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Introduction

Une procédure de quantification peut étre définie grossiérement
comme étant une bijection linéaire de l’espace des observables clas-
siques dans un espace d’opérateurs différentiels agissant sur des fonc-
tions d’onde (du moins dans le cadre de la quantification géométrique,
voir [28]).

De notre point de vue, 'espace S(M) des observables (appelés aussi
symboles) est constitué de fonctions différentiables sur le fibré cotangent
T*M d’une variété M qui sont polynomiales le long des fibres. L’espace
D,\(M) des opérateurs différentiels est assimilé a ’espace des opérateurs
différentiels agissant sur des A-densités au-dessus de M.

Il est connu qu’il n’existe pas de quantification naturelle. En d’autres
termes, les espaces de symboles et d’opérateurs différentiels ne sont pas
isomorphes en tant que représentations de Diff (M).

L’idée de la quantification équivariante, introduite par P. Lecomte
et V. Ovsienko dans [16] est de réduire le groupe de difféomorphismes
locaux de la maniére suivante.

Ces auteurs ont étudié le cas du groupe projectif PGL(m + 1,R)
agissant localement sur la variété M = R™ par des transformations
linéaires fractionnaires. Ils montrérent que les espaces de symboles et
d’opérateurs différentiels sont canoniquement isomorphes en tant que
représentations de PGL(m + 1,R) (ou de son algébre de Lie sl(m +
1,R)). En d’autres mots, ils prouvérent qu’il existe une unique quanti-
fication projectivement équivariante.

Dans (9], les auteurs ont étudié les espaces D,,(R™) d’opérateurs
différentiels transformant des A-densités en des p-densités et leurs es-
paces gradués associés Ss. Ils montrérent 'existence et I'unicité d’une
quantification projectivement équivariante, dans les cas ou la valeur
0 = p — A n’appartient pas a un ensemble de valeurs critiques.



Un premier exemple de quantification projectivement équivariante
pour des opérateurs différentiels agissant sur des champs de tenseurs a
été donné dans [1].

Jusque maintenant, les résultats dont nous venons de parler ont
trait a des variétés pourvues d’une structure projective plate. Néan-
moins, dans [4, 5|, S. Bouarroudj montra que la formule de la quan-
tification projectivement équivariante pour des opérateurs différentiels
d’ordre deux et trois peut étre exprimée en utilisant une connexion li-
néaire sans torsion, de telle maniére que la quantification ne dépende
que de la classe projective de la connexion.

Sur cette lancée, dans [18], P. Lecomte conjectura 'existence d'une
quantification

Q : Ss(M) — Dy, (M)

dépendant d’une connexion linéaire sans torsion, qui serait naturelle en
tous ses arguments et qui resterait inchangée sous 'effet d'un change-
ment projectif de connexion.

L’existence d’une telle quantification naturelle projectivement équi-
variante a été prouvée par M. Bordemann dans 3| en utilisant la notion
de connexion de Thomas-Whitehead associée a une classe projective
de connexions (voir [25, 27, 24, 12, 23] pour une discussion sur les
connexions de Thomas-Whitehead). Sa construction a été adaptée plus
tard par S. Hansoul dans [11] dans le but de traiter le cas des opéra-
teurs différentiels agissant sur des formes, globalisant ainsi les résultats
de [1].

Récemment, dans sa thése, S. Hansoul |10] montra comment géné-
raliser la méthode donnée par M. Bordemann afin de résoudre le pro-
bléme de l'existence d’une quantification naturelle et projectivement
équivariante pour des opérateurs différentiels agissant sur des champs
de tenseurs arbitraires.

Cette these se situe dans le prolongement de toutes ces recherches.
Elle est la somme de travaux qui approfondissent ces domaines d’in-
vestigation et que nous allons tout d’abord résumer briévement.

Dans [20], nous avons analysé le probléme de l'existence d’une
quantification naturelle et projectivement équivariante pour des opé-
rateurs différentiels agissant entre densités en utilisant la théorie des
connexions de Cartan projectives. Nous avons obtenu une formule ex-
plicite pour la quantification naturelle et projectivement équivariante
en termes de la connexion de Cartan normale associée a une classe
projective de connexions linéaires.
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A notre étonnement, il apparut que cette formule explicite n’est
rien d’autre que la formule donnée dans [9] pour le cas plat, au rempla-
cement prés des dérivées partielles par les différentiations invariantes
par rapport & la connexion de Cartan normale. En particulier, nous
avons montré que la quantification naturelle et projectivement inva-
riante existe si et seulement si la quantification si(m+1, R)-équivariante
existe dans le cas plat. Nous avons ainsi apporté un raffinement au ré-
sultat de M. Bordemann qui n’était pas capable de trancher la question
de lexistence de la quantification naturelle projectivement invariante
dans les situations ol 9 était égal & une valeur critique.

Sur cette lancée, en utilisant les résultats de [20] et de [6], nous
avons trouvé dans [21]| une formule explicite en termes d’opérateurs
naturels sur la variété de base M pour la quantification naturelle et
projectivement équivariante. Cette formule généralise les formules don-
nées par Bouarroudj dans [4] et dans [5] pour les opérateurs différentiels
d’ordres deux et trois.

Le probléme de I'unicité de la quantification naturelle projective-
ment équivariante n’avait pas encore été abordé. On savait que la quan-
tification sl(m+ 1, R)-équivariante était unique dans les situations non
critiques. Cela n’impliquait toutefois pas 1'unicité de la quantification
naturelle projectivement équivariante. Dans [22], nous prouvons que,
contrairement a la quantification sl(m+ 1, R)-équivariante, la quantifi-
cation naturelle et projectivement équivariante n’est pas unique méme
dans les situations non-critiques. Nous réalisons cela en utilisant la
théorie des connexions de Cartan et en particulier le tenseur de Weyl
qui peut étre introduit trés naturellement a partir de celle-ci.

Enfin, dans |19], nous analysons la question de I'existence de quan-
tifications naturelles et projectivement équivariantes pour des opéra-
teurs différentiels agissant sur des champs de tenseurs arbitraires. Cette
question avait déja été abordée par S. Hansoul dans [10] en utilisant les
connexions de Thomas tandis que nous ’abordons grace aux connexions
de Cartan projectives. L’avantage de notre méthode est qu’elle donne
lieu a une généralisation directe des formules qui peuvent étre écrites
dans le contexte de la quantification projectivement équivariante sur
R™ (dans les situations non-critiques), simplement par la substitution
des différentiations invariantes par rapport & une connexion de Cartan
aux dérivées partielles. La méthode met aussi en exergue un lien di-
rect entre 1’existence d’une quantification si(m+ 1, R)-équivariante sur
M = R™ et I'existence de la quantification naturelle et projectivement
équivariante correspondante sur une variété arbitraire.



Dans le premier chapitre de ce travail, on rappelle les notions fon-
damentales nécessaires a une bonne compréhension de cet ouvrage. Ces
notions sont notamment relatives aux fibrés principaux, aux opérateurs
différentiels et symboles associés et aux dérivées covariantes. Pour fi-
nir, on rappelle la position du probléme de la quantification naturelle
projectivement invariante.

Dans le second chapitre, on rappelle les notions de base relatives
aux connexions de Cartan et aux fibrés de Cartan. Aprés avoir défini
une connexion de Cartan en toute généralité, on explique ce qu’est une
structure projective et on démontre que ’ensemble des structures pro-
jectives est en correspondance biunivoque avec ’ensemble des classes
projectives de connexions linéaires sans torsion. On montre ensuite
qu’a une de ces classes, on peut associer de maniére naturelle une
connexion de Cartan projective, appelée connexion projective normale.
D’autre part, les fonctions équivariantes sur le fibré des repéres d’ordre
1, peuvent étre relevées en des fonctions équivariantes sur une structure
projective. On peut faire agir sur ces fonctions une opération appelée
différentiation tnvariante qu’on construit a partir de la connexion de
Cartan normale.

