ESTIMATION OF GENETIC PARAMETERS FOR METHANE INDICATOR TRAITS BASED ON MILK FATTY ACIDS IN DUAL PURPOSE BELGIAN BLUE CATTLE

P. B. KANDEL_{1,2}, H. SOYEURT _{1,3}, N. GENGLER₁

1Animal Science Unit, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium 2ITN-Marie Curie GreenHouseMilk Project 3National Fund for Scientific Research (FNRS), Brussels, Belgium

INTRODUCTION

Livestock production is one of the key sources of Greenhouse gas (GHG) emissions such as methane (CH₄). Since CH₄ is 21 times more potent to carbon dioxide in greenhouse effect, reduction of CH₄ would play an important contribution to abate greenhouse emissions (IPCC, 2007).

Accurate measurement of CH₄ emission can be obtained using respiration chamber calorimetry method but the cost and the analysis time limit the number of evaluated animals (Kebreab, et al., 2006). The sulfur hexafluoride gas (SF₆) measurement is an alternative (Johnson et al., 1994) because of its relatively lower price but accurate measurement of CH₄ is complex and recording of such data is unfeasible at a large scale. Therefore, some studies have focused on the use of traits indirectly related to the CH₄ emission and easily recorded at large scale, as fatty acids (FA).

CH₄ output from ruminants is linked to microbial digestion in the rumen. The fermentation process of feed carbohydrates leads to the production of hydrogen (H₂) and the methanogenesis is the essential pathway to evacuate this generated H₂ (Moss et al., 2000). The synthesis of acetate (C2) and betahydroxybutyrate (C4) produces H₂ then converted to CH₄, while propionate (C3) synthesis consumes H₂ (Demeyer et al., 1975). The *de novo* synthesis of milk FA in mammary gland uses mostly C2 but also C4, and C3 (but it is almost not used for this synthesis) to make short chain FA and nearly all medium chain FA (Chilliard et al., 2000). Based on this indirect link between FA and CH₄, equations were developed to predict indicators of the CH₄ emission from FA profile (Chilliard et. al., 2009; Dijkstra et al., 2011). As the midinfrared spectroscopy (MIR) can be used to predict the milk FA contents (Soyeurt et al., 2011), the MIR could also predict directly their CH₄ indicator traits allowing the analysis of many milk samples.

Boadi et al. (2002) suggested that 27% of the variation of CH₄ in Canadian dairy and beef heifer was related to animal variation. Haas et al. (2011) supposed also the existence of a genetic variation of CH₄. Therefore, the emission of CH₄ could be optimized through an adapted breeding program. The aim of this study was to estimate the genetic parameters of CH₄ through the use of MIR predicted CH₄ indicator traits in dual purpose Belgian blue cattle.

MATERIAL AND METHODS

Milk samples

Samples collected between 5 and 365 days in milk (DIM) from 2007 to 2011 of Dual Purpose Belgian Blue cows in their first three lactations (5,622; 3,851 and 2,526 records respectively) were obtained during the Walloon

regular milk recording. The samples were analysed using a Milkoscan FT6000 to quantify the contents of protein and fat and MIR spectra.

CH₄ indicator traits

The calibration set contained 600 Walloon samples analysed by gas chromatography. CH₄ indicator traits (called CH₄_1 to 5) considered as reference value were computed from 5 published equations (Table 1) using the gas chromatography contents of FA in bovine milk fat. A t-outlier test was used to delete potential outliers. The robustness of these equations was assessed using a cross-validation and the cross-validation coefficient of determination (R²cv) was computed (Table 2).

Table 1. Published CH4 equations

Indicator trait	Equation (FA in g/100g of fat)	\mathbb{R}^2	Reference
CH ₄ _1 (g/day)	9.97 x (C8:0 to C16:0) – 80	0.88	Chilliard et
CH ₄ _2 (g/day)	-8.72 x C18:0 + 729	0.88	al., 2009
CH ₄ _3 (g/day)	282 x C8:0 +11	0.81	
CH ₄ _4(g/day)	16.8 x C16:0 - 77	0.82	
CH ₄ _5 (g/kg	24.6 + 8.74 x C17:0 anteiso – 1.97 x	0.73	Dijkstra et
DM, 17.7 kg	trans-10+11 C18 :1 – 9.09 x C18 :1		al., 2011
DM/day)	cis-11 + 5.07 x C18 :1 cis-13		

 R^2 represents the relationship between the SF6 CH₄ data and the developed predictors as found in the original research.

