The spin-orbit alignment of the Fomalhaut debris disk

Olivier Absil
University of Liège

Seminar at ESO – Santiago – September 30th, 2011
Exoplanets galore

- 600+ exoplanets discovered so far
 - Many more unconfirmed Kepler candidates
- « Hot Jupiters » are most emblematic
- Planetary transits
 - Radius
 - Composition
 - Spin-orbit orientation

![Graph: "Planet Semi-Major Axis" vs "Planet Mass" (638)](exoplanet.eu (30/09/11))
The Rossiter-McLaughlin effect

- Takes place during (planetary) transit
- Planet hides small fraction of one velocity component on photosphere
- Small bump moves through spectral line
- Creates RV anomaly

Gaudi & Winn 2007
The Rossiter-McLaughlin effect

- Access to projected star/orbit inclination
RM detected for hot Jupiters

- First detection by Queloz et al. (2000)
 - HD 209458b aligned
- 40+ systems observed
 - 18 significantly misaligned
 - 9 on retrograde orbits
- Detection not easy
 - Significant error bars (~10°) on relative inclination

Example: HAT-P-6b (Hébrard et al. 2011)
Misalignments more frequent for hot stars (>6250K)
- Due to tidal dissipation in stellar convective zone?
- Exceptions: light planets and long periods

Most hot Jupiters may have « arrived » misaligned
Possible explanations

- Disk-driven migration not possible
- Kozai mechanism
 - Requires distant 3rd body on inclined orbit (40° < i < 140°)
 - Secular oscillations of eccentricity and inclination for inner planet
 - Circularisation by tidal friction
- Planet-planet scattering
 - Instabilities in multiple (packed) planetary systems
 - Orbit crossing → high eccentricities / inclinations
 - Circularisation by tidal friction
Kozai or scattering?

- Strongly debated issue (Morton & Johnson 2011)
 - Need 2× more observed systems to conclude
Misalignment may date back to formation (disk)

- Early stellar encounter (Bate et al. 2010)
 - Stellar cluster → chaotic environment
 - Interactions → misalignment + truncation

- Magnetosphere-disk interactions (Lai et al. 2011)
 - Magnetic protostar exerts warping/precessional torque on inner disk before disruption
 - Disk resists warping → back-reaction torque

- Interaction with gas-rich birth cluster (Thies et al. 2011)
 - Passage of young star through gas reservoir → capture of gas onto existing disk
 - Disk can be tilted up to retrograde
How to discriminate?

- Use debris disks
 - ~25 have been resolved
 - More with Herschel
- Resolved image
 - Inclination / position angle
 - Materialises the plane of planetary formation
- Need stellar orientation
How to get stellar orientation?

- Inclination from $P_{\text{rot}} \times v \sin i / 2\pi R_\star$ (Watson et al. 2011)
 - P_{rot} from photometry or Ca II lines (low precision)
 - $v \sin i$ from high resolution spectroscopy
 - R_\star from spectra, interferometry, ...
 - Result: no misalignment in 8 systems (FGK stars)
 - BUT: final error bars generally $\geq 10^\circ$
 - New Herschel resolved disks \rightarrow 1st misaligned case?

- Position angle from spectro-interferometry
 - Only for rapidly rotating stars (A / early F)
 - Subject of this talk
Requirements
- Rapidly rotating star
- Deep absorption line
- Partly resolved photosphere (≥ 1 mas)

Displacement of photocenter across the Br-γ line
- Signature in fringe phase versus wavelength
- 2D phase → position angle
The Fomalhaut planetary system

- Fomalhaut: A4V, 7.7 pc
- Debris disk resolved at various wavelengths
 - Ring at 140 AU
 - Brightness asymmetry
 - Sharp inner edge
 - Off-centered by 15 AU
- Candidate planet at 115 AU
 - Orbital movement
Fomalhaut with VLTI/AMBER

- **Fomalhaut**
 - $v \sin i = 93$ km/s
 - Angular diam: $\theta = 2.2$ mas

- **AMBER**
 - $3 \times$ Auxiliary Telescopes
 - Baselines: ~100m
 - Medium spectral resolution ($R=1500$) in K band

- **Measure wavelength-differential phase**
 - Deduce 2D differential astrometry

Le Bouquin et al. 2009
2D differential astrometry

- Clear signature inside Br-γ line
 - Precision: $\sim 3 \mu \text{as}$

Le Bouquin et al. 2009
Spin-orbit alignment

- Photosphere position angle: $155^\circ \pm 3^\circ$
 - But inclination not constrained (needs advanced model)
- Disk position angle: $156.0^\circ \pm 0.3^\circ$
- By-product: discriminate front side / back side
 - Assuming planet prograde and stellar spin not flipped
Backward scattering dominant?

- Possible only with big grains
 - Similar to lunar phases
- Small grains ejected?
 - What about further collisions?

Min et al. 2010
Future work: mini survey

- 6 more potential targets for VLTI/AMBER
 - + a few more to the North
- Zeta Leporis
 - Position angle retrieved while $\theta = 0.75$ mas only
- Beta Pictoris
 - Star aligned with inner or outer disk?
Fomalhaut with VLTI/PIONIER

- Detection limits based on closure phases
 - 7 OBs in total (~3h)
 - 7 spectral channels within K band