A Perturbation Method for the 3D Finite Element Modeling of Electrostatically Driven MEMS

M. BOUTAAYAMOU, R. V. SABARIEGO, AND P. DULAR

Department of Electrical Engineering and Computer Science (ELAP) University of Liège, Belgium

Modeling electrostatically driven MEMS

- Lumped spring-mass models
 - helpful for physical insight
 - neglect important effects such as bending of plates and the fringing field effects
- Finite element (FE) method
 - adapted for complex geometries
 - compute accurately the fringing field effects at the expense of dense discretization near corners
 - movement modeling usually requires successive meshing and computations for each new position
 - classical approach computationally expensive
- Perturbation method
 - unperturbed field computed in a global domain without the presence of some conductive regions
 - no mesh of perturbing domains
 - possible symmetries or analytical solution
 - applied source to the perturbation problems
 - perturbed field determined in a local domain
 - subproblem-adapted meshes
- Iterative sequence of perturbation problems
 - when coupling between sub-regions is significant
 - successive perturbations in each region are computed from one region to the other
 - each sub-problem gives a correction as a perturbation

Perturbation method

- Unperturbed domain: parallel-plate capacitor
- Perturbing domain: micro-beam (100µm × 10µm)

Unperturbed problem

- Unperturbed electric scalar potential FE formulation
 \(-\varepsilon \nabla v \cdot \nabla v^p\) _Ω_p = 0

Mesh of the unperturbed domain

\(\nabla v^p\) is projected on \(\partial \Omega_p\)

Application

Conclusions

- A perturbation approach based on electric scalar potential FE formulation has been presented
 - adapted for complex geometries
 - unperturbed field computed in a global domain without the presence of conductive regions
 - unperturbed field applied as source in \(\Omega_p\)
 - perturbed field determined in reduced domain \(\Omega_p\)
 - iterative procedure used when the coupling between the sub-regions is significant

- Convergence acceleration of iterative sequence in progress

Acknowledgements: This work is supported by the Belgian French Community (ARC 03/08-298) and the Belgian Science Policy (IAP P6/21). P. Dular is a Research Associate with the Belgian National Fund for Scientific Research (F.N.R.S.)