Magnetic fields of hot pulsating stars
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Abstract. In spite of recent detections of magnetic fields in a number of
(3 Cephei and slowly pulsating B (SPB) stars, their impact on stellar rotation,
pulsations, and element diffusion is not sufficiently studied yet. One reason for
this is the lack of knowledge of rotation periods, the magnetic field strength dis-
tribution and temporal variability, and the field geometry. New longitudinal field
measurements of four 3 Cephei and candidate  Cephei stars, and two SPB stars
were acquired with FORS 2 at the VLT. These measurements allowed us to carry
out a search for rotation periods and to constrain the magnetic field geometry for
a few stars in our sample.
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1. Introduction

Over several years, we undertook a magnetic field survey for main-sequence pulsating B-type stars,
namely the slowly pulsating B (SPB) stars and 3 Cephei stars, with FORS 1/2 in spectropolarimetric
mode at the VLT, allowing us to detect in four § Cephei stars and 16 SPB stars, for the first time,
longitudinal magnetic fields of the order of a few hundred Gauss. For a few such stars we obtained
multi-epoch magnetic field measurements to determine their magnetic field properties (strength,
magnetic field geometry, and time variability) to study the impact of magnetic fields on rotation,
pulsation, and diffusion. Here we report our results of monitoring a few targets.

2. Observations and magnetic field measurements

Multi-epoch time series of polarimetric spectra of the pulsating stars were obtained with FORS 2
on Antu (UT1) from 2009 September to 2010 March in service mode. Using a slit width of (74,
the achieved spectral resolving power of FORS 2 obtained with the GRISM 600B was about 2000.
The 3 Cephei stars ¢! CMa and 15 CMa were observed 11 and 13 times, respectively. A detailed
description of the assessment of the longitudinal magnetic field measurements using FORS2 is
presented in our previous papers (e.g., Hubrig et al. 2004a, 2004b, and references therein).

The mean longitudinal magnetic field (B,) was derived using
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where V' is the Stokes parameter which measures the circular polarisation, I is the intensity in the
unpolarised spectrum, geg is the effective Landé factor, e is the electron charge, X is the wavelength,
m. the electron mass, ¢ the speed of light, dI/d\ is the derivative of Stokes I, and (B,) is the mean
longitudinal magnetic field. The measurements of the longitudinal magnetic field were carried out
in two ways, using the whole spectrum ((B,),) and using only the hydrogen lines ((By)}q). Two
additional polarimetric spectra of ¢! CMa were obtained with the SOFIN spectrograph installed at
the 2.56 m Nordic Optical Telescope on La Palma, one on 2008 September 13, and another one on
2010 January 01. SOFIN (Tuominen et al. 1999) is a high-resolution echelle spectrograph mounted
at the Cassegrain focus of the NOT and equipped with three optical cameras providing different
resolving powers of 30 000, 80 000, and 160 000. The star was observed with the low-resolution camera
with R = A/AX ~30000. We used the 2K Loral CCD detector to register 40 echelle orders partially
covering the range from 3500 to 10000 A with a length of the spectral orders of about 140 A at
5500 A. The polarimeter is located in front of the entrance slit of the spectrograph and consists of a
fixed calcite beam splitter aligned along the slit and a rotating super-achromatic quarter-wave plate.
Two spectra circularly polarized in opposite sense are recorded simultaneously for each echelle order,
providing sufficient separation by the cross-dispersion prism below 7000 A. Two such exposures with
quarter-wave plate angles separated by 90° are necessary to derive circularly polarised spectra. The
spectra were reduced with the 4A software package (Ilyin 2000).

A frequency analysis was performed on the longitudinal magnetic field measurements (B,),;
(which generally show smaller sigmas) available from our previous work (Hubrig et al. 2006, 2009)
and the current studies using a non-linear least-squares fit of the multiple harmonics utilizing the
Levenberg-Marquardt method (Press et al. 1992) with an optional possibility of pre-whitening the
trial harmonics. To detect the most probable period, we calculated the frequency spectrum for the
same harmonic with a number of trial frequencies by solving the linear least-squares problem. At each
trial frequency we performed a statistical test of the null hypothesis for the absence of periodicity
(Seber 1977), i.e. testing that all harmonic amplitudes are at zero. The resulting F-statistics can
be thought of as the total sum including covariances of the ratio of harmonic amplitudes to their
standard deviations, i.e. as a signal-to-noise ratio (Ilyin 2010). The F-statistics allows to derive the
false alarm probability of the trial period based on the F-test (Press et al. 1992). For four out of the
studied six stars the resulting amplitude spectra displayed dominant peaks. The equivalent periods
were 2.18d for the 3 Cephei star €' CMa and 12.64d for the 3 Cephei star 15 CMa. Phase diagrams
of the data folded with the determined periods are presented in Fig. 1. The quality of our fits is
described by reduced x?-values, which is 0.41 for ¢! CMa, 0.47 for 15 CMa.

The most simple modeling of the magnetic field geometry is based on the assumption that the
studied stars are oblique dipole rotators, i.e. their magnetic field can be approximated by a dipole
with the magnetic axis inclined to the rotation axis.

Using stellar fundamental parameters and asssuming that the studied stars are oblique dipole
rotators, we obtain an obliquity angle =79.1+2.8° for ¢! CMa and $=67.1+28.2° for 15 CMa.

3. Summary

The insufficient knowledge of the strength, geometry, and time variability of magnetic fields in hot
pulsating stars prevented until now important theoretical studies on the impact of magnetic fields
on stellar rotation, pulsations, and element diffusion. Although it is expected that the magnetic
field can distort the frequency patterns (e.g. Hasan et al. 2005), such a perturbation is not yet
detected in hot pulsating stars. Splitting of non-radial pulsation modes was observed for 15 CMa
by Shobbrook et al. (2006), but the identification of these modes is still pending. The magnetic
B Cephei star sample indicates that they all share common properties: they are N-rich targets (e.g.,
Morel et al. 2008) and, as discussed by Hubrig et al. (2009), their pulsations are dominated by
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Figure 1: Phase diagrams with the best sinusoidal fit for the longitudinal magnetic field measure-
ments. The residuals (Observed — Calculated) are shown in the lower panels. The deviations are
mostly of the same order as the error bars, and no systematic trends are obvious, which justifies a
single sinusoid as a fit function. The fits correspond to &' CMa (left) and 15 CMa (right).

a non-linear dominant radial mode (see also Saesen et al. (2006) for ¢! CMa). The presence of a
magnetic field might consequently play an important role to explain such a distinct behaviour of
magnetic § Cephei stars. More precisely, chemical abundance anomalies are commonly believed to
be due to radiatively-driven microscopic diffusion in stars rotating sufficiently slow to allow such a
process to be effective. However, we need an additional clue to account for the fact that both normal
and nitrogen-enriched slowly rotating stars are observed. Interestingly, Silvester et al. (2009) used
the LSD technique to measure magnetic fields in a small number of hot pulsating stars, but failed
to detect magnetic fields in most of them. However, the majority of the stars in their sample were
observed only once or twice during the same night, usually with poor signal-to-noise. Obviously,
such results are rather misleading and give consequently a biased picture of the actual status of the
presence of magnetic fields in massive stars.
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