélations entre variables initiales et corrélations des variables
initiales avec les composantes principales.

Variables T To T3 21 Z9 23
1 1,000 0,897 -0,938 | —0,979 0,088 0,186
To 0,897 1,000 -0,865 | 0,952 0,301 —0,045
T3 -0,938 0,865 1,000 | 0,968 0,208 0,144

Le plus souvent, le rang r de la matrice de corrélation est égal & p. Toutefois
si les variables initiales présentent des combinaisons linéaires ou si le nombre de
variables est supérieur au nombre d’observations, r sera inférieur & p. Ce sera,
par exemple, le cas si une variable est une transformation linéaire d’une autre
variable ou, dans le cas de pourcentages (ou de proportions) lorsqu’une variable
est obtenue en calculant le complément a 100 (ou & I'unité) de la somme d’une
série d’autres variables.

Si on multiplie les éléments d’un vecteur propre w; par la racine carrée
de la valeur propre correspondante, on obtient la corrélation de la composante
principale z; avec chacune des variables initiales. Ces corrélations seront utiles
pour préciser la part de la variance d’une variable donnée prise en compte par
une composante principale particuliére (paragraphe 3.1) et seront utilisées pour
les représentations graphiques des variables dans les cercles de corrélation (pa-
ragraphe 4.2).

Pour 'exemple considéré, les corrélations de la premiére composante avec
les trois variables initiales sont égales a :

Toray = (—0,585)(1/2,801) = —0,979; 7,4, = (—0,569)(1/2,801) = —0,952

et Tarzs = (0,578)(v/2,801) = 0,968,

et on pourrait, de la méme maniére, calculer la corrélation de zo et de z3 avec
les trois variables initiales. Les résultats sont repris dans le tableau 4, de méme
que les corrélations entre les variables initiales.

3. SIGNIFICATION ALGEBRIQUE ET GEOMETRIQUE

3.1. Reconstitution du tableau de départ

Les vecteurs propres u,; sont orthogonaux et de normes unitaires. En effet, le
caractére orthogonal se justifie par la nullité du produit scalaire de deux vecteurs
propres u; et w; :

UPj UL+ s Upj Upjr = 0

et le fait que la norme soit unitaire résulte de la standardisation adoptée :

2 2 2
U1j+U2j+...+upj:1.



Si r = p, la matrice U, obtenue en juxtaposant les p vecteurs propres est
dite orthogonale et posséde la propriété suivante :

v =U'U=1,
I étant la matrice identité, de dimensions p x p.

En utilisant cette propriété, et en partant de la relation matricielle donnant
Z on a, en postmultipliant par U’ :

ZU' =XUU' =X.

Cette relation montre que les données initiales, X, peuvent étre retrouvées
& partir des vecteurs propres et des valeurs des composantes principales.

En partitionnant les matrices Z et U’, on obtient :

’
uy
7

ZU' = (21...2) : :zlull+...+zrur:X1+...+Xr:X.

”

La matrice X des données initiales peut donc étre reconstituée par la
somme de r matrices, chacune de celles-ci étant liée a une composante prin-
cipale.

Le tableau 5 reprend les résultats de la reconstitution des variables initiales,
d’une part, a partir de la premiére composante et, d’autre part, & partir des
deux premiéres composantes principales. La premiére partie correspond donc
aux colonnes de X1 et la seconde partie correspond aux colonnes de X1 + Xo.
Le tableau donne également les sommes des carrés des différentes colonnes et on
peut vérifier que les moyennes de ces colonnes sont, aux erreurs d’arrondis prés,
toutes nulles.

Si on exprime les sommes des carrés des variables reconstituées a partir de
z1 en proportion de la somme des carrés des variables initiales, égale a 15, on
obtient, les valeurs suivantes :

14,366/15 = 0,958, 13,608/15=10,907 et 14,043/15=0,936.

Ces valeurs sont égales aux carrés des coeflicients de corrélation de z; et
1, de z1 et x5 et de z1 et x3, que nous avons donnés au tableau 4.

Ces valeurs indiquent, pour chacune des variables initiales, la part d’infor-
mation qui est conservée quand on se limite, dans 'interprétation, 4 une seule
composante, le complément & 'unité étant la part d’information qui est perdue
si on néglige les deux derniéres composantes. On peut constater que, pour cet
exemple, la premiére composante permet de reconstituer plus de 90 % de ’infor-
mation contenue dans les variables initiales, cette proportion atteignant méme
96 % pour la premiére variable.



Tableau 5 — Reconstitution de X & partir de la premiére composante et & partir
des deux premiéres composantes.

Premiére composante Premiére et deuxiéme
Code composantes
T T2 T3 I T2 I3

~1,231 -1,1908 1217 | -1,276 -1,043 1,323
1,620 1,576 -1,601 | 1,553 1,804 1,444
1,267 1,233 -1,253 | 1,150 1,635 0,976
~0,290 0,282 0,287 | -0,200 -0,284 0,286
0,188 0,183 0,186 | -0,224 0,061 0,270
0,662 0,644 0,654 | -0,620 -0,786 0,556
0,347 0,338 0,343 | 0,515 -0,238 0,741
~1,310 -1,275 1,295 | -1,387 -1,012 1,477
0,802 0,780 0,793 | -0,813 0,741 0,820
1,281 1,247 1,267 | 1,430 0,738 1,617
~1,034 -1,006 1,022 | -1,029 -1,024 1,010
0,658 0,640 -0,650 | 0,659 0,637 -0,652
0,259 0,252 0,256 | -0,245 -0,299 0,224
1,347 1,311 -1,331| 1,226 1,725 1,046
0,005 0,005 -0,005| 0,145 -0475 -0,336
0,749 —0,729 0,740 | -0,793 —0,575 0,846

Somme des carrés | 14,366 13,608 14,043 | 14,482 14,970 14,690

T OB B —R< DR R0 A0 T

Si on additionne les sommes des carrés des trois premiéres colonnes du
tableau 5 et qu’on divise le résultat par la somme des sommes des carrés des
trois variables initiales on obtient le résultat suivant :

(14,3664 13, 608 + 14, 043) /45 = (0,958 +0,907 +0,936)/3 = 2,801/3 = 0,934 .

En moyenne, pour les trois variables initiales, la part d’information prise
en compte par la premiére composante est égale & 93 %, cette valeur étant égale
au rapport de la premiére valeur propre a la somme des valeurs propres. Cette
valeur montre que X1 est une bonne approximation de X, puisque X1, contient
93 % de l'information de X.

Les calculs ci-dessus peuvent également étre effectués pour la deuxiéme et
la troisiéme composante. On constaterait, par exemple, que la deuxiéme com-
posante explique 0,8 % de la premiére variable, et que la troisiéme composante
explique 3,5 % de cette méme variable. On constaterait aussi que X contient
5 % et que X3 contient 2 % de 'information de X, comme nous ’avons déja
signalé au paragraphe 2.1.

Si maintenant on prend en considération les deux premiéres composantes,
I'information prise en compte est égale & la somme de l'information prise en
compte par la premiére composante et par la deuxiéme composante. Ainsi, pour



la teneur en protéines, les deux composantes expliquent :

(—0,979)2 + (—0,088)2 = 0,958 + 0,008 = 0,966 soit 96,6%.