Dans le troisieme chapitre, on analyse la question de l'existence
d’une quantification naturelle projectivement invariante dans le cas
d’opérateurs différentiels agissant entre densités. On montre qu’une
telle quantification existe si et seulement si la quantification correspon-
dante existe dans le cas plat, en en donnant une formule explicite en
terme de la connexion de Cartan normale. Cette formule est construite
a partir de la différentiation invariante, V¥, et d’un opérateur que nous
avons appelé Div”. La coincidence entre formules “plate” et “courbe”
a lieu si I'on substitue V¥ & la dérivation covariante par rapport a la
connexion canonique plate de R™ et Div®“ & la divergence covariante par
rapport & cette méme connexion. [’exactitude de la formule “courbe”
se démontre en montrant que celle-ci transforme des fonctions équi-
variantes en des fonctions équivariantes. Pour ce faire, on calcule au
préalable ’écart a I’équivariance des fonctions Vf;l fet Div' S ,ou f et
S représentent respectivement une densité et un symbole.

Le quatriéme chapitre se situe dans le prolongement du chapitre
précédent. On y analyse 'existence d’une quantification naturelle pro-
jectivement invariante dans le cas d’opérateurs différentiels agissant
entre champs de tenseurs arbitraires. On rappelle tout d’abord en dé-
tails les outils et la méthode utilisée dans le cadre de la quantification
sl(m+1,R)-équivariante dans R™. Les symboles et les opérateurs diffé-
rentiels étant des représentations de sl(m+1,R), on peut construire les



opérateurs de Casimir associés C' et C sur ces espaces. La quantification
envoie alors un vecteur propre de C' sur un vecteur propre de C de méme
valeur propre et qui a pour symbole principal le symbole de départ. Par
analogie, on définit dans la situation courbe des “opérateurs de Casi-
mir” agissant sur des fonctions équivariantes. La quantification courbe
est construite de maniére exactement similaire a la quantification plate
et on montre qu’ainsi, elle transforme des fonctions équivariantes en des
fonctions équivariantes. La conclusion surprenante est alors que dans
les situations non-critiques, il existe une quantification courbe si et
seulement si la quantification correspondante plate existe, les formules
donnant les quantifications courbes s’obtenant en substituant dans les
formules donnant les quantification plates la différentiation invariante
aux dérivées partielles.

Dans le cinquiéme chapitre, on donne une formule explicite pour la
quantification naturelle projectivement équivariante dont il est question
au chapitre 3. Pour ce faire, on développe les opérateurs V:ﬁl et Div®'
en termes d’opérateurs naturels sur la variété de base M en utilisant
des outils exposés dans [6].

Enfin, dans le sixiéme chapitre, on montre que la quantification
naturelle projectivement équivariante du chapitre 3 n’est pas unique,
méme dans les situations non-critiques, en construisant des applications
naturelles projectivement équivariantes entre espaces de symboles. On
réalise cela grace au tenseur de Weyl que 'on peut introduire trés natu-
rellement par le biais de la courbure de la connexion de Cartan normale.
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CHAPITRE 1

Notions fondamentales

Nous exposons dans ce chapitre les notions nécessaires a la bonne
compréhension de cet ouvrage. Dans tout le travail, nous désignerons
par M une variété que nous supposerons C°, séparée, connexe et a
base dénombrable. Nous supposerons de plus que la dimension m de
cette variété est toujours strictement supérieure a 1.

1. Fibrés principaux

Dans ce chapitre, nous noterons P, sauf mention explicite du contraire,
un fibré principal de groupe de structure GG sur une variété M. Il sera
également sous-entendu que 7 désignera la projection P — M et R
I’action de G sur P.

Etant donné une variété M, un exemple fondamental de fibré prin-
cipal sur M est le fibré des repéres d’ordre k, noté P*M, dont les points
sont les repéres d’ordre k de M en tout point de M. Pour rappel, un
repére d’ordre k en un point x de M est le jet d’ordre k en I'origine 0 de
R™ d’un diffeomorphisme local de R™ dans M appliquant 0 sur z. Le
fibré P*M est un fibré principal de groupe de structure G* | le groupe
des jets d’ordre k en l'origine 0 de R™ des difféeomorphismes locaux de
R™ dans lui-méme appliquant 0 sur 0. L’action d’un élément j¥(g) de
G* sur un repére j¥(f) de P*M est donnée de la maniére suivante :

Jo(£)-36(9) = js (f 0 9)-
En coordonnées, si jg(f) (resp. j3(f)) est représenté par (f*, f}) (resp.

(f*, f1, fi)) et sijg(g) (vesp. jg(g)) est représenté par (g5) (vesp. (g5, 95x)),
alors

(f' 1)) = (f', fig})

(vesp. (f', f1, Fir) (95, g5) = (F', Fral, igh + Flagion)-

Si M et N sont deux variétés et si ¢ € C°(M, N), application P*¢
est définie de la maniére suivante :

PF¢: PPM — PN @ §bf s ji(do f).
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Les fibrés principaux admettent des champs de vecteurs particuliers.
Il s’agit des champs de vecteurs fondamentaux, qui sont associés aux
éléments de l'algébre de Lie g de G.

Si h € g, le champ fondamental associé a h est le champ de vecteurs
sur P noté h* et défini en tout point par

, d
hu - ERewp(th)u’tZO'
Rappelons aussi la notion de réduction d’un fibré principal. Soient P
un fibré principal de groupe de structure G et P’ un fibré principal de

groupe de structure G’. Une immersion x de P dans P’ vérifiant
X(u.g) = x(u).®(g) Vue PVged,

ou ¢ est une immersion et un homomorphisme de groupes entre G et
G’ est une réduction du groupe de structure G’ du fibré principal P’ a
G si x recouvre I'application identité sur la base M.

Si P est un G-fibré principal et V' une variété munie d’une action
a gauche p de G, alors le fibré associé a P de fibre type V, noté

P Xa V,
est le quotient de P x V par la relation d’équivalence ~ définie par
(u,v) ~ (u',0) & Jg € G tel que (u', ) = (Ry(u), p(g~")(v)).

La classe d’un couple (u,v) pour cette relation d’équivalence est notée
[u, v]. Le fibré P xg V est un fibré sur M a fibre type V, la projection
d’une classe [u, v] étant donnée par m(u).

Il existe de nombreux exemples de tels fibrés. Parmi ceux-ci, on peut
citer le fibré des densités, F\(M), et le fibré S¥(M) qui auront un role
important dans la suite. Le premier se décrit de la maniére suivante :

F\(M) = P'M Xgrump) ANR™),
ot la représentation p de GL(m,R) sur A*R™) est donnée par
p(g)A = |det g| A, Vg€ GL(m,R), VA € AMNR™).
Le deuxiéme s’identifie quant a lui a
P'M Xgrimp) SER™),

ot S¥(R™) est 'espace SFR™ @ A%(R™) et ot la représentation p de
GL(m,R) sur S¥(R™) est donnée par

p(g) A X1V ... VX, =|detg| P A gX1 V...V gXp,

sig€ GL(m,R), A € A°(R™) et X;,... X € R™ On notera Fy(M)
I'espace des sections de F (M) et S¥(M) I’espace des sections de S¥(M).

12



Dans la suite, nous désignerons par F; (resp. E») le foncteur asso-
ciant a une variété M de dimension m le fibré associé

Ei(M) = P'M Xgrmp) V1,

(resp. Eo(M) = P'M Xgrmpr) V2), ot V4 et Va sont des représentations
de dimensions finies de GL(m,R).

Si P est un G-fibré principal sur M et P X5V un fibré associé a P
de fibre type V, il y a bijection canonique entre les sections de P xg V'
et les éléments f de C*°(P, V) qui sont G-équivariants, i.e. qui satisfont

f(Ry(w)) = plg™")f(u), Vg€G, VueP.

