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Cutting plane generation in mixed-integer programming

The mixed-integer programming problem

max cx + dw

s. t. Ax + Gw ≤ b

x ∈ Zn1 , w ∈ Rn2
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Cutting plane generation in integer programming

Central question : generation of cutting planes

1 Methods depending on the structure of the problem
→ network problems, TSP, . . .

2 General methods
Gomory mixed-integer cut (or MIR)

X = {(x , y) ∈ Z× R+|x + y ≥ b}
The only missing inequality is

x +
1

1−F(b)
y ≥ dbe

Split cut
Generalization of the Gomory cuts

All based on the information of one constraint or several constraints aggregated in
one inequality.
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Split cuts

The geometry

Theoretical results

Every cut that can be obtained from one row or from the aggregation in one row is a
split cut.
→ Very general class

Includes MIR which is commonly used in commercial softwares.

Using split cuts only does not guarantee to converge to the convex hull in finite time.
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Fundamental problem with two constraints

The simplex tableau

x1− ā11s1−· · ·− ā1nsn = b̄1

...

xm−ām1s1−· · ·−āmnsn = b̄m

- Select two rows
- Relax the integrality requirements of the non-basic variables
- Relax the nonnegativity requirements of the basic variables

The model

„
x1

x2

«
=

„
f1
f2

«
+

nX
j=1

„
r j
1

r j
2

«
sj

x1, x2 ∈ Z, sj ∈ R+
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Fundamental problem with two constraints

Graphic representation of a facet

2s1 + 2s2 + 4s3 + s4 +
12

7
s5 ≥ 1
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Fundamental problem with two constraints

Basic properties of the polyhedron

conv(PI ) = conv{(x , s) ∈ Z2 × Rn
+|

„
x1

x2

«
=

„
f1
f2

«
+

nX
j=1

„
r j
1

r j
2

«
sj }

1 The dimension of the polyhedron is n (when nonempty)

2 The vectors (r j , ej) are extreme rays of the polyhedron

→ If the rays are rational, one solution can always be extended

3 Every facet can be written in the form

nX
j=1

αjsj ≥ 1,

with αj ≥ 0.

4 Extreme point = One integer point and two non-zero rays
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Fundamental problem with two constraints

Main results

1 Every facet is tangent to exactly 3 or 4 important integer points

2 Every facet is completely determined by exactly 3 or 4 rays

3 Classification of the facets in 3 categories :
disection cuts, lifted 2 variable-cuts, split cuts

The facets from the first 2 categories are never split cuts

4 Combinatorial algorithm to compute the extreme points in polynomial time
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The geometry

The projection picture

2s1 + 2s2 + 4s3 + s4 +
12

7
s5 ≥ 1

We project the n + 2-dim space onto
the x-space

The facet is represented by a polygon
Lα

There is no integer point in the
interior of Lα

The coefficients are a ratio of
distances on the figure
α1 α3
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Facets with a 0 coefficient

Facets with a 0 coefficient are actually split cuts.

8

3
s1 +

4

3
s2 + 12s3+0s4 +

4

3
s5 ≥ 1

1r

r

r

r

2

3

4

5

f

x 1

x
2

r

There cannot be a facet with two 0-coefficients unless two rays are parallel.
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The geometry

The projection picture

2s1 + 2s2 + 4s3 + s4 +
12

7
s5 ≥ 1

What about tight integer points ?

It can be represented as a minimal
combination of two sj in several cones
cone{r 1, r 3} cone{r 2, r 5}
In cone{r 1, r 3} it has a representation
that is tight wrt. the facet

In cone{r 2, r 5} it has not

In total there are four tight integer
points (in some representation)

By maximality the vertices of Lα are
on the rays
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Why three or four integer points ?

Theorem

Let P be a convex polygon (2D). If the vertices of P are integer and if P has no integer
point in its interior, then P has at most four vertices.
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Let P be a convex polygon (2D). If the vertices of P are integer and if P has no integer
point in its interior, then P has at most four vertices.
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Why three or four rays ?

There exists a minimal system that determines the facet

Every tight integer point provides an equality

αiγi + αjγj = 1

in one tight representation, where (γi , γj) is the representation of the point in the
cone (r i , r j).

All other tight representations are automatically satisfied

To have the minimally uniquely determined system
3 tight integer points ⇒ 3 variables i.e. 3 rays
4 tight integer points ⇒ 4 variables i.e. 4 rays
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Classification of the facets

Split cuts

Disection cuts and Lifted 2-var cuts

These are never split cuts !

An important pathological case
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Simultaneous lifting by reading the coefficients on the figure
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Issues related to lifting

Lifted 2 variable cuts
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Remaining questions

Towards practice ?

1 General principle to generate cuts
Choose 3 or 4 integer points

Which points ?
Choose 3 or 4 rays
Compute the cut

2 Important related questions
Strengthen an inequality by considering the integrality of a ray ?
Bounds on x and on y
Generalization to several constraints
Includes a generalization of the split to a d-dimensional body with no integer point in
its interior

Finite convergence for a cutting plane algorithm

1 Which black box is necessary to converge in finite time ?

2 Problem with m constraints → black box with m constraints ?
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