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Introduction

Une procédure de quanti�cation peut être dé�nie grossièrement
comme étant une bijection linéaire de l'espace des observables clas-
siques dans un espace d'opérateurs di�érentiels agissant sur des fonc-
tions d'onde (du moins dans le cadre de la quanti�cation géométrique,
voir [28]).

De notre point de vue, l'espace S(M) des observables (appelés aussi
symboles) est constitué de fonctions di�érentiables sur le �bré cotangent
T ∗M d'une variétéM qui sont polynomiales le long des �bres. L'espace
Dλ(M) des opérateurs di�érentiels est assimilé à l'espace des opérateurs
di�érentiels agissant sur des λ-densités au-dessus de M .

Il est connu qu'il n'existe pas de quanti�cation naturelle. En d'autres
termes, les espaces de symboles et d'opérateurs di�érentiels ne sont pas
isomorphes en tant que représentations de Diff(M).

L'idée de la quanti�cation équivariante, introduite par P. Lecomte
et V. Ovsienko dans [16] est de réduire le groupe de di�éomorphismes
locaux de la manière suivante.

Ces auteurs ont étudié le cas du groupe projectif PGL(m + 1,R)
agissant localement sur la variété M = Rm par des transformations
linéaires fractionnaires. Ils montrèrent que les espaces de symboles et
d'opérateurs di�érentiels sont canoniquement isomorphes en tant que
représentations de PGL(m + 1,R) (ou de son algèbre de Lie sl(m +
1,R)). En d'autres mots, ils prouvèrent qu'il existe une unique quanti-
�cation projectivement équivariante.

Dans [9], les auteurs ont étudié les espaces Dλµ(Rm) d'opérateurs
di�érentiels transformant des λ-densités en des µ-densités et leurs es-
paces gradués associés Sδ. Ils montrèrent l'existence et l'unicité d'une
quanti�cation projectivement équivariante, dans les cas où la valeur
δ = µ− λ n'appartient pas à un ensemble de valeurs critiques.
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Un premier exemple de quanti�cation projectivement équivariante
pour des opérateurs di�érentiels agissant sur des champs de tenseurs a
été donné dans [1].

Jusque maintenant, les résultats dont nous venons de parler ont
trait à des variétés pourvues d'une structure projective plate. Néan-
moins, dans [4, 5], S. Bouarroudj montra que la formule de la quan-
ti�cation projectivement équivariante pour des opérateurs di�érentiels
d'ordre deux et trois peut être exprimée en utilisant une connexion li-
néaire sans torsion, de telle manière que la quanti�cation ne dépende
que de la classe projective de la connexion.

Sur cette lancée, dans [18], P. Lecomte conjectura l'existence d'une
quanti�cation

Q : Sδ(M)→ Dλµ(M)

dépendant d'une connexion linéaire sans torsion, qui serait naturelle en
tous ses arguments et qui resterait inchangée sous l'e�et d'un change-
ment projectif de connexion.

L'existence d'une telle quanti�cation naturelle projectivement équi-
variante a été prouvée par M. Bordemann dans [3] en utilisant la notion
de connexion de Thomas-Whitehead associée à une classe projective
de connexions (voir [25, 27, 24, 12, 23] pour une discussion sur les
connexions de Thomas-Whitehead). Sa construction a été adaptée plus
tard par S. Hansoul dans [11] dans le but de traiter le cas des opéra-
teurs di�érentiels agissant sur des formes, globalisant ainsi les résultats
de [1].

Récemment, dans sa thèse, S. Hansoul [10] montra comment géné-
raliser la méthode donnée par M. Bordemann a�n de résoudre le pro-
blème de l'existence d'une quanti�cation naturelle et projectivement
équivariante pour des opérateurs di�érentiels agissant sur des champs
de tenseurs arbitraires.

Cette thèse se situe dans le prolongement de toutes ces recherches.
Elle est la somme de travaux qui approfondissent ces domaines d'in-
vestigation et que nous allons tout d'abord résumer brièvement.

Dans [20], nous avons analysé le problème de l'existence d'une
quanti�cation naturelle et projectivement équivariante pour des opé-
rateurs di�érentiels agissant entre densités en utilisant la théorie des
connexions de Cartan projectives. Nous avons obtenu une formule ex-
plicite pour la quanti�cation naturelle et projectivement équivariante
en termes de la connexion de Cartan normale associée à une classe
projective de connexions linéaires.
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A notre étonnement, il apparut que cette formule explicite n'est
rien d'autre que la formule donnée dans [9] pour le cas plat, au rempla-
cement près des dérivées partielles par les di�érentiations invariantes
par rapport à la connexion de Cartan normale. En particulier, nous
avons montré que la quanti�cation naturelle et projectivement inva-
riante existe si et seulement si la quanti�cation sl(m+1,R)-équivariante
existe dans le cas plat. Nous avons ainsi apporté un ra�nement au ré-
sultat de M. Bordemann qui n'était pas capable de trancher la question
de l'existence de la quanti�cation naturelle projectivement invariante
dans les situations où δ était égal à une valeur critique.

Sur cette lancée, en utilisant les résultats de [20] et de [6], nous
avons trouvé dans [21] une formule explicite en termes d'opérateurs
naturels sur la variété de base M pour la quanti�cation naturelle et
projectivement équivariante. Cette formule généralise les formules don-
nées par Bouarroudj dans [4] et dans [5] pour les opérateurs di�érentiels
d'ordres deux et trois.

Le problème de l'unicité de la quanti�cation naturelle projective-
ment équivariante n'avait pas encore été abordé. On savait que la quan-
ti�cation sl(m+ 1,R)-équivariante était unique dans les situations non
critiques. Cela n'impliquait toutefois pas l'unicité de la quanti�cation
naturelle projectivement équivariante. Dans [22], nous prouvons que,
contrairement à la quanti�cation sl(m+ 1,R)-équivariante, la quanti�-
cation naturelle et projectivement équivariante n'est pas unique même
dans les situations non-critiques. Nous réalisons cela en utilisant la
théorie des connexions de Cartan et en particulier le tenseur de Weyl
qui peut être introduit très naturellement à partir de celle-ci.

En�n, dans [19], nous analysons la question de l'existence de quan-
ti�cations naturelles et projectivement équivariantes pour des opéra-
teurs di�érentiels agissant sur des champs de tenseurs arbitraires. Cette
question avait déjà été abordée par S. Hansoul dans [10] en utilisant les
connexions de Thomas tandis que nous l'abordons grâce aux connexions
de Cartan projectives. L'avantage de notre méthode est qu'elle donne
lieu à une généralisation directe des formules qui peuvent être écrites
dans le contexte de la quanti�cation projectivement équivariante sur
Rm (dans les situations non-critiques), simplement par la substitution
des di�érentiations invariantes par rapport à une connexion de Cartan
aux dérivées partielles. La méthode met aussi en exergue un lien di-
rect entre l'existence d'une quanti�cation sl(m+ 1,R)-équivariante sur
M = Rm et l'existence de la quanti�cation naturelle et projectivement
équivariante correspondante sur une variété arbitraire.
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Dans le premier chapitre de ce travail, on rappelle les notions fon-
damentales nécessaires à une bonne compréhension de cet ouvrage. Ces
notions sont notamment relatives aux �brés principaux, aux opérateurs
di�érentiels et symboles associés et aux dérivées covariantes. Pour �-
nir, on rappelle la position du problème de la quanti�cation naturelle
projectivement invariante.

Dans le second chapitre, on rappelle les notions de base relatives
aux connexions de Cartan et aux �brés de Cartan. Après avoir dé�ni
une connexion de Cartan en toute généralité, on explique ce qu'est une
structure projective et on démontre que l'ensemble des structures pro-
jectives est en correspondance biunivoque avec l'ensemble des classes
projectives de connexions linéaires sans torsion. On montre ensuite
qu'à une de ces classes, on peut associer de manière naturelle une
connexion de Cartan projective, appelée connexion projective normale.
D'autre part, les fonctions équivariantes sur le �bré des repères d'ordre
1, peuvent être relevées en des fonctions équivariantes sur une structure
projective. On peut faire agir sur ces fonctions une opération appelée
di�érentiation invariante qu'on construit à partir de la connexion de
Cartan normale.

Dans le troisième chapitre, on analyse la question de l'existence
d'une quanti�cation naturelle projectivement invariante dans le cas
d'opérateurs di�érentiels agissant entre densités. On montre qu'une
telle quanti�cation existe si et seulement si la quanti�cation correspon-
dante existe dans le cas plat, en en donnant une formule explicite en
terme de la connexion de Cartan normale. Cette formule est construite
à partir de la di�érentiation invariante, ∇ω, et d'un opérateur que nous
avons appelé Divω. La coïncidence entre formules �plate� et �courbe�
a lieu si l'on substitue ∇ω à la dérivation covariante par rapport à la
connexion canonique plate de Rm etDivω à la divergence covariante par
rapport à cette même connexion. L'exactitude de la formule �courbe�
se démontre en montrant que celle-ci transforme des fonctions équi-
variantes en des fonctions équivariantes. Pour ce faire, on calcule au
préalable l'écart à l'équivariance des fonctions ∇ωl

s f et Divω
l
S, où f et

S représentent respectivement une densité et un symbole.
Le quatrième chapitre se situe dans le prolongement du chapitre

précédent. On y analyse l'existence d'une quanti�cation naturelle pro-
jectivement invariante dans le cas d'opérateurs di�érentiels agissant
entre champs de tenseurs arbitraires. On rappelle tout d'abord en dé-
tails les outils et la méthode utilisée dans le cadre de la quanti�cation
sl(m+1,R)-équivariante dans Rm. Les symboles et les opérateurs di�é-
rentiels étant des représentations de sl(m+1,R), on peut construire les
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opérateurs de Casimir associés C et C sur ces espaces. La quanti�cation
envoie alors un vecteur propre de C sur un vecteur propre de C de même
valeur propre et qui a pour symbole principal le symbole de départ. Par
analogie, on dé�nit dans la situation courbe des �opérateurs de Casi-
mir� agissant sur des fonctions équivariantes. La quanti�cation courbe
est construite de manière exactement similaire à la quanti�cation plate
et on montre qu'ainsi, elle transforme des fonctions équivariantes en des
fonctions équivariantes. La conclusion surprenante est alors que dans
les situations non-critiques, il existe une quanti�cation courbe si et
seulement si la quanti�cation correspondante plate existe, les formules
donnant les quanti�cations courbes s'obtenant en substituant dans les
formules donnant les quanti�cation plates la di�érentiation invariante
aux dérivées partielles.

Dans le cinquième chapitre, on donne une formule explicite pour la
quanti�cation naturelle projectivement équivariante dont il est question
au chapitre 3. Pour ce faire, on développe les opérateurs ∇ωl

s et Divω
l

en termes d'opérateurs naturels sur la variété de base M en utilisant
des outils exposés dans [6].

En�n, dans le sixième chapitre, on montre que la quanti�cation
naturelle projectivement équivariante du chapitre 3 n'est pas unique,
même dans les situations non-critiques, en construisant des applications
naturelles projectivement équivariantes entre espaces de symboles. On
réalise cela grâce au tenseur de Weyl que l'on peut introduire très natu-
rellement par le biais de la courbure de la connexion de Cartan normale.
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CHAPITRE 1

Notions fondamentales

Nous exposons dans ce chapitre les notions nécessaires à la bonne
compréhension de cet ouvrage. Dans tout le travail, nous désignerons
par M une variété que nous supposerons C∞, séparée, connexe et à
base dénombrable. Nous supposerons de plus que la dimension m de
cette variété est toujours strictement supérieure à 1.

1. Fibrés principaux

Dans ce chapitre, nous noterons P , sauf mention explicite du contraire,
un �bré principal de groupe de structure G sur une variété M . Il sera
également sous-entendu que π désignera la projection P → M et R
l'action de G sur P .

Etant donné une variété M , un exemple fondamental de �bré prin-
cipal surM est le �bré des repères d'ordre k, noté P kM , dont les points
sont les repères d'ordre k de M en tout point de M . Pour rappel, un
repère d'ordre k en un point x deM est le jet d'ordre k en l'origine 0 de
Rm d'un di�éomorphisme local de Rm dans M appliquant 0 sur x. Le
�bré P kM est un �bré principal de groupe de structure Gk

m, le groupe
des jets d'ordre k en l'origine 0 de Rm des di�éomorphismes locaux de
Rm dans lui-même appliquant 0 sur 0. L'action d'un élément jk0 (g) de
Gk
m sur un repère jk0 (f) de P kM est donnée de la manière suivante :

jk0 (f).jk0 (g) = jk0 (f ◦ g).

En coordonnées, si j1
0(f) (resp. j2

0(f)) est représenté par (f i, f ij) (resp.

(f i, f ij , f
i
jk)) et si j

1
0(g) (resp. j2

0(g)) est représenté par (gij) (resp. (gij, g
i
jk)),

alors

(f i, f ij).(g
i
j) = (f i, f ikg

k
j )

(resp. (f i, f ij , f
i
jk).(g

i
j, g

i
jk) = (f i, f ikg

k
j , f

i
rg
r
jk + f irsg

r
jg
s
k)).

Si M et N sont deux variétés et si φ ∈ C∞(M,N), l'application P kφ
est dé�nie de la manière suivante :

P kφ : P kM → P kN : jk0f 7→ jk0 (φ ◦ f).
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Les �brés principaux admettent des champs de vecteurs particuliers.
Il s'agit des champs de vecteurs fondamentaux, qui sont associés aux
éléments de l'algèbre de Lie g de G.

Si h ∈ g, le champ fondamental associé à h est le champ de vecteurs
sur P noté h∗ et dé�ni en tout point par

h∗u =
d

dt
Rexp(th)u|t=0.

Rappelons aussi la notion de réduction d'un �bré principal. Soient P
un �bré principal de groupe de structure G et P ′ un �bré principal de
groupe de structure G′. Une immersion χ de P dans P ′ véri�ant

χ(u.g) = χ(u).Φ(g) ∀u ∈ P, ∀g ∈ G,
où Φ est une immersion et un homomorphisme de groupes entre G et
G′ est une réduction du groupe de structure G′ du �bré principal P ′ à
G si χ recouvre l'application identité sur la base M .

Si P est un G-�bré principal et V une variété munie d'une action
à gauche ρ de G, alors le �bré associé à P de �bre type V , noté

P ×G V,
est le quotient de P × V par la relation d'équivalence ∼ dé�nie par

(u, v) ∼ (u′, v′)⇔ ∃g ∈ G tel que (u′, v′) = (Rg(u), ρ(g−1)(v)).

La classe d'un couple (u, v) pour cette relation d'équivalence est notée
[u, v]. Le �bré P ×G V est un �bré sur M à �bre type V , la projection
d'une classe [u, v] étant donnée par π(u).

Il existe de nombreux exemples de tels �brés. Parmi ceux-ci, on peut
citer le �bré des densités, Fλ(M), et le �bré Skδ (M) qui auront un rôle
important dans la suite. Le premier se décrit de la manière suivante :

Fλ(M) = P 1M ×GL(m,R) ∆λ(Rm),

où la représentation ρ de GL(m,R) sur ∆λ(Rm) est donnée par

ρ(g)A = | det g|−λA, ∀g ∈ GL(m,R), ∀A ∈ ∆λ(Rm).