Si T est une section de P x V, alors la fonction lui correspondant par
cette bijection est 'unique fonction fr € C*°(P, V) vérifiant

T(w(u)) = [u, fr(u)].

Ainsi, par la suite nous ne distinguerons plus les sections des fibrés
associés considérés des fonctions équivariantes correspondantes.

Fixons une fois pour toutes la notation suivante : si (P, R) est une
variété munie d’une action a droite R d’un groupe de Lie G et si (V, p)
est une variété munie d'une action a gauche p de G, alors I'ensemble
des fonctions G-équivariantes de classe C* entre (P, R) et (V, p) sera
noté

C*(P,V)g.

Le fait de ne considérer que des fibrés associés & P'M va nous per-
mettre de pouvoir définir une dérivée de Lie sur les sections de ces fibrés
dans la direction des champs de vecteurs sur M. Si X appartient a 'en-
semble Vect(M) des champs de vecteurs C* sur M, alors il admet un
relévement complet X dans Vect(P*M). Si (V, p) est une représenta-
tion de GL(m,R), la fonction équivariante correspondant a la dérivée
de Lie par rapport & X d’une section 7' de P'M Xarimpr) V est par
définition la dérivée de la fonction équivariante lui correspondant dans
la direction de X¢. Si on se donne des coordonnées, on peut considérer
en un point z de M le repére canonique (z°, (5;) correspondant a ce sys-
téme de coordonnées. Si on appelle f la fonction associant a un point
x de M les composantes de T}, dans ce repére, la fonction associant a x
les composantes de (LxT'), dans le repére (z°,d%) est alors donnée par

X.f = p(DX),

ou DX est la matrice de gl(m, R) des dérivées partielles de 'expression
locale de X.

13



Notons que si ¢ est un diffeomorphisme entre deux variétés M et
N, on définit action de ¢ sur un élément [u, v] du fibré associé E; (M)
comme suit :

¢.[u,v] == [P*é(u),v].

Rappelons aussi la notion de forme de connexion sur un fibré prin-
cipal, ou connexion d’Ehresmann. Une 1-forme de connexion sur un
G-fibré principal P est une 1-forme T sur P & valeurs dans I’algébre de
Lie g de G satisfaisant

— T(h*) = h pour tout h € g;

~ R:Y = Ad(a™!) o T pour tout a € G.

2. Opérateurs différentiels et symboles

Si M est une variété et si Ey(M), Ey(M) sont les fibrés vecto-
riels naturels sur M de fibres types respectives Vi et V5 dont il est
question au paragraphe précédent, un opérateur différentiel D entre
I'espace I'™°(Ey(M)) des sections de classe C™ de Ej(M) et Iespace
['*°(E9(M)) est une application R-linéaire dont 'expression locale dans
un ouvert de carte et de trivialisations simultanées de E; (M) et Eq(M)
est de la forme

(Df)(@) =Y Cal2)(OF" ... 0 ) (@), (1)

|| <k

ou k€N, |a| =), a; et C, est une application de classe C™ assignant
a chaque point de I'ouvert de carte une application linéaire de V| dans
V5 pour tout multi-indice . Le naturel k£ apparaissant dans I’expres-
sion (1) est 'ordre de différentiation ou tout simplement 1’ordre de D.
L’ensemble de ces opérateurs différentiels est noté

D(Ey(M), Ex(M)),

ou plus simplement D(M).

L’ordre de 'expression locale d'un opérateur différentiel étant in-
dépendant de la carte choisie, cet espace est filtré par 'ordre de diffé-
rentiation :

D(M) = | DF(M).
keN
L’ensemble S(Ey (M), Ex(M)) (ou S(M)) des symboles principauz, ou
simplement des symboles, associé a cet espace d’opérateurs différentiels
est I'espace gradué associé a cette filtration. On a ainsi pour tout k£ € Ny

S*(M) = D"(M) /D" (M),
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S°(M) est isomorphe a DY(M) et
S(M) =P SH(M).

keN

Chaque S*(M) est isomorphe en tant qu’espace vectoriel a ’ensemble
I(Ef (M) ® Ey(M) @ S*TM)

des champs de tenseurs symétriques contravariants de degré k a valeurs
dans les applications linéaires entre les fibres types Vi et V4 de Ey (M)
et EQ(M)

Si D est un opérateur différentiel d’ordre k, sa partie de plus haut
ordre a une signification intrinséque. Plus précisément, les termes de
plus haut degré de l’expression locale de D sont l’expression locale
d’un symbole de degré k, et I'application associant a D ce symbole est
appelée symbole principal et est notée o. Elle est donnée en coordonnées
locales par

oY Cadf o) =D Ca®IN VLV,

la| <k |a|=k

ou dy, ...,0n est la base locale du fibré tangent. Les actions de Vect(M)
et Diff (M) sur D(M) sont induites par les actions correspondantes sur
les sections de (M) et E5(M) : on a tout d’abord

(¢.D)(¢) = ¢.D(¢™".(¢)), Vg € I*(Ex(M)), D € D(M), ¢ € Diff(M).

En différentiant cette action, on obtient I'expression de la dérivée de
Lie d’un opérateur différentiel :

(LxD)(¢) = LxD(¢) — D(Lx )

pour tous ¢ € '°(E(M)),D € D(M), X € Vect(M).

De la méme maniére, les actions de Diff (M) sur les sections de
E\(M) et Ey(M) et sur les sections de T'M induisent une action de
Diff (M) sur les symboles. Au niveau infinitésimal, la différentiation de
cette action permet de calculer la dérivée de Lie d’un symbole dans la
direction d’un champ de vecteurs X quelconque.

Les espaces S(M) et D(M) sont isomorphes en tant qu’espaces
vectoriels. Toutefois ils ne le sont pas en tant que représentations du
groupe des difféomorphismes locaux.

En conséquence, il n’existe pas de quantification canonique natu-
relle au sens ou elle commute avec les difféomorphismes locaux, ol on
entend par quantification une application linéaire

Q: S(M) — D(M)
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préservant le symbole principal, i.e. satisfaisant sur chaque S*(M) la
condition

oo =Id.
Soulignons cependant qu’il est possible de construire canoniquement
une quantification a I'aide de chaque dérivée covariante V sur M, cette
construction étant décrite dans la section 3.

Dans cet ouvrage, on désignera par D, ,(M ) 'espace des opérateurs
différentiels agissant entre A et p-densités, sections de fibrés naturels
d’ordre 1 introduits dans la section 1. On notera S;(M) 'espace des
symboles qui lui est associé, ot 6 = 1 — .

3. Dérivées covariantes

On désigne par dérivation covariante sur une variété M une appli-
cation bilinéaire
V : Vect(M) x Vect(M) — Vect(M)
satisfaisant pour tout f € C>°(M)
- VixY = fVxY,

Il découle de cette définition qu’en coordonnées locales une dérivée
covariante est de la forme

VxY = X'0Y +T5X'Y/ 0.

Les fonctions Ffj apparaissant dans cette formule sont appelées sym-
boles de Christoffel de V et ne sont définies qu’en coordonnées locales.

La torsion d’une dérivée covariante V est le tenseur 7' défini par
T(X,)Y)=VxY -VyX —[X,Y], VX,Y € Vect(M).

Dans ce travail, nous ne considérerons que des dérivées covariantes sans
torsion sur M et nous noterons Cy; 'ensemble de ces connexions.

Il est possible de définir sur ’ensemble des dérivées covariantes une
relation d’équivalence, appelée équivalence projective, de la maniére sui-
vante. Si V et V' sont deux connexions linéaires sans torsion sur M,
alors elles sont dites projectivement équivalentes s’il existe une 1-forme
a sur M telle que

LY =VxY +a(X)Y +a(Y)X, VX,Y € Vect(M).

H. Weyl démontra dans [26] que deux dérivées covariantes sont
projectivement équivalentes si et seulement si elles définissent sur M
les mémes géodésiques a reparamétrage pres.
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Une classe d’équivalence pour cette relation est appelée structure
projective, ou classe projective sur M.

