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Composites of magnetoresistive La0.7Ca0.3MnO3 (LCMO) with insulating Mn3O4 are useful as a

model system because no foreign cation is introduced in the LCMO phase by interdiffusion during

the heat treatment. Here we report the magnetotransport properties as a function of sintering

temperature Tsinter for a fixed LCMO/Mn3O4 ratio. Decreasing Tsinter from 1250 �C to 800 �C causes

an increase in low field magnetoresistance (LFMR) that correlates with the decrease in crystallite size

(CS) of the LCMO phase. When plotting LFMR at (77 K, 0.5 T) versus 1/CS, we find that the data

for the LCMO/Mn3O4 composites sintered between 800 �C and 1250 �C follow the same trend line as

data from the literature for pure LCMO samples with crystallite size >�25 nm. This differs from the

LFMR enhancement observed by many authors in the “usual” manganite composites, i.e.,

composites where the insulating phase contains cations other than La, Ca or Mn. This difference

suggests that diffusion of foreign cations into the grain boundary region is a necessary ingredient for

the enhanced LFMR. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694664]

I. INTRODUCTION

Polycrystalline manganites are known1 to exhibit grain-

boundary-related magnetoresistance (usually called low field

magnetoresistance, LFMR) in addition to intrinsic colossal

magnetoresistance. Many authors have shown that LFMR

may be enhanced by mixing the magnetoresistive manganite

with an insulating secondary phase (see Ref. 1, pp. 26–27 for

an overview up to 2006 and Refs. 2–6 for a few recent exam-

ples). However, most studies have focused on investigating

the dependence of the magnetoresistance as a function of the

percentage of insulating phase without considering the influ-

ence of the heat treatment. In most composite systems, the

analysis of such data would indeed be difficult because high

temperature sintering promotes ionic diffusion and usually

results in a pronounced shift of the manganite composition.

On the contrary, we found7–9 that La0.7Ca0.3MnO3 (LCMO)/

Mn3O4 suits very well as a model composite system: by

using Mn3O4 as an insulating phase, we ensure that no for-

eign cation is introduced in the LCMO phase. Recently, two

other groups have chosen the similar La0.7Sr0.3MnO3/Mn3O4

system for the same reason, when investigating room tem-

perature magnetoresistance at very low field2 or strain effects

in nanocomposite epitaxial thin films grown by pulsed laser

deposition.6

In the present work our purpose was to study how the

grain-boundary-related magnetotransport properties of the

LCMO/Mn3O4 composite are affected by other parameters

than the amount of Mn3O4. Therefore, we kept a constant

LCMO/Mn3O4 ratio and varied the sintering temperature

Tsinter in order to modify parameters such as crystallite size,

grain size, and porosity. The LCMO/Mn3O4 ratio was

selected so that even the most porous composite (i.e., sin-

tered at the lowest temperature) would still be on the

“conducting side” of the percolation threshold. We assumed

a percolation threshold of 20 vol % LCMO, corresponding to

the value found in the case of LCMO/Mn3O4 samples sin-

tered at 1300 �C.7

II. EXPERIMENTAL

La0.7Ca0.3MnO3/Mn3O4 composites were prepared by

spray drying10 of an aqueous solution of metallic acetates con-

taining La, Ca, and Mn in molar ratio 7/3/42. After heating for

2 h at 600 �C and 800 �C to decompose the precursors, pellets

were pressed and sintered for 2 h at temperatures ranging from

800 �C to 1200 �C. Another sample was sintered at 1250 �C
for 12 h. Samples were characterized by X-ray diffraction

(Siemens D5000, Cu Kalpha radiation), electron microscopy

(Philips XL-30 ESEM with EDAX), density measurement

(Archimedes’ method in 1-butanol), and chemical titration of

Mn average oxidation state.11 Crystallite sizes were deter-

mined by X-ray diffraction (XRD) pattern fitting with Topas

software12 using the fundamental parameters approach to

model the instrumental contribution. Magnetic and magnetore-

sistance properties were measured with a Physical Property

Measurement System from Quantum Design.