Le deuxième s'identi�e quant à lui à

P 1M ×GL(m,R) S
k
δ (Rm),

où Skδ (Rm) est l'espace SkRm ⊗ ∆δ(Rm) et où la représentation ρ de
GL(m,R) sur Skδ (Rm) est donnée par

ρ(g) A⊗X1 ∨ . . . ∨Xk = | det g|−δ A⊗ gX1 ∨ . . . ∨ gXk,

si g ∈ GL(m,R), A ∈ ∆δ(Rm) et X1, . . . Xk ∈ Rm. On notera Fλ(M)
l'espace des sections de Fλ(M) et Skδ (M) l'espace des sections de Skδ (M).
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Dans la suite, nous désignerons par E1 (resp. E2) le foncteur asso-
ciant à une variété M de dimension m le �bré associé

E1(M) = P 1M ×GL(m,R) V1,

(resp. E2(M) = P 1M×GL(m,R)V2), où V1 et V2 sont des représentations
de dimensions �nies de GL(m,R).

Si P est un G-�bré principal sur M et P ×G V un �bré associé à P
de �bre type V , il y a bijection canonique entre les sections de P ×G V
et les éléments f de C∞(P, V ) qui sont G-équivariants, i.e. qui satisfont

f(Rg(u)) = ρ(g−1)f(u), ∀g ∈ G, ∀u ∈ P.

Si T est une section de P ×G V , alors la fonction lui correspondant par
cette bijection est l'unique fonction fT ∈ C∞(P, V ) véri�ant

T (π(u)) = [u, fT (u)].

Ainsi, par la suite nous ne distinguerons plus les sections des �brés
associés considérés des fonctions équivariantes correspondantes.

Fixons une fois pour toutes la notation suivante : si (P,R) est une
variété munie d'une action à droite R d'un groupe de Lie G et si (V, ρ)
est une variété munie d'une action à gauche ρ de G, alors l'ensemble
des fonctions G-équivariantes de classe C∞ entre (P,R) et (V, ρ) sera
noté

C∞(P, V )G.

Le fait de ne considérer que des �brés associés à P 1M va nous per-
mettre de pouvoir dé�nir une dérivée de Lie sur les sections de ces �brés
dans la direction des champs de vecteurs surM . Si X appartient à l'en-
semble Vect(M) des champs de vecteurs C∞ sur M , alors il admet un
relèvement complet XC dans Vect(P 1M). Si (V, ρ) est une représenta-
tion de GL(m,R), la fonction équivariante correspondant à la dérivée
de Lie par rapport à X d'une section T de P 1M ×GL(m,R) V est par
dé�nition la dérivée de la fonction équivariante lui correspondant dans
la direction de XC . Si on se donne des coordonnées, on peut considérer
en un point x deM le repère canonique (xi, δij) correspondant à ce sys-
tème de coordonnées. Si on appelle f la fonction associant à un point
x de M les composantes de Tx dans ce repère, la fonction associant à x
les composantes de (LXT )x dans le repère (xi, δij) est alors donnée par

X.f − ρ∗(DX)f,

où DX est la matrice de gl(m,R) des dérivées partielles de l'expression
locale de X.
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Notons que si φ est un di�éomorphisme entre deux variétés M et
N , on dé�nit l'action de φ sur un élément [u, v] du �bré associé E1(M)
comme suit :

φ.[u, v] := [P 1φ(u), v].

Rappelons aussi la notion de forme de connexion sur un �bré prin-
cipal, ou connexion d'Ehresmann. Une 1-forme de connexion sur un
G-�bré principal P est une 1-forme Υ sur P à valeurs dans l'algèbre de
Lie g de G satisfaisant

� Υ(h∗) = h pour tout h ∈ g ;
� R∗aΥ = Ad(a−1) ◦Υ pour tout a ∈ G.

2. Opérateurs di�érentiels et symboles

Si M est une variété et si E1(M), E2(M) sont les �brés vecto-
riels naturels sur M de �bres types respectives V1 et V2 dont il est
question au paragraphe précédent, un opérateur di�érentiel D entre
l'espace Γ∞(E1(M)) des sections de classe C∞ de E1(M) et l'espace
Γ∞(E2(M)) est une application R-linéaire dont l'expression locale dans
un ouvert de carte et de trivialisations simultanées de E1(M) et E2(M)
est de la forme

(Df)(x) =
∑
|α|≤k

Cα(x)((∂α1
1 . . . ∂αmm f)(x)), (1)

où k ∈ N, |α| =
∑

i αi et Cα est une application de classe C∞ assignant
à chaque point de l'ouvert de carte une application linéaire de V1 dans
V2 pour tout multi-indice α. Le naturel k apparaissant dans l'expres-
sion (1) est l'ordre de di�érentiation ou tout simplement l'ordre de D.
L'ensemble de ces opérateurs di�érentiels est noté

D(E1(M), E2(M)),

ou plus simplement D(M).
L'ordre de l'expression locale d'un opérateur di�érentiel étant in-

dépendant de la carte choisie, cet espace est �ltré par l'ordre de di�é-
rentiation :

D(M) =
⋃
k∈N

Dk(M).

L'ensemble S(E1(M), E2(M)) (ou S(M)) des symboles principaux, ou
simplement des symboles, associé à cet espace d'opérateurs di�érentiels
est l'espace gradué associé à cette �ltration. On a ainsi pour tout k ∈ N0

Sk(M) = Dk(M)/Dk−1(M),
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S0(M) est isomorphe à D0(M) et

S(M) =
⊕
k∈N

Sk(M).

Chaque Sk(M) est isomorphe en tant qu'espace vectoriel à l'ensemble

Γ∞(E∗1(M)⊗ E2(M)⊗ SkTM)

des champs de tenseurs symétriques contravariants de degré k à valeurs
dans les applications linéaires entre les �bres types V1 et V2 de E1(M)
et E2(M).

Si D est un opérateur di�érentiel d'ordre k, sa partie de plus haut
ordre a une signi�cation intrinsèque. Plus précisément, les termes de
plus haut degré de l'expression locale de D sont l'expression locale
d'un symbole de degré k, et l'application associant à D ce symbole est
appelée symbole principal et est notée σ. Elle est donnée en coordonnées
locales par

σ(
∑
|α|≤k

Cα∂
α1
1 . . . ∂αmm ) =

∑
|α|=k

Cα ⊗ ∂α1
1 ∨ . . . ∨ ∂αmm ,

où ∂1, . . . , ∂m est la base locale du �bré tangent. Les actions de Vect(M)
et Diff(M) sur D(M) sont induites par les actions correspondantes sur
les sections de E1(M) et E2(M) : on a tout d'abord

(φ.D)(ϕ) = φ.D(φ−1.(ϕ)), ∀ϕ ∈ Γ∞(E1(M)), D ∈ D(M), φ ∈ Diff(M).

En di�érentiant cette action, on obtient l'expression de la dérivée de
Lie d'un opérateur di�érentiel :

(LXD)(ϕ) = LXD(ϕ)−D(LXϕ)

pour tous ϕ ∈ Γ∞(E1(M)), D ∈ D(M), X ∈ Vect(M).
De la même manière, les actions de Diff(M) sur les sections de

E1(M) et E2(M) et sur les sections de TM induisent une action de
Diff(M) sur les symboles. Au niveau in�nitésimal, la di�érentiation de
cette action permet de calculer la dérivée de Lie d'un symbole dans la
direction d'un champ de vecteurs X quelconque.

Les espaces S(M) et D(M) sont isomorphes en tant qu'espaces
vectoriels. Toutefois ils ne le sont pas en tant que représentations du
groupe des di�éomorphismes locaux.

En conséquence, il n'existe pas de quanti�cation canonique natu-
relle au sens où elle commute avec les di�éomorphismes locaux, où on
entend par quanti�cation une application linéaire

Q : S(M)→ D(M)
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préservant le symbole principal, i.e. satisfaisant sur chaque Sk(M) la
condition

σ ◦Q = Id.

Soulignons cependant qu'il est possible de construire canoniquement
une quanti�cation à l'aide de chaque dérivée covariante ∇ surM , cette
construction étant décrite dans la section 3.

Dans cet ouvrage, on désignera par Dλ,µ(M) l'espace des opérateurs
di�érentiels agissant entre λ et µ-densités, sections de �brés naturels
d'ordre 1 introduits dans la section 1. On notera Sδ(M) l'espace des
symboles qui lui est associé, où δ = µ− λ.

3. Dérivées covariantes

On désigne par dérivation covariante sur une variété M une appli-
cation bilinéaire

∇ : Vect(M)× Vect(M)→ Vect(M)

satisfaisant pour tout f ∈ C∞(M)

� ∇fXY = f∇XY,
� ∇XfY = f∇XY + (X.f)Y.

Il découle de cette dé�nition qu'en coordonnées locales une dérivée
covariante est de la forme

∇XY = X i∂iY + ΓkijX
iY j∂k.

Les fonctions Γkij apparaissant dans cette formule sont appelées sym-
boles de Christo�el de ∇ et ne sont dé�nies qu'en coordonnées locales.

La torsion d'une dérivée covariante ∇ est le tenseur T dé�ni par

T (X, Y ) = ∇XY −∇YX − [X, Y ], ∀X, Y ∈ Vect(M).

Dans ce travail, nous ne considérerons que des dérivées covariantes sans
torsion sur M et nous noterons CM l'ensemble de ces connexions.

Il est possible de dé�nir sur l'ensemble des dérivées covariantes une
relation d'équivalence, appelée équivalence projective, de la manière sui-
vante. Si ∇ et ∇′ sont deux connexions linéaires sans torsion sur M ,
alors elles sont dites projectivement équivalentes s'il existe une 1-forme
α sur M telle que

∇′XY = ∇XY + α(X)Y + α(Y )X, ∀X, Y ∈ Vect(M).

H. Weyl démontra dans [26] que deux dérivées covariantes sont
projectivement équivalentes si et seulement si elles dé�nissent sur M
les mêmes géodésiques à reparamétrage près.
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Une classe d'équivalence pour cette relation est appelée structure
projective, ou classe projective sur M .

Etant donné deux �brés vectoriels E1(M) et E2(M) sur M , nous
avons dit dans la deuxième section que l'ensemble D(M) est isomorphe
en tant qu'espace vectoriel à son espace de symboles associé S(M). Il
n'existe pas de bijection canonique naturelle entre ces deux ensembles,
mais il est possible d'assigner à chaque ∇ ∈ CM une bijection linéaire

L∇ : S(M)→ D(M).

Cette bijection est construite de la manière suivante. Notons tout d'abord
que comme E1(M)⊗SlT ∗M est un �bré associé à P 1M , on peut étendre
la dérivation covariante ∇ aux sections de ce �bré. Etant donné une
section γ ∈ Γ∞(E1(M)⊗ SlT ∗M), on construit alors
∇sγ ∈ Γ∞(E1(M)⊗ Sl+1T ∗M) en posant

(∇sγ)(X1, . . . , Xl+1) =
1

(l + 1)!

∑
ν

(∇Xν(1)
γ)(Xν(2), . . . , Xν(l+1)).

A partir de là, on construit une quanti�cation en posant pour tout
S ∈ Sk(M)

(L∇S)(f) = 〈S,∇k
sf〉, ∀f ∈ Γ∞(E1(M)), (2)

où 〈., .〉 désigne la contraction de deux champs de tenseurs.

La fonction

L : CM × S(M) 7→ D(M)

dé�nie par (2) est appelée quanti�cation standard, prescription d'ordre
standard, ou encore quanti�cation de Lichnérowicz. Cette application
est naturelle et L∇ est une quanti�cation pour tout ∇ ∈ CM .

Pour terminer cette section, rappelons la dé�nition de quelques ten-
seurs de courbure classiques. On désigne par tenseur de courbure d'une
dérivation covariante ∇ ∈ CM le champ de tenseurs R sur M dé�ni par

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

pour tout X, Y, Z ∈ Vect(M). La trace trR de cette courbure et le
tenseur de Ricci Ric sont les champs de tenseurs sur M dé�nis respec-
tivement par

trR(X, Y ) = tr(. 7→ R(X, Y ).),

et par

Ric(X, Y ) = tr(. 7→ R(Y, .)X).
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4. Position du problème

Une quanti�cation naturelle projectivement équivariante pour deux
�brés E1(M) et E2(M) est un opérateur associant à chaque variété M
une application

QM : CM × S(E1(M), E2(M))→ D(E1(M), E2(M)),

telle que

� QM est naturel, i.e. que pour tout di�éomorphisme local φ : M →
N , il vient

QM
(φ∗∇)(φ

∗S) = φ∗(QN
∇(S)),

pour tous ∇ ∈ CN et S ∈ S(E1(N), E2(N)).
� Q est projectivement équivariant (ou projectivement invariant),
i.e. que QM

∇ = QM
∇′ si ∇ et ∇′ sont projectivement équivalents.

� QM
∇ : S(E1(M), E2(M)) → D(E1(M), E2(M)) est une quanti�-

cation pour tout ∇ ∈ CM .

Toujours pour alléger les écritures, nous n'expliciterons pas par la
suite la dépendance de QM à la variété M .

Ce travail a pour but de répondre à une question posée il y a
quelques années par P. Lecomte.

Etant donné deux �brés vectoriels naturels E1 et E2, existe-t-il une
quanti�cation naturelle projectivement invariante pour ces �brés ?

A l'origine de cette question, on trouve les résultats d'existence de
quanti�cations slm+1-invariantes obtenus sur Rm. Nous allons briève-
ment rappeler en quoi consistent ces résultats et de quelle manière
l'existence d'une quanti�cation naturelle et projectivement invariante
en consistue une généralisation.

Le plongement projectif slm+1 de sl(m+ 1,R) est une sous-algèbre
des champs de vecteurs sur Rm. Elle est engendrée par les champs de
vecteurs

∂i, xi∂i, et xjxi∂i.

Elle est isomorphe à sl(m+1,R) et est maximale dans l'algèbre Vect∗(Rm)
des champs de vecteurs polynomiaux sur Rm.

On désigne par quanti�cation slm+1-invariante pour les �brés vec-
toriels E1 et E2 une quanti�cation

Q : S(Rm)→ D(Rm)

satisfaisant
LXQ = 0, ∀X ∈ slm+1.
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Montrons à présent que l'existence d'une quanti�cation naturelle pro-
jectivement invariante implique l'existence d'une quanti�cation slm+1-
invariante. Si Q désigne une quanti�cation naturelle projectivement
invariante et si φ représente le �ot d'un champ de vecteurs X apparte-
nant à slm+1, il vient en e�et :

φ∗tQ(∇0)(S) = Q(φ∗t∇0)(φ∗tS)

pour tout t ∈ R, pour tout symbole S, si ∇0 désigne la dérivation
covariante plate canonique de Rm. Par dé�nition de la dérivée d'un
champ de tenseurs, si l'on parvient à démontrer que φ∗t préserve la classe
projective de ∇0 pour tout t, on aura également prouvé que Q(∇0) est
une quanti�cation slm+1-équivariante, par l'invariance projective de Q.

Le fait que la classe projective de ∇0 soit préservée par l'action du
di�éomorphisme φt est dû à la propopriété suivante :

LX∇0 = α ∨ id
si X s'écrit Ai∂i + Aijx

j∂i + α(x)xi∂i, où les Ai et les Aij sont dans R
et où α ∈ Rm∗. En e�et, si Y, Z ∈ Vect(Rm), il vient

(LX∇0)(Y, Z) = [X,∇0
YZ]−∇0

[X,Y ]Z −∇0
Y [X,Z]

= Y iZr∂irX
j∂j

= α(Y )Z + α(Z)Y

après développements. Dès lors,

d

ds
(φ∗s∇0)x = (φ∗s(α ∨ id))x

pour tout s ∈ R, pour tout x ∈ Rm. Dans ces conditions, φ∗s∇0 est
projectivement équivalent à ∇0 via la 1-forme β dé�nie de la manière
suivante :

βx(Yx) :=

∫ s

0

(φ∗uα)x(Yx) du,

où Y ∈ Vect(Rm), x ∈ Rm.
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CHAPITRE 2

Fibrés et connexions de Cartan

Nous rappelons ici les principaux faits concernant les connexions de
Cartan. Premièrement, nous en donnons une dé�nition générale et en-
suite nous donnons plus de détails sur les connexions de Cartan projec-
tives et leurs liens avec les structures projectives. Pour une information
plus détaillée, nous renvoyons le lecteur à [14].