Aux erreurs d’arrondis prés, cette valeur est égale & la somme des carrés
des éléements de la premiére colonne de X1 + X2 (tableau 5), divisée par 15 :

14,482/15 = 0, 965 .

Globalement aussi, les deux premiéres composantes permettent de retrou-
ver :

(2,801 4 0,142)/3 =0,981 ou 98,1%

de l'information contenue dans X. La somme X + X donne donc une trés
bonne approximation de la matrice X.

Pour synthétiser, on peut donc dire que :

— la part de l'information contenue dans une composante z; et relative a
une variable initiale xj est égale au carré du coefficient de corrélation de
zj et T

— la part de I'information contenue dans une composante z; pour I’ensemble
des variables est égale & la moyenne des proportions de l'information
relative & chacune des variables initiales ou encore & la valeur propre [;,
exprimée en proportion de la somme des valeurs propres.

3.2. Définition d’un nouveau systeme d’axes

Dans les paragraphes qui précédent, nous avons examiné ’analyse en com-
posantes principales sous un angle algébrique. Le probléme peut cependant aussi
étre envisagé sous 'aspect géométrique.

Le lait des 16 mammiféres peut étre représenté dans un espace a trois
dimensions, chacune des dimensions représentant une variable initiale. Le nuage
des 16 points est centré sur ’origine du fait de la standardisation.

Si on place, dans I’espace & trois dimensions, un nouvel axe gradué passant
par lorigine et qu’on calcule la somme des carrés des projections des 16 points
sur cette droite, la valeur de cette somme des carrés dépendra de la position de
la droite considérée car le nuage des points présente une direction d’allongement
nettement privilégiée, du fait des corrélations importantes qui existent entre les
variables initiales. Le premier axe principal est précisément ’axe qui maximise
la somme des carrés des projections des 16 points sur 'axe et les valeurs des
projections sont les valeurs de la premiére composante principale, z;1. Quant aux
coefficients directeurs de 'axe, ils sont égaux aux éléments du premier vecteur
propre de la matrice de corrélation.

Le deuxiéme axe principal est un axe gradué passant par l'origine et per-
pendiculaire au premier axe principal dont la position est telle que, compte tenu
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de la contrainte ci-dessus, la somme des carrés de projections est maximale. Les
projections des points sur cet axe sont les valeurs de la deuxiéme composante,
Zi2.

Enfin, le troisiéme axe principal est perpendiculaire au plan formé par les
deux premiers axes principaux et les projections des points sur cet axe sont les
valeurs de la troisiéme composante, z;3.

Géométriquement donc, on remplace le systéme de coordonnées initiales
par un nouveau systéme d’axes, z1 22 et z3. Cette opération ne modifie pas les
distances des points par rapport & l'origine des axes. En effet, pour le premier
individu par exemple, le carré de la distance du point & l'origine est égal, pour
les axes initiaux, & :

2 4+ 2ty + aty = (—1,354)% + (—1,024)% + (1,263)% = 4,477,
et pour les nouveaux axes, & :

23+ 2l + 2% = 2,105% + 0,193% 4 (—0,100)? = 4, 478.

Aux erreurs d’arrondis prés, on trouve bien la méme valeur.

L’intérét de ce changement d’axes est que les nouveaux axes sont d’impor-
tance décroissante et que les projections des points sur ces axes sont non corré-
lées.

Le fait que, pour I'exemple considéré, la premiére composante représente
93 % de 'information signifie que, dans I’espace & trois dimensions, les points sont
trés concentrés autour du premier axe principal. Si on prend les deux premiéres
composantes en considération, la qualité de la représentation est de 98 % : les
points sont donc approximativement situés dans le sous-espace z1, zo2, qui est un
sous-espace de z1 xo et x3 ou, ce qui revient au méme, de z; 2o et z3.

L’interprétation géométrique donnée ci-dessus pour trois variables et 16 in-
dividus peut évidemment étre étendue & un nombre quelconque de variables
et d’individus : les composantes principales sont des axes perpendiculaires cor-
respondant aux directions dans lesquelles la variabilité est la plus grande et les
projections des individus sur ces axes correspondent aux valeurs des composantes
principales.

4. REPRESENTATIONS GRAPHIQUES

4.1. Cercles des corrélations

Les cercles des corrélations sont des graphiques visant & représenter géomé-
triquement les variables dans le nouveau systéme de coordonnées.

Pour 'exemple considéré, seule la représentation des trois variables initiales
dans le plan formé par les axes z1 et z9 et appelé premier plan factoriel est utile,
compte tenu de 'importance de ces deux axes dans la reconstitution des variables
(figure 1).
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Figure 1 — Cercle de corrélation dans le plan formé par z; et zs.

Les coordonnées des variables initiales sur z; sont les corrélations des va-
riables avec z1 soit, —0, 979 pour z1, —0, 952 pour x5 et 0,968 pour x3. De méme,
les coordonnées sur zs sont les corrélations des variables avec zs, soit —0, 088
pour z1, 0,301 pour zs et 0,208 pour z3. Ces corrélations ont été données dans
le tableau 4.

Il s’agit en réalité d’une représentation déformée, car on a projeté, dans
un espace a deux dimensions, trois points qui se situent dans un espace a trois
dimensions, la troisiéme coordonnée étant la corrélation des variables avec zs.
Pour ’exemple considéré, la déformation est cependant trés peu importante car
les corrélations avec z3 sont trés faibles.

Les trois points-variables se trouvent en réalité sur une sphére de rayon
unitaire. Nous avons vu, en effet, au paragraphe 3.1, que le carré de la corré-
lation d’une variable, par exemple x1, avec z; correspond & la proportion de la
variance de x1 prise en considération par z;. Nous avons vu également que toute
la variance de x1 est restituée si on prend en considération les trois composantes,
la somme des carrés des trois corrélations étant égale & l'unité :

(—0,979)2 + (—0,088)% + (0,186)% = 1.
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Il en va de méme pour xs et x3. Les trois points dans ’espace & trois
dimensions sont donc & une distance unitaire de I'origine des axes : ils sont donc
situés sur une sphére.

Les projections de ces points dans un plan se situent nécessairement sur ou
A lintérieur d’un cercle de rayon unitaire. C’est la raison pour laquelle ce type
de représentation graphique est dénommé cercle de corrélation.

D’autre part, plus un point-variable est proche du cercle, plus la qualité
de la représentation de la variable est bonne, car, nécessairement, la troisiéme
coordonnée sera faible. Autrement dit aussi, un point proche du cercle correspond
A une variable qui est bien reconstituée par les composantes retenues. A 'inverse,
une variable plus éloignée du cercle est une variable pour laquelle la troisiéme
composante joue un role plus important dans la reconstitution de la variable.

D’une maniére plus générale, si le rang de la matrice de corrélation est
supérieur a trois, les points-variables se trouvent sur une hypersphére de rayon
unitaire et on cherche & se faire une idée de la position relative des points sur
cette hypersphére par une série de projections dans des plans factoriels et, lors
de l'interprétation de la proximité de deux ou plusieurs points, on tient compte
de la qualité des représentations des points dans ces plans : deux points proches
dans un plan ne sont pas nécessairement proches sur I’hypersphére, sauf si, dans
ce plan, ils sont proches du cercle de rayon unitaire.