Etant donné deux fibrés vectoriels E;(M) et Eo(M) sur M, nous
avons dit dans la deuxiéme section que I'ensemble D(M) est isomorphe
en tant qu’espace vectoriel & son espace de symboles associé¢ S(M). Il
n’existe pas de bijection canonique naturelle entre ces deux ensembles,
mais il est possible d’assigner a chaque V € Cj; une bijection linéaire

Ly : S(M) — D(M).

Cette bijection est construite de la maniére suivante. Notons tout d’abord
que comme E; (M)®S'T* M est un fibré associé a P1M, on peut étendre
la dérivation covariante V aux sections de ce fibré. Etant donné une
section v € T°(E, (M) @ S'T*M), on construit alors

Vey €T®(E(M) ® SZHT*M) en posant

(Vs’Y)(Xl,.. Xz+1 l+ 'Z u(1)7 v(2)s '-'7X11(l+1))-

A partir de 13, on construit une quantification en posant pour tout

S e SH(M)
(LeS)(f) = (S, Vif), VfeT*(E(M)), (2)
ou (.,.) désigne la contraction de deux champs de tenseurs.
La fonction
L:CyxS(M)w— D(M)

définie par (2) est appelée quantification standard, prescription d’ordre
standard, ou encore quantification de Lichnérowicz. Cette application
est naturelle et Ly est une quantification pour tout V € Cy,.

Pour terminer cette section, rappelons la définition de quelques ten-
seurs de courbure classiques. On désigne par tenseur de courbure d’une
dérivation covariante V € Cy; le champ de tenseurs R sur M défini par

R(X,Y)Z =VxVyZ —VyVxZ -V xyZ,

pour tout X,Y,Z € Vect(M). La trace trR de cette courbure et le
tenseur de Ricci Ric sont les champs de tenseurs sur M définis respec-
tivement par

trR(X,Y) = tr(. — R(X,Y).),
et par

Ric(X,Y) = tr(. = R(Y, ) X).
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4. Position du probléme

Une quantification naturelle projectivement équivariante pour deux
fibrés Ey (M) et Ey(M) est un opérateur associant a chaque variété M
une application

Q]w . CM X S(E1<M), EQ(M)) — D(El(M),EQ(M)),
telle que

— QM est naturel, i.e. que pour tout diffSomorphisme local ¢ : M —
N, il vient
Qo) (0°5) = ¢*(QT(9)),
pour tous V € Cy et S € S(E1(N), Ex(N)).
— @ est projectivement équivariant (ou projectivement invariant),
Le. que QY = QY s V et V' sont projectivement équivalents.

— QY . S(Ey\(M), Ex(M)) — D(E(M), E2(M)) est une quantifi-
cation pour tout V € Cyy.

Toujours pour alléger les écritures, nous n’expliciterons pas par la
suite la dépendance de Qs a la variété M.

Ce travail a pour but de répondre a une question posée il y a
quelques années par P. Lecomte.

Etant donné deux fibrés vectoriels naturels Ey et Es, existe-t-il une
quantification naturelle projectivement invariante pour ces fibrés ¢

A Torigine de cette question, on trouve les résultats d’existence de
quantifications sl,11-tnvariantes obtenus sur R™. Nous allons briéve-
ment, rappeler en quoi consistent ces résultats et de quelle maniére
I'existence d’une quantification naturelle et projectivement invariante
en consistue une généralisation.

Le plongement projectif sl,,.; de si(m + 1,R) est une sous-algebre
des champs de vecteurs sur R™. Elle est engendrée par les champs de
vecteurs

az' Ilaz et xjx’&
Elle est isomorphe & sl(m+1, R) et est maximale dans ’algébre Vect, (R™)
des champs de vecteurs polynomiaux sur R™.

On désigne par quantification sl,,.1-tnvariante pour les fibrés vec-
toriels F; et E5 une quantification

Q:S(R™) - DER™)
satisfaisant
LxQ = 07 VX € Slm+1.
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Montrons a présent que I'existence d’une quantification naturelle pro-
jectivement invariante implique I'existence d’une quantification sl,,1-
invariante. Si () désigne une quantification naturelle projectivement
invariante et si ¢ représente le flot d’'un champ de vecteurs X apparte-
nant a sl,,.1, il vient en effet :

¢ Q(V)(S) = Q(¢;V°)(¢;5)

pour tout t € R, pour tout symbole S, si V? désigne la dérivation
covariante plate canonique de R™. Par définition de la dérivée d’un
champ de tenseurs, sil’on parvient a démontrer que ¢; préserve la classe
projective de VY pour tout ¢, on aura également prouvé que Q(VY) est
une quantification sl,,,1-équivariante, par I'invariance projective de Q).

Le fait que la classe projective de V° soit préservée par I’action du
diffeomorphisme ¢; est da a la propopriété suivante :

LXVO =aVid

si X s'ecrit A'0; + ALa?0; + ax)x'0;, ot les A* et les A% sont dans R
et o a € R™. En effet, si Y, Z € Vect(R™), il vient

(LxVOY,2) = [X,VVZ] - VixyZ - Vy[X, Z]

= Y'Z"0,,X70;
alY)Z +a(Z2)Y

aprés développements. Dés lors,
d * * .
SOV = (@2 V id),

pour tout s € R, pour tout * € R™. Dans ces conditions, ¢*V" est
projectivement équivalent & V° via la 1-forme 3 définie de la maniére
suivante :

Be(Yz) ::/ (fna)2(Yz) du,
0
ou Y € Vect(R™), x € R™.
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CHAPITRE 2

Fibrés et connexions de Cartan

Nous rappelons ici les principaux faits concernant les connexions de
Cartan. Premiérement, nous en donnons une définition générale et en-
suite nous donnons plus de détails sur les connexions de Cartan projec-
tives et leurs liens avec les structures projectives. Pour une information
plus détaillée, nous renvoyons le lecteur a [14].

1. Connexions de Cartan

Soient GG un groupe de Lie et H un sous-groupe fermé de G. Dési-
gnons par g et b les algébres de Lie correspondantes. Soit P — M un
H-fibré principal sur M, tel que dim M = dim G/H. Une connexion de
Cartan sur P est une 1-forme w sur P a valeurs dans g qui satisfait les
propriétés suivantes :

~ R'w = Ad(a ")w pour tout a € H,

— w(h*) = h pour tout h € H,

-~ Yu € P,w, : T,P — g est une bijection linéaire.

La connexion de Cartan w permet donc de transformer les éléments de
I’algebre de Lie g en des champs de vecteurs sur P. Notons que si h € b,
w™(h) est évidemment égal & h* grace a la deuxiéme propriété des
connexions de Cartan. D’autre part, I’espace vectoriel g se décompose
comme suit :

g=0-1 P b?
g_1 étant un sous-espace vectoriel de g isomorphe a g/h. Cela étant dit,
nous pouvons introduire la remarque suivante qui sera trés utile dans
la suite :
LEMME 1. St he b et st X € g_q, alors
1w (X)) = w ([, X))
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DEMONSTRATION. De fait, il vient, si 'on note ¢, le flot de h* :

d

(A", w™! (X)(u) = %Rewp(—th)*u exp(th)uf1 (X)u exp(th) |t=0

= w([h, X])(w)

par Ad-invariance de w. O

2. Le groupe projectif et son algébre de Lie

Considérons 'action du groupe G = PGL(m + 1,R) sur l'espace
projectif RP™. Le stabilisateur H de I’élément [e,, 1] dans RP™ est

A 0 -
{<§ a).AGGL(m,R),{ER ,a # 0} /Rold (3)

et il s’ensuit que H est le produit semi-direct Gy x G, ou Gg est
isomorphe & GL(m, R) et ot Gy est isomorphe & R™*. On a la projection

suivante
A
m:H— GL(m,R) : {(? 2)} ==

L’algébre de Lie de PGL(m + 1,R) est gl(m + 1,R)/RId. Elle est
donc isomorphe a sl(m+ 1, R) et elle se décompose comme une somme
directe de sous-algébres

g-1® g0 @ g1 =R" D gl(m,R) @ R™.