Table 2. MIR prediction equations for CH4 (g/day) based on Walloon data

Indicator	N	Mean	SD	R ² cv	
CH ₄ _1	597	446.75	68.50	0.92	
CH ₄ _2	602	421.52	60.71	0.91	
CH ₄ _3	595	368.53	43.23	0.72	
CH ₄ _4	588	459.55	88.11	0.92	
CH ₄ _5	592	368.34	51.33	0.69	

Estimation of genetic parameters

Single trait random regression test-day models were used to estimate the variance components of the studied CH4 indicator traits:

$y=X\beta+Q(Zp+Zu)+e$

Where ${\bf y}$ was the vector of observations for each trait, ${\bf \beta}$ was the vector of fixed effects (herd x test day, DIM (24 classes), and age at calving (3 classes)); ${\bf p}$ was the vector of permanent environmental random effects, ${\bf u}$ was the vector of additive genetic effects; ${\bf q}$ was coefficients of $2^{\rm nd}$ order Legendre polynomials; ${\bf e}$ was the vector of residuals. ${\bf X}$ and ${\bf Z}$ were incidence matrices. Variance components were estimated using restricted maximum likelihood method. Lactation heritability (h²) values were calculated as the ratio of 305-d genetic variance to the sum of 305-d genetic variance, 305-d permanent environmental variance and 305-d residual variance. Average daily h² was the averaged h² estimated separately for each DIM between 5 and 305 DIM as the ratio of the genetic variance at that DIM to the total variance. The same mixed model and data was used to estimate breeding values (EBV) using best linear unbiased prediction.

RESULTS

Estimated CH₄ Production

The MIR CH₄ predicted content ranged from 317g to 411g/day (Fig 1). CH₄_5, which was based on other hypothesis, estimated the lowest and CH₄_1 predicted highest amount of CH₄ per day. For all studied indicator traits, larger amount of CH₄ was estimated for the second lactation compared to the first one. However, this trend is almost flat from second to third and following lactation (data not shown).

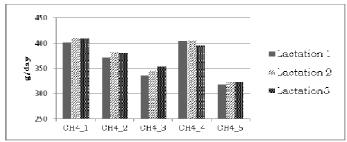


Fig 1. Predicted CH₄ content (g/day) for the first three lactations

The estimated CH₄ content varied also throughout the lactation. It was lower at the beginning of the parity increased up to 80th DIM and stayed constant.

Heritabilities

Daily h^2 ranged between 0.05 and 0.40. For CH₄_1 (highest R^2 with SF₆ data, Table 1) average daily h^2 were 0.21, 0.20 and 0.10 for the first three lactations. Lactation h^2 ranged between 0.26 and 0.66 (Table 3). CH₄_3 and CH₄_5 gave the most different values compared to the other traits.

Table 3. The	average daily	and i	lactation	h^2 o	of the	studied	traits

Indicator	Average daily h ²			Lactation h ²			
	Lact 1 Lact 2 Lact 3		Lact 1	Lact 2	Lact 3		
CH ₄ _1	0.21	0.20	0.10	0.37	0.46	0.26	
CH ₄ _2	0.16	0.15	0.15	0.38	0.39	0.28	
CH ₄ _3	0.23	0.36	0.21	0.54	0.66	0.37	
CH ₄ _4	0.23	0.27	0.16	0.50	0.63	0.44	
CH ₄ _5	0.05	0.07	0.09	0.27	0.39	0.46	

Observed and genetic correlations among the traits

The observed and genetic correlations were estimated for all studied traits. Both observed and genetic correlations between CH₄_1 and CH₄_2 were close to one. Lower correlations were found among other studied traits. However, for all studied traits the correlations were positive (Table 4).

Estimated Breeding values

The EBVs of sires which have daughters with traits were estimated for the first three lactations (Table 5). The maximum range was 21.28 kg for the first

Table 4. Observed (above the diagonal) and genetic (below the diagonal) correlations among the studied CH_4 indicator traits.

	CH ₄ _1	CH ₄ _2	CH ₄ _3	CH ₄ _4	CH ₄ _5
CH ₄ _1	1.00	0.99	0.51	0.88	0.61
CH ₄ _2	0.96	1.00	0.52	0.88	0.65
CH ₄ _3	0.64	0.70	1.00	0.25	0.16
CH ₄ _4	0.81	0.71	0.35	1.00	0.65
CH ₄ _5	0.62	0.61	0.24	0.66	1.00

parity for CH_4_3 . The range of EBV for CH_4_1 was 11.6, 13.0 and 6.3 kg for the first three lactations and R/SD was of 6. The values of R/SD calculated for all studied traits were similar. For CH_4_1 , the genetic variability was on 3.58 kg², 4.10 kg² and 1.27 kg² for the first three lactations.

Table 5. Descriptive statistics of EBV for sires

- 4510 0	Table of Bescriptive statistics of EBV for since								
N	Lactation 1 (127 bulls)			Lactation 2 (112 bulls)			Lactation 3 (97 bulls)		
Indica- tor	SD	Range	R/SD	SD	Range	R/SD	SD	Range	R/SD
CH ₄ _1	1893	11603	6.13	2027	13019	6.42	1125	6259	5.56
CH ₄ _2	1492	9440	6.32	1535	8975	5.85	1091	5932	5.44
CH ₄ _3	3696	21280	5.76	3038	16322	5.37	2082	11180	5.37
CH ₄ _4	2701	13446	4.98	3573	18882	5.28	2174	12208	5.61
CH ₄ _5	566	4018	7.15	815	4779	5.88	832	4903	5.84