Les cercles de corrélation sont des éléments importants pour l'interpréta-
tion des données. Ils permettent parfois de donner une interprétation physique a
certaines composantes principales. Ainsi, ’examen de la figure 1 fait apparaitre
une opposition entre la teneur en lactose d’une part (corrélation positive im-
portante avec le premier axe) et la teneur en protéines et la teneur en graisse
d’autre part (corrélations négatives importantes avec le premier axe); 'axe 1
est donc un axe de richesse en lactose et de pauvreté en protéines et graisse.
L’interprétation du deuxiéme axe est plus difficile et, sans doute sans intérét,
car les corrélations sont nettement moins marquées. On notera simplement que
cet axe est lié & la richesse en graisse et en lactose.

4.2. Graphique des individus

Nous avons vu, au paragraphe 3.2, que les points correspondant aux 16 mam-
miféres sont concentrés & proximité du plan formé par les axes z1 et zo. On va
donc tout naturellement réaliser des représentations graphiques des individus
dans ce plan. Les coordonnées de chaque point sont les valeurs de la composante
z;1 et de la composante z;5 (figure 2).

On constate que la dispersion des points selon z; est beaucoup plus impor-
tante que la dispersion des points selon zo. En effet, la variance des z;; est de
2,801 alors que la variance des z;o n’est que de 0,142. A ce sujet, on sera atten-
tif aux éventuelles distorsions du graphique qui peuvent résulter de I'utilisation
des logiciels, lorsque les procédures standards d’établissement de diagrammes de
dispersion prennent en compte des longueurs différentes pour les unités des deux
axes.
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Figure 2 — Représentation des individus dans le premier plan factoriel.

Il ne faut pas perdre de vue que les points sont projetés dans le plan fac-
toriel alors qu’en réalité ils sont situés dans un espace a trois dimensions. Cette
troisiéme dimension est négligeable car, en moyenne (quadratique), la coordon-
née des points sur ce troisiéme axe est égale & la racine carrée de la troisiéme
valeur propre, soit approximativement 0,24. Cette coordonnée moyenne (qua-
dratique) peut cependant cacher des disparités, car, comme le montre le tableau
3, elle varie en fait de 0,010 & 0,376.

En pratique, pour évaluer la qualité de la représentation d’un point projeté
dans un sous-espace, ici le sous-espace formé par les axes z1 et 2o, on détermine
le rapport entre les carrés de deux distances. La premiére distance est la distance
euclidienne, par rapport & l'origine, du point projeté dans le sous-espace et la
deuxiéme distance est la distance euclidienne, par rapport & 'origine, du point
dans ’espace complet. Ainsi par exemple pour I’Anesse, le carré de la premiére
distance est égal & :

d3y = 23, + 235, = 2,105% 4 0,193% = 4, 468 ,
et le carré de la deuxiéme distance est égal & :

d3gs = 22 + 255 + 255 = 2,105 + 0,193 + 0,100% = 4,478..

Le rapport, désigné par le sigle cos?, est donc égal & :

4,468/4,478 = 0,998.
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Tableau 6 — Valeur des cosinus carrés, en %, pour les deux premiers axes et pour
le premier plan factoriel.

Code Nom Axel Axe?2 Plan 1-2
a anesse 98,9 0,8 99,8
b baleine 97,9 1,0 99,0
c biche 94,9 5,1 100,0
d brebis 98,3 0,0 98,3
e buffle 76,8 17,2 93,9
f chamelle | 92,0 2,3 94,3
g cobaye 36,5 53,6 90,1
h jument 95,3 2,0 97,3
i lama, 99,2 0,1 99,3
] lapine 90,5 7,6 98,1
k mule 97,0 0,0 97,1
1 rate 97,8 0,0 97,8
m renarde 57,6 1,0 58,6
n renne 95,2 4.8 100,0
o) truie 0,0 99,1 99,1
p zébre 94,5 2,1 96,6

Il s’agit en fait du cosinus carré de l'angle formé par le segment reliant
Porigine des axes au point projeté dans le plan (z1,2z2) et par le segment reliant
I’origine des axes au point dans ’espace complet.

La qualité de la représentation d’un point dans le plan peut d’ailleurs étre
obtenue en additionnant les cosinus carrés relatifs aux deux axes. Ainsi, pour
I’anesse, le cosinus carré pour le premier axe vaut :

24 ) (23 + 23y + 215) = 2,105%/4,478 = 0,990,
et le cosinus carré pour le deuxiéme axe vaut :
21/ (271 + 235 + 215) = 0,193%/4,478 = 0,008,

et la somme des deux cosinus carrés vaut bien 0,998.

Le tableau 6 donne les cosinus carrés, d’une part, sur chacun des deux pre-
miers axes et, d’autre part, sur le premier plan factoriel. On constate que tous
les individus sont trés bien représentés dans le premier plan factoriel, & ’excep-
tion de la renarde, pour laquelle la troisiéme composante est non négligeable,
relativement aux deux premiéres, comme le montre le tableau 3, méme si, dans
I’absolu, cette composante n’est pas trés importante puisqu’elle vaut 0,376.

Compte tenu de l'interprétation qui a été faite du premier axe au para-
graphe précédent, les animaux sont classés sur I'axe 1 en fonction de la richesse
de leur lait en lactose et de la pauvreté en protéines et en graisse. Ainsi, on
trouve donc & une extrémité la jument, I’Anesse et la mule dont les laits sont
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caractérisés par des teneurs importantes en lactose et des teneurs faibles en pro-
téines et graisse. A I'opposé, le renne, la biche, la baleine et la lapine ont un
lait riche en protéines et en graisse mais pauvre en lactose. La différence entre
la lapine et les trois autres animaux cités est liée & la plus grande pauvreté en
graisse et apparait lorsqu’on considére le deuxiéme axe.

Dans le cas d’un probléme de dimensions plus importantes et si on souhaite
prendre en compte plus de deux composantes principales, on réalise une série de
représentations graphiques a deux dimensions, de maniére & se faire une idée de
la situation des points dans un espace & plus de deux dimensions, comme nous
le verrons au paragraphe 5.

4.3. Variables et individus supplémentaires

Il peut arriver qu’on souhaite représenter une ou plusieurs variables dans les
cercles de corrélation, alors que ces variables n’ont pas été prises en compte lors
du calcul des composantes principales. De telles variables s’appellent variables
supplémentaires ou variables passives. Pour positionner une variable supplémen-
taire dans les cercles de corrélation, il suffit de calculer la corrélation de cette
variable avec les composantes principales qui ont été calculées & partir des autres
variables, dites actives.

Diverses raisons peuvent justifier I’existence d’une variable supplémentaire.
Il peut s’agir d’une variable particuliére, de nature un peu différente des autres
variables. Ainsi, PHILIPPEAU [1986], dans une étude de variétés de froment,
considére le rendement comme variable supplémentaire, les autres variables ayant
trait & des caractéristiques relatives au développement de la culture (hauteur de
I’épi & une date donnée, date d’épiaison, coefficient de tallage, etc.).