1. Connexions de Cartan

Soient G un groupe de Lie et H un sous-groupe fermé de G. Dési-
gnons par g et h les algèbres de Lie correspondantes. Soit P → M un
H-�bré principal surM , tel que dimM = dimG/H. Une connexion de
Cartan sur P est une 1-forme ω sur P à valeurs dans g qui satisfait les
propriétés suivantes :

� R∗aω = Ad(a−1)ω pour tout a ∈ H,
� ω(h∗) = h pour tout h ∈ H,
� ∀u ∈ P, ωu : TuP → g est une bijection linéaire.

La connexion de Cartan ω permet donc de transformer les éléments de
l'algèbre de Lie g en des champs de vecteurs sur P . Notons que si h ∈ h,
ω−1(h) est évidemment égal à h∗ grâce à la deuxième propriété des
connexions de Cartan. D'autre part, l'espace vectoriel g se décompose
comme suit :

g = g−1 ⊕ h,

g−1 étant un sous-espace vectoriel de g isomorphe à g/h. Cela étant dit,
nous pouvons introduire la remarque suivante qui sera très utile dans
la suite :

Lemme 1. Si h ∈ h et si X ∈ g−1, alors

[h∗, ω−1(X)] = ω−1([h,X]).
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Démonstration. De fait, il vient, si l'on note ϕt le �ot de h
∗ :

[h∗, ω−1(X)](u) =
d

dt
Rexp(−th)∗u exp(th)ω

−1(X)u exp(th)|t=0

= ω−1([h,X])(u)

par Ad-invariance de ω. �

2. Le groupe projectif et son algèbre de Lie

Considérons l'action du groupe G = PGL(m + 1,R) sur l'espace
projectif RPm. Le stabilisateur H de l'élément [em+1] dans RPm est

{
(
A 0
ξ a

)
: A ∈ GL(m,R), ξ ∈ Rm∗, a 6= 0}/R0Id (3)

et il s'ensuit que H est le produit semi-direct G0 o G1, où G0 est
isomorphe àGL(m,R) et oùG1 est isomorphe à Rm∗. On a la projection
suivante

π : H → GL(m,R) :

[(
A 0
ξ a

)]
7→ A

a

L'algèbre de Lie de PGL(m + 1,R) est gl(m + 1,R)/RId. Elle est
donc isomorphe à sl(m+ 1,R) et elle se décompose comme une somme
directe de sous-algèbres

g−1 ⊕ g0 ⊕ g1
∼= Rm ⊕ gl(m,R)⊕ Rm∗.

L'isomorphisme est donné par[(
A v
ξ a

)]
7→ (v,A− a Id, ξ).

Cette correspondance induit une structure d'algèbre de Lie sur Rm ⊕
gl(m,R)⊕Rm∗. Les algèbres de Lie correspondant à G0, G1 et H sont
respectivement g0, g1, et g0 ⊕ g1. La structure d'algèbre de Lie sur
Rm ⊕ gl(m,R)⊕ Rm∗ est donnée par les crochets suivants :

[v, v′] = 0, [ξ, ξ′] = 0, [U, v] = Uv,

[U, ξ] = −ξU, [U,U ′] = UU ′ − U ′U, [v, ξ] = v ⊗ ξ + 〈ξ, v〉Id,

où v et v′ sont des éléments de Rm, U et U ′ sont des éléments de
gl(m,R) et où ξ et ξ′ appartiennent à Rm∗.
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3. Structures projectives

Un élément du groupe H peut être vu comme une transformation
de l'espace projectif RPm qui laisse son origine [em+1] �xée. Si on lit
cette transformation dans la carte canonique de RPm au voisinage de
[em+1], on obtient une correspondance entre les éléments de H et des
éléments de G2

m. Si l'on note que les transformations de RPm induites
par les éléments deH sont univoquement déterminées par leurs dérivées
jusqu'à l'ordre 2 en 0, H est donc plongé dans G2

m via l'application
suivante :

ι : H → G2
m :

[(
A 0
ξ a

)]
7→ (

Aij
a
,−

Aijξk + Aikξj

a2
). (4)

Une structure projective P surM est alors une réduction du �bré des re-
pères d'ordre 2 P 2M au groupe H. De telles structures existent, comme
le prouve le résultat suivant ([14, Prop 7.2 p.147]) qui est le point de
départ de notre méthode :

Proposition 2 (Kobayashi-Nagano). Il existe une correspondance
bijective et naturelle entre les classes projectives de connexions linéaires
sans torsion sur M et les structures projectives sur M .

Démonstration. En fait, la correspondance est construite de la
manière suivante : à la classe d'une connexion sans torsion ∇, on as-
socie la structure projective P dont la �bre au dessus du point de
coordonnées locales xi est donnée par l'ensemble des repères d'ordre 2
suivant :

(xi, δij,−Γijk).H,

où les Γijk sont les symboles de Christo�el de ∇. On peut véri�er que
cette correspondance est bien dé�nie et bijective grâce à la loi de trans-
formation des Γijk sous l'e�et d'un changement de coordonnées et grâce
à la loi reliant les symboles de Christo�el de 2 connexions projective-
ment équivalentes. �

4. Connexions projectives

En général, si ω est une connexion de Cartan dé�nie sur un H-�bré
principal P , alors sa courbure Ω est dé�nie comme d'habitude par

Ω = dω +
1

2
[ω, ω], (5)

où d est la di�érentielle et où le crochet [ω, ω] est dé�ni par

[ω, ω](X, Y ) = 2[ω(X), ω(Y )], ∀X, Y ∈ TP.
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Si ω = ωiei + ωije
j
i + ωiε

i, où ei est une base de g−1, e
i
j une base de g0

et εi une base de g1, le fait que Ω s'annule sur les champs de vecteurs
verticaux implique que ce tenseur peut s'écrire sous la forme suivante :

Ω =
∑

Kkl ω
k ∧ ωl,

où les fonctions Kkl sont à valeurs dans g. Dans la suite, nous décom-
poserons aussi Ω en ses projections selon g−1, g0 et g1 :

Ω = Ωiei + Ωi
je
j
i + Ωiε

i.

Nous pouvons en outre dé�nir à partir de Ω une fonction κ ∈ C∞(P, g∗−1⊗
g∗−1 ⊗ g) de la manière suivante :

κ(u)(X, Y ) := Ω(u)(ω−1(X), ω−1(Y )).

Cette fonction sera également décomposée en ses composantes selon
g−1, g0 et g1 :

κ = κiei + κije
j
i + κiε

i.

D'autre part, si ω est une connexion de Cartan sur un �bré princi-
pal P , ses projections selon g−1 et g0 doivent satisfaire les conditions
suivantes :

� ω−1(h∗) = 0, ω0(h∗) = h0 ∀h ∈ g0 +g1, où h0 est la projection
selon g0 de h ;

� (Ra)
∗(ω−1 + ω0) = (ad a−1)(ω−1 + ω0) ∀a ∈ H, où ad a−1 est

l'application de g/g1 dans lui-même induite par l'action adjointe
ad a−1 de g dans g ;

� Si ω−1(X) = 0, alors X est vertical.

Soient les groupes G et H dont il est question dans la section 2
de ce chapitre. Le théorème suivant énoncé dans [14] page 135 est
fondamental :

Théorème 3. Soit P un H-�bré principal sur une variété M . Si
on se donne une 1-forme ω−1 à valeurs dans g−1 de composantes ωi

et une forme ω0 à valeurs dans g0 de composantes ωij qui satisfont les
3 conditions mentionnées précédemment et la condition supplémentaire
suivante :

dωi = −
∑

ωi
k ∧ ωk,

alors il existe une unique connexion de Cartan ω = ω−1 +ω0 +ω1 dont
la courbure Ω de composantes (0; Ωi

j; Ωj) satisfait la propriété suivante :∑
Ki
jil = 0,

où

Ωi
j =

∑ 1

2
Ki
jkl ω

k ∧ ωl.
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Définition 1. Si u = j2
0f est un point de P 2M et si X est un

vecteur tangent à P 2M au point u, la forme canonique θ de P 2M est
la 1-forme à valeurs dans Rm⊕gl(m,R) dé�nie au point u de la manière
suivante :

θu(X) = (P 1f)−1
∗e (π∗X),

où π est la projection canonique de P 2M sur P 1M et où e est le repère
en l'origine de Rm représenté par la matrice Id.

Grâce à ce qui est dit dans [14], on peut voir que la 1-forme sur une
structure projective P à valeurs dans Rm⊕ gl(m,R) dé�nie par i∗θ, où
i est le plongement canonique de P dans P 2M , satisfait les conditions
du théorème 3. D'après ce résultat, il existe une unique connexion de
Cartan sur P dont les projections sur g−1 et g0 coïncident avec celles de
i∗θ et qui satisfait la condition supplémentaire relative aux composantes
de sa courbure. Nous venons donc de montrer la proposition suivante :

Proposition 4. On peut associer à chaque structure projective P
une connexion de Cartan à valeurs dans l'algèbre de Lie sl(m+ 1,R),
cette association étant naturelle.

La naturalité de l'association provient en e�et de la naturalité de i∗θ
et des propriétés mentionnées dans le théorème 3 ainsi que de l'unicité
de la connexion qui satisfait la condition supplémentaire relative à la
courbure. Dans la suite, on désignera simplement par θ la restriction i∗θ
de la forme canonique de P 2M à P . On notera θ−1 et θ0 ses projections
selon Rm et gl(m,R).

La connexion associée à une structure projective P est appelée la
connexion projective normale de la structure projective. C'est cette
connexion de Cartan que nous utiliserons constamment dans la suite.

5. Di�érentiation invariante

Un outil fondamental relié aux connexions de Cartan sur lequel
nous baserons toutes nos constructions est le concept de di�érentiation
invariante développé dans [6, 7]. Soit P une structure projective et soit
ω la connexion projective normale associée.

Définition 2. Soit (V, ρ) une représentation deH. Si f ∈ C∞(P, V ),
alors la di�érentiation invariante de f par rapport à ω est la fonction
∇ωf ∈ C∞(P,Rm∗ ⊗ V ) dé�nie par

∇ωf(u)(X) = Lω−1(X)f(u) ∀u ∈ P, ∀X ∈ Rm.

Nous utiliserons aussi une version itérée de la di�érentiation inva-
riante :
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Définition 3. Si f ∈ C∞(P, V ) alors ∇ωkf ∈ C∞(P,⊗kRm∗ ⊗ V )
est dé�ni par

∇ωkf(u)(X1, . . . , Xk) = Lω−1(Xk) ◦ . . . ◦ Lω−1(X1)f(u)

pour X1, . . . , Xk ∈ Rm.

Si nous symétrisons cette version itérée, nous aboutissons à la

Définition 4. Si f ∈ C∞(P, V ) alors ∇ωk

s f ∈ C∞(P, SkRm∗ ⊗ V )
est dé�ni par

∇ωk

s f(u)(X1, . . . , Xk) =
1

k!

∑
ν

∇ωkf(u)(Xν1 , . . . , Xνk)

pour X1, . . . , Xk ∈ Rm.

6. Relèvement des fonctions équivariantes

Les fonctions équivariantes sur P 1M permettent de construire des
fonctions équivariantes sur P . De plus, les sections d'un �bré naturel
du premier ordre sont en correspondance biunivoque avec ces fonctions
dé�nies sur la structure projective. Les résultats suivants sont signalés
dans [6, p. 47].

Si (V, ρ) est une représentation de GL(m,R), alors on peut dé�nir
une représentation (V, ρ′) de H de la manière suivante :

ρ′ : H → GL(V ) :

[(
A 0
ξ a

)]
7→ ρ ◦ π(

[(
A 0
ξ a

)]
) = ρ(

A

a
)

pour tous A ∈ GL(m,R), ξ ∈ Rm∗, a 6= 0.
Maintenant, en utilisant la représentation ρ′, nous pouvons donner

la relation entre les fonctions équivariantes sur P 1M et les fonctions
équivariantes sur P : si P est une structure projective sur M , la pro-
jection naturelle P 2M → P 1M induit une projection p : P → P 1M et
nous avons :

Proposition 5. Si (V, ρ) est une représentation de GL(m,R),
alors l'application

p∗ : C∞(P 1M,V )→ C∞(P, V ) : f 7→ f ◦ p
dé�nit une bijection entre C∞(P 1M,V )GL(m,R) et C

∞(P, V )H .

Démonstration. Le résultat est très facile à établir : l'application
est tout d'abord bien dé�nie en raison de la correspondance (4) entre
les éléments de H et les jets d'ordre 2 qu'ils représentent. L'injectivité
de l'application est évidente tandis que sa surjectivité découle du fait
qu'une fonction H-équivariante sur P est constante le long d'une orbite
de G1. �
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A présent, comme Rm et Rm∗ sont des représentations naturelles de
GL(m,R), elles deviennent des représentations de H et nous pouvons
établir une propriété importante de la di�érentiation invariante :

Proposition 6. Si f appartient à C∞(P, V )G0, alors ∇ωf appar-
tient à C∞(P,Rm∗ ⊗ V )G0.

Démonstration. Le résultat est une conséquence de l'Ad-invariance
de la connexion de Cartan ω. En e�et :

(∇ωf)(ug) = ρ′(g)−1(∇ωf)(u) ∀u ∈ P, ∀g ∈ G0

⇐⇒

(∇ωf)(ug)(X) = [ρ′(g)−1(∇ωf)(u)](X) ∀u ∈ P, ∀g ∈ G0,∀X ∈ g−1

⇐⇒

(Lω−1(X)f)(ug) = ρ′(g−1)(Lω−1(ρ′(g)X)f)(u) ∀u ∈ P, ∀g ∈ G0,∀X ∈ g−1.

Si l'on appelle ϕt le �ot de ω
−1(X) et ϕ′t le �ot de ω

−1(ρ′(g)X), il su�t
donc de véri�er que

d

dt
f(ϕt(ug))|t=0 = ρ′(g−1)

d

dt
f(ϕ′t(u))|t=0 ∀u ∈ P, ∀g ∈ G0,

ou encore que

ϕt(ug) = ϕ′t(u)g ∀u ∈ P, ∀g ∈ G0.

Cette propriété est bien véri�ée : de fait, les champs ω−1(ρ′(g)X) et
ω−1(X) sont Rg-liés par Ad-invariance de ω. �

Une remarque fondamentale est que ce résultat n'est pas vrai en gé-
néral pour les fonctionsH-équivariantes : pour une fonctionH-équivariante
f , la fonction ∇ωf n'est en général pas G1-équivariante.

Dans la suite, nous utiliserons la représentation ρ′∗ de l'algèbre de
Lie de H sur V . Si nous rappelons que cette algèbre est isomorphe à
gl(m,R)⊕ Rm∗, nous avons alors

ρ′∗(A, ξ) = ρ∗(A), ∀A ∈ gl(m,R), ξ ∈ Rm∗. (6)

Dans nos calculs, nous utiliserons la version in�nitésimale de la relation
exprimant l'équivariance : si f ∈ C∞(P, V )H , alors on a

Lh∗f(u) + ρ′∗(h)f(u) = 0, ∀h ∈ gl(m,R)⊕ Rm∗,∀u ∈ P. (7)

A�n d'analyser l'équivariance des fonctions, nous disposons du résultat
facile suivant :
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Proposition 7. Si (V, ρ) est une représentation de G0 et devient
une représentation de H comme expliqué au début de cette section, alors
une fonction f ∈ C∞(P, V ) est H−équivariante si et seulement si{

f est G0−équivariant,
Lh∗f = 0 pour tout h dans g1.

