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Il est bien connu que ’addition des réels jouit de la propriété d’associa-
tivité : pour tous a, b et c € R,

(a+b)+c=a+ (b+c).

L’associativité générale s’en déduit aisément (par induction) : quel que soit
le naturel n et quels que soient les réels ay, a9, ..., a,, tous les parenthésages
de la somme

ai+as+---+ap

auront la méme valeur.

Mais qu’en est-il dans une somme d’une infinité de termes, lorsque la
somme devient une série 7 Les choses ne sont plus si simples, comme nous le
verrons. Il est cependant nécessaire d’abord de préciser un certain nombre
de notions et de notations.

Soit (un)pen+ une suite dans R. La série associée a cette suite, ou (de
maniere légerement impropre) la série de terme général uy, est la nouvelle

suite (sp,)nen+ définie par
n
Sp = E U .
k=1

Pour la désigner, nous utiliserons 1'une des notations

Zu” ou up +ug +ug+---, (1)
neN*

“pour rappeler son mode de construction” ([1, p. 249]).



Si lim s, = s € R, nous dirons que la série converge et que s est sa
n—oo

somme ; nous noterons alors

)
§ = g U -
n=1

Si lim s, = +ooousi lim s, n’existe pas, nous dirons que la série diverge ;
n—oo n—oo

le symbole "7 | uy est dans ce cas dépourvu de sens.

Remarquons qu’il est aussi absurde de confondre une série et sa somme
que de confondre une suite et sa limite. Voila pourquoi nous distinguons

soigneusement
[o.¢]
g U, et E U
neN* n=1

La question de 'associativité de 1’ “addition infinie” est donc la suivante :
est-il permis d’introduire des groupements de termes dans une série 7 Par
exemple,

uy + (ug 4 uz + ug) + (us + ug) +ug + - - (2)

est-elle convergente si et seulement si (1) est, et dans ce cas leurs sommes
coincident-elles ? Il importe de se rendre compte que (2) désigne en fait une
nouvelle série, ZnEN* Up, AVEC U] = U1, Uy = Ug+usz+uq, v3 = us+ug, etc. ..
Précisons que nous ne considérerons ici que des groupements “de niveau 17,
c’est-a-dire sans parentheses emboitées. Mais une construction telle que

(w1 + ((u2 +ug) +ua)) + ((us + ue) + u7 + ug) +ug + - - -

peut étre étudiée par simple itération des résultats ci-dessous.

Une chose est d’ores et déja claire ; la série ) _n+ v peut étre conver-
3 . ) )
gente sans que )« Uy De le soit : c’est le cas dans 1

EXEMPLE 1 :
1-)+Q-D+1-1)+---

est la série nulle, donc converge, et cependant elle est obtenue par groupe-
ments a partir de la série divergente



(Cette série est divergente, parce que ses sommes partielles, qui valent al-
ternativement 1 et 0, n’ont pas de limite.)

Le moment est venu de nous placer dans un cadre général. Soit )+ Un
une série et ) _n+ v une série obtenue en y effectuant des groupements
de termes. Pour chaque n, notons j, le nombre (non nul) de termes dans
le n° groupe (autrement dit dans v,) et k, l'indice du premier terme de
ce n° groupe. (Remarquons au passage que les k, se déduisent des j, :
kn=1+ 2?2—11 Ji ; en particulier, k; = 1.) Ainsi,

kppi—1
Uy = Z uy. (3)
I=knp,
En d’autres termes, EneN* Vp = U1 + Vg +v3 + - est la série
(ur 4 - 4 upy1) + (upy + o g 1) + (ks - U 1) 0 (4)
71 t;;mes j2 termes 73 t;;mes

Convenons enfin de noter ¢,, les sommes partielles de ZnEN* Up -
n
tn = Z 1.
=1

L’observation-clé pour tout le reste du raisonnement est la suivante : La
suite (tp)pen+ est une sous-suite de la suite (Sp)pen+. (La suite (by)pen+
est une sous-suite de (ap),en+ 8’1l existe une injection croissante f de N*
dans IN* telle que, pour tout n, b, = af(n) ; cela revient a ce qu’il existe
une partie P de N* (en fait, P = im f) telle que (bp)nen* = (an)nep-)
ICi, ty, = Skpy1—1-

Voici maintenant trois résultats positifs.