Une variable peut aussi étre traitée en variable supplémentaire parce qu’elle
présente des données manquantes pour un grand nombre d’individus. En effet,
les logiciels éliminent systématiquement de ’analyse les individus présentant une
ou plusieurs données manquantes. Si, pour une variable, de nombreuses données
sont manquantes, alors que les autres variables sont & peu prés complétes, la
prise en compte de la variable en question pour la définition des composantes
imposerait la suppression de tous les individus pour lesquels les données sont
manquantes, ce qui conduirait & un appauvrissement injustifié¢ des données. Cette
fagon de procéder permet de conserver tous les individus ayant des données
complétes pour les autres variables, sans toutefois éliminer tout & fait la variable
incompléte.

Pour 'exemple relatif & la composition du lait de 16 mammiféres, nous
allons considérer comme variable supplémentaire la teneur en eau du lait. Cette
variable est donnée par HARTIGAN [1975], en méme temps que les trois autres
variables qui ont été analysées. Ce n’est que pour simplifier la présentation de
I’analyse en composantes principales que la teneur en eau a été négligée jusqu’a
présent. Les données relatives & cette variable ne sont pas reprises ici, mais nous
avons calculé les coefficients de corrélation de cette variable avec zy et zo. Nous
avons obtenu 0,972 pour z1 et —0,218 pour zs.
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Le point relatif & cette variable serait donc situé légérement en-dessous du
point relatif au lactose, puisque sur ’axe 1 les coordonnées sont pratiquement
identiques tandis que sur I'axe 2, elles sont du méme ordre de grandeur, mais de
signe opposé.

De fagon analogue, on peut positionner, dans le graphique des individus,
un ou plusieurs individus supplémentaires. Ici aussi, différentes raisons peuvent
justifier la présence de ces individus supplémentaires. Un exemple typique est le
cas o les individus se répartissent en groupes, en fonction d’un critére qualitatif
qui n’a pas été pris en compte dans ’analyse. Pour mieux apprécier ’effet de ce
critére, on peut reporter sur le graphique des individus, des individus artificiels
qui représentent les individus moyens des groupes.

On peut aussi porter en individus supplémentaires des individus différents
de I’ensemble de maniére & ce que la position des axes ne soit pas influencée par
ces individus atypiques. Si ceux-ci sont trop différents des autres, leur représen-
tation graphique risque cependant d’étre sans intérét, dans la mesure ou ils se
situeront nettement en dehors du nuage de points.

Pour positionner un individu supplémentaire, on calcule la valeur des com-
posantes principales pour l'individu en question par la relation suivante :

Zsj = s Uj ,

x s étant le vecteur contenant les observations (centrées et réduites) de I'individu
s et u; étant le j'¢ vecteur propre.

A titre d’illustration, considérons un individu supplémentaire dont le lait
serait caractérisé par une teneur en protéines de 2,1 %, une teneur en graisse de
1,4 % et une teneur en lactose de 6,2 %.

Les valeurs des variables centrées réduites sont donc :
zs1 = (2,1 —6,44)/3,50 = —1,239,
Tso = (1,4 —8,44)/6,87=—1,024,
et Ts3 = (6,2 —4,18)/1,60 =1,263,
et les valeurs des composantes seraient :
zs1 = (—0,585)(—1,239) + (—0,569)(—1,024) + (0,578)(1,263) = 2,038,
zs2 = (—0,233)(—1,239) + (0,801)(—1,024) + (0,552)(1,263) = 0,167,
et zs3 = (0,777)(—1,239) + (—0,188)(—1,024) + (0,601)(1,263) = —0,011.

Dans le premier plan factoriel, 'individu supplémentaire se situerait & proxi-
mité du point représentant ’anesse.

5. ANALYSE D’UN PROBLEME PRATIQUE

5.1. Nature des données

Dans le cadre d’une étude sur la qualité du bois de hétre, LECLERCQ [1979]
a sélectionné 68 arbres dans lesquels il a débité des morceaux de bois, appelés
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éprouvettes, afin de déterminer, selon des normes bien particuliéres, une série de
propriétés physiques et mécaniques. Nous avons retenu les neuf caractéristiques
suivantes :

D : masse volumique (kg/m?),
RVT : retrait volumétrique total (%),
N : dureté,

F module de flexion statique (kg/cm?),
K : coefficient de résilience (kgm/cm?),
C résistance unitaire en compression (kg/cm?),

T :  résistance unitaire en traction (kg/cm?),
FD : résistance unitaire en fendage (kg/cm),
CS : résistance unitaire en cisaillement (kg/cm?).

La masse volumique est le rapport de la masse de I’éprouvette & son volume.
Le retrait volumétrique total traduit la variation du volume d’une éprouvette de
bois de I’état saturé d’eau a 1’état anhydre. La dureté est une caractéristique
mi-physique, mi-mécanique, qui traduit la résistance du bois a la pénétration
d’un cylindre d’acier appliqué sur la face radiale de ’éprouvette.

Les trois caractéristiques suivantes mesurent la cohésion axiale du bois. La
flexion statique mesure la charge nécessaire a la rupture d’une éprouvette placée
sur deux appuis, la charge étant appliquée progressivement. Le coefficient de ré-
silience, appelé aussi module de flexion dynamique, est lié & la charge provoquant
la rupture par un choc. La résistance unitaire en compression est lié & la charge
nécessaire & la rupture de ’éprouvette, cette charge s’exercant dans le sens de
I’axe de 'arbre.

Enfin, les trois derniéres propriétés ont trait a la cohésion transversale. La
résistance unitaire en traction est la résistance du bois & une traction perpendi-
culaire aux fibres du bois dans la direction radiale et exercée aux deux extrémités
de I’éprouvette. La résistance unitaire en fendage est liée a la charge provoquant
la rupture de I’éprouvette par un effet de traction exercé, dans la direction ra-
diale, & une extrémité de ’éprouvette. La résistance unitaire au cisaillement est
liée & la charge provoquant la rupture de I’éprouvette par cisaillement longitudi-
nal radial sous un effort de compression. Pour cet essai, I’éprouvette prend appui
sur la moitié d’une section et la charge est appliquée sur la moitié de la section
opposée.

Les données, reprises en annexe, concernent les valeurs moyennes observées
sur les 68 arbres, plusieurs essais ayant été réalisés par arbre.

5.2. Interprétation des résultats

L’analyse en composantes principales a été réalisée avec le logiciel SAS, en
utilisant les procédures PRINCOMP et FACTOR. Les figures 3 et 4, extraites
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D RVT N F K C T FD CS

D 1.0000 0.3757 0.8077 0.6669 0.6481 0.5054 0.7176 0.6870 0.6637
RVT 0.3757 1.0000 0.2914 0.3161 0.4862 0.2053 0.0343 0.0670 0.2132
N 0.8077 0.2914 1.0000 0.5420 0.4705 0.5198 0.5320 0.5797 0.7189
F  0.6669 0.3161 0.5420 1.0000 0.4865 0.6961 0.5360 0.3273 0.3253
K 0.6481 0.4862 0.4705 0.4865 1.0000 0.3960 0.3592 0.3213 0.4641
C 0.5054 0.2053 0.5198 0.6961 0.3960 1.0000 0.3324 0.1386 0.2994
T 0.7176 0.0343 0.5320 0.5360 0.3592 0.3324 1.0000 0.7769 0.3713
FD 0.6870 0.0670 0.5797 0.3273 0.3213 0.1386 0.7769 1.0000 0.4480
CS 0.6637 0.2132 0.7189 0.3253 0.4641 0.2994 0.3713 0.4480 1.0000

Figure 3 — Matrice de corrélation des caractéristiques technologiques.

des documents de sorties produits par ces procédures, reprennent la matrice de
corrélation des variables initiales, les informations relatives aux valeurs propres
de la matrice de corrélation et les coefficients de corrélation des variables initiales
avec les premiéres composantes principales.