Démonstration. Evidemment, laH−équivariance est équivalente
à la conjonction de laG0− et de laG1−équivariance. LaG1−équivariance
est équivalente à la g1−équivariance puisque G1 est un espace vectoriel.
Le résultat s'ensuit puisque G1 agit trivialement sur V . �

Le dernier résultat que nous allons établir dans ce chapitre s'appuie
sur une proposition énoncée dans [6] page 47 :

Proposition 8. Soit ω la connexion de Cartan normale construite
sur la structure projective P associée à une connexion sans torsion ∇.
Si (V, ρ) est une représentation de GL(m,R), nous avons la formule
suivante pour tous X ∈ g−1, f ∈ C∞(P 1M,V )GL(m,R) et u ∈ P :

(∇ω ◦ p∗ − p∗ ◦ ∇)f(u)(X) = ρ′∗([X, τ(u)])(f(p(u))).

La fonction τ dont il est question dans ce résultat est une fonction
sur P à valeurs dans g1 dé�nie dans [6] page 43.

La section locale de P qu'on considère dans la démonstration de la
proposition 2 permet d'identi�er localement P à U×H où U est un do-
maine de carte de M et induit donc un système de coordonnées locales
sur P . Dans ces conditions, on peut énoncer la proposition suivante :

Proposition 9. Soit ω la connexion de Cartan normale construite
sur la structure projective P associée à une connexion sans torsion ∇.
Soient (V, ρ) une représentation de GL(m,R) et

E = P 1M ×GL(m,R) V

le �bré associé à P 1M correspondant. Si f ∈ C∞(P 1M,V )GL(m,R) est
la fonction équivariante représentant une section ϕ de E, alors

(∇ωk

s ◦ p∗)f = (p∗ ◦ ∇k
s)f + g,

où g est une fonction sur P dont l'expression locale ne contient des
dérivées des composantes de ϕ que jusqu'à l'ordre k − 1.

Démonstration. Si k = 1, le résultat est vrai grâce à la pro-
position 8. Cette même proposition permet aisément de démontrer le
résultat pour k quelconque par induction. �
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CHAPITRE 3

Le cas des densités

Dans ce chapitre, nous analysons la question de l'existence d'une
quanti�cation naturelle projectivement invariante dans le cas parti-
culier de l'espace des opérateurs di�érentiels agissant entre λ et µ-
densités, Dλµ(M). Notre méthode conduit à des conclusions surpre-
nantes : tout d'abord, une telle quanti�cation existe si et seulement si
la quanti�cation sl(m + 1,R)-équivariante correspondante existe dans
Rm. De plus, nous obtenons une formule explicite pour la quanti�ca-
tion écrite en utilisant la connexion de Cartan normale associée à une
structure projective. Cette formule est exactement la même que celle
donnant la quanti�cation équivariante dans Rm si l'on substitue aux
di�érentiations invariantes les dérivées partielles.

Pour commencer, rappelons la dé�nition suivante de [17, Prop 2,
p. 289] :

Définition 5. Nous dé�nissons les nombres

γ2k−l =
m+ 2k − l − (m+ 1)δ

m+ 1
.

Une valeur de δ est critique s'il existe k, l ∈ N tels que 1 ≤ l ≤ k et
γ2k−l = 0.

Un des résultats de [17] est alors :

Théorème 10. Si δ n'est pas critique, alors il existe une unique
quanti�cation sl(m+ 1,R)-équivariante.

A présent, introduisons l'opérateur de divergence associé à une
connexion de Cartan. Cet opérateur sera le principal outil de notre
construction.

1. L'opérateur de divergence

Soit (e1, . . . , em) la base canonique de Rm et soit (ε1, . . . , εm) sa base
duale dans Rm∗.
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L'opérateur de divergence par rapport à la connexion de Cartan ω
est alors dé�ni par

Divω : C∞(P, Skδ (Rm))→ C∞(P, Sk−1
δ (Rm)) : S 7→

m∑
j=1

i(εj)∇ω
ej
S,

où i désigne le produit intérieur.
Cet opérateur peut être considéré comme une généralisation courbe

de l'opérateur de divergence utilisé dans [16]. Les propositions sui-
vantes montrent ses propriétés les plus importantes.

Lemme 11. Si S ∈ C∞(P, Skδ (Rm))G0, alors DivωS appartient à
C∞(P, Sk−1

δ (Rm))G0.

Démonstration. Le résultat peut être contrôlé directement à par-
tir de la dé�nition. On peut également remarquer que DivωS est la
contraction de la fonction invariante ∇ωS (voir proposition 6) et de la
fonction invariante et constante

ID : P → Rm ⊗ Rm∗, u 7→
m∑
j=1

εj ⊗ ej.

�

Le but des résultats suivants est de mesurer l'écart à la G1- équiva-
riance de la di�érentiation invariante et de l'opérateur de divergence.
Au niveau in�nitésimal, au vu des équations (6) et (7), cela conduit au
calcul du commutateur de ces opérateurs avec la dérivée de Lie Lh∗ ,
pour h ∈ g1. Examinons tout d'abord ce que donne ce calcul pour
l'opérateur de divergence :

Lemme 12. Pour tout S ∈ C∞(P, Skδ (Rm))G0, nous avons

Lh∗Div
ωS −DivωLh∗S = (m+ 1)γ2k−1i(h)S,

pour tout h ∈ Rm∗ ∼= g1.

Démonstration. Premièrement, remarquons que la dérivée de
Lie par rapport à un champ de vecteurs commute avec une évalua-
tion : si η1, . . . , ηk−1 ∈ Rm∗, nous avons

(Lh∗Div
ωS)(η1, . . . , ηk−1) = Lh∗(Div

ωS(η1, . . . , ηk−1))
=

∑m
j=1(Lh∗Lω−1(ej)S(εj, η1, . . . , ηk−1)).

D'autre part, d'après un résultat du chapitre 2,

[h∗, ω−1(X)] = ω−1([h,X]), ∀h ∈ gl(m,R)⊕ Rm∗, X ∈ Rm,
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où le crochet dans le membre de droite est celui de sl(m + 1,R). Il
s'ensuit que l'expression que nous avons à calculer est égale à

m∑
j=1

(Lω−1(ej)Lh∗S(εj, η1, . . . , ηk−1) + (L[h,ej ]∗S)(εj, η1, . . . , ηk−1)).

Pour �nir, en utilisant la relation (7), on obtient

Divω(Lh∗S)− (ρ′∗([h, ej])S)(εj, η1, . . . , ηk−1)
= Divω(Lh∗S) + (ρ∗(h⊗ ej + 〈h, ej〉Id)S)(εj, η1, . . . , ηk−1).

Le résultat provient alors facilement de la dé�nition de ρ sur Skδ (Rm).
�

Nous obtenons ensuite

Proposition 13. Pour tout S ∈ C∞(P, Skδ (Rm))G0, nous avons

Lh∗(Div
ω)lS − (Divω)lLh∗S = (m+ 1)lγ2k−li(h)(Divω)l−1S,

pour tout h ∈ Rm∗ ∼= g1.

Démonstration. Si l = 1, la proposition coïncide avec le lemme
12. Le résultat se démontre alors par induction, en utilisant les lemmes
11 et 12. Il vient en e�et, si on suppose le résultat vrai jusque l − 1,
que

Lh∗Div(Divl−1)−DivlLh∗
est égal à

(m+ 2(k− l+ 1)−1− (m+ 1)δ)i(h)Divl−1 +DivLh∗Div
l−1−DivlLh∗ ,

i.e. à

l(m+ 2k − l − (m+ 1)δ)i(h)Divl−1.

�

Maintenant, analysons le défaut d'invariance de la di�érentiation
invariante itérée :

Proposition 14. Si f ∈ C∞(P,∆λRm)G0, alors

Lh∗∇ωk

s f −∇ωk

s Lh∗f = −k((m+ 1)λ+ k − 1)(∇ωk−1

s f ∨ h),

pour tout h ∈ Rm∗ ∼= g1.

Démonstration. Si k = 0, alors la formule est évidemment vraie.
On procède alors par induction. Au vu de la symétrie des expressions
que nous avons à comparer, il est su�sant de véri�er qu'elles coïncident
quand on les évalue sur un k-tuple (X, . . . , X) pour tout X ∈ Rm. La
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preuve est similaire à celle du lemme 12 : tout d'abord, l'évaluation et
la dérivée de Lie commutent :

(Lh∗(∇ωk

s f))(X, . . . , X) = Lh∗((∇ωk

s f)(X, . . . , X)).

Ensuite, on utilise la dé�nition de la di�érentielle invariante itérée et
nous faisons commuter les opérateurs Lh∗ et Lω−1(X) de telle sorte que
la dernière expression devient

Lω−1(X)Lh∗(∇ωk−1

s f)(X, . . . , X) + (L[h,X]∗(∇ωk−1

s f))(X, . . . , X).

Par l'hypothèse de récurrence, le premier terme est égal à

∇ωk

s Lh∗f(X, . . . , X)−(k−1)((m+1)λ+k−2)(∇ωk−1

s f ∨h)(X, . . . , X).

En ce qui concerne le deuxième terme, on utilise la proposition 6 et la
relation (7) et on obtient

(ρ∗((h⊗X) + 〈h,X〉Id)(∇ωk−1

s f))(X, . . . , X).

Le résultat provient alors de la dé�nition de ρ∗. �

2. Le résultat principal

Dans cette partie, nous donnons une formule explicite pour la quan-
ti�cation naturelle et projectivement invariante en utilisant les proprié-
tés de la di�érentiation invariante itérée et de l'opérateur de divergence.

Théorème 15. Si δ n'est pas critique, alors la collection d'appli-
cations
QM : CM × Sδ(M)→ Dλ,µ(M) dé�nies par

QM(∇, S)(f) = p∗
−1

(
k∑
l=0

Ck,l〈Divω
l

p∗S,∇ωk−l

s p∗f〉),∀S ∈ Skδ (M) (8)

dé�ni une quanti�cation naturelle projectivement invariante si

Ck,l =
(λ+ k−1

m+1
) · · · (λ+ k−l

m+1
)

γ2k−1 · · · γ2k−l

(
k
l

)
,∀l ≥ 1, Ck,0 = 1.

Démonstration. Premièrement, nous devons véri�er que cette
formule a un sens : la fonction

k∑
l=0

Ck,l〈Divω
l

p∗S,∇ωk−l

s p∗f〉 (9)

doit être H-équivariante. Elle est forcément G0-équivariante par la pro-
position 6 et par le lemme 11. Il est donc su�sant de contrôler la g1-
équivariance. Elle provient directement des propositions 13 et 14 et de
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la relation

Ck,ll(m+ 2k− l− (m+ 1)δ) = Ck,l−1(k− l+ 1)((m+ 1)λ+k− l). (10)
Ensuite, en utilisant les résultats du chapitre 2, on peut voir que le
symbole principal de QM(∇, S) est exactement S, et donc la formule
(8) dé�nit une quanti�cation, qui est de plus projectivement invariante
par dé�nition de ω. En�n, la naturalité de la quanti�cation dé�nie de
cette manière est assez évidente : elle provient de la naturalité de l'asso-
ciation d'une structure projective P →M pourvue d'une connexion de
Cartan normale ω à une classe de connexions sans torsion projective-
ment équivalentes surM et de la naturalité du relèvement des fonctions
équivariantes sur P 1M en fonctions équivariantes sur P . �

Remarques :

� Le théorème 10 et ce qui est dit à la �n du premier chapitre
impliquent directement que, quand M est l'espace euclidien Rm

et quand ∇ est la connexion plate canonique de Rm, la formule
8 doit coïncider avec celles de [16] (formules 4.14 et 4.15) et [9]
(formule 2.4), au moins quand δ n'est pas critique. Le phénomène
surprenant est que nos coe�cients Ck,l coïncident avec ceux de [9]
(formules 2.5 et 3.6), à un coe�cient combinatoire près, qui est
dû à une dé�nition légèrement di�érente de l'opérateur de diver-
gence. En particulier, notre formule peut être exprimée, comme
celle de [9], en termes de fonctions hypergéométriques.

� La preuve du théorème précédent permet aussi d'analyser le pro-
blème de l'existence quand δ est une valeur critique : supposons
qu'il existe k ∈ N et r ∈ N tels que 1 ≤ r ≤ k et γ2k−r = 0.
Dans ces conditions, s'il existe i ∈ {1, . . . , r} tel que λ = − k−i

m+1
,

alors on peut remplacer les coe�cients Ck,i, . . . , Ck,k par zéro et la
fonction (9) est encore H-équivariante, ce qui signi�e que la col-
lection QM dé�nit encore une quanti�cation naturelle et projecti-
vement invariante. Si, par contre, λ n'appartient pas à l'ensemble
{− k−1

m+1
, . . . ,− k−r

m+1
}, alors il n'y a pas de solution au problème

puisque l'on sait qu'il n'existe pas de quanti�cation sl(m+ 1,R)-
équivariante au sens de [16, 17]. Pour résumer, nous avons mon-
tré le résultat suivant :

Théorème 16. Il existe une quanti�cation naturelle et projective-
ment équivariante si et seulement s'il existe une quanti�cation sl(m+
1,R)-équivariante au sens de [16] sur M = Rm.
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CHAPITRE 4

Le cas général

Dans ce chapitre, nous prouvons l'existence de quanti�cations natu-
relles projectivement invariantes pour des opérateurs di�érentiels agis-
sant entre sections d'autres �brés que les �brés de densités. Nous allons
établir une relation étroite entre l'existence de telles quanti�cations
et l'existence des quanti�cations sl(m+ 1,R)-équivariantes correspon-
dantes sur Rm. En fait, le phénomène surprenant observé au chapitre
précédent dans le cas des densités se généralise : les formules valables
dans les situations non-critiques sur Rm pour les quanti�cations équi-
variantes peuvent être directement généralisées à une variété arbitraire
en substituant simplement aux dérivées partielles les di�érentiations
invariantes par rapport à la connexion de Cartan normale.

Dans tout ce chapitre, les �brés E1(M) et E2(M) décrits dans le
chapitre 1 ont pour �bre type une représentation irréductible (V, ρ) de
GL(m,R) dé�nie de la manière suivante : soit (V, ρD) une représen-
tation de GL(m,R) correspondant à un diagramme de Young YD de
profondeur n < m. On �xe λ ∈ R et z ∈ Z et on pose

ρ(A)u = | det(A)|λ(det(A))zρD(A)u,

pour tout A ∈ GL(m,R), pour tout u ∈ V .

1. Le cas plat

Dans cette section, nous allons brièvement rappeler les notions et
les méthodes intervenant dans le cadre de la quanti�cation projecti-
vement équivariante sur Rm telles qu'elles sont exposées dans [8] et
[2]. Cependant, nous allons présenter les outils de ces travaux d'une
manière plus intrinsèque et algébrique.

1.1. Champs de tenseurs, symboles et opérateurs di�éren-

tiels. Ces objets ont été dé�nis dans le premier chapitre, mais quand
M est l'espace euclidien Rm, on peut e�ectuer les identi�cations sui-
vantes :

E1(Rm) ∼= C∞(Rm, V1),
Sk(E1(Rm), E2(Rm)) ∼= C∞(Rm, SkV1,V2

),

où SkV1,V2
représente l'espace V ∗1 ⊗ V2 ⊗ Sk(Rm).
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L'algèbre de Lie Vect(Rm) agit sur ces espaces d'une manière bien
connue (voir chapitre 1) : si X ∈ Vect(Rm) et si S désigne un symbole,
on a

(LXS)(x) = X.S(x)− ρ∗(DxX)S(x) (11)

où ρ est l'action naturelle de GL(m,R) sur la �bre.
L'espace D(E1(Rm), E2(Rm)) des opérateurs di�érentiels est équipé

de la dérivée de Lie L donnée par le commutateur.

1.2. L'algèbre projective des champs de vecteurs. Le groupe
G = PGL(m + 1,R) agit sur RPm. Comme Rm peut être assimilé à
l'ouvert de RPm d'équation xm+1 = 1, on dispose d'une action locale de
G sur Rm. Les champs de vecteurs associés à cette action sont donnés
par  Xh

x = −h sih ∈ g−1

Xh
x = −[h, x] sih ∈ g0

Xh
x = −1

2
[[h, x], x] sih ∈ g1

, (12)

où x ∈ g−1
∼= Rm. Ces champs de vecteurs dé�nissent une sous-algèbre

de Vect(Rm) qui est isomorphe à sl(m+ 1,R).
Il est intéressant pour nos calculs ultérieurs de rappeler que la sous-

algèbre g0 est réductive et se décompose comme

g0 = h0 ⊕ RE (13)

où h0 est (isomorphe à) sl(m,R) et où l'élément d'Euler E est dé�ni
par ad(E)|g−1 = −Id.

1.3. La quanti�cation a�ne. Il existe une bijection bien connue
de l'espace des symboles dans l'espace des opérateurs di�érentiels sur
Rm : la quanti�cation a�ne que nous allons noter QAff . Si un symbole
S ∈ Sk(E1(Rm), E2(Rm)) s'écrit

S(x, ξ) =
∑
|α|=k

Cα(x)ξα,

où α est un multi-indice, ξ ∈ Rm∗ et Cα(x) ∈ V ∗1 ⊗ V2, alors on a

QAff (S) =
∑
|α|=k

Cα(x) ◦ (
∂

∂x
)α.

La quanti�cation QAff est une quanti�cation a�nement équivariante.
En e�et, il est facile de voir qu'elle échange les actions de l'algèbre a�ne
(constituée des champs de vecteurs constants et linéaires) sur l'espace
des symboles et des opérateurs di�érentiels.

A présent, nous pouvons utiliser la formule (12) dans le but d'ex-
primer cette quanti�cation de manière intrinsèque :
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Proposition 17. Si h1, · · · , hk ∈ Rm ∼= g−1, A ∈ V ∗1 ⊗ V2, s ∈
C∞(Rm) et

S(x) = s(x)A⊗ h1 ∨ · · · ∨ hk,
on a

QAff (S) = (−1)ks(x) ◦ A ◦ LXh1 ◦ · · · ◦ LXhk .

Démonstration. La preuve est directe. Il su�t de remarquer que
les champs Xhi sont constants. �

1.4. L'application γ. En utilisant la quanti�cation a�ne, on peut
munir l'espace des symboles d'une structure de représentation deVect(Rm)
isomorphe à D(Rm). Explicitement, on pose

LXS = Q−1
Aff ◦ LX ◦QAff (S),

où S ∈ S(Rm) et X ∈ Vect(Rm). Une quanti�cation équivariante est
alors un sl(m + 1,R)−isomorphisme de la représentation (S(Rm), L)
dans la représentation (S(Rm),L).

A�n de mesurer la di�érence entre ces représentations, l'application

γ : g→ gl(S(Rm),S(Rm)) : h 7→ γ(h) = LXh − LXh

a été introduite dans [2]. Cette application peut être facilement calcu-
lée en coordonnées et nous rappelons ici ses propriétés les plus impor-
tantes :

Proposition 18. L'application γ est un 1-cocycle de Chevalley-
Eilenberg et s'annule sur g−1 ⊕ g0.

Si h ∈ g1 et k ∈ N, la restriction de γ(h) à Sk(Rm) a ses valeurs
dans Sk−1(Rm) et est un opérateur di�érentiel d'ordre 0 à coe�cients
constants.

Si h, h′ ∈ g1, on a [γ(h), γ(h′)] = 0.

Remarque : Comme γ(h) est un opérateur di�érentiel d'ordre 0 à
coe�cients constants, il est complètement déterminé par sa restriction
aux symboles constants.

Pour la suite de nos développements, il est intéressant d'avoir une
expression intrinsèque de γ. Nous avons

Proposition 19. Si h1, · · · , hk ∈ Rm ∼= g−1, A ∈ V ∗1 ⊗ V2 et
h ∈ g1

∼= Rm∗, nous avons

γ(h)(h1 ∨ · · · ∨ hk ⊗ A) =
∑k

i=1 h1 ∨ · · · (i) · · · ∨ hk ⊗ (A ◦ ρ1∗([hi, h]))

+
∑k

i=1

∑
j<i h1 ∨ · · · (i, j) · · · ∨ hk ∨ [hj, [hi, h]]⊗ A,

où [hi, h] appartient à gl(m,R) grâce à l'isomorphisme donné au cha-
pitre 2.
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Démonstration. Par dé�nition de γ, l'expression

QAff (γ(h)(h1 ∨ · · · ∨ hk ⊗ A))

est égale à

LXh ◦QAff (h1 ∨ · · · ∨ hk ⊗ A)−QAff (LXh(h1 ∨ . . . ∨ hk ⊗ A)). (14)

Cette expression est un opérateur di�érentiel d'ordre au plus k. Son
terme d'ordre k s'annule : il su�t pour le voir d'appliquer l'opérateur
σ à (14). Il nous reste donc à sommer les termes d'ordre inférieur ou
égal à k−1 dans le premier terme de l'expression (14). Ce dernier terme
s'écrit

(−1)k[LXh ◦ A ◦ LXh1 ◦ · · · ◦ LXhk − A ◦ LXh1 ◦ · · · ◦ LXhk ◦ LXh ].

Le premier terme est d'ordre k et k + 1. Le second terme est

−(−1)kA ◦ LXh ◦ LXh1 ◦ · · · ◦ LXhk

−(−1)k
∑k

i=1 A ◦ LX[hi,h] ◦ LXh1 ◦ · · · (i) · · · ◦ LXhk

−(−1)k
∑k

i=1

∑
j<iA ◦ LX[hj [hi,h]] ◦ LXh1 ◦ · · · (i, j) · · · ◦ LXhk ,

comme [hj[hi, h]] est un champ de vecteurs constant. Le premier terme
est de nouveau d'ordre k et k+ 1. A présent, au vu de la formule (11),
le terme d'ordre k − 1 dans

−(−1)k
k∑
i=1

A ◦ LX[hi,h] ◦ LXh1 ◦ · · · (i) · · · ◦ LXhk

est exactement

(−1)k
k∑
i=1

A ◦ ρ1∗(DX
[hi,h]) ◦ LXh1 ◦ · · · (i) · · · ◦ LXhk ,

et le résultat s'ensuit puisque DX [hi,h] = −ad([hi, h]). �

L'application γ possède une importante propriété d'invariance :

Proposition 20. Si a ∈ GL(m,R), h ∈ g1 et si S est un symbole,
on a

ρ(a)(γ(h)S) = γ(Ad(a)h)(ρ(a)S) (15)

Démonstration. La preuve est un calcul direct qui utilise la pro-
position 19. �
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1.5. Opérateurs de Casimir. Dans [8, 2], la construction de
la quanti�cation est basée sur la comparaison du spectre et des vec-
teurs propres de certains opérateurs de Casimir (du second ordre). Ces
opérateurs sont d'une part l'opérateur de Casimir C associé à la repré-
sentation (S(Rm), L) et d'autre part l'opérateur de Casimir C associé
à la représentation (S(Rm),L). Nous allons brièvement adapter les ré-
sultats de [2] dans le but de calculer ces opérateurs.

A partir de maintenant jusqu'à la �n de cette section, nous choisis-
sons une base (er, hs, E , εt) de sl(m+ 1,R) dans laquelle les bases ei et
εj de g−1 et g1 sont Killing-duales et dans laquelle hj est une base de h0.
Il a été alors prouvé dans [2] que la base duale s'écrit (εr, h∗s,

1
2m
E , et)

et que de plus on a
m∑
r=1

[er, ε
r] = −1

2
E . (16)

Nous posons aussi

N = 2
∑
i

γ(εi)LXei .

Le résultat suivant est alors une généralisation directe de celui exposé
dans [2] :

Proposition 21. Les deux opérateurs de Casimir sont reliés de la
manière suivante :

C = C +N. (17)

La prochaine étape est d'analyser le problème des valeurs propres
de l'opérateur C. Pour cela, nous allons tout d'abord �xer quelques
notations : comme représentation de h0

∼= sl(m,R), SkV1V2
= SkRm ⊗

V ∗1 ⊗ V2 se décompose en une somme de représentations irréductibles

SkV1V2
= ⊕nks=1Ik,s. (18)

Pour chaque représentation irréductible Ik,s, on note Ek,s l'espace de
sections correspondant, i.e.

Ek,s = C∞(Rm, Ik,s).

De plus, dans sl(m,C), on considère la sous-algèbre de Cartan usuelle
C constituée des matrices diagonales de trace nulle. On considère les
éléments de C∗ dé�nis par

δi(diag(a1, · · · , am)) = ai.

Il est connu qu'un système simple de racines est donné par {δi −
δi+1, (i = 1, . . . ,m− 1)}. Le vecteur de Weyl est dé�ni comme étant la
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moitié de la somme des racines positives et est donné par

ρS =
∑
i

(m− i)δi.

La forme de Killing de sl(m,C) est l'extension de la forme de Killing
de sl(m,R) et induit un produit scalaire (, ) sur l'espace vectoriel réel
engendré par les racines. Ce produit scalaire satisfait

(δi, δj) =
1

2m2
(mδij − 1) et (δi, 2ρS) =

m− 2i+ 1

2m
, (19)

pour tout i = 1, . . . ,m.
Pour chaque représentation irréductible Ik,s de sl(m,R), la repré-

sentation complexi�ée Ik,s ⊗ C de sl(m,C) est aussi irréductible et on
notera µIk,s son plus haut poids.
Au vu des dé�nitions des représentations V1 et V2, il existe des nombres
réels a1 et a2 tels que

ρ∗(Id)|Vi = ai Id.

A�n d'être cohérent par rapport à la dé�nition du �shift� donnée dans
[2, 8], on dé�nit le �shift� d'un couple (V1, V2) par

δ =
1

m
(a1 − a2).

On est à présent en mesure d'établir le résultat principal concernant
l'opérateur C :

Théorème 22. L'espace des symboles S(Rm) est la somme directe
des espaces propres de C. Plus précisément, si k ∈ N, la restriction de
C à Ek,s est égale à αk,sIdEk,s, où

αk,s =
1

2m
(mδ − k)(m(δ − 1)− k) +

m

m+ 1
(µIk,s , µIk,s + 2ρS). (20)

Démonstration. Avec notre choix de bases duales, l'opérateur C
s'écrit∑

i

(LXεi ◦ LXei + LXei ◦ LXεi ) +
1

2m
(LXE )

2 +
∑
j

LXhj ◦ LXh∗
j
,

i.e., en utilisant la relation (16),

2
∑
i

(LXεi ◦ LXei )−
1

2
LXE +

1

2m
(LXE )

2 +
∑
j

LXhj ◦ LXh∗
j
.

Comme C commute avec LXh pour tout h ∈ g−1
∼= Rm, il doit être à

coe�cients constants. Il su�t donc de prendre uniquement ces termes
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en considération. En utilisant l'expression de la dérivée de Lie (11) et
l'expression des champs de vecteurs Xh, nous obtenons

C = −1

2
ρ∗(ad(E)) +

1

2m
(ρ∗(ad(E)))2 +

∑
j

ρ∗(ad(hj)) ◦ ρ∗(ad(hj)),

où ad est la représentation adjointe de g0 sur g−1. Les termes faisant
intervenir l'élément d'Euler peuvent être facilement calculés puisque
ad(E)|g−1 = −Id. La restriction de la forme de Killing de sl(m+ 1,R)
à la sous-algèbre sl(m,R) est égale à m+1

m
fois la forme de Killing de

sl(m,R) ; les bases (hj) et (m+1
m
h∗j) sont ainsi duales par rapport à cette

dernière. On a ainsi∑
j

ρ∗(ad(hj)) ◦ ρ∗(ad(hj)) =
m

m+ 1
C ′,

où C ′ représente l'opérateur de Casimir de sl(m,R) agissant sur Ik,s
ou l'opérateur de Casimir de sl(m,C) agissant sur Ik,s ⊗C. Il est bien
connu (voir par exemple [13, p. 122]) que cet opérateur est égal à

(µIk,s , µIk,s + 2ρS)

fois l'identité sur Ik,s. �

1.6. Arbres et situations critiques. Pour analyser le spectre
de l'opérateur C, nous introduisons, comme dans [2, 8], l'arbre Tγ(Ik,s)
associé à une représentation irréductible Ik,s ⊂ SkV1V2

: nous posons

Tγ(Ik,s) =
⊕
l∈N

T lγ (Ik,s),

où T 0
γ (Ik,s) = Ik,s et T l+1

γ (Ik,s) = γ(g1)(T lγ (Ik,s)), pour tout l ∈ N. Les
espaces T lγ (Ek,s) sont dé�nis de la même manière :

T lγ (Ek,s) = C∞(Rm, T lγ (Ik,s))

pour tout l ∈ N. Les espaces Tγ(Ek,s) ont une propriété importante :

Proposition 23. L'espace Tγ(Ek,s) est stable sous les actions de
LXh et de LXh, pour tout h ∈ sl(m+ 1,R).

Démonstration. La proposition 20 permet de prouver par in-
duction que Tγ(Ek,s) est stable sous l'action de ρ∗(A) pour tout A ∈
gl(m,R). Il est alors forcément stable sous l'action de la dérivée de Lie
LXh pour tout h ∈ sl(m + 1,R) à cause de l'expression 11 de LXh . Le
résultat s'ensuit puisque LXh = LXh + γ(h). �

La dé�nition suivante est une généralisation directe de celles don-
nées dans [2, 8] :
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Définition 6. Un couple de représentations (V1, V2) est critique
s'il existe k, s tels que la valeur propre αk,s appartient au spectre de la
restriction de C à

⊕
l≥1 T lγ (Ek,s).

1.7. Construction de la quanti�cation. Le résultat est le sui-
vant :

Théorème 24. Si le couple (V1, V2) n'est pas critique, il existe une
quanti�cation projectivement équivariante de S(E1(Rm), E2(Rm)) dans
D(E1(Rm), E2(Rm)).

Démonstration. La preuve est analogue à celles données dans [8]
et [2]. Nous en donnons ici les idées principales par souci de complétude.

Premièrement, remarquons que pour tout S ∈ Ek,s il existe un

unique vecteur propre Ŝ de valeur propre αk,s de C tel que{
Ŝ = Sk + Sk−1 + · · ·+ S0, Sk = S
Sl ∈ T k−lγ (Ek,s) pour tout l ≤ k − 1.

En e�et, ces conditions peuvent s'écrire C(S) = αk,sS
(C − αk,sId)Sk−l = −N(Sk−l+1) ∀l ∈ {1, · · · , k}
Sk−l ∈ T lγ (Ek,s).

(21)

La première condition est satisfaite puisque S appartient à Ek,s. Pour la
deuxième et la troisième, remarquons que si Sk−l+1 est dans T l−1

γ (Ek,s),

alors N(Sk−l+1) appartient à T lγ (Ek,s) par la proposition 23. A présent,

T lγ (Ek,s) se décompose comme une somme directe d'espaces propres
de C, comme l'indique le théorème 22. La restriction de l'opérateur
C − αk,sId à chacun de ces sous-espaces est un multiple scalaire non-
nul de l'identité, d'où l'existence et l'unicité de Sk−l. Dé�nissons la
quanti�cation Q par

Q|Ek,s(S) = Ŝ.

C'est évidemment une bijection.
Cette bijection satisfait

Q ◦ LXh = LXh ◦Q ∀h ∈ sl(m+ 1,R).

En e�et, pour tout S ∈ Ek,s, Q(LXhS) et LXh(Q(S)) partagent les
propriétés suivantes :

� Ce sont des vecteurs propres de C de valeur propre αk,s parce que
d'une part, C commute avec LXh pour tout h et d'autre part,
LXhS appartient à Ek,s par la proposition 23,

� Leur terme de degré k est exactement LXhS,
� Ils appartiennent à Tγ(Ek,s) par la proposition 23.

La première partie de la preuve assure alors qu'ils doivent coïncider. �
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1.8. Un résultat technique. La proposition suivante sera fon-
damentale pour la suite :

Proposition 25. La relation

[γ(h), C] = 2
∑
i

γ(εi)ρ∗([h, ei])

est vraie pour tout h ∈ g1.

Démonstration. Comme un opérateur de Casimir commute avec
la représentation correspondante, on a :

[LXh , C] = 0,
[LXh , C] = 0.

Ces équations font en sorte que

[LXh , N ] + [γ(h), C] + [γ(h), N ] = 0.

On peut voir facilement en utilisant la proposition 18 que [γ(h), N ]
s'annule. De plus, nous avons

[LXh , N ] = 2
∑
i

(LXhγ(εi)LXei − γ(εi)LXeiLXh).

Les termes d'ordre strictement supérieur à 0 dans cette expression
doivent s'annuler puisque [γ(h), C] est d'ordre 0. Il su�t donc de col-
lecter les termes d'ordre 0.

En utilisant la formule (11), on peut voir que le premier terme est
d'ordre supérieur ou égal à 1. Le second terme s'écrit

−2
∑
i

γ(εi)(LXhLXei + LX[ei,h]).

Les termes d'ordre 0 dans cette expression sont

2
∑
i

γ(εi)ρ∗(DX
[ei,h]),

d'où le résultat. �

2. Outils du cas courbe

Nous allons adapter ici les outils présentés dans la section 1 à la
situation courbe.
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2.1. La quanti�cation a�ne courbe. La construction de l'ana-
logue courbe de la quanti�cation a�ne est basée sur la di�érentiation
invariante. En e�et, en utilisant celle-ci, on peut transformer un sym-
bole S ∈ C∞(P, SkV1,V2

) en un opérateur di�érentiel Qω(S) agissant sur
les fonctions f ∈ C∞(P, V1) en posant

Qω(S)(f) = 〈S,∇ωk

s f〉. (22)

Explicitement, si le symbole S s'écrit sA⊗h1∨· · ·∨hk avec s ∈ C∞(P ),
A ∈ V ∗1 ⊗ V2 et h1, · · · , hk ∈ Rm ∼= g−1, alors on a

Qω(S)f =
1

k!

∑
ν

sA ◦ Lω−1(hν1 ) ◦ · · · ◦ Lω−1(hνk )f,

où ν parcourt toutes les permutations des indices {1, · · · , k} et où s
est considéré comme un opérateur de multiplication.

Remarque 1. Si S ∈ C∞(P, SkV1,V2
) estH−équivariant, l'opérateur

di�érentiel Qω(S) ne transforme pas les fonctions H−équivariantes en
fonctionsH−équivariantes. En e�et, si f estH−équivariant, la fonction
∇ωk

s f est seulement G0−équivariante. La fonction Qω(S)f ne corres-
pond donc pas à une section de E2(M). Nous allons montrer que l'on
peut modi�er le symbole S par des termes correctifs d'ordres inférieurs
pour remédier à ce problème.

2.2. Mesure du défaut d'équivariance. Dans cette section, S
désignera un élément de C∞(P, SkV1,V2

)G0 et f ∈ C∞(P, V1)G0 (remar-
quons que cela assure le fait que Qω(S)(f) appartient à C∞(P, V2)G0).

Puisque fondamentalement, nos outils préservent laG0-équivariance,
nous sommes principalement intéressés par la g1-équivariance. Le ré-
sultat suivant est la clé de voûte de notre méthode :

Proposition 26. La relation

Lh∗Qω(S)(f)−Qω(S)(Lh∗f) = Qω((Lh∗ + γ(h))S)(f)

est valable pour tout f ∈ C∞(P, V1)G0, h ∈ g1 et S ∈ C∞(P, SkV1,V2
).

Démonstration. La relation que nous avons à prouver s'écrit

〈S, Lh∗∇ωk

s f −∇ωk

s Lh∗f〉 = 〈γ(h)S,∇ωk−1

s f〉.
Comme les deux membres sont C∞(P )-linéaires en S, il su�t de véri�er
cette relation pour un symbole constant S qui a la forme Xk ⊗ A, où
X ∈ g−1 et A ∈ V ∗1 ⊗ V2. Dans ces conditions, le membre de gauche
s'écrit

A(Lh∗Lω−1(X) . . . Lω−1(X)f − Lω−1(X) . . . Lω−1(X)Lh∗f)

44



et est égal à

A(
∑k

j=1 Lω−1(X) . . .
(j)

L[h,X]∗ . . . Lω−1(X)f)

= A(
∑k−1

j=1

∑
i>j Lω−1(X)

(j). . .
(i)

Lω−1([[h,X],X]) . . . Lω−1(X)f)

−A(
∑k

i=1 Lω−1(X)
(i). . .Lω−1(X)ρ1∗([h,X])f),

d'où le résultat par la proposition 19. En e�et, les champs ω−1(X) et
ω−1([[h,X], X]) commutent puisque [[h,X], X] = −2〈h,X〉X. �

2.3. Opérateurs de Casimir courbes. Le parallélisme entre les
situations plate et courbe suggère de dé�nir un analogue de l'opérateur
C.

Nous dé�nissons tout d'abord un analogue de N en posant

Nω = −2
∑
i

γ(εi)Lω−1(ei).

Ensuite, nous pouvons dé�nir les opérateurs Cω et Cω par leurs restric-
tions aux espaces C∞(P, Ik,s) : pour tout S ∈ C∞(P, Ik,s), on pose{

Cω(S) = αk,sS
Cω(S) = Cω(S) +Nω(S),

où αk,s est la valeur propre de C sur Ek,s = C∞(Rm, Ik,s).
L'opérateur Cω a la propriété suivante :

Proposition 27. Pour tout h ∈ g1, on a

[Lh∗ + γ(h), Cω] = 0

sur C∞(P, SkV1,V2
)G0.

Démonstration. Tout d'abord, nous avons

[Lh∗ + γ(h), Cω +Nω] = [Lh∗ , C
ω] + [Lh∗ , N

ω] + [γ(h), Cω] + [γ(h), Nω].

Ensuite [Lh∗ , C
ω] = 0 puisque Lh∗ stabilise chaque espace propre

C∞(P, Ik,s) de Cω. De la même manière, nous avons [γ(h), Nω] = 0
puisque

� par la proposition 18, [γ(h), γ(εi)] = 0,
� [γ(h), Lω−1(ei)] = 0 puisque γ(h) agit seulement sur l'espace d'ar-
rivée SkV1,V2

.
Finalement, nous obtenons

[Lh∗ , N
ω] = −2

∑
i γ(εi)[Lh∗ , Lω−1(ei)]

= −2
∑

i γ(εi)L[h,ei]∗

= 2
∑

i γ(εi)ρ∗([h, ei]),

grâce à la G0-équivariance. On conclut par la proposition 25. �
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En ce qui concerne l'opérateur Nω, nous avons le résultat suivant :

Proposition 28. L'opérateur Nω préserve la G0-équivariance des
fonctions.

Démonstration. Cette propriété est une conséquence de la pro-
position 20 et du fait que la di�érentiation invariante préserve la G0-
équivariance. On a successivement, pour tout f ∈ C∞(P, SkV1,V2

), u ∈ P
et g ∈ G0 :

(Nω(f))(ug) =
∑

i γ(εi)Lω−1(ei)f(ug)
=

∑
i γ(εi)(∇ωf)(ug)(ei)

=
∑

i γ(εi)ρ(g−1)((∇ωf)(u)(Ad(g)ei))
=

∑
i ρ(g−1)(γ(Ad(g)εi)(∇ωf)(u)(Ad(g)ei))

= ρ(g−1)
∑

i γ(εi)Lω−1(ei)f(u),

d'où le résultat. �

3. Construction de la quanti�cation

La construction de la quanti�cation est basée sur le problème des
valeurs propres de l'opérateur Cω.

Remarquons tout d'abord que la construction de la section 1.7 est
encore valable dans le cas courbe.

Théorème 29. Si le couple (V1, V2) n'est pas critique, pour tout

S appartenant à C∞(P, Ik,s), il existe une unique fonction Ŝ dans
C∞(P, Tγ(Ik,s)) telle que{

Ŝ = Sk + · · ·+ S0, Sk = S

Cω(Ŝ) = αk,sŜ.
(23)

De plus, si S est G0-équivariant, alors Ŝ est G0-équivariant.

Démonstration. La fonction Ŝ existe et est unique. Il su�t sim-
plement de noter que les conditions dans (23) sont celles de (21) où
C est remplacé par Cω et où N est remplacé par Nω. Le point prin-
cipal qui permettait de résoudre (21) était que N envoie T l−1

γ (Ek,s)

dans T lγ (Ek,s). Ce dernier fait est en réalité une propriété de γ et par
conséquent nous avons

Nω(C∞(P, T l−1
γ (Ik,s))) ⊂ C∞(P, T lγ (Ik,s)).

Si de plus S est G0-équivariant, alors Ŝ est G0-équivariant. De fait, Ŝ
est obtenu à partir de S en appliquant successivement les opérateurs
Nω et les projecteurs de T lγ (Ik,s) sur ses composantes irréductibles et ces
opérations préservent laG0-équivariance des fonctions (voir proposition
28). �
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Ce résultat permet de dé�nir l'ingrédient principal servant à dé�nir
la quanti�cation.

Définition 7. Supposons que le couple (V1, V2) ne soit pas critique.
L'application

Q : C∞(P, SV1,V2)→ C∞(P, SV1,V2)

est alors l'extension linéaire de l'association S 7→ Ŝ.

L'application Q a la propriété importante suivante :

Proposition 30. On a

(Lh∗ + γ(h))Q(S) = Q(Lh∗S), (24)

pour tout h ∈ g1 et tout S ∈ C∞(P, SV1,V2)G0.

Démonstration. La preuve est simplement une adaptation de
celle du théorème 24. Il su�t de véri�er la propriété pour
S ∈ C∞(P, Ik,s)G0 (pour tout k et s). Pour un tel S, la fonctionQ(Lh∗S)
est dé�nie par (23) : c'est l'unique vecteur propre de Cω appartenant à
C∞(P, Tγ(Ik,s)) de valeur propre αk,s et dont le terme de plus haut degré
est Lh∗S. Le membre de gauche de l'équation (24) a Lh∗T comme terme
de plus haut degré puisque γ(h) abaisse le degré de ses arguments. Il
appartient clairement à C∞(P, Tγ(Ik,s)). En�n, puisque Q(S) est G0-
équivariant, la proposition 27 implique que (Lh∗ + γ(h))Q(S) est un
vecteur propre de Cω de valeur propre αk,s. �

Ces résultats plutôt techniques permettent d'établir le théorème
principal.

Théorème 31. Si le couple (V1, V2) n'est pas critique, alors la for-
mule

QM : (∇, S) 7→ QM(∇, S)(f) = (p∗)−1[Qω(Q(p∗S))(p∗f)]

dé�nit une quanti�cation naturelle projectivement invariante.

Démonstration. Tout d'abord, la formule a un sens : la fonc-
tion Qω(Q(p∗S))(p∗f) est H-équivariante. La G0-équivariance provient
du théorème 29 et de la remarque 1. La g1-équivariance provient des
relations

Lh∗ [Qω(Q(p∗S))(p∗f)] = Lh∗ [Qω(Q(p∗S))](p∗f)
= Qω[(Lh∗ + γ(h))(Q(p∗S))](p∗f)
= Qω[Q(Lh∗(p

∗S))](p∗f).

Ensuite, le symbole principal deQM(∇, S)(f) est exactement S. Il su�t
de noter que le terme de plus haut degré de Q(p∗S) is p∗S et d'utiliser
les résultats du chapitre 2.
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Ainsi, QM(∇) est une quanti�cation. Elle est projectivement inva-
riante par dé�nition de ω.

En�n, la naturalité des quanti�cations ainsi dé�nies est une consé-
quence de la naturalité de tous les objets utilisés dans la formule. �
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CHAPITRE 5

Une formule explicite

Le but de ce chapitre est d'établir une formule explicite pour la
quanti�cation dont il est question au chapitre 3. Cette formule expli-
cite est construite à partir d'opérateurs naturels sur M et constitue
la généralisation à un ordre quelconque des formules aux deuxième et
troisième ordres déjà publiées par Bouarroudj dans [4] et dans [5].

La formule s'obtient grâce à des outils exposés en détail dans [6].
Nous allons les rappeler brièvement mais nous invitons le lecteur à
consulter cette référence s'il désire des informations supplémentaires.

1. Le tenseur de déformation

Comme on le fait remarquer à la page 147 de [14], une connexion
d'Ehresmann Υ sur P 1M appartenant à une structure projective P
donne lieu à une section GL(m,R)-équivariante σΥ de P → P 1M telle
que σ∗Υθ0 = Υ et telle que σ∗Υθ−1 est égal à la forme canonique de P 1M .
Sachant qu'à Υ correspond une réduction de P 2M à GL(m,R) (voir
chapitre 2), la section σΥ associe à u l'unique repère de cette réduction
qui se projette sur u. Explicitement, on a donc :

σΥ : P 1M → P : (xi, uij) 7→ (xi, δij,−Γijk).(u
i
j, 0),

où les Γijk sont les symboles de Christo�el correspondant à la connexion
Υ.

En fait, la correspondance qui vient d'être décrite entre connexions
et sections établit une bijection entre l'ensemble des connexions appar-
tenant à la structure projective P et l'ensemble des sections GL(m,R)-
équivariantes de P → P 1M . De fait, cette correspondance est évi-
demment injective. Elle est de plus surjective : si σ′ est une section
GL(m,R)-équivariante, alors il existe une fonction α à valeurs dans g1

et GL(m,R)-équivariante telle que

σ′(u) = σΥ(u). exp(α(u)).

La section σ′ peut alors s'écrire de la manière suivante :

σ′ : P 1M → P : (xi, uij) 7→ (xi, δij,−Γ
′i
jk).(u

i
j, 0),
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si les Γ
′i
jk sont donnés par cette relation :

Γ
′i
jk = Γijk + αjδ

i
k + αkδ

i
j,

où les αj sont les composantes de la 1-forme représentée par α.

Si σΥ est la section correspondant à une connexion Υ sur P 1M , on
peut dé�nir une application τ : P → g1 de la manière suivante :

u = σΥ(p(u)). exp(τ(u)).

Signalons le résultat suivant (voir [6] page 43) :

Proposition 32. Pour toute section GL(m,R)-équivariante σΥ :
P 1M → P , il existe une unique connexion de Cartan ω = θ−1⊕θ0⊕ω1

satisfaisant ω1|(σΥ∗(TP
1M)) = 0.

Si σΥ est la section correspondant à une connexion Υ sur P 1M ,
nous appellerons cette connexion de Cartan la connexion de Cartan
induite par Υ et nous la noterons Υ̃.

La connexion de Cartan normale ω associée à la classe projective
de Υ et la connexion de Cartan Υ̃ induite par Υ di�èrent uniquement
par leurs composantes dans g1. De plus, comme la di�érence ω − Υ̃
s'annule sur les champs de vecteurs verticaux, il existe une fonction
Γ ∈ C∞(P, g∗−1 ⊗ g1) telle que

ω = Υ̃− Γ ◦ θ−1.

Cette fonction est H-équivariante. De fait, Γ est dé�ni de la manière
suivante :

Γu(X) = (Υ̃− ω)u(ω
−1
u (X))

où u ∈ P , X ∈ g−1. En vertu de l'Ad-invariance de ω et Υ̃, il vient
alors successivement, si g ∈ H :

Γug(X) = (Υ̃− ω)ug(ω
−1
ug (X))

= (Υ̃− ω)ug(Rg∗ω
−1
u (Ad(g)X))

= Ad(g−1)(Υ̃− ω)u(ω
−1
u (Ad(g)X)).

D'une part, si g ∈ G1, la restriction de Ad(g) à g1 et la projection
sur g−1 de sa restriction à g−1 sont égales à l'identité. D'autre part, si
g ∈ G0, les restrictions de Ad(g) à g−1 et à g1 coïncident respectivement
avec les actions canoniques de GL(m,R) sur Rm et sur Rm∗ et on peut
alors conclure.

La fonction Γ représente donc un 2-tenseur covariant sur M ; c'est
pourquoi nous l'appellerons le tenseur de déformation (voir [6] page
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45, paragraphe 3.9.). Cette fonction possède notamment la propriété
suivante (voir lemme 3.10.) :

(κ̃0 − κ0)(u)(X, Y ) = [X,Γ(u).Y ] + [Γ(u).X, Y ] (25)

si u ∈ P , X, Y ∈ g−1 et si κ̃0 et κ0 sont les fonctions induites
respectivement par les courbures de Υ̃ et de ω.

2. Calcul du tenseur de déformation

Dans ce paragraphe, nous calculons le tenseur de déformation dans
le cas projectif de la même manière qu'il est calculé dans le cas conforme
à la page 63 de [6].

Fixons tout d'abord une base ei de g−1, e
i
j de g0, ε

i de g1. On a
alors

Γ(u)(ei) =
∑
j

Γ(u)jiε
j,

κ0(u)(ei, ej) =
∑
k,l

κ0(u)klije
l
k

et

κ̃0(u)(ei, ej) =
∑
k,l

κ̃0(u)klije
l
k.

La structure d'algèbre de Lie de g−1 ⊕ g0 ⊕ g1 fait en sorte que

[ei, ε
j] = eji + δji Id.

Dès lors, il vient

[Γ.ej, ei]− [Γ.ei, ej] = [
∑
p

Γpjε
p, ei]− [

∑
p

Γpiε
p, ej]

=
∑
p

Γpj(−epi − δ
p
i Id)−

∑
p

Γpi(−epj − δ
p
j Id)

= (−Γkjδ
l
i − Γijδ

l
k + Γkiδ

l
j + Γjiδ

l
k)e

k
l .

Si l'on appelle δκ0 la di�érence κ0 − κ̃0, on obtient donc en utilisant
l'égalité 25 les relations suivantes :

(δκ0)lklj = Γjk −mΓkj; (26)

(δκ0)kkij = (m+ 1)(Γji − Γij). (27)

D'une part, les fonctions (κ0)lklj et (κ0)kkij sont identiquement nulles
par normalité de ω (voir par exemple [14] page 136). D'autre part, les
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fonctions (κ̃0)klij sont les composantes de la fonction équivariante sur P
représentant le tenseur de courbure correspondant à la connexion Υ.

En e�et, appellons R le tenseur de courbure correspondant à Υ et
désignons par f la fonction équivariante représentant R sur P 1M . Il
vient alors, si on note Ω la 2-forme de courbure de Υ, si on utilise la
dé�nition de Ω donnée dans [15] page 133 et si l'on désigne par π la
projection de P 1M sur M :

(p∗f)(u)klij = f(p(u))klij

= (p(u)−1Rπ(p(u))(p(u)i, p(u)j))
k
l

= Ωp(u)(X1, X2)kl ,

si p(u)i, p(u)j sont les composantes i et j du repère p(u) et si X1, X2 ∈
Tp(u)P

1M sont tels que π∗p(u)X1 = p(u)i et π∗p(u)X2 = p(u)j. Si l'on
désigne par θP 1 la forme canonique de P 1M , on sait que θP 1 +Υ consti-
tue une connexion de Cartan sur P 1M (voir [6] page 42). On peut
alors grâce à la dé�nition de θP 1 prendre pour X1 et X2 les vecteurs
(θP 1 + Υ)−1

p(u)(ei) et (θP 1 + Υ)−1
p(u)(ej). Si l'on remarque que Ω = σ∗ΥΩ̃0,

Ω̃ désignant la courbure de Υ̃ (voir [6] page 44), il vient

Ωp(u)(X1, X2)kl = (σ∗ΥΩ̃0)p(u)((θP 1 + Υ)−1
p(u)(ei), (θP 1 + Υ)−1

p(u)(ej))
k
l

= Ω̃0σΥ(p(u))(σΥ∗(θP 1 + Υ)−1
p(u)(ei), σΥ∗(θP 1 + Υ)−1

p(u)(ej))
k
l

= Ω̃0σΥ(p(u))(Υ̃
−1(ei), Υ̃

−1(ej))
k
l

= κ̃0(u)klij.

De fait, on a d'une part σΥ∗(θP 1 + Υ)−1(ei) = Υ̃−1(ei). En e�et,
Υ̃(σΥ∗(θP 1 + Υ)−1(ei)) = ei en vertu du fait que σ∗ΥΥ̃ est égal à θP 1 +

Υ + σ∗ΥΥ̃1 (voir [6] page 42) et de la dé�nition de Υ̃ qui dit que
Υ̃1|(σΥ∗(TP

1M)) = 0.
D'autre part, κ̃0(u)(X, Y ) = κ̃0(σΥ(p(u)))(X, Y ) pour tous X, Y

appartenant à g−1 (voir [6] page 44) et on peut alors conclure.

Un peu de calcul permet alors d'obtenir l'expression du tenseur de
déformation à partir des relations 26 et 27 :

Γjk =
Rickj
1−m

+
m trRjk

(m+ 1)(m− 1)
, (28)

où Ric et trR représentent les fonctions équivariantes sur P qui corres-
pondent respectivement au tenseur de Ricci et à la trace de la courbure.
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3. Développements de ∇ωl et de Divω
l

Dans le but d'obtenir des formules explicites pour la quanti�cation,
nous avons besoin de connaître les développements des opérateurs ∇ωl

et Divω
l
en fonction d'opérateurs sur M .

Soit Υ une connexion sur P 1M donnant lieu à une dérivation co-
variante ∇ et appartenant à une structure projective P . Notons ω la
connexion de Cartan sur P associée.

Soit également (V, ρ) une représentation de GL(m,R) induisant

une représentation (V, ρ∗) de gl(m,R). Si on note ρ
(l)
∗ la représenta-

tion canonique sur ⊗lg∗−1 ⊗ V et si s ∈ C∞(P 1M,V )GL(m,R), alors

F ls := ∇ωl(p∗s)− p∗(∇ls) est donné par l'induction suivante (voir [6]
page 51) :

F 0s(u) = 0

F ls(u)(X1, . . . , Xl) = ρ
(l−1)
∗ ([Xl, τ(u)])(F l−1s(u))(X1, . . . , Xl−1)

+Sτ (F
l−1s(u))(X1, . . . , Xl−1)

+S∇(F l−1s(u))(X1, . . . , Xl−1)

+SΓ(F l−1s(u))(X1, . . . , Xl−1)

+ρ
(l−1)
∗ ([Xl, τ(u)])(p∗(∇l−1s)(u))(X1, . . . , Xl−1).

Cette expression s'écrit comme une somme de termes de la forme

aρ(t1)
∗ (β1) . . . ρ(ti)

∗ (βi)p
∗∇js

où a est un scalaire, les βl sont des crochets itérés faisant intervenir cer-
tains arguments Xl, les di�érentielles itérées ∇rΓ évaluées sur d'autres
arguments Xl et l'application τ . Les tj premiers arguments X1, . . . , Xtj

sont évalués après l'action de ρ
(tj)
∗ (βj), les autres arguments apparais-

sant à leur droite sont évalués avant. Les transformations Sτ , S∇ et SΓ

sont dé�nies de la manière suivante :

(1) L'action de Sτ remplace chaque terme aρ
(t1)
∗ (β1) . . . ρ

(ti)
∗ (βi)p

∗∇j

par une somme de termes qu'on obtient en substituant
−1

2
[τ, [τ,Xl]] à un τ .

(2) La transformation S∇ remplace chaque terme dans F l−1 par
une somme de termes qu'on obtient en substituant à un Γ ou à
une de ses di�érentielles sa dérivée covariante∇Xl . En outre, on
ajoute un terme supplémentaire dans lequel ∇js est remplacé
par ∇Xl(∇js).
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(3) La transformation SΓ remplace en�n chaque terme par une
somme de termes qu'on obtient en substituant Γ(u).Xl à un τ .

En fait, cet algorithme peut être trivialement linéarisé de la manière
suivante :

Proposition 33. Le développement de ∇ωl(p∗s)(X1, . . . , Xl) s'ob-
tient comme suit :

∇ωl(p∗s)(X1, . . . , Xl) = ρ
(l−1)
∗ ([Xl, τ ])(∇ωl−1

(p∗s))(X1, . . . , Xl−1)

+Sτ (∇ωl−1
(p∗s))(X1, . . . , Xl−1)

+S∇(∇ωl−1
(p∗s))(X1, . . . , Xl−1)

+SΓ(∇ωl−1
(p∗s))(X1, . . . , Xl−1).

Proposition 34. Si f ∈ C∞(P 1M,∆λ(Rm))GL(m,R), alors

∇ωl(p∗f)(X, . . . , X) est une combinaison linéaire de termes de la forme

(⊗n−1τ ⊗ p∗(⊗nl−2∇l−2Γ⊗ . . .⊗⊗n0Γ⊗∇qf))(X, . . . , X).

Si l'on note T (n−1, . . . , nl−2, q) un tel terme, T (n−1, . . . , nl−2, q) donne

lieu dans le développement de ∇ωl+1
(p∗f)(X, . . . , X) à

(−λ(m+ 1)− 2l+ n−1)T (n−1 + 1, . . . , nl−2, q) + T (n−1, . . . , nl−2, q+ 1)

+
l−2∑
j=−1

njT (n−1, . . . , nj − 1, nj+1 + 1, . . . , nl−2, q).

Démonstration. On voit en e�et facilement que l'application de
la première partie de l'algorithme donne

(−λ(m+ 1)− 2l)T (n−1 + 1, . . . , nl−2, q).

La deuxième partie donne quant à elle

n−1T (n−1 + 1, . . . , nl−2, q).

La troisième partie contribue à

T (n−1, . . . , nl−2, q+ 1) +
l−2∑
j=0

njT (n−1, . . . , nj − 1, nj+1 + 1, . . . , nl−2, q).

La quatrième partie rend quant à elle

n−1T (n−1 − 1, n0 + 1, . . . , nl−2, q).

�

On en déduit alors aisément le corollaire suivant :
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Proposition 35. Si f ∈ C∞(P 1M,∆λ(Rm))GL(m,R), ∇ωl

s (p∗f) est
une combinaison linéaire de termes de la forme

τn−1 ∨ p∗((∇l−2
s r)nl−2 ∨ . . . ∨ rn0 ∨∇q

sf),

où r désigne la partie symétrique du tenseur de Ricci divisée par 1−m.
Si l'on note T (n−1, . . . , nl−2, q) un tel terme, T (n−1, . . . , nl−2, q) donne

lieu dans le développement de ∇ωl+1

s (p∗f) à

(−λ(m+ 1)− 2l+ n−1)T (n−1 + 1, . . . , nl−2, q) + T (n−1, . . . , nl−2, q+ 1)

+
l−2∑
j=−1

njT (n−1, . . . , nj − 1, nj+1 + 1, . . . , nl−2, q).

Démonstration. Notons tout d'abord que la partie symétrique
de Γ se réduit à r par antisymétrie du tenseur trR. Il su�t alors de
noter que si ∇ωl(p∗f)(X, . . . , X) est égal à une combinaison linéaire de
termes de la forme

(⊗n−1τ ⊗ p∗(⊗nl−2∇l−2Γ⊗ . . .⊗⊗n0Γ⊗∇qf))(X, . . . , X),

alors ∇ωl

s (p∗f) est égal à la combinaison linéaire correspondante des
termes de la forme

τn−1 ∨ p∗((∇l−2
s r)nl−2 ∨ . . . ∨ rn0 ∨∇q

sf).

En e�et, les deux derniers tenseurs sont alors égaux puisqu'ils sont
tous les deux symétriques et qu'ils sont égaux lorsqu'ils sont évalués en
X l. �

Remarquons que l'action de l'algorithme sur le terme générique du
développement de ∇ωl

s (p∗f) peut être résumée. En e�et, cette action
donne tout d'abord

(−λ(m+ 1)− 2l + n−1)T (n−1 + 1, . . . , nl−2, q).

Elle donne ensuite

n−1T (n−1 − 1, n0 + 1, . . . , nl−2, q).

En�n, elle fait agir la dérivation covariante ∇s sur

(∇l−2
s r)nl−2 ∨ . . . ∨ rn0 ∨∇q

sf.

Le résultat suivant nécessite un lemme :

Lemme 36. Si S ∈ C∞(P 1M,∆δRm ⊗ SkRm)GL(m,R), alors

∇ωl(p∗S)(X1, . . . , Xl) est une combinaison linéaire de termes construits
de la manière suivante. On évalue d'abord p∗(∇qS) sur certains Xi et
on contracte le résultat un certain nombre de fois avec τ . On contracte
ensuite le symbole obtenu avec des tenseurs de degré 1 obtenus en
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contractant des p∗(∇tΓ) avec t + 1 Xi. On multiplie symétriquement
le résultat par d'autres Xi. En�n, on multiplie le tout par des nombres
obtenus en évaluant τ sur des Xi et des p

∗(∇tΓ) sur t+ 2 Xi.

Démonstration. On véri�e en e�et aisément que l'action de l'al-
gorithme stabilise la forme donnée dans l'énoncé. �

Proposition 37. Si S ∈ C∞(P 1M,∆δRm ⊗ SkRm)GL(m,R), alors

Divω
l
(p∗S) est une combinaison linéaire de termes de la forme

〈τn−1 ∨ p∗((∇k−2
s r)nk−2 ∨ . . . ∨ rn0), p∗(DivqS)〉.

Si l'on note T (n−1, . . . , nl−2, q) un tel terme, T (n−1, . . . , nl−2, q) donne

lieu dans le développement de Divω
l+1

(p∗S) à

(γ2(k−l)−1(m+ 1) +n−1)T (n−1 + 1, . . . , nl−2, q) +T (n−1, . . . , nl−2, q+ 1)

+
l−2∑
j=−1

njT (n−1, . . . , nj − 1, nj+1 + 1, . . . , nl−2, q).

Démonstration. Nous avons à calculer

(∇ωl+1

(p∗S)(ei1 , . . . , eil+1
))(εi1 , . . . , εil+1).

Comme la première partie du développement de

∇ωl+1

(p∗S)(ei1 , . . . , eil+1
)

selon l'algorithme est

(ρ(l)
∗ ([eil+1

, τ(u)])∇ωl(p∗S)(u))(ei1 , . . . , eil),

nous avons d'abord à calculer

[(ρ(l)
∗ ([eil+1

, τ(u)])∇ωl(p∗S)(u))(ei1 , . . . , eil)](ε
i1 , . . . , εil+1).