L’isomorphisme est donné par

K ? Z >] — (v, A —ald,§).

Cette correspondance induit une structure d’algébre de Lie sur R™ &
gl(m,R) @ R™*. Les algébres de Lie correspondant & Gy, G et H sont
respectivement go, g1, et go D g1. La structure d’algébre de Lie sur
R™ @& gl(m,R) & R™ est donnée par les crochets suivants :

v, 0] =0, [£¢&]7=0, [Un]="Uv,

[U.6] = —¢U, [U,U]=UU -UU, [v&=v®¢+ (€ 0)ld,

ou v et v sont des éléments de R™, U et U’ sont des éléments de
gl(m,R) et ou £ et £ appartiennent a R™*.
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3. Structures projectives

Un élément du groupe H peut étre vu comme une transformation
de D'espace projectif RP™ qui laisse son origine [e,,1] fixée. Si on lit
cette transformation dans la carte canonique de RP™ au voisinage de
[em+1], on obtient une correspondance entre les éléments de H et des
¢éléments de G2,. Si 'on note que les transformations de RP™ induites
par les éléments de H sont univoquement déterminées par leurs dérivées
jusqu’a Pordre 2 en 0, H est donc plongé dans G?, via 'application
suivante :

LZH—>G512|:(A 2>]r—>(ﬁ,—w)- (4)

§ a a?

Une structure projective P sur M est alors une réduction du fibré des re-
péres d’ordre 2 P2M au groupe H. De telles structures existent, comme
le prouve le résultat suivant (|14, Prop 7.2 p.147]) qui est le point de
départ de notre méthode :

PROPOSITION 2 (Kobayashi-Nagano). Il existe une correspondance
bijective et naturelle entre les classes projectives de connexions linéaires
sans torsion sur M et les structures projectives sur M.

DEMONSTRATION. En fait, la correspondance est construite de la
maniére suivante : a la classe d’une connexion sans torsion V, on as-
socie la structure projective P dont la fibre au dessus du point de
coordonnées locales ¢ est donnée par I'ensemble des repéres d’ordre 2
suivant :

(z', 05, —T%,).H,
ou les Fék sont les symboles de Christoffel de V. On peut vérifier que
cette correspondance est bien définie et bijective grace a la loi de trans-
formation des F;'-k sous 'effet d’un changement de coordonnées et grace
a la loi reliant les symboles de Christoffel de 2 connexions projective-

ment équivalentes. 0

4. Connexions projectives

En général, si w est une connexion de Cartan définie sur un H-fibré
principal P, alors sa courbure €2 est définie comme d’habitude par

deo.f%—%[eu,cu], (5)

ou d est la différentielle et ou le crochet [w,w] est défini par
[w,W](X,Y) = 2w(X),w(Y)], VX,Y TP
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Siw = w'e; + wie] + w;e’, ol ¢; est une base de g_y, €} une base de go
et €" une base de gy, le fait que ) s’annule sur les champs de vecteurs
verticaux implique que ce tenseur peut s’écrire sous la forme suivante :

Q:ZKM wk/\wl,

ou les fonctions Kj; sont a valeurs dans g. Dans la suite, nous décom-
poserons aussi {2 en ses projections selon g_1, go et g; :

Q= Qe+ Qiel + e’

Nous pouvons en outre définir & partir de 2 une fonction k € C*°(P, g* ;®
g", ® g) de la maniére suivante :
R(u)(X,Y) = Qu) (W™ (X), 0 (V).
Cette fonction sera également décomposée en ses composantes selon
g-1, go et g1 : .
k= K'e; + Kiel + ke,
D’autre part, si w est une connexion de Cartan sur un fibré princi-
pal P, ses projections selon g_; et gy doivent satisfaire les conditions
suivantes :
—w_1(h*) =0, wo(h*)=ho Vh € go+g1, ol hg est la projection
selon gy de h;
— (Ro)*(w_1 +wp) = (ad a ") (w_1 + wy) Va € H, ou ad a™! est
I'application de g/g; dans lui-méme induite par I'action adjointe
ad a=! de g dans g;
— Siw_1(X) =0, alors X est vertical.

Soient les groupes G et H dont il est question dans la section 2
de ce chapitre. Le théoréme suivant énoncé dans [14] page 135 est
fondamental :

THEOREME 3. Soit P un H-fibré principal sur une variété M. Si
on se donne une 1-forme w_; & valeurs dans g_, de composantes w’
et une forme wy @ valeurs dans go de composantes wé qui satisfont les
3 conditions mentionnées précéedemment et la condition supplémentaire

sutvante : ' '

dw' = —wa{ A W,
alors il existe une unique connexion de Cartan w = w_1 + wy+ wy dont
la courbure Q de composantes (0; Q% Q) satisfait la propriété suivante :

ZK_;ZI =0,
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DEFINITION 1. Si u = j2f est un point de P?M et si X est un
vecteur tangent & P?M au point u, la forme canonique 6 de P?>M est
la 1-forme & valeurs dans R @ gl(m, R) définie au point u de la maniére
suivante :

QU(X) = (Plf);el<7T*X>7
ol 7 est la projection canonique de P2M sur P'M et oil e est le repére
en l'origine de R™ représenté par la matrice Id.

Gréace a ce qui est dit dans [14], on peut voir que la 1-forme sur une
structure projective P a valeurs dans R™ @ gl(m, R) définie par i*6, ou
i est le plongement canonique de P dans P?M, satisfait les conditions
du théoréeme 3. D’aprés ce résultat, il existe une unique connexion de
Cartan sur P dont les projections sur g_; et go coincident avec celles de
16 et qui satisfait la condition supplémentaire relative aux composantes
de sa courbure. Nous venons donc de montrer la proposition suivante :

PROPOSITION 4. On peut associer a chaque structure projective P
une connexion de Cartan a valeurs dans ’algébre de Lie sl(m + 1,R),
cette association étant naturelle.

La naturalité de I'association provient en effet de la naturalité de :*0
et des propriétés mentionnées dans le théoréme 3 ainsi que de 1'unicité
de la connexion qui satisfait la condition supplémentaire relative a la
courbure. Dans la suite, on désignera simplement par 6 la restriction i*6
de la forme canonique de P2M & P. On notera 0_; et 0, ses projections
selon R™ et gl(m,R).

La connexion associée & une structure projective P est appelée la
connexion projective normale de la structure projective. C’est cette
connexion de Cartan que nous utiliserons constamment dans la suite.

5. Différentiation invariante

Un outil fondamental relié aux connexions de Cartan sur lequel
nous baserons toutes nos constructions est le concept de différentiation
invariante développé dans [6, 7]. Soit P une structure projective et soit
w la connexion projective normale associée.

DEFINITION 2. Soit (V] p) une représentation de H. Si f € C*(P, V),
alors la différentiation invariante de f par rapport a w est la fonction
Vef e C°(P,R™ ® V) définie par

VeF(u)(X) = Ly f(u) Yue P, VX €R™

Nous utiliserons aussi une version itérée de la différentiation inva-
riante :
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DEFINITION 3. Si f € C®(P,V) alors V¥" f € C®(P, @"R™ @ V)
est défini par
wk
V f(u)(Xl, C. ,Xk) = Lw—l(Xk) o...0 Lw—1(X1)f(u)
pour Xq,..., X, € R™,
Si nous symétrisons cette version itérée, nous aboutissons a la

DEFINITION 4. Si f € C°(P,V) alors V¥ f € C®(P,S*R™ @ V)
est défini par

VE )Xy, Xe) = %vakf(u)(X,,l, LX)

pour Xq,..., X, € R™.

