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...with vp = vu + v   &  ep = eu + e

Modeling Electrostatic MEMS

Perturbation Finite Element Method

 The analysis of the coupled electromechanical
problem of electrostatic MEMS  has been 
investigated by an iterative perturbation  finite 
element technique
□unperturbed field computed in a global domain 

without the presence of conductive regions
□unperturbed field applied as source in  Ωc,p

□perturbed field determined in reduced domain Ωp

□ iterative procedure  used when the coupling 
between the sub-regions is significant

□degenerated mesh elements avoided

 The accuracy  of the PFEM is demonstrated by 
comparing the results with both measurements and 
the classical FE results

 Application of Aitken acceleration has been proven 
to be very efficient

 A significant speed-up  in comparison to the 
conventional FEM is achieved

Conclusions
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Charges & Forces

   Qp = Qs + Q

      =−(ε grad vs,grad vc,p)
l,p

−(ε grad v,grad vc,p)
l,p
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Decomposition of the classical electric problem defined in 
domain Ω  into unpeturbed  (left) and perturbation  problems 
(right)

 Lumped spring-mass models   
□helpful for physical insight
□neglect important effects such as bending of plates 

and fringing field effects

 Finite element (FE) method 
□adapted for complex geometries
□ fringing field effects accurately computed at the 

expense of dense discretization near corners
□movement modeling often requires a completely 

new computation and mesh for each position
□computationally expensive

 Perturbation  finite element method (PFEM)
□unperturbed field  computed in a global domain 

without the presence of some conductive regions
✔no mesh of perturbing domains
✔possible symmetries or analytical solution
✔source to the perturbation problems

□perturbed field determined in a local domain
✔subproblem-adapted meshes
✔no degenerated elements when some moving 

regions undergo critical deformations

 Iterative sequence of perturbation problems 
□needed when significant coupling between sub-

regions
✔successive perturbations  in each region are 

computed from one region to the other
✔each sub-problem gives a correction
✔ the Aitken acceleration diminishes the number 

of iterations

Elastic FE Model

Mesh of  Ω (right) and adapted mesh of Ωp with infinite boundaries 
around the moving finger (left)

Electric charges calculated by the PFEM on the moving finger for 
each position x as a function of iteration number i

Electric charges  (left) and forces (right) versus finger displacement 

Case of iterative process:
Qp = Qs,1 + Q1 + Qs,3 + Q3 + Qs,5 + Q5 + ...

 with:  ep = es,1 + e1 + es,3 + e3 + es,5 + e5 + ...

Geometry of the cantilever microbeam (  L1= 175 µm, L2 = 168 µm, 

t = 1.85 µm, g =2 µm, E = 135 GPa, )

Mesh of the unperturbed  (a) and perturbed (b) domains with 
infinite boundaries and a very fine mesh (c)  in the vicinity of the 
corners of the perturbing cantilever microbeam to account for 
fringing field effects

Comparison between experimental maximum tip displacement of 
the cantilever beam with the FEM and PFEM numerical results

Applications

 Linear mechanical problem: u + fv = 0
 Smoothening of air domain Ωp
 Updating nodal coordinates of the mesh of Ωp
 Sequential electromechanical coupling repeated until:

∥u i1−u i∥2

∥u i1∥2

≤

 Iterative process repeated till convergence

∣vs ,ivi

v p , i
∣≤ err

 At discrete level, the domain of integration is 
limited to l,p: layer of elements touching c, p   in 

p  \ c, p

 Charges

 Forces (by virtual work principle)

Geometry of the combdrive ( L = 10 µm, b = 2 µm, g =2 µm )

 Cantilever microbeam

 Combdrive

  Electric scalar potential formulation 

□Unperturbed problem

✔  (ε grad vu , grad v')


<ndu  
, v'>d 



        eu n∣e
         &      ndu ∣d 

=0

□Perturbation problems

✔  <grad vs , grad v'>c, p
<grad vu , grad v'>c, p



✔ (ε grad v , grad v')
p

<nd
 
, v'>d, p 



        v  c, p 
= vs      &      nd ∣d, p 

=  ndu       

Iterative process of perturbation problems

 Inp: vp = vs,1 + v1 + vs,3 + v3 + vs,5 + v5 + ...
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