Cette dernière expression est égale à

[ρ∗([eil+1
, τ(u)])(∇ωl(p∗S)(u)(ei1 , . . . , eil))](ε

i1 , . . . , εil+1)

−
l∑

j=1

(∇ωl(p∗S)(u)(ei1 , . . . , [eil+1
, τ(u)]eij , . . . , eil))(ε

i1 , . . . , εil+1),

i.e. à

[ρ′∗([eil+1
, τ(u)])(∇ωl(p∗S)(u)(ei1 , . . . , eil)(ε

i1 , . . . , εil))](εil+1)

+
l∑

j=1

(∇ωl(p∗S)(u)(ei1 , . . . , eil))(ε
i1 , . . . , εij [eil+1

, τ(u)], . . . , εil+1)

−
l∑

j=1

(∇ωl(p∗S)(u)(ei1 , . . . , [eil+1
, τ(u)]eij , . . . , eil))(ε

i1 , . . . , εil+1),
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si ρ′ désigne l'action de GL(m,R) sur les symboles de degré k − l.
Les deuxième et troisième lignes de l'expression précédente donnent
respectivement 2l et −2l termes dans lesquels n−1 est augmenté d'une
unité. Leurs contributions s'annihilent donc. On constate aisément que
la première ligne donne quant à elle

γ2(k−l)−1(m+ 1)T (n−1 + 1, . . . , nl−2, q).

Grâce au lemme, on voit que la deuxième partie de l'algorithme donne
n−1 termes où n−1 devient n−1 + 1. Le lemme permet aussi de montrer
que la troisième partie de l'algorithme contribue à

T (n−1, . . . , nl−2, q+ 1) +
l−2∑
j=0

njT (n−1, . . . , nj − 1, nj+1 + 1, . . . , nl−2, q).

La quatrième partie rend quant à elle

n−1T (n−1 − 1, n0 + 1, . . . , nl−2, q).

�

Remarquons que l'action de l'algorithme sur le terme générique du
développement de Divω

l
(p∗S) peut être résumée. En e�et, cette action

donne tout d'abord

(γ2(k−l)−1(m+ 1) + n−1)T (n−1 + 1, . . . , nl−2, q).

Elle donne ensuite

n−1T (n−1 − 1, n0 + 1, . . . , nl−2, q).

En�n, elle fait agir la divergence Div sur

〈(∇k−2
s r)nk−2 ∨ . . . ∨ rn0 , DivqS〉.

4. La formule explicite

Au vu des propositions précédentes, la quanti�cation s'écrit comme
une combinaison linéaire de termes de la forme

〈〈τn−1 ∨ p∗((∇k−2
s r)nk−2 ∨ . . . ∨ rn0), p∗(DivqS)〉, p∗(∇l

sf)〉.
Dans cette expression, il su�t de se préoccuper des termes pour lesquels
n−1 = 0. En e�et, supposons que l'expression

k∑
j=0

〈aj, τ j〉 (29)

dans laquelle les fonctions aj sont H-équivariantes soit H-équivariante.
Notons tout d'abord que Lh∗τ = h pour tout h ∈ g1 (voir [6] page 48).
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Le fait que l'application de Lh∗ à (29) donne 0 pour tout h ∈ g1 nous
dit alors que

k∑
j=1

〈jaj, τ j−1〉

est nul, doncH-équivariant. En itérant le processus, on trouve pour �nir
que ak = 0. On en déduit alors de proche en proche que les fonctions
aj sont nulles pour j variant de 1 à k.

Les résultats suivants donnent les développements explicites de∇ωl

s (p∗f)

et de Divω
l
(p∗S) :

Proposition 38. Le terme de degré t en τ dans le développement
de ∇ωl

s (p∗f) est égal à(
l
t

) t∏
j=1

(−λ(m+ 1)− l + j)p∗(πl−t(
l−t∑
j=0

(∇s + T1)j)f),

si πl−t désigne la projection sur les opérateurs de degré l − t (le degré
de ∇s étant 1, le degré de T1 étant 2) et si la restriction de T1 aux
tenseurs j fois covariants à valeurs dans les
λ-densités est égale à

(−λ(m+ 1)− j)(j + 1)

fois le produit symétrique par r. Par convention, on posera que le pro-
duit

∏t
j=1(−λ(m+ 1)− l + j) est égal à 1 si t = 0.

Démonstration. Pour simpli�er les notations, désignons par β le
nombre −λ(m+1). La formule est évidemment vraie si l et t sont égaux
à 0. Supposons la formule véri�ée pour tout t jusqu'à l'ordre l − 1. Si
l − t ≥ 2 et si t ≥ 2, alors le terme de degré t en τ à l'ordre l est égal
en utilisant la procédure de récurrence à :

(t+ 1)

(
l − 1
t+ 1

) t+1∏
j=1

(β − l + 1 + j)p∗(r ∨ πl−t−2(
l−t−2∑
j=0

(∇s + T1)j)f)

+

(
l − 1
t

) t∏
j=1

(β − l + 1 + j)p∗(∇s(πl−t−1(
l−t−1∑
j=0

(∇s + T1)j))f)

+

(
l − 1
t− 1

)
(
t−1∏
j=1

(β − l + 1 + j))(β − 2l + t+ 1)

p∗(πl−t(
l−t∑
j=0

(∇s + T1)j)f).
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Remarquons que

(β − l + t+ 2)(l − t− 1)r ∨ πl−t−2(
l−t−2∑
j=0

(∇s + T1)j)

est égal à

πl−t(T1(
l−t−2∑
j=0

(∇s + T1)j)).

Dès lors, la somme des trois termes ci-dessus est égale à un multiple de

p∗(πl−t(
l−t∑
j=0

(∇s + T1)j)f),

ce multiple étant égal à
t∏

j=2

(β − l + j)(

(
l − 1
t

)
(β − l + t+ 1) +

(
l − 1
t− 1

)
(β − 2l + t+ 1)),

i.e. à
t∏

j=2

(β − l + j)

((β− l+ 1)(

(
l − 1
t

)
+

(
l − 1
t− 1

)
) + t

(
l − 1
t

)
+ (t− l)

(
l − 1
t− 1

)
).

On conclut en utilisant la formule du triangle de Pascal.

Les cas l − t ≥ 2 & t < 2, l − t < 2 & t ≥ 2, l − t < 2 & t < 2
se traitent de manière analogue. �

Proposition 39. Le terme de degré t en τ dans le développement
de Divω

l
(p∗S) est égal à(
l
t

) t∏
j=1

(γ2k−1(m+ 1)− l + j)p∗(πt−l(
l−t∑
j=0

(Div + T2)j)S),

si πt−l désigne la projection sur les opérateurs de degré t − l (le degré
de Div étant -1, le degré de T2 étant -2) et si la restriction de T2 aux
symboles de degré j est égale à

((m+ 1)γ2k−1 − k + j)(k − j + 1)

fois la contraction par r. Par convention, on posera que le produit∏t
j=1(γ2k−1(m+ 1)− l + j) est égal à 1 si t = 0.

Démonstration. La preuve est entièrement similaire à celle de la
proposition précédente. �
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On est désormais en mesure d'écrire la formule explicite donnant la
quanti�cation naturelle projectivement invariante du chapitre 3 :

Théorème 40. La quanti�cation QM du théorème 15 est donnée
par la formule suivante :

QM(∇, S)(f) =
k∑
l=0

Ck,l〈πl(
l∑

j=0

(Div + T2)j)S, πk−l(
k−l∑
j=0

(∇s + T1)j)f〉.

Remarque : On peut facilement montrer grâce aux développe-
ments de Divω

l
(p∗S) et de ∇ωl

s (p∗f) que la formule du théorème 15 est
H-équivariante. En e�et, si on impose le fait que la partie de degré 1
en τ soit égale à 0 dans cette fonction, on obtient sur les coe�cients
Ck,l la relation de récurrence 10 du théorème 15.

Si l'on appelle Q la fonction sur P donnant la quanti�cation, il su�t
alors de montrer que Lh∗Q(u0) = 0 pour tous h ∈ g1, u0 ∈ P . Si l'on
se place en un point u0 ∈ P , on considère une connexion Υ sur P 1M
donnant lieu à une section σΥ : P 1M → P passant par u0. On a ainsi
τ(u0) = 0.

La somme des termes de degré strictement supérieur à 1 en τ dans
Q s'écrit

k∑
j=2

〈aj, τ j〉,

où les fonctions aj sont H-équivariantes. Si l'on applique Lh∗ à cette
fonction et qu'on évalue le résultat en u0, on obtient alors

k∑
j=2

〈jaj(u0), τ j−1(u0) ∨ h〉 = 0.
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CHAPITRE 6

Non-unicité des quanti�cations naturelles

projectivement invariantes

Il est connu que dans le cas des opérateurs di�érentiels agissant
entre densités, les quanti�cations sl(m+1,R)-équivariantes sur Rm sont
uniques en dehors des situations critiques. Cette unicité n'implique pas
l'unicité des quanti�cations naturelles projectivement invariantes dont
il est question au chapitre 3. Le but de ce chapitre est de montrer que
ces quanti�cations ne sont pas uniques, même en dehors des situations
critiques.

On commence par faire la remarque suivante :

Proposition 41. Une quanti�cation naturelle projectivement in-
variante QM n'est pas unique si et seulement s'il existe une application
naturelle projectivement invariante non nulle agissant entre Skδ (M) et
Sk−lδ (M) pour un certain k et un certain l > 0.

Démonstration. Les quanti�cations étant des bijections, la non-
unicité d'une quanti�cation naturelle projectivement invariante est équi-
valente à l'existence de deux quanti�cations naturelles projectivement
invariantes Q et Q′ et d'une application naturelle projectivement in-
variante T de Sδ(M) dans Sδ(M) di�érente de l'identité telle que
Q′ = Q ◦ T . Il doit exister au moins un k tel que la restriction de
T à Skδ (M) soit di�érente de l'identité. Comme une quanti�cation doit
préserver le symbole principal, la projection de cette restriction sur
Skδ (M) doit être égale à l'identité. Les projections de la restriction sur
Sk+l
δ (M), avec l > 0, doivent être nulles et on peut alors conclure. �

Nous allons baser la construction des applications naturelles projec-
tivement invariantes entre espaces de symboles sur un certain tenseur
que nous allons à présent introduire.

1. Le tenseur de Weyl

Si ω désigne la connexion de Cartan normale associée à une struc-
ture projective P , la fonction κ induite par sa courbure possède une
importante propriété d'invariance (voir [6] page 44) : si h ∈ H, u ∈ P
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et X, Y ∈ g−1, la fonction κ ∈ C∞(P, g∗−1 ⊗ g∗−1 ⊗ g) véri�e :

κ(X, Y )(uh) = Ad(h−1)κ(Ad(h)X,Ad(h)Y )(u). (30)

De fait, il vient successivement, en utilisant l'Ad-invariance de ω :

κ(X, Y )(uh) = K(ω−1(X), ω−1(Y ))(uh)

= −ω([ω−1(X), ω−1(Y )](uh))

= −Ad(h−1) ◦ ω(Rh−1∗([ω
−1(X), ω−1(Y )](uh)))

= −Ad(h−1) ◦ ω([ω−1(Ad(h)X), ω−1(Ad(h)Y )](u))

= Ad(h−1)κ(Ad(h)X,Ad(h)Y )(u).

Si l'on considère les composantes selon g0 des deux membres de (30),
il vient :

κ0(X, Y )(uh) = ρR
m⊗Rm∗(h−1)κ0(ρR

m

(h)X, ρR
m

(h)Y )(u),

où ρR
m⊗Rm∗ et ρR

m
désignent respectivement les actions de H sur Rm⊗

Rm∗ et Rm. De fait, les composantes selon g−1 de Ad(h)X et Ad(h)Y
coïncident respectivement avec ρR

m
(h)X et ρR

m
(h)Y . De plus, le fait

que κ−1 = 0 fait en sorte que la composante selon g0 de

Ad(h−1)κ(ρR
m

(h)X, ρR
m

(h)Y )(u)

est égale à

ρR
m⊗Rm∗(h−1)κ0(ρR

m

(h)X, ρR
m

(h)Y )(u).

La fonction κ0 est donc H-équivariante. Elle représente alors un

tenseur de type

(
1
3

)
sur M que l'on appelle le tenseur de Weyl.

2. Construction d'applications naturelles projectivement

invariantes

Si j est un naturel supérieur ou égal à 2, on dé�nit une fonction
H-équivariante W ∈ C∞(P, S2jRm∗) de la manière suivante :

W (u)(ei1 , . . . , ei2j) :=
∑
ν

∑
r1,...,rj

κ0(u)r1iν(1)iν(2)rσ(1)
. . . κ0(u)

rj
iν(2j−1)iν(2j)rσ(j)

,

où σ est une permutation de {1, . . . , j}. Vu la normalité de ω, σ ne doit
laisser aucun élément inchangé.

Le lemme suivant permet de calculer l'écart à l'équivariance des
di�érentielles invariantes itérées de la fonction W :
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Lemme 42. On a la formule suivante :

Lh∗∇ωk

s W = −k(k + 4j − 1)h ∨ (∇ωk−1

s W ),

pour tout h ∈ g1.

Démonstration. La preuve est similaire à celle de la proposition
14 du chapitre 3. Si k = 0, la formule est vraie. On procède alors par
induction. Si X ∈ Rm,

(Lh∗∇ωk

s W )(X, . . . , X)

est égal à

Lω−1(X)Lh∗(∇ωk−1

s W )(X, . . . , X) + (L[h,X]∗(∇ωk−1

s W ))(X, . . . , X).

Par hypothèse de récurrence, le premier terme est égal à

−(k − 1)(k + 4j − 2)(h ∨ (∇ωk−1

s W ))(X, . . . , X).

En ce qui concerne le deuxième terme, on obtient

(ρ∗((h⊗X) + 〈h,X〉Id)(∇ωk−1

s W ))(X, . . . , X).

Le résultat provient alors de la dé�nition de ρ∗. �

On est à présent en mesure de construire des applications naturelles
projectivement invariantes entre espaces de symboles :

Théorème 43. Si S ∈ Skδ (M) et si l ≥ 2j , tous les multiples de
l'application

S 7→ p∗
−1

(

l−2j∑
r=0

Ck,l,r〈Divω
r

p∗S,∇ωl−r−2j

s W 〉)

sont naturels et projectivement invariants si

Ck,l,r =
(l + 2j − 1)!

(m+ 1)r(l + 2j − r − 1)!γ2k−1 · · · γ2k−r

(
l − 2j
r

)
,∀r ≥ 1, Ck,l,0 = 1.

Démonstration. La preuve est entièrement similaire à celle du
théorème 15 du chapitre 3. Il su�t de véri�er que la fonction

l−2j∑
l=0

Ck,l,r〈Divω
r

p∗S,∇ωl−r−2j

s W 〉

est g1-équivariante. Cela a lieu grâce au lemme précédent, à la propo-
sition 13 du chapitre 3 et au fait que la relation suivante est véri�ée :

Ck,l,rr(m+ 2k − r − (m+ 1)δ) = Ck,l,r−1(l − r − 2j + 1)(l − r + 2j).

�
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Remarques :

� Les applications que l'on vient de donner sont des exemples d'ap-
plications naturelles projectivement invariantes entre espaces de
symboles. Une description complète de l'ensemble de ces applica-
tions semble assez délicate.

� On peut montrer �à la main� que la quanti�cation naturelle pro-
jectivement invariante est unique jusqu'au troisième ordre dans
les situations non-critiques. Il su�t de considérer toutes les appli-
cations naturelles entre Sk(M) and Sk−l(M) (avec 1 ≤ l ≤ 3) et
de montrer qu'il n'existe pas de combinaison linéaire de ces ap-
plications qui soit projectivement invariante dans les situations
non-critiques.

� En utilisant les méthodes décrites dans le chapitre 5, on pourrait
dériver des formules explicites pour les applications du théorème
43. Aux quatrième et cinquième ordres, si on désigne par T la
fonction équivariante sur P 1M correspondant à W avec j = 2,
les applications du théorème 43 sont égales respectivement à

〈S, T 〉
et à

〈S,∇sT 〉+
8

(m+ 1)γ2k−1

〈DivS, T 〉.
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