III. RESULTS AND DISCUSSION

X-ray diffraction patterns (Fig. 1) confirm that composites

of LCMO perovskite and Mn3O4 are obtained at all tempera-

tures. At 800 �C and 900 �C, a small amount of Mn2O3 is

detected in addition to the main phases. The crystallite size

(not to be confused with the grain/particle size) was deter-

mined from the width of the XRD reflections, taking into

account a correction for instrumental broadening. Crystallite
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size was found to increase from �35 nm to �110 nm when

Tsinter increases from 800 �C to 1250 �C (Fig. 2(a)).

The average Mn oxidation state decreases from 2.90 to

2.83 when Tsinter increases. This is consistent with the trans-

formation of Mn2O3 into Mn3O4 and the reported trend for

manganites.13 The average Mn oxidation states for the high-

est Tsinter agree well with the calculated value (2.82) for a

nominal “La0.7Ca0.3MnO3þ 3.2 Mn3O4” composite.

Increasing Tsinter from 800 �C to 1250 �C increases the

bulk density from 60% to 95% of the theoretical density.

Since the LCMO / Mn3O4 ratio is constant, there is a direct

correspondence with the LCMO volume fraction in the com-

posite and both scales are used to present the data in Fig.

2(b). The electron micrographs shown in Figs. 2(c) and 2(d)

for the samples sintered at 800 �C and 1250 �C confirm the

increase in density and reveal the growth of the grains from

agglomerated primary particles to well-connected prismatic

particles of a few microns.

The temperature dependence of the electrical resistivity

q(T) of all samples is shown in Fig. 3. At all temperatures, q
tends to decrease when Tsinter increases. The Curie tempera-

ture (TC) of each sample (obtained from magnetic suscepti-

bility measurements) is marked by an arrow and decreases

slightly from 273 K to 257 K when Tsinter decreases from

1250 �C to 800 �C. The q(T) curves of the composites sin-

tered at 800 �C or 900 �C display a broad maximum at tem-

peratures significantly below TC, as frequently observed in

samples sintered at low temperature, where the small grain

size enhances the contribution from the grain boundaries.14

The magnetoresistance (MR) at 77 K is plotted as a

function of applied magnetic field in Fig. 4. As expected,

MR at low field is larger for the lowest Tsinter. However the

enhancement is not very strong, e.g., MR at 0.5 T increases

only from 12% to 16% when Tsinter decreases from 1250 �C
to 800 �C. By comparison, similar or even higher MR values

are obtained for pure LCMO samples10 sintered at the same

temperatures but with slightly smaller crystallite size due to

FIG. 1. (Color online) X-ray diffraction data: Zooms in several 2theta

ranges show representative reflections of the LCMO, Mn3O4 and Mn2O3

phases as a function of sintering temperature. Reflection indices are given

for Pnma (LCMO), I41/amd (Mn3O4), and Ia-3 (Mn2O3) space groups.

FIG. 2. (a, b) Crystallite size, bulk density, and LCMO volume fraction vs

sintering temperature. (c, d) Secondary electron micrographs of unpolished

cross-sections of LCMO/Mn3O4 composites sintered at 800 �C (c) and

1250 �C (d) - scale bars 1 and 5 lm, respectively.

FIG. 3. (Color online) Temperature dependence of the electrical resistivity

of the LCMO/Mn3O4 composites sintered at various temperatures. Arrow

heads correspond to Curie temperatures.

FIG. 4. (Color online) Magnetoresistance at 77 K as a function of applied

magnetic field for LCMO/Mn3O4 composites sintered at various temperatures.
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a different pre-calcination treatment. Figure 5 shows MR

(77 K, 0.5 T) versus the inverse of crystallite size 1/CS for

the two sets of data. It turns out that the data points follow

the same trend, although one set is for composites (blue

empty circles) and the other one for pure manganite samples

(red squares). This observation differs from the LFMR

enhancement observed by many authors in other manganite

composites.1 By comparison with the LCMO/Mn3O4 system

investigated here, the “usual” composite systems (i.e., where

an LFMR enhancement is observed) contain cations other

than La, Ca or Mn in the insulating phase. This difference

suggests that diffusion of foreign cations into the grain

boundary region is a necessary ingredient for the enhanced

LFMR.