L’examen de la matrice de corrélation (figure 3) montre que toutes les
corrélations sont positives et que, pour certains couples de variables, elles sont
assez élevées. La valeur la plus grande est égale & 0,81 et, si on élimine le retrait
volumétrique, la valeur la plus faible est de 0,14. Le retrait volumétrique, RVT,
est, dans ’ensemble, moins corrélé aux autres caractéristiques, la valeur la plus
grande n’étant que de 0,49. Cette variable semble donc se distinguer des autres.

La figure 4 donne les valeurs propres de la matrice de corrélation, les dif-
férences entre les valeurs propres successives, les proportions et les proportions
cumulées de la variance expliquée par les composantes. Elle donne également les
coefficients de corrélation des variables initiales avec les trois premiéres compo-
santes.

La premiére composante principale prend en compte 53 % de la variabilité
(figure 4). Elle est, de loin, la plus importante, puisque les deux composantes sui-
vantes n’expliquent, respectivement, que 15 et 11 %. A partir de la quatriéme, les
composantes sont nettement moins utiles et correspondent & des valeurs propres
inférieures & 'unité. Nous limiterons notre analyse aux trois premiéres compo-
santes qui, ensemble, expliquent 79 % de la variabilité.

L’examen des corrélations des variables avec la premiére composante montre
que toutes les variables sont corrélées positivement avec le premier axe. Sur les
deux cercles de corrélation (figure 5), tous les points variables sont donc situés
dans la partie droite du graphique. Cet axe peut s’interpréter comme un axe
de qualité globale du bois : les arbres qui ont des valeurs élevées pour les diffé-
rentes caractéristiques ont une valeur de la premiére composante qui est élevée
également et sont des arbres & bonnes propriétés technologiques. Inversement,
les arbres qui ont des valeurs faibles pour les différentes caractéristiques ont une
valeur faible de la premiére composante.
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Eigenvalues of the Correlation Matrix

Eigenvalue Difference Proportion Cumulative
Z1 4.78860 3.45846 0.532066 0.53207
Z2 1.33014 0.35858 0.147793 0.67986
Z3 0.97155 0.24236 0.107951 0.78781
zZ4 0.72920 0.27446 0.081022 0.86883
Z5 0.45474 0.18734 0.050526 0.91936
Z6 0.26740 0.06770 0.029711 0.94907
z7 0.19970 0.04431 0.022189 0.97126
Z8 0.15539 0.05211 0.017266 0.98852
Z9 0.10329 0.011476 1.00000

Factor Pattern

FACTOR1  FACTOR2  FACTOR3

D 0.94980 -0.06294 0.07269
RVT 0.40564 0.64611 0.43421
N 0.85903 -0.06079 0.07913
F 0.75446  0.25593 -0.45102
K 0.69942 0.35339 0.24591
C 0.62483 0.37055 -0.57589
T 0.74375 -0.47423 -0.17809
FD 0.69433 -0.58727 0.14149
CS 0.70706 -0.08685 0.35240

Figure 4 — Informations relatives aux valeurs propres et corrélations des variables
initiales avec les trois premiéres composantes principales.

Il s’agit 14 d’une interprétation trés globale, qui doit étre légérement nuan-
cée car un retrait volumétrique élevé n’est pas un facteur de qualité du bois,
contrairement aux autres caractéristiques, mais on constate que, précisément, ce
retrait volumétrique est la variable, de loin, la moins corrélée au premier axe.

La figure 6 donne une représentation graphique des arbres dans le premier
plan factoriel. Selon ’axe z1, les arbres s’ordonnent d’apreés leur qualité générale.
Pour illustrer cette interprétation, nous avons calculé la moyenne des diverses
caractéristiques pour les dix arbres qui ont les valeurs les plus faibles de z; et
pour les dix arbres qui ont les valeurs les plus élevées de z;. Les résultats sont
repris dans le tableau 7, qui donne aussi les moyennes des caractéristiques pour
I’ensemble des arbres. Il apparait trés clairement que les arbres avec les valeurs
petites de z; ont, en moyenne, des valeurs plus faibles des diverses caractéris-
tiques que les arbres avec les valeurs élevées de zy.

20



72

1.00 7
0.75 7
0.50
0.25 7

0.00

-0.25 7

-0.50 7

-0.75

-1.00 T T T T
-1.00 -0.75 -050 -0.25 0.00 025 050 075 1.00

1.00

0.75 7
0.50
0.25

71

0.00

-0.25 7

-0.50

-0.75

-1.00 T T T T
-1.00 -0.75 -050 -0.25 000 025 050 075 1.00

71

Figure 5 — Cercles de corrélation dans les deux premiers plans factoriels.
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Figure 6 — Représentation des arbres dans le premier plan factoriel.

Pour cet exemple, 'examen détaillé de la figure 6 ne présente guére d’inté-
rét, dans la mesure ot nous n’avons pas donné d’informations concernant les
arbres. Ceux-ci n’ont pas d’intérét par eux-mémes et il nous est donc assez
indifférent de connaitre la position dans le plan factoriel d’un arbre particulier.
Un examen rapide du graphique se justifie cependant pour vérifier s’il n’y a
pas un ou éventuellement plusieurs arbres tout a fait particuliers, qui seraient
situés en dehors du nuage de points. Une telle situation pourrait se présenter,
par exemple, du fait d’erreurs dans les données.

La deuxiéme composante principale est corrélée positivement avec le retrait
volumétrique total et, dans une mesure moindre, avec les trois caractéristiques
liées & la cohésion transversale (F, K, et C). Elle est corrélée négativement avec
deux des trois caractéristiques liées a la cohésion radiale (FD et T). Sur le gra-
phique des individus, les arbres caractérisés par des valeurs faibles de zo sont
donc des arbres & résistances au fendage et en traction (FD et T) supérieures &
la moyenne et a retrait et cohésion axiale (F, K, et C) inférieurs a la moyenne,
tandis que les arbres avec des valeurs élevées de zo correspondent & des arbres
A retrait et cohésion axiale supérieurs & la moyenne et & résistances en fendage
et en traction inférieures a la moyenne. Le tableau 7, qui donne les moyennes
des caractéristiques pour les dix arbres les plus extrémes en ce qui concerne zs,
confirme bien cette interprétation.

Ce deuxiéme axe compléte donc 'information apportée par le premier axe.
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Tableau 7 — Valeurs moyennes des caractéristiques pour ’ensemble des arbres et
pour les dix arbres dont les valeurs des composantes sont les plus petites et les

plus grandes.