6. Relévement des fonctions équivariantes

Les fonctions équivariantes sur P'M permettent de construire des
fonctions équivariantes sur P. De plus, les sections d’un fibré naturel
du premier ordre sont en correspondance biunivoque avec ces fonctions
définies sur la structure projective. Les résultats suivants sont signalés
dans [6, p. 47].

Si (V, p) est une représentation de GL(m,R), alors on peut définir
une représentation (V) p') de H de la maniére suivante :

gotr—orwy (4 )] een(|(4 1)) =0

pour tous A € GL(m,R),& € R™ a # 0.

Maintenant, en utilisant la représentation p’, nous pouvons donner
la relation entre les fonctions équivariantes sur P'M et les fonctions
équivariantes sur P : si P est une structure projective sur M, la pro-
jection naturelle P2M — P'M induit une projection p : P — P1M et
nous avons :

PROPOSITION 5. Si (V,p) est une représentation de GL(m,R),
alors l'application

p i C¥(P'M, V) = C®(PV): frsfop
définit une bijection entre C°°(P'M,V)crumr) et C°(P,V)y.
DEMONSTRATION. Le résultat est trés facile a établir : 'application
est tout d’abord bien définie en raison de la correspondance (4) entre
les éléments de H et les jets d’ordre 2 qu’ils représentent. L’injectivité

de 'application est évidente tandis que sa surjectivité découle du fait

qu’une fonction H-équivariante sur P est constante le long d’une orbite
de Gy. 0

26



A présent, comme R™ et R™* sont des représentations naturelles de
GL(m,R), elles deviennent des représentations de H et nous pouvons
établir une propriété importante de la différentiation invariante :

PROPOSITION 6. Si f appartient 6 C°(P,V)q,, alors V¥ [ appar-
tient 6 C°(P,R™ @ V)g,.

DEMONSTRATION. Le résultat est une conséquence de I’Ad-invariance
de la connexion de Cartan w. En effet :

(V¥ )ug) = p'(9)" (V¥ f)(u) Yu € P,Vg € Gy
<
(Ve ) ug)(X) = [p'(9)" (V) (w)](X) Yu € P,Vg € Go, VX € g,
<

(wal(X)f)(ug) = p’(g_l)(wal(p/(g)x)f)(u) Yu e P,Vg € Gop,VX € g_;.
Si 'on appelle ¢, le flot de w™ (X)) et ¢} le flot de w™(p'(¢)X), il suffit
donc de vérifier que

d

af(gog(u))hzo Yu € P,Vg € G,

I ug) o = g™
ou encore que
pi(ug) = ¢i(u)g Yu € P,¥g € Go.

Cette propriété est bien vérifiée : de fait, les champs w'(p'(g)X) et

w (X)) sont R,-liés par Ad-invariance de w. O

Une remarque fondamentale est que ce résultat n’est pas vrai en gé-
néral pour les fonctions H-équivariantes : pour une fonction H-équivariante
f, la fonction V¥ f n’est en général pas G-équivariante.

Dans la suite, nous utiliserons la représentation p/, de l'algébre de
Lie de H sur V. Si nous rappelons que cette algébre est isomorphe a
gl(m,R) & R™ nous avons alors

pu(A,6) = pu(A), VA€ gl(m,R),§ € R™. (6)
Dans nos calculs, nous utiliserons la version infinitésimale de la relation
exprimant I’équivariance : si f € C*°(P,V)y, alors on a
Ly f(u) + pl(h)f(u) =0, Vh € gl(m,R) R™ Yu e P.  (7)
Afin d’analyser I’équivariance des fonctions, nous disposons du résultat
facile suivant :
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PROPOSITION 7. Si (V, p) est une représentation de Gq et devient
une représentation de H comme expliqué au début de cette section, alors
une fonction f € C®(P, V) est H—équivariante si et seulement si

f est Go—équivariant,
Ly« f = 0 pour tout h dans g,.

DEMONSTRATION. Evidemment, la H—équivariance est équivalente
a la conjonction de la Go— et de la Gy —équivariance. La G;—équivariance
est équivalente a la g; —équivariance puisque Gy est un espace vectoriel.
Le résultat s’ensuit puisque G, agit trivialement sur V. U

Le dernier résultat que nous allons établir dans ce chapitre s’appuie
sur une proposition énoncée dans [6] page 47 :

PROPOSITION 8. Soit w la connexion de Cartan normale construite
sur la structure projective P associée a une connexion sans torsion V.
Si (V,p) est une représentation de GL(m,R), nous avons la formule
suivante pour tous X € gy, f € C®(P*M,V)grimpr) et u € P :

(V¥ op" =p" o V) f(u)(X) = p.([X, 7(w)])(f (p(w)))-

La fonction 7 dont il est question dans ce résultat est une fonction
sur P a valeurs dans g, définie dans [6] page 43.

La section locale de P qu’on considére dans la démonstration de la
proposition 2 permet d’identifier localement P & U x H ou U est un do-
maine de carte de M et induit donc un systéme de coordonnées locales
sur P. Dans ces conditions, on peut énoncer la proposition suivante :

PROPOSITION 9. Soit w la connexion de Cartan normale construite
sur la structure projective P associée a une connexion sans torsion V.
Soient (V, p) une représentation de GL(m,R) et

E = le X GL(m,R) \%

le fibré associé a P'M correspondant. Si f € C®°(P'M,V)arimr) est
la fonction équivariante représentant une section ¢ de E, alors
wk * *
(Ve op")f=(p oV)f +yg,
ot g est une fonction sur P dont 'expression locale ne contient des

dérivées des composantes de ¢ que jusqu’a Uordre k — 1.

DEMONSTRATION. Si &k = 1, le résultat est vrai grace a la pro-
position 8. Cette méme proposition permet aisément de démontrer le
résultat pour k quelconque par induction. O
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CHAPITRE 3

Le cas des densités

Dans ce chapitre, nous analysons la question de I'existence d’une
quantification naturelle projectivement invariante dans le cas parti-
culier de I'espace des opérateurs différentiels agissant entre \ et pu-
densités, D,,(M). Notre méthode conduit a des conclusions surpre-
nantes : tout d’abord, une telle quantification existe si et seulement si
la quantification sl(m + 1, R)-équivariante correspondante existe dans
R™. De plus, nous obtenons une formule explicite pour la quantifica-
tion écrite en utilisant la connexion de Cartan normale associée & une
structure projective. Cette formule est exactement la méme que celle
donnant la quantification équivariante dans R™ si 'on substitue aux
différentiations invariantes les dérivées partielles.

Pour commencer, rappelons la définition suivante de |17, Prop 2,
p. 289 :

DEFINITION 5. Nous définissons les nombres

m—+2k—1—(m+1)0
m+1 '

Yok—1 =
Une valeur de § est critique s’il existe k,l € N tels que 1 <[ < k et
Yok—1 = 0.
Un des résultats de [17] est alors :

THEOREME 10. Si § n’est pas critique, alors il existe une unique
quantification sl(m + 1, R)-équivariante.

A présent, introduisons l'opérateur de divergence associé & une
connexion de Cartan. Cet opérateur sera le principal outil de notre
construction.

1. L’opérateur de divergence

Soit (eq, ..., en) la base canonique de R™ et soit (€', ..., €™) sa base
duale dans R™*,
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L’ opérateur de divergence par rapport a la connexion de Cartan w
est alors défini par
m
Div® : C®(P, S§(R™)) = C¥(P, Sy (R™)) : S+ Y (/) V¥ S,
j=1
ou ¢ désigne le produit intérieur.
Cet opérateur peut étre considéré comme une généralisation courbe
de lopérateur de divergence utilisé dans [16]. Les propositions sui-
vantes montrent ses propriétés les plus importantes.