Proposition 1 Si )« un est convergente, alors ), n+vpn est conver-

gente et
oo [e.e]

E vn:E Up,-
n=1 n=1



Proposition 2 Si tous les termes de la série ), .+ un sont positifs, alors
Y oneN* Un €t ), N+ Un sOnt simultanément convergentes ou divergentes et,

dans le premier cas,
o) (e}
E Up = E Upy.
n=1 n=1

Proposition 3 Si
(a) lim u, =0;
n—oo
(b) La suite (jn)nen* des longueurs des groupes est magjorée ;

Alors Y cns Un €t Y cn+ Un SONE simultanément convergentes ou diver-
gentes et, dans le premier cas,

0o oo
E Uy, = g Uy -
n=1 n=1

La proposition 1 résulte tout simplement de ce que, lorsqu’une suite
converge, toutes ses sous-suites convergent vers la méme limite.

La proposition 2 se justifie, elle, en observant que pour une série a termes
positifs, la suite des sommes partielles est croissante. Or, une suite croissante
est convergente si et seulement si elle est majorée (auquel cas sa limite et son
suprémum coincident) et, si (t,),en* est majorée, (s,),en+ 1'est également
car, pour tout n, il existe n’ tel que s, < t,.

Voici enfin une démonstration de la proposition 3. Compte tenu de
la proposition 1, il reste & montrer que, sous les hypotheses (a) et (b), si
lim ¢, =t, alors lim s, =t, c’est-a-dire que

n—o0 n—oo

(VeeRY) (3neN*) (Vm >n) s, —t| <e.

Soit donc € > 0.

e Comme lim t, = t, il existe n; € N* tel que, pour tout m > ng,
n—oo

[tm —t] < e/2.

e Par 'hypothese (b), il existe j tel que j > j, pour tout n ; puisque
les j, ne sont pas nuls, j ne l’est pas non plus ; par 'hypothese (a), il
existe ng € N* tel que |uy,| < €/(2j) pour tout m > na.

Posons alors n = max{ky,+1,n2 + j}. Soit m > n. Ainsi, ky,+1 < n < m.
Soit m/ le numéro du groupe auquel appartient u,, : autrement dit, m’ est



tel que k,y # m < kpyaq. Comme ng + 1 est le numéro du groupe contenant

uk‘n1+17 il suit que nq +1 # m'. AIOI‘S,

|sm —t| = |ur + - + up — ¢
:|u1‘|‘"‘+ukm/—1+ukm/‘|‘"‘+Um—t|
:|vl+"'+vm’—1+ukm/+"’+Um_t|
= [ty —t+ug , + o+ Uun|
<t =t 4 fug, |+ |um]

puisque m’ — 1 > nq, le premier terme est strictement inférieur & /2 ; en

outre, puisque Uk /-5 Um appartiennent tous au méme groupe, le nombre
des termes |ug ,|, ..., |um|, égal & m — kv + 1, est inférieur & j. Donc,
kpy >m—j74+1>m—j >n—j > ng, et puisque kyy, ..., m > na, chacun

de ces derniers termes est strictement inférieur & ¢/(2j). Finalement,

e . €
[sm =t < [tmr—1 =t + Jug,, [+ Jum| < 5 47 %

27],25.

L’exemple 1 montre que ’hypothese (a) ne peut étre omise dans la pro-
position 3. L’hypothese (b) ne peut pas I’étre non plus, ainsi que le montre I’

EXEMPLE 2. Soit la série

neN*
si nous y groupons les termes de la maniére suivante :

> -

neN*
R S S S

nous obtenons la série nulle, convergente ; cependant, ) n+ s, elle-méme
est divergente, car les sommes partielles



sont toutes nulles (ce sont précisément celles qui font partie de la sous-suite
(tn)nen+), tandis que les sommes partielles

L,
1-1+3+3,

valent toutes 1.

