Energetic systems evaluation using Life Cycle Assessment

CHEMICAL ENGINEERING

Processes and Sustainable Development

S. Belboom - A. Léonard
sbelboom@ulg.ac.be
1. **Biomass availability**

2. Environmental evaluation of biomass utilization

3. Perspectives in biomass and bioenergy field
Type of considered biomass

- Limited to crops used for first generation biofuels
 - European energy crops
 - Wheat
 - Sugar beet
 - Non-European energy crops
 - Sugar cane
Biomass utilization

- Sugar cane
 - Transformation in bioethanol via sugars fermentation
 - Proved fuel potential
 - Chemical potential as bioethylene?

Best sustainable choice?
Biomass utilization – LCA

- Goals of study
 - To compare ethylene production from bioethanol or from fossil fuels: ‘bioethylene’ vs. ethylene
 - To allow debate on the use of bioethanol

- Functional unit
 - Production of 1 ton of bioethylene from sugarcane
Biomass utilization – Life Cycle Inventory

Inputs
- Raw materials
- Energy
- Water, etc.

Inventory
- Raw materials
 - Processing
 - Assembly
 - Transport & distribution
 - Use
 - Final disposal

Outputs
- Air emissions
- Water emissions
- Solid waste
- Products
- Others emissions
Steps for bioethanol production

- Cultivation of one ha
 - Tillage, fertilizers production, cultivation, harvest, etc.

- Transportation
 - From agricultural land to transformation plant

- Production of bioethanol
 - Cleaning, shredding, concentration, fermentation, pasteurization, distillation, drying of byproducts, etc.
Steps for bioethylene production

- Bioethanol production
 - All steps described before

- Dehydration of bioethanol into bioethylene

Production of fossil ethylene

- Use of database
1. Biomass availability

2. Environmental evaluation of biomass utilization

3. Perspectives in biomass and bioenergy field
Biomass utilization – Impact assessment

![Graph showing impact assessment of various environmental factors for bioethane and ethene]

- Climate change
- Ozone depletion
- Human toxicity
- Photochemical oxidant formation
- Particulate matter formation
- Ionising radiation
- Terrestrial acidification
- Freshwater eutrophication
- Marine eutrophication
- Terrestrial ecotoxicity
- Freshwater ecotoxicity
- Marine ecotoxicity
- Agricultural land occupation
- Urban land occupation
- Natural land transformation
- Water depletion
- Mineral depletion
- Fossil depletion

Legend:
- Bioethane
- Ethene
Biomass utilization – Impact assessment

Impact	Unit	Bioethylene	Ethylene	Economy (Eth – Bioeth)
Climate change | kg CO$_2$ eq | -341 | 1463 | 1804
Fossil depletion | kg oil eq | 514 | 1623 | 1109
Contents

1. Biomass availability

2. Environmental evaluation of biomass utilization

3. Perspectives in biomass and bioenergy field
Perspectives – Biomass

- Other crops to analyze
 - Sugar beet
 - Wheat

- Questions to answer
 - What is the best way of using energy crops?
 - Is it better to produce energy or chemical components?
 - How can we valorize waste?
Perspectives – Biomass

Limitation of the study

- Soil transformation (pastures or forests to arable land ➔ lost of carbon)

OR

- To find a way to evaluate this transformation and the carbon stocks
Thank you for your attention!

Any questions?