R/SD= Range/Standard Deviation; SD and Range in g/lactation

DISCUSSIONS

The estimated MIR based CH₄ content was similar to the CH₄ emission measured from respiration chamber *in vivo* (i.e., 371 to 453 g/day from Zijderveld et al., 2011) and from SF₆ method (311g/day from Cavanagh et al., 2010). In this study, significant changes were observed throughout the lactation which was expected because of the indirect link between milk FA and CH₄ eructed by dairy cows (Chilliard et al., 2009; Dijkstra et al., 2011). The obtained h² values suggested a potential transmission from generation to generation of the capacity of the CH₄ eructation. Previously reported h² for the predicted CH₄ production in Holstein cow was 0.12 (Cassandro et al., 2010) and 0.35 (Haas et al., 2011). Therefore, the h² values obtained in this study were globally in agreement with the previously published results. The choice of the best CH₄ indicator trait is important for further genetic

the choice of the best CH₄ indicator trait is important for further genetic studies. CH₄_1 seems to be the most relevant because it had with CH₄_2 the best correlations to SF₆ CH₄ data (Chilliard et al., 2009); and, with CH₄_4, had the highest R²cv (0.92) for its prediction from MIR. Because of difference in definitions and as the genetic correlation with CH₄_5 was low, it could be relevant to continue to consider CH₄_1 and CH₄_5 for further studies.

The obtained standard deviations, range/SD ratios of EBV suggest that there is an appreciable amount of variation existing between high CH_4 producing and low CH_4 producing animals. These results and the h^2 estimates con-

firmed the genetic variability of CH₄ suggested previously by Haas et al. (2011) and Cassandro et al. (2010).

In conclusion, this study showed the potentiality to predict CH₄ indicator traits by MIR and suggests the existence of a phenotypic and genetic variability of the CH₄ content eructed by dairy cows.

REFERENCES

- BOADI D. A. & WITTENBERG K. M. (2002). Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Can. J. Anim. Sci. 82(2):201-206.
- CASSANDRO M., CECCHINATO A., BATTAGIN M. & PENASA M. (2010). Genetic parameters of methane production in holstein friesian cows. 9th World congress on Genetics Applied to Livestock Production. Leipzig, Germany.
- CAVANAGH A., MCNAUGHTON L., CLARK H., GREAVES C., GOWAN J.M., PINARES-PATINO C., DALLEY D., VLAMING B. & MOLANO G. (2008). Methane emissions from grazing Jersey x Friesian dairy cows in mid lactation. Aust. J. Exp. Agri 48: 230-233.
- CHILLIARD Y., MARTIN C., ROUEL J. & DOREAU M. (2009). Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with CH4 output. J. Dairy Sci. 92:5199–5211.
- CHILLIARD, Y., FERLAY, MANSBRIDGE R.M. & DOREAU M. (2000). Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootch. **49**:181-205.
- DEMEYER, D. I. & VAN NEVEL C.J. (1975) Methanogenesis, an integrated part of carbohydrate fermentation and its control. Pages 366–382 in Digestion and Metabolism in the Ruminant. I. W. McDonald and A. C. I. Warner, ed. University of New England, Armidale, Australia.
- DIJKSTRA J., van ZIJDERVELD S.M., APAJALAHTI J.A., BANNINK A., GERRISTA W.J.J., NEWBOLD H.B., PERDOK H.B. & BERENDS H.(2011). Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. and Techno. **166–167**:590–595.
- HAAS Y., WINDIG J.J., CALUS M.P.L., DIJKSTRA J., HAAN M., BANNINK A. & VEERCAMP R. F. (2011). Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J. Dairy Sci. **94:**6122–6134.
- IPCC (Intergovernmental Panel on Climate change). (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
- JOHNSON K. A. & JOHNSON D.E. (1995). Methane emissions from cattle. J. Anim. Sci., 73:2483-2492.
- JOHNSON K., HUYLER M, WESTBERG H, LAMB B. & ZIMMERMAN P.(1994). Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Technol., **28** (2):359–362. KEBREAB E., CLARK K., WAGNER-RIDDLE C. & FRANCE J. (2006). Methane and
- KEBREAB E., CLARK K., WAGNER-RIDDLE C. & FRANCE J. (2006). Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Can. J. Ani. Sci. **86(2)**:135-157.
- MOSS, A. R., JOUANY J. P. & NEWBOLD J. (2000). Methane production by ruminants: Its contribution to global warming. Ann. Zootech. **49**:231-253.
- SOYEURT H., DEHARENG F., GENGLER N., MCPARCLAND S., WALL E., BERRY D.P. & COFFEY M.(2011).Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J. Dairy Sci. **94:**1657–1667.
- ZIJDERVELD S. M., DIJKSTRA J., PERDOK H.B., NEWBOLD J.R. & GERRITS W.J.J. (2011). Dietary inclusion of diallyl disulfide, yucca powder, calcium fumarate, an extruded linseed product, or medium-chain fatty acids does not affect methane production in lactating dairy cows. J. Dairy Sci. 94:3094–3104