LEMME 11. $i S € C®(P,S¥(R™))q,, alors Div*S appartient a
C=(P, S5~ (R™))g,-

DEMONSTRATION. Le résultat peut étre controlé directement & par-
tir de la définition. On peut également remarquer que Div™S est la
contraction de la fonction invariante V¥S (voir proposition 6) et de la
fonction invariante et constante

m
ID:P—R"®R™ u— Y € Qe

j=1
O
Le but des résultats suivants est de mesurer I’écart a la G- équiva-
riance de la différentiation invariante et de 'opérateur de divergence.
Au niveau infinitésimal, au vu des équations (6) et (7), cela conduit au
calcul du commutateur de ces opérateurs avec la dérivée de Lie Ly,

pour h € g;. Examinons tout d’abord ce que donne ce calcul pour
I'opérateur de divergence :

LEMME 12. Pour tout S € C*(P, S¥(R™))q,, nous avons
Lh*Diva — DiUth*S = (m + 1)’72k_1i(h)5,
pour tout h € R™ = g;.

DEMONSTRATION. Premiérement, remarquons que la dérivée de
Lie par rapport a un champ de vecteurs commute avec une évalua-
tion : si n',...,n*~1 € R™*, nous avons

(Lp-Div*S)(nt, ... ,nF 1) = Lh:n(Div”S(nl, . ,nkfl)l) .
= Zj:l(Lh*Lw—l(ej)S(€]7 n,eent ))

D’autre part, d’aprés un résultat du chapitre 2,
[R*, w (X)) =w Y([h, X]), VhE€glimR)DR™ X cR™,
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ot le crochet dans le membre de droite est celui de si(m + 1,R). Il
s’ensuit que I'expression que nous avons a calculer est égale a

m

Z(Lwl(ej)Lh*S(ej,nl, )+ (e S) (Lt ).

j=1
Pour finir, en utilisant la relation (7), on obtient
Div*(Lp+S) — (p.([h, €;])S)(e? ", ..., )
= Div*(Lp-S) + (pe(h ® ej + (h,e;)Id)S) (e, nt, ..., nF7L).

Le résultat provient alors facilement de la définition de p sur S&(R™).
O

Nous obtenons ensuite
PROPOSITION 13. Pour tout S € C®(P, S¥(R™))q,, nous avons
Ly« (Div?)'S — (Div®) Ly S = (m + 1)lyae_i(h) (Div*®) 1S,
pour tout h € R™ = g;.

DEMONSTRATION. Si [ = 1, la proposition coincide avec le lemme
12. Le résultat se démontre alors par induction, en utilisant les lemmes
11 et 12. Tl vient en effet, si on suppose le résultat vrai jusque [ — 1,
que

Ly-Div(Div'™') — Div' Ly
est égal a
(m+2(k—1+1)—1—(m+1)8)i(h)Div'~* + DivLy- Div'™* — Div' Ly,
ie. a
I(m+2k — 1 — (m+1)8)i(h)Div'™".
O

Maintenant, analysons le défaut d’invariance de la différentiation
invariante itérée :

PROPOSITION 14. Si f € C*®(P,A*R™)g,, alors
LoV f =V Ly f = —k((m+ DA+ k — 1)(V*" f V),
pour tout h € R™ = g;.

DEMONSTRATION. Si k = 0, alors la formule est évidemment vraie.
On procéde alors par induction. Au vu de la symétrie des expressions
que nous avons a comparer, il est suffisant de vérifier qu’elles coincident
quand on les évalue sur un k-tuple (X,..., X) pour tout X € R™. La
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preuve est similaire a celle du lemme 12 : tout d’abord, I’évaluation et
la dérivée de Lie commutent :

(L (V<" )X, . X) = L (V2 F)(X, ., X)),

Ensuite, on utilise la définition de la différentielle invariante itérée et
nous faisons commuter les opérateurs Ly« et L,-1(x) de telle sorte que
la derniére expression devient

Lo-100 L (V9 )X, X) + (Lpxy- (V)X X).
Par I'hypothése de récurrence, le premier terme est égal a
VS L (X, X) = (k=1 ((m4+DA+k=2)(V 7 FVR)(X, ..., X).

En ce qui concerne le deuxiéme terme, on utilise la proposition 6 et la
relation (7) et on obtient

(p((h @ X) + (h, X)Id)(V<" " IN(X,..., X).

Le résultat provient alors de la définition de p,. U

k—1

2. Le résultat principal

Dans cette partie, nous donnons une formule explicite pour la quan-
tification naturelle et projectivement invariante en utilisant les proprié-
tés de la différentiation invariante itérée et de 'opérateur de divergence.

THEOREME 15. Si 0 n’est pas critique, alors la collection d’appli-
cations

Qun : Cy X Ss(M) — Dy (M) définies par

k
Qu(V,S)(f) =p" (O Cra(Div” pS, V" 'p" )),VS € SE(M) (8)

1=0
défini une quantification naturelle projectivement invariante si
At o5n) - (A 250) ( k

Ck,l = l

) V>, C’m =1.
V2k—1 " V2k—I

DEMONSTRATION. Premiérement, nous devons vérifier que cette
formule a un sens : la fonction

k
> Cri(Div*'p* S,V p*f) (9)
=0

doit étre H-équivariante. Elle est forcément Gy-équivariante par la pro-
position 6 et par le lemme 11. Il est donc suffisant de controler la g-
équivariance. Elle provient directement des propositions 13 et 14 et de
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la relation
C’k7ll(m+2k —— (m+ 1)(5) = CkJ_l(k —1 + 1)((m+ 1)/\+ k— l) (10)

Ensuite, en utilisant les résultats du chapitre 2, on peut voir que le
symbole principal de Q)/(V,S) est exactement S, et donc la formule
(8) définit une quantification, qui est de plus projectivement invariante
par définition de w. Enfin, la naturalité de la quantification définie de
cette maniére est assez évidente : elle provient de la naturalité de 1’asso-
ciation d’une structure projective P — M pourvue d’une connexion de
Cartan normale w a une classe de connexions sans torsion projective-
ment équivalentes sur M et de la naturalité du relévement des fonctions
équivariantes sur P'M en fonctions équivariantes sur P. [

Remarques :

— Le théoréme 10 et ce qui est dit a la fin du premier chapitre
impliquent directement que, quand M est ’espace euclidien R™
et quand V est la connexion plate canonique de R™, la formule
8 doit coincider avec celles de [16] (formules 4.14 et 4.15) et [9]
(formule 2.4), au moins quand 0 n’est pas critique. Le phénoméne
surprenant est que nos coefficients Cy; coincident avec ceux de |9]
(formules 2.5 et 3.6), & un coefficient combinatoire prés, qui est
di & une définition légérement différente de 'opérateur de diver-
gence. En particulier, notre formule peut étre exprimée, comme
celle de [9], en termes de fonctions hypergéométriques.

— La preuve du théoréme précédent permet aussi d’analyser le pro-
bléme de 'existence quand ¢ est une valeur critique : supposons
qu’il existe k € N et r € N tels que 1 < r < k et vy, = 0.

. e A
Dans ces conditions, s'il existe ¢ € {1,...,r} tel que A = —-=,
alors on peut remplacer les coefficients C ;, . . ., Cy  par zéro et la

fonction (9) est encore H-équivariante, ce qui signifie que la col-
lection (), définit encore une quantification naturelle et projecti-
vement invariante. Si, par contre, A\ n’appartient pas a ’ensemble
{—%, cee —T’f;”l , alors il n’y a pas de solution au probléme
puisque I'on sait qu’il n’existe pas de quantification sl(m + 1, R)-
équivariante au sens de [16, 17|. Pour résumer, nous avons mon-
tré le résultat suivant :

THEOREME 16. [l existe une quantification naturelle et projective-
ment équivariante si et seulement s’il existe une quantification sl(m +
1,R)-équivariante au sens de [16] sur M = R™.
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CHAPITRE 4

Le cas général

Dans ce chapitre, nous prouvons 'existence de quantifications natu-
relles projectivement invariantes pour des opérateurs différentiels agis-
sant entre sections d’autres fibrés que les fibrés de densités. Nous allons
établir une relation étroite entre l'existence de telles quantifications
et 'existence des quantifications sl(m + 1, R)-équivariantes correspon-
dantes sur R™. En fait, le phénoméne surprenant observé au chapitre
précédent dans le cas des densités se généralise : les formules valables
dans les situations non-critiques sur R™ pour les quantifications équi-
variantes peuvent étre directement généralisées a une variété arbitraire
en substituant simplement aux dérivées partielles les différentiations
invariantes par rapport a la connexion de Cartan normale.