Une autre maniere d’aborder le probléeme est de considérer, non plus
un groupement de termes, mais plusieurs simultanément. Soit donc A un
ensemble quelconque d’indices, fini ou infini.

Si, pour chaque A € A, (j;})neN* est une suite dans N*, posons kf; =
=Y"]", j} et notons, comme en (3),

A
kpi1—1

U:; = E uj.

1=k

n

Considérons alors la famille des séries

>

neN*

Soit encore K = {k‘fl‘ :AEANnE N*}.

Proposition 4 Si N*\ K est fini et si, pour tout A € A, Y°° v} = s,
alors Y o7 up = s.

En effet, si les sous-suites (ay, (n))nen+ (pour A € A) d'une méme suite
(an)nen+ convergent toutes vers une méme limite a, et si (¢, im(fy) re-
couvre “presque tout” N* (en ce sens que N* \ [J,c, im(fy) est fini), alors
lim a, existe et vaut a. n

n—oo

EXEMPLE 3 : Si

(ur + u2) + (ug + ug) + (us + ug) + (u7 +ug) + -



et
(u1 + ug + uz) + (ug + us) + (ug + ur) + (ug + ug) + - - -

convergent et ont la méme somme s, alors » 7, u, = s. En effet, K =
={1,3,5,7...,1,4,6,8,...}, et N*\ K = {2} est bien fini.

Nous venons d’étudier ce qui se passe lorsque différents schémas de
groupement des termes sont considérés dans une série Y n+ Un- Etudions
maintenant, au contraire, le résultat d’un schéma particulier de groupement
des termes dans différentes séries. Nous obtenons alors une réciproque par-
tielle de la proposition 3 :

Proposition 5 Soit (jn)nen* une suite de naturels non nuls. Si, quelle que
soit la suite (up)nen de limite nulle, la convergence de la série ) .+ Un
qui s’en déduit par le processus (3) entraine celle de la série ) s U elle-
-méme, alors la suite (jn)nen+ €st majorée.

Pour prouver cette proposition, supposons la suite (jy),en* non bornée
et construisons une suite (u,)nen+ de limite nulle telle que )~ - vy, sOIt
convergente et Y+ Uy divergente. L’idée de cette construction est, pour
I’essentiel, celle qui se trouve dans I'exemple 2.

Puisque (jn)nen* est non bornée, elle admet une sous-suite (jy,)nep qui
croit vers 4+o0o. Les u; qui se trouvent dans un groupe dont le numéro
n’appartient pas a P sont choisis nuls. En ce qui concerne ceux qui se
trouvent dans un groupe dont le numéro, n, appartient a P, nous prendrons
les termes de la premiére moitié du groupe égaux a 1/7, et ceux de la seconde
moitié égaux a —1/j, ; si la longueur du groupe est impaire, le terme du
milieu est laissé nul. Plus explicitement,

1/jn siky, <m<k,+ |jn/2] —1letneP;
Um =R —1/jn sikn+|(Un+1)/2] <m<k,+jn—1letneP,;
0 sinon.

Alors, dans la série )+ un, la suite des sommes partielles d’indices k;, +
+ |Jn/2] — 1 tend vers %, tandis que la suite des sommes partielles d’indices
kn — 1 est nulle. La série )+ vn est la série nulle. n

Par exemple, si la suite des longueurs donnée pour les groupes est

(2,1,2,2,2,3,2,4,2,5,...),



nous pouvons prendre P = 2N*, ce qui donne

d up=0+4+0+0+0+0+3—-3+0+0+5+0—3+0+0+---;
neN*

=(0+0)+0)+0+0)+(3-2)+0+0)+(3+0-2)+(0+0)+--

est bien la série nulle.
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