Figure 5 presents only a few data points, corresponding

to two series of samples prepared by the same synthesis

method (spray drying) and sintered at similar temperatures.

In Fig. 6, additional data points are presented for bulk poly-

crystalline samples prepared by other synthesis methods

and/or at other temperatures. These data were collected

from our previous work7 and from the literature.15–22 The

only selection criteria were (i) data availability, (ii)

La0.7Ca0.3MnO3 or La0.67Ca0.33MnO3 composition of the

manganite phase, and (iii) insulating phase containing no

foreign cation able to diffuse into the manganite phase (in

the case of composites). Actually, data availability is quite

a severe filter because only a few authors report crystallite

size (not to be confused with grain/particle size observed

by microscopy). Besides, MR data are presented at various

temperatures and magnetic fields. In Figs. 5 and 6, we chose

77 K because it is the temperature for which most data are

available. When selecting a value of applied field l0H, we

had to consider the fact that the slope of the LFMR is influ-

enced by the geometry of the sample;10 below the satura-

tion magnetic field, the difference between the applied
magnetic field and the internal magnetic field (which is the

relevant parameter) depends on the demagnetization factor.

This is the reason why we decided to report MR for

l0H¼ 0.5 T instead of a lower value.

In Fig. 6, full symbols correspond to pure LCMO sam-

ples (La0.7Ca0.3MnO3 or La0.67Ca0.33MnO3) whereas empty

symbols correspond to composites (LCMO/Mn3O4 and

LCMO/polymethylmethacrylate). Data for crystallite size

below 25 nm are scarce and seem very much scattered, prob-

ably due to the overwhelming influence of the surface

effects, as discussed for example by Dey and Nath.22 In the

case of crystallite sizes above �25 nm, data agree rather

well with the trend line already observed in Fig. 5, except for

a few composite samples sintered at high temperature (see

discussion below). There is a significant scattering of the

data points but the dispersion is actually much smaller than

expected: considering that the data points correspond to sam-

ples with different porosities, grain sizes, grain con-

nectivities,… (due to different synthesis conditions), the

agreement is actually amazingly good. It is interesting to

note that a similar trend was reported in a study of Manh

et al.,23 who found a linear increase of MRspt versus 1/CS for

La0.7Ca0.3MnO3 samples at 30 K, where MRspt is the contri-

bution of intergranular spin-polarized transport.

To complete the analysis of Fig. 6, it is necessary to dis-

cuss the data(blue empty triangles) corresponding to compo-

sites with various LCMO/Mn3O4 ratios, sintered at 1300 �C
for 40 h, whose properties were described in our previous

papers.7–9 Due to the long heat treatment at high tempera-

ture, the crystallite size is too large to introduce a significant

broadening of the XRD reflections and the CS values of

150–200 nm should be best read as “�150–200 nm,” or

1/CS < 0.005 nm-1. The MR(77 K, 0.5 T) of these

FIG. 5. (Color online) Magnetoresistance at 77 K, 0.5 T as a function of

inverse crystallite size, for composites (empty symbols) or pure LCMO (full

symbols) from our work.

FIG. 6. (Color online) Magnetoresistance at 77 K, 0.5 T as a function of

inverse crystallite size, for composites (empty symbols) or pure LCMO (full

symbols) from our work or from other groups (see legend). LCMO volume

fraction (in %) is given for some composites. The dashed line is a guide for

the eye.
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composites follows the general trend as long as the LCMO

volume fraction is �40%. For LCMO volume fraction

between 40% and the percolation threshold (�20%), MR

increases with decreasing LCMO content. It is a priori unex-

pected to find enhanced magnetoresistance only in compo-

sites sintered at high temperature, but this may be related to

the recent results of Kang et al.2 on LSMO/Mn3O4 compo-

sites, where improved LFMR is attributed to the formation

of sharp and clean interfaces acting as effective spin-

dependent scattering centers.

IV. CONCLUSIONS

In conclusion, we found that LFMR at (77 K, 0.5 T) for

LCMO/Mn3O4 composites sintered between 800 �C and

1250 �C is not higher than for pure LCMO samples prepared

by the same method at similar temperatures. This suggests

that the presence of an insulating phase is not in itself suffi-

cient to obtain an enhancement of LFMR. On the other hand,

LFMR enhancement is commonly reported in the literature

for composites whose insulating phase contains cations other

than La, Ca or Mn, i.e., “foreign” cations able to diffuse into

the manganite phase. This suggests that diffusion of foreign

cations into the grain boundary region is a necessary ingredi-

ent for the enhanced LFMR in composites prepared in the

usual range of temperatures and dwelling times.

Because of a small difference of crystallite sizes

between the two series of samples, it was necessary to inves-

tigate the dependence of LFMR at (77 K, 0.5 T) as a function

of the inverse of crystallite size. The limited number of data

points suggested the existence of a trend line. Unexpectedly,

data for samples prepared by other techniques and at other

temperatures agree rather well with the observed trend, as

long as crystallite size is >�25 nm. In the present paper we

compared only magnetoresistance data at 77 K, 0.5 T. More

generally, our results suggest that valuable information about

the role of crystallite size, porosity, grain size, con-

nectivity,… could be gained from investigation of large sets

of samples prepared by various techniques. Despite the

extended literature devoted to magnetoresistive manganites,

this approach would probably require an extensive work of

synthesis of new samples because only a few of the numer-

ous literature papers on magnetoresistive manganites report

simultaneously data such as porosity, crystallite size or sam-

ple shape. In particular, it would be interesting to investigate

La0.7Sr0.3MnO3-based systems, as a prototype of broad-

bandwidth manganite compounds.

ACKNOWLEDGMENTS

The authors are grateful to the University of Liege for a

research grant (FSR D09/09) and to Polish Ministry of Sci-

ence and WBI (Belgium) for travel grants.

1P. K. Siwach, H. K. Singh, and O. N. Srivastava, J. Phys.: Condens. Matter

20, 273201 (2008).
2Y. M. Kang, H. J. Kim, and S. I. Yoo, Appl. Phys. Lett. 95, 052510

(2009).
3H. Yang, Z. E. Cao, X. Shen, T. Xian, W. J. Feng, J. L. Jiang, Y. C. Feng,

Z. Q. Wei, and J. F. Dai, J. Appl. Phys. 106, 104317 (2011).
4K. Gupta, P. C. Jana, A. K. Meikap, and T. K. Nath, J. Appl. Phys. 107,

073704 (2010).
5J. Kumar, R. K. Singh, H. K. Singh, P. K. Siwach, R. Singh, and O. N.

Srivastava, J. Alloys Compd. 455, 289 (2008).
6Z. Bi, E. Weal, H. Luo, A. Chen, J. L. MacManus-Driscoll, Q. Jia, and H.

Wang, J. Appl. Phys. 109, 054302 (2011).
7B. Vertruyen, R. Cloots, M. Ausloos, J.-F. Fagnard, and Ph. Vanderbem-

den, Phys. Rev. B 75, 165112 (2007).
8B. Vertruyen, R. Cloots, M. Ausloos, J.-F. Fagnard, and Ph. Vanderbem-

den, Appl. Phys. Lett. 91, 062514 (2007).
9J. Mucha, B. Vertruyen, H. Misiorek, M. Ausloos, K. Durczewski, and Ph.

Vanderbemden, J. Appl. Phys. 105, 063501 (2009).
10B. Vertruyen, A. Rulmont, R. Cloots, J.-F. Fagnard, M. Ausloos, I.

Vandriessche, and S. Hoste, J. Mater. Sci. 40, 117 (2005).
11E. Bloom, Jr., T. Y. Kometani, and J. W. Mitchell, J. Inorg. Nucl. Chem.

40, 403 (1978).
12R. W. Cheary and A. A. Coelho, J. Appl. Crystallogr. 25, 109 (1992).
13C. Vazquez-Vazquez, M. C. Blanco, M. A. Lopez-Quintela, R. D.

Sanchez, J. Rivas, and S. B. Oseroff, J. Mater. Chem. 8, 991 (1998).
14N. Zhang, F. Wang, W. Zhong, and W. Ding, J. Phys.: Condens. Matter

11, 2625 (1999).
15P. K. Siwach, U. K. Goutam, P. Srivastava, H. K. Singh, R. S. Tiwari, and

O. N. Srivastava, J. Phys. D 39, 14 (2006).
16A. Gaur, U. K. R. Gaur, K. Yadav, and G. D. Varma, Optoelectron. Adv.

Mater. Rapid Commun. 4, 989 (2010).
17R. D. Sanchez, J. Rivas, C. Vazquez-Vazquez, A. Lopez-Quintela, M. T.

Causa, M. Tovar, and S. Oseroff, Appl. Phys. Lett. 68, 134 (1996).
18J. Rivas, L. E. Hueso, A. Fondado, F. Rivadulla, and M. A. Lopez-Quintela,

J. Magn. Magn. Mater. 221, 57 (2000).
19L. E. Hueso, F. Rivadulla, R. D. Sanchez, D. Caeiro, C. Jardon,

C. Vazquez-Vazquez, J. Rivas, and M. A. Lopez-Quintela, J. Magn.

Magn. Mater. 189, 321 (1998).
20L. E. Hueso, J. Rivas, F. Rivadulla, and M. A. Lopez-Quintela, J. Appl.

Phys. 86, 3881 (1999).
21L. F. Zhao, W. Chen, J. L. Shang, Y. Q. Wang, G. Q. Yu, X. Xiao, J. H.

Miao, Z. C. Xia, and S. L. Yuan, Mater. Sci. Eng. B 127, 193 (2006).
22P. Dey and T. K. Nath, Phys. Rev. B 73, 214425 (2006).
23D. H. Manh, P. T. Phong, T. D. Thanh, L. V. Hong, and N. X. Phuc,

J. Alloys Compd. 499, 131 (2010).

063905-4 Bhame et al. J. Appl. Phys. 111, 063905 (2012)

http://dx.doi.org/10.1088/0953-8984/20/27/273201
http://dx.doi.org/10.1063/1.3177192
http://dx.doi.org/10.1063/1.3262624
http://dx.doi.org/10.1063/1.3360933
http://dx.doi.org/10.1016/j.jallcom.2007.01.028
http://dx.doi.org/10.1063/1.3552594
http://dx.doi.org/10.1103/PhysRevB.75.165112
http://dx.doi.org/10.1063/1.2768883
http://dx.doi.org/10.1063/1.3078796
http://dx.doi.org/10.1007/s10853-005-5695-0
http://dx.doi.org/10.1016/0022-1902(78)80414-X
http://dx.doi.org/10.1107/S0021889891010804
http://dx.doi.org/10.1039/a707226k
http://dx.doi.org/10.1088/0953-8984/11/12/017
http://dx.doi.org/10.1088/0022-3727/39/1/003
http://dx.doi.org/10.1063/1.116780
http://dx.doi.org/10.1016/S0304-8853(00)00384-X
http://dx.doi.org/10.1016/S0304-8853(98)00257-1
http://dx.doi.org/10.1016/S0304-8853(98)00257-1
http://dx.doi.org/10.1063/1.371303
http://dx.doi.org/10.1063/1.371303
http://dx.doi.org/10.1016/j.mseb.2005.10.020
http://dx.doi.org/10.1103/PhysRevB.73.214425
http://dx.doi.org/10.1016/j.jallcom.2010.03.183