Dans tout ce chapitre, les fibrés Ey(M) et Ey(M) décrits dans le
chapitre 1 ont pour fibre type une représentation irréductible (V, p) de
GL(m,R) définie de la maniére suivante : soit (V, pp) une représen-
tation de GL(m,R) correspondant & un diagramme de Young Y, de
profondeur n < m. On fixe A € R et 2 € Z et on pose

p(A)u = | det(A) (det(4)) pp(A)u,
pour tout A € GL(m,R), pour tout u € V.

1. Le cas plat

Dans cette section, nous allons briévement rappeler les notions et
les méthodes intervenant dans le cadre de la quantification projecti-
vement équivariante sur R™ telles qu’elles sont exposées dans [8] et
|2]. Cependant, nous allons présenter les outils de ces travaux d’une
maniére plus intrinséque et algébrique.

1.1. Champs de tenseurs, symboles et opérateurs différen-
tiels. Ces objets ont été définis dans le premier chapitre, mais quand
M est Pespace euclidien R™, on peut effectuer les identifications sui-
vantes :

£y (R™) C=(R™, V1),
SH(E1(R™), Ex(R™)) C=(R™, S, v,):

ou Sf. 1, représente I'espace Vi* ®@ V3 ® S*(R™).

11
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L’algébre de Lie Vect(R™) agit sur ces espaces d’une maniére bien
connue (voir chapitre 1) : si X € Vect(R™) et si S désigne un symbole,
on a

(L S)(x) = X.5(z) - po(D.X)S(x) (1)
ou p est 'action naturelle de GL(m,R) sur la fibre.

L’espace D(E;(R™), E5(R™)) des opérateurs différentiels est équipé
de la dérivée de Lie £ donnée par le commutateur.

1.2. L’algébre projective des champs de vecteurs. Le groupe
G = PGL(m + 1,R) agit sur RP™. Comme R™ peut étre assimilé a
I'ouvert de RP™ d’équation 2™ = 1, on dispose d’une action locale de
G sur R™. Les champs de vecteurs associés a cette action sont donnés
par

Xf = —h sihEg_1
Xh = jha] siheg 12)
X! = —ih,z],2] siheg

otz € g1 = R™. Ces champs de vecteurs définissent une sous-algébre
de Vect(R™) qui est isomorphe & sl(m + 1, R).

Il est intéressant pour nos calculs ultérieurs de rappeler que la sous-
algébre gg est réductive et se décompose comme

g0 =ho ®RE (13)

ou by est (isomorphe a) sl(m,R) et ou I'élément d’Euler £ est défini
par ad(&)|, , = —1d.

1.3. La quantification affine. Il existe une bijection bien connue
de 'espace des symboles dans ’espace des opérateurs différentiels sur
R™ : la quantification affine que nous allons noter @) 45. Si un symbole
S € S*(E1(R™), Ey(R™)) s'écrit

S(x,8) =Y Calx)E”,
|a|=k

oll v est un multi-indice, £ € R™ et C,(z) € V" ® V5, alors on a

0
Qug(S) = 3 Calw)e (50)™
|a|=k

La quantification Q)45 est une quantification affinement équivariante.
En effet, il est facile de voir qu’elle échange les actions de I’algébre affine
(constituée des champs de vecteurs constants et linéaires) sur I’espace
des symboles et des opérateurs différentiels.

A présent, nous pouvons utiliser la formule (12) dans le but d’ex-
primer cette quantification de maniére intrinséque :
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PROPOSITION 17. Si hy,-+- ,hy e R =2 g 1, Ac VRV, s €
C>*(R™) et
S(x)=s(x) AR hy V-V hg,
on a
Qag(S) = (—1)Fs(z) o Ao Lyn 0---0 Lyn,.

DEMONSTRATION. La preuve est directe. Il suffit de remarquer que
les champs X" sont constants. 0

1.4. L’application v. En utilisant la quantification affine, on peut
munir I’espace des symboles d’une structure de représentation de Vect(R™)
isomorphe & D(R™). Explicitement, on pose

LxS =Qup 0 LxoQag(9),

ou S € S(R™) et X € Vect(R™). Une quantification équivariante est
alors un sl(m + 1, R)—isomorphisme de la représentation (S(R™), L)
dans la représentation (S(R™), £).

Afin de mesurer la différence entre ces représentations, I’application

v:g— gl(S(R™),S(R™)) : h+— y(h) = Lxn — Lxn

a été introduite dans [2|. Cette application peut étre facilement calcu-
lée en coordonnées et nous rappelons ici ses propriétés les plus impor-
tantes :

PROPOSITION 18. L’application v est un I-cocycle de Chevalley-
FEilenberg et s’annule sur g_1 @ go.

Sih e gy et k€N, la restriction de y(h) a S*(R™) a ses valeurs
dans S*=H(R™) et est un opérateur différentiel d’ordre 0 & coefficients
constants.

Sih,h' € g1, on a [y(h),y(h')] =0.

Remarque : Comme v(h) est un opérateur différentiel d’ordre 0 &
coefficients constants, il est complétement déterminé par sa restriction
aux symboles constants.

Pour la suite de nos développements, il est intéressant d’avoir une
expression intrinséque de . Nous avons

PROPOSITION 19. Si hy,--- ,hy € R™ = g 1, A € VF RV, et
h € g, = R™, nous avons

Y(h)(ha V-V @ A) =370 by Ve (i) -V h @ (Ao py([hi, )
S S bV (i) V eV [y, [, B @ A,

ot [hi, h] appartient a gl(m,R) grace a l'isomorphisme donné au cha-
pitre 2.

37



DEMONSTRATION. Par définition de v, 'expression
Qag(Y(h)(hy V-V by @ A))
est égale a
LxnoQag(haV---Vh,®A) —Qag(Lxn(hiV...Vh,®A)). (14)

Cette expression est un opérateur différentiel d’ordre au plus k. Son
terme d’ordre k£ s’annule : il suffit pour le voir d’appliquer 'opérateur
o & (14). 11 nous reste donc & sommer les termes d’ordre inférieur ou
égal & k—1 dans le premier terme de 'expression (14). Ce dernier terme
s’écrit

(—1)k[Lxh ocAoLyn 0---0 Lth — Ao Lyn 0+--0Lyn, o Lxh].
Le premier terme est d’ordre k et k + 1. Le second terme est

—(=1)*Ao Lyno Lyn 0--+0 Lyn,
X X
—(=1)F Zgﬂ Ao Lyinin © Lyny -+ (i) -0 Lyn,
_(_1)k Zizl Zj<iA o LX[hj[hixh]] o LXhl o= (Z>j) * 0 Ltha

comme [h;[h;, h]] est un champ de vecteurs constant. Le premier terme
est de nouveau d’ordre k et k + 1. A présent, au vu de la formule (11),
le terme d’ordre k — 1 dans

k
—(—1)’“214 O Lyinin) © Lixny 0 -+ (1) -+ 0 Lyn,
i=1

est exactement
k
—1)* Ao p (DX o Lon ovv(i)-+-0L s
P1. X X
i=1

et le résultat s’ensuit puisque DX " = —ad([h;, h)). O
L’application v posséde une importante propriété d’invariance :

PROPOSITION 20. Sia € GL(m,R), h € g; et si S est un symