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Modeling Electrostatic MEMS Iterative process of perturbation problems N S

m Lumped spring-mass models
Ohelpful for physical insight
Oneglect important effects such as bending of plates
and fringing field effects
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Comparison between experimental maximum tip displacement of
the cantilever beam with the FEM and PFEM numerical results

® Finite element (FE) method

Oadapted for complex geometries .
Ofringing field effects accurately computed at the = Combdrive Fized electrode
expense of dense discretization near corners N
Omovement modeling often requires a completely Moving finger g
new computation and mesh for each position b]i.. T,
O computationally expensive Af" L ]‘ L YL
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m Perturbation finite element method (PFEM) Geometry of the combdrive (L =10 pm, b=2 pum, g =2 um )

Ounperturbed field computed in a global domain

Bln Q) v, =vg1 tvitve3tvztvgstvs o

without the presence of some conductive regions
vno mesh of perturbing domains m [terative process repeated till convergence
vpossible symmetries or analytical solution b4
vsource to the perturbation problems 2L < err
Operturbed field determined in a local domain Vi

v subproblem-adapted meshes
vno degenerated elements when some moving
regions undergo critical deformations

Charges & Forces

Mesh of Q (right) and adapted mesh of Q), with infinite boundaries
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m At discrete level, the domain of integration 1is wround the moving finger (efty

limited to €; ,: layer of elements touching I';. , in STl —o—
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m [terative sequence of perturbation problems
Oneeded when significant coupling between sub-
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vsuccessive perturbations in each region are 0,=0.+0 w0 | et
computed from one region to the other P =3 SEERRREEEEERE
veach sub-problem gives a correction =—(— € grad vs,grad v, p)Qz —(— € grad v,grad v, P)szz EEREEE N EEEEE
vthe Aitken acceleration diminishes the number , , ’ " Electric charges calculated by the PFEM on the moving finger for
of iterations Case of iterative process: each position x as a function of iteration number i
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m Forces (by virtual work principle) 450 | e
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Finger displacement along x-axis (Lum) Finger displacement along x-axis (pm)

Electric charges (/eft) and forces (right) versus finger displacement

Perturbation Finite Element Method Elastic FE Model

'=T.Uly n m Linear mechanical problem: V[E]Vu + 1, =0 Conclusions
n ' ' ' . :
Smoot.henlng ofarr do.mam 2 m The analysis of the coupled -electromechanical
m Updating nodal coordinates of the mesh of Qp problem of electrostatic MEMS has been
m Sequential electromechanical coupling repeated until: investigated by an iterative perturbation finite
g =gl element technique
T S CDunperturbed field computed in a global domain
i+112 without the presence of conductive regions
Applications Ounperturbed field applied as source in I Q.
| | Operturbed field determined in reduced domain Q,
Decomposition of the classical electric problem defined in = Cantilever microbeam Do flect ; . Oiterative procedure used when the coupling
domain Q into unpeturbed (left) and perturbation problems eflecting cantilever microbeam between the sub-regions 1s significant
(right) ’ Odegenerated mesh elements avoided
Fized electrode .
— m The accuracy of the PFEM 1s demonstrated by
m Electric scalar potential formulation Lo comparing the results with both measurements and
Geometry of the cantilever microbeam ( L= 175 um, L, =168 um, the classical FE results
0 Unperturbed problem t=1.85 pm, g =2 pm, E =135 GPa, v=0.22) m Application of Aitken acceleration has been proven

to be very efficient
NAVAY: VA m A significant speed-up 1n comparison to the
eyxn|p=0 & n-d, ‘Fd:O . ?‘0‘ 8 conventional FEM i1s achieved
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OPerturbation problems
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