Variables | Ensemble 21 Z9 z3
petit grand | petit grand | petit grand
D 717 663 772 723 716 710 727
RVT 24,2 23,3 25,1 | 22,7 25,1 | 236 25,6
N 3,09 241 3,73 | 3,08 3,10 | 2,93 3,29
F 1163 1037 1281 | 1156 1227 | 1213 1109
K 0,423 0,352 0,533 | 0,384 0,464 | 0,392 0,455
C 531 499 577 513 562 566 504
T 44,6 39,8 49,7 | 47,8 418 | 450 443
FD 28,6 25,1 33,0 | 31,5 253 | 27,3 30,4
CS 157 138 174 160 161 144 168

En effet, a égalité de qualité globale, c’est-a-dire pour une valeur fixée de z1, ce
deuxiéme axe permet de différencier les arbres plutot meilleurs en cohésion axiale
et moins bons en cohésion transversale (FD et T) des arbres qui présentent la
situation inverse.

Quant a la troisiéme composante, elle oppose le retrait volumétrique, RVT,
et la résistance au cisaillement, CS, & la résistance en compression, C, et au
module de flexion statique, F. Les deux premiéres caractéristiques citées sont
corrélées positivement tandis que les deux derniéres sont corrélées négativement
avec z3. Les arbres caractérisés par une valeur faible de z3 ont donc dans l'en-
semble un retrait volumétrique et une résistance au cisaillement plus faibles que
la moyenne, un module de flexion statique et une résistance en compression plus
importants que la moyenne. La situation inverse s’observe pour les arbres & va-
leur élevée de z3 (tableau 7). Cette troisiéme composante dissocie donc les trois
variables liées & la cohésion axiale, qui, dans le premier plan factoriel, étaient
relativement groupées. Au-deld des constatations résumées ci-dessus, il est diffi-
cile de donner une interprétation pratique et concréte de ce troisiéme axe, qui,
rappelons-le, n’explique que 11 % de la variabilité.

6. QUELQUES INFORMATIONS COMPLEMENTAIRES

6.1. Transformation des variables

Dans les deux exemples qui ont été examinés, nous avons calculé les va-
leurs et les vecteurs propres de la matrice de corrélation des variables et nous
avons vu, au paragraphe 3.1, que les premiéres composantes principales obtenues
permettaient de reconstituer au mieux le tableau des données centrées réduites.

Les valeurs et vecteurs propres de la matrice de corrélation sont aussi, & une
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constante prés, les valeurs et les vecteurs propres de la matrice X'X, puisque,
si X est la matrice des données centrées réduites, la matrice de corrélation est,
4 une constante prés, égale & X' X.

Le principe de la reconstitution d’une matrice X n’est, en fait, pas limité au
cas ou X correspond aux variables centrées réduites, mais peut s’envisager quelle
que soit X . L’analyse en composantes principales telle qu’elle a été présentée,
n’est donc qu’un cas particulier d’une analyse plus générale. Des informations a
ce sujet sont données par PALM [1994], notamment.

La standardisation a comme conséquence de donner & chaque variable un
poids identique dans ’analyse. Elle se justifie pratiquement toujours quand les
variables initiales sont exprimées dans des unités différentes, comme dans le cas
de I’étude des propriétés du bois de hétre. Dans cette situation, les résultats ob-
tenus en ’absence de standardisation seraient fonction des unités dans lesquelles
sont, exprimées les caractéristiques initiales.

Il peut arriver cependant, et notamment quand les variables sont expri-
mées dans des unités identiques, qu’on souhaite accorder aux variables un poids
fonction de leur variance. On procéde alors au calcul des valeurs propres et des
vecteurs propres de la matrice des variances et covariances. La somme de toutes
les valeurs propres est, dans ce cas, égale & la somme des variances des variables
initiales.

Pour ’exemple de la composition du lait des mammiféres, les trois variables
sont exprimées en pour cent et on aurait pu envisager de ne pas standardiser
les variables. L’analyse de la matrice des variances et covariances aurait, dans
ce cas, attribué un poids beaucoup plus important & la teneur en graisse qu’a la
teneur en protéines et surtout qu’d la teneur en lactose puisque I’écart-type de
la teneur en graisse est plus grand que les deux autres écarts-types (tableau 1).

Pour certaines applications, un compromis peut étre trouvé en procédant &
une transformation de variables et en réalisant une analyse sur la matrice des va-
riances et covariances des données transformées. Un exemple est donné par NAIK
et KHATTREE [1996], qui analysent les résultats obtenus par une cinquantaine
de pays lors d’épreuves olympiques de courses (100 m, 200 m, ..., marathon).
Ces auteurs ont trouvé que le fait de centrer et de réduire les temps obtenus aux
différentes épreuves ne permettait pas une bonne interpréation des résultats. Ils
ont proposé de définir de nouvelles variables, qui sont les distances couvertes par
unité de temps dans chaque épreuve, et de procéder & ’analyse de la matrice de
variances et covariances de ces distances.

Indépendamment du probléme de la standardisation, des transformations
de variables peuvent étre utiles en présence de non-normalité trés accusée. En
effet, comme le soulignent LEBART et al. [1995], le critére des moindres carrés
est particuliérement bien adapté au cas de variables normales mais peut donner
un poids excessif aux observations extrémes dans le cas de distributions nette-
ment non normales. De méme, les transformations peuvent améliorer la linéarité
des relations existant entre les variables. Parmi les transformations classiques,
on pensera notamment & la transformation logarithmique, & la transformation
racine carrée et, dans le cas de données de rangs, au calcul des scores normaux.
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Enfin, dans certaines situations, on peut souhaiter éliminer, avant ’ana-
lyse, l'effet de certaines variables. On réalise alors une analyse en composantes
principales sur des résidus de régression [LEBART et al., 1995].

6.2. Nombre de composantes a retenir

Aucune régle rigoureuse ne peut étre donnée pour le choix du nombre de
composantes a prendre en considération lors d’une analyse en composantes prin-
cipales.

Si les observations constituent un échantillon aléatoire et simple d’individus
prélevés dans une population normale & p dimensions, on peut tester 1’égalité
des p— ¢ derniéres valeurs propres [DAGNELIE, 1975 ; JACKSON, 1991 ; SAPORTA,
1990]. Sil’hypothése est acceptée, on conserve les ¢ premiers axes et on néglige les
p—q derniers axes. L’utilisation de ce test conduit cependant souvent & considérer
un nombre élevé de composantes, dont certaines risquent de ne présenter aucun
intérét pratique.

Des régles empiriques peuvent également guider l'utilisateur. Une de ces
régles consiste & ne prendre en considération que les composantes pour lesquelles
la valeur propre est supérieure a la moyenne arithmétique de toutes les valeurs
propres. En particulier, si on travaille sur les données centrées réduites, cela
revient & négliger les composantes dont la variance est inférieure a I'unité.

L’examen de la décroissance des valeurs propres successives peut égale-
ment donner des indications quant aux composantes a retenir. Le graphique des
valeurs propres en fonction de leur rang présente souvent ’allure d’un éboulis
au pied d’un escarpement®, ce qui justifie le nom anglais de ce graphique. On
essaye, sur ce graphique, de détecter I'existence d’un coude, c’est-a-dire d’une
réduction assez brutale de la pente du graphique et on néglige les composantes
correspondant aux valeurs propres situées aprés ce coude.

De nombreuses autres régles sont encore proposées dans la littérature pour
déterminer le nombre de composantes & retenir. Une synthése est donnée par
JACKsON [1991].

Dans la pratique, le nombre de composantes retenues est également lar-
gement conditionné par la possibilité d’interpréter les composantes, du moins
lorsque ’analyse est réalisée dans un but purement descriptif.

Indépendamment de la détermination du nombre de composantes & rete-
nir, 'examen du graphique de I’ensemble des valeurs propres permet de tirer des
informations sur les variables soumises & ’analyse. Ainsi, si ces variables pré-
sentent ¢ relations linéaires exactes, les ¢ derniéres valeurs propres seront nulles.
A Dopposé, si toutes les variables sont parfaitement non corrélées et si les don-
nées sont centrées et réduites, toutes les valeurs propres seront égales & 1'unité.
La premiére situation se rencontre de fagon systématique si le nombre d’indivi-
dus est inférieur ou égal au nombre de variables. Si ce nombre est supérieur au
nombre de variables, la colinéarité exacte est rare en pratique. Par contre, une

En anglais : scree plot.
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colinéarité approximative est assez courante ; la ou les derniéres valeurs propres
sont alors presque nulles. De méme, la non corrélation parfaite ne s’observe
pratiquement jamais dans les situations réelles car, méme si les variables sont
indépendantes, de faibles corrélations existeront par le fait du hasard et les va-
leurs propres présenteront une faible décroissance. A titre d’illustration, nous
avons simulé 68 observations pour 9 variables normales indépendantes et calculé
les valeurs propres de la matrice de corrélation correspondante. Les calculs ont
été répétés 1000 fois et les moyennes de la plus grande valeur propre et de la
plus petite valeur propre sont respectivement 1,60 et 0,51. La comparaison de ces
deux valeurs aux valeurs correspondantes de la figure 4 montre bien que, pour
les données relatives au hétre, il existe effectivement des directions privilégiées
dans le nuage des points.

6.3. Interprétation des composantes

L’étude des corrélations des variables initiales et des différentes compo-
santes, ou ’examen des cercles de corrélation qui donnent des représentations
graphiques de ces corrélations, est un élément important de I’analyse des résul-
tats.

Ces corrélations permettent parfois de donner une signification concréte
aux axes. Cette signification dépend évidemment de la nature des données. Une
situation que l'on peut cependant rencontrer pour des problémes variés est la
présence d’un "facteur de taille". Ce facteur se rencontre quand toute les va-
riables présentent des corrélations positives. Dans ce cas, tous les éléments du
premier vecteur propre sont de méme signe. Puisque ce signe est arbitraire et
qu’on peut toujours multiplier un vecteur propre par —1, nous allons considérer
le cas ou il est positif. La premiére composante est alors corrélée positivement
& chacune des variables et, dans le cercle de corrélation, toutes les variables ini-
tiales se situent d’un méme co6té de ’axe. Si on classe les individus dans I'ordre
croissant des projections sur le premier axe, ceux-ci sont aussi rangés par valeurs
croissantes de ’ensemble des variables : les individus ayant des valeurs négatives
pour z1 ont des valeurs plus faibles que la moyenne pour I’ensemble des variables
et les individus ayant des valeurs positives pour z; ont des valeurs plus élevées
que la moyenne pour ’ensemble des variables.

Ainsi, dans une étude non publiée relative & la morphologie des moules, au
cours de laquelle une dizaine de mesures de longueurs et de poids avaient été
réalisées sur prés de 800 moules, la premiére composante permettait d’expliquer
93 % de la variabilité totale et traduisait simplement le fait que ’essentiel de la
variabilité des observations était lié & la présence dans I’échantillon de moules de
tailles fort variables. Ce premier axe était donc un axe de taille, au sens premier
du terme.

Pour cet exemple, 'importance du facteur taille masquait d’ailleurs I'intérét
des autres composantes, auxquelles n’étaient associées que des valeurs propres
faibles. Ainsi, la part de la variance expliquée par la seconde composante n’était
que de 3 %, soit beaucoup moins que la proportion moyenne (10 % lorsqu’il y a
dix variables). La prise en compte de cette seconde composante se justifie cepen-
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dant pleinement car, en définitive, c’est elle qui contient le plus d’information
utile, la premiére composante ne faisant que traduire une évidence. Dans un cas
comme celui qui est évoqué ici, on peut d’ailleurs trés facilement éliminer effet
de taille en réalisant ’analyse en composantes sur des valeurs relatives. Il suffit,
pour cela, de diviser, par exemple, toutes les mesures de longueur par la longueur
totale de I'individu et toutes les mesures de poids par le poids total de 'individu.
De cette facon, non seulement on élimine I’axe de taille, mais on réduit de deux
unités le nombre de variables, puisqu’on ne considére plus la taille totale et le
poids total des individus.

Pour les données relatives aux caractéristiques mécaniques du bois de hétre,
nous avons vu, au paragraphe 5.2, que la matrice de corrélation ne contenait que
des valeurs positives et le premier axe a été interprété comme un axe de qualité
globale. Il s’agit en fait, ici aussi, d’'un axe de taille.

En complément aux cercles des corrélations, les graphiques des individus
peuvent également étre utiles pour I'interprétation des composantes principales,
du moins lorsque les individus peuvent étre facilement identifiés. L’examen des
caractéristiques des individus les plus extrémes pour une composante donnée
peut, en effet, fournir des renseignements sur la signification des axes.

Il faut cependant noter que les composantes principales sont des variables
artificielles qui n’ont pas toujours une signification physique réelle, ce qui rend
évidemment leur interprétation nettement moins aisée [KSHIRSAGAR, 1972]. On
se limitera, par exemple, & constater qu’un axe oppose plus ou moins nettement
une caractéristique & une autre ou & un groupe d’autres caractéristiques ou qu’un
axe est lié & telle ou telle variable. Ainsi, dans I’exemple relatif aux caractéris-
tiques du bois de hétre, aucune signification physique nette n’a pu étre donnée
au deuxiéme et au troisiéme axe.

6.4. Quelques utilisations de I’analyse en composantes principales

Dans les paragraphes qui précédent, ’analyse en composantes principales a
essentiellement été présentée comme une méthode descriptive, visant & explorer
la structure d’un tableau de données par la prise en considération des liaisons
qui existent entre les variables. Elle conduit & une vision synthétique du tableau
de données et peut faire apparaitre une éventuelle structure dans les données qui
n’était peut-étre pas soupconnée au départ.

Elle peut par exemple révéler l'existence de groupes de variables ou de
groupes d’individus. Elle peut aussi mettre en évidence la présence d’individus
aberrants, dont le comportement s’écarte du comportement global de ’ensemble
des individus. Sur les graphiques des individus, ceux-ci seront situés en dehors
du nuage de points, soit pour un axe, soit pour plusieurs axes.

Dans de telles situations, il peut étre utile de recommencer ’analyse aprés
suppression de ces individus aberrants. En effet, leur élimination peut provoquer
des modifications, parfois importantes, des composantes principales. A ce sujet,
on notera que la suppression de ces individus ne signifie pas nécessairement que
ceux-ci sont définitivement éliminés de 'interprétation ultérieure des résultats.
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Ils sont éliminés de I’analyse en composantes principales de maniére & permettre
A celle-ci de révéler des informations initialement masquées.

L’analyse en composantes principales peut aussi étre utilisée pour visua-
liser et caractériser des groupes d’individus identifiés a priori ou résultant, par
exemple, d’une classification numérique. Un tel exemple est présenté dans une
autre note [PALM, 1996].

Une autre application importante de ’analyse en composantes principales
est son utilisation comme méthode de réduction de la dimension d’un probléme.
L’idée est de remplacer les p variables initiales par ¢ composantes qui sont uti-
lisées pour des analyses ultérieures. Cette substitution permet non seulement
de réduire la taille du probléme, car ¢ est inférieur a p, mais peut simplifier les
calculs puisque les nouvelles variables sont non corrélées. Cette derniére pro-
priété est notamment exploitée dans la technique de régression orthogonale. Des
informations a ce sujet sont données par PALM et IEMMA [1995].

En relation avec les problémes de régression, I’analyse en composantes prin-
cipales permet aussi d’identifier les variables impliquées dans les phénoménes de
colinéarité et, par conséquent, de fournir des informations quant aux variables &
exclure des modéles de régression. Des illustrations concrétes de cette application
sont données par PALM [1988] et TOMASSONE et al. [1983], notamment.
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ANNEXE

Données relatives aux caractéristiques du bois de hétre

LECLERCQ, 1979).

(d’aprés

CS

FD

RVT

0BS

177
175
181
150
176
148
178
163
123
153

45.0 29.9

548
525
580
470
512
549
495
547
533
466
517
542
487
495
518
503
487
558
464
588
451
546
584
483
522
593
482
532
576
505
497
477
499
489

0.480
0.364
0.532
0.530
0.366
0.472
0.344
0.435
0.421
0.424
0.417
0.412
0.351
0.399
0.528
0.345
0.365
0.483
0.328
0.368
0.295
0.302
0.434
0.323
0.368
0.431
0.332
0.372
0.401
0.502
0.395
0.609
0.411
0.405

1204
1096
1317

3.38
3.53
3.94
2.62
3.95
2.98
3.27
3.42
2.66

24 .4
2

739
705
746
709
758
700
694
706
710
672
672
752
671
684
715
672
697
761
666
712
613
708
731
665
680
721
685
653
724
708
729
745
705
732

28.2

40.7

22.6

28.5

45.2
44
47

25.4

29.8

.1
L7

1008
1166
1205
1055
1159
1184
1050
1130
1216

26.3

32.5

25.7

25.4

41

23.8

26.7

42.0

24.3

26.6

40.2

23.4

24.9

42.6

23.7

26.2

38.9
39

.10

22.7

10
11

154
165
157

22.9

.1

2.34
3

25.2

26.4

45.8

.18

25.9

12
13
14
15
16
17
18
19
20
21

28.2
27

39.8
41

1072

962
11563
1109
1005
1219

2.44
2.48
2.83
2.43
2.72
3.54
2.51
3.29

24.8

154
152
157
136
175
136
127
110

T

23.5

26.5

42.3

26.5

24.2

39.5

24 .4

23.7

35.8
46

23.3

28.3

.1

24.6

26.6

42.0

951
1221

24.0

28.0
24

42.7

25.0
22

.1

36.8

951
1143
1239
1006
1061

.19
3.08
3.70
2.54
3.30
3.84
3.38
2.43
3.23
3.04
3.06
3.35
2.98
3.34

.1

144
165
158

29.3

44 .4

24.5

22
23
24
25
26
27
28
29
30
31

27.2

45.8
41

23.6

27.7

22.5

164
160
168
131
133
152
157
171
142
160

26.3

42 .4

23.7

26.5

39.5
44
42

1268
1057
1068
1263
1121

25.6

28.6

.1
.1

24.3

25.9

24 .4

26.5

44 .4

24.5

25.0

43.0

24.9

28.4

42.8

1105
1109
1164
1090

24.6

30.2

42.3

25.0

32
33
34

27.6
31

43.3

25.9

45.4

25.3
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Données relatives aux caractéristiques du bois de hétre

(d’aprés LECLERCQ, 1979) (suite).

CS

FD

RVT

0BS

122
136
137

46.7 30.4

487
574
520
524
522
584
564
582
534
548
622
565
489
539
519
508
585
524
563
567
505
551
528
595
571
483
530
554
457
559

0.373
0.366
0.337
0.378
0.400
0.581
0.415
0.502
0.489
0.304
0.654
0.334
0.412
0.381
0.438
0.449
0.495
0.468
0.381
0.587
0.483
0.437
0.503
0.593
0.528
0.302
0.466
0.435
0.360
0.402

1440
1215
1031

2.70
2.52
2.61
2.45
2.33
4.33
3.29
3.04
3.62
2.86
3.44
2.24
3.07
2.95
3.02
3.21
3.93
3.33

3

25.9
25

713
686
642
698
685
789
733
724
769
687
758
660
737
715
710
741
788
761
715
767
713
703
772
779
768
734
713
740
686
709

35
36
37
38
39
40

256.2

40.7

.1

25.0
27

39.9

22.6

144
132
196
171
162
189
153

45.4
41

1194
1070
1208
1182
1294
1225
1066
1451

24.0

26.6

23.0

34.5

45.7

27.2

24.9

39.8

25.2

41

29.8

42.7
43

23.3

42

24.6

.1

24.8

43

29.2
28

44 .9

23.6

44
45

184
132
168
147
156
177
166
148

.1

46.7
40

25.8

20.6

.1

1127
1141

23.6

46

33.3

47.2
51

22.9

47

29.9

1149
1132
1275
1378
1145
1171

22.7

48

29.4

44 .6

23.4

49

32.5

50.2

22.9

50
51

35.3

50.4

24.6

33.6
29

50.7
48

22.9

52
53
54
55
56
57
58
59
60
61

154
158
151
155
167
170
176
169
156
155
140

.1

.1

11

22.2

35.9

54.5

1288
1076
1148
1174
1368
1187
1254
1187

3.81
3.08
2.59
3.43
3.50
3.74
3.52
3.38
2.85
2.36
2.87
3.50
3.24
3.69
3.38

25.4

30.0
27

46.9

23.5

45.0

25.2
26

35.5

49.6
51

.1

29.2

25.2

35.0

50.2

24.3

32.3

50.3

22.3

27.4

48.0

23.4

30.8

46.8

1188
1073
1235
1191
1154
1244
1270

24.0
23

62
63
64

29.4

45.6

.1

26.5 153

48.5

22.5

174
161
172
173

35.2
31

50.6

539
547
599
581

0.394
0.369
0.458
0.365

23.2

778
698
772
747

65
66
67

42 .4

22.0

32.7

52.0

23.6

32.2

48.9

23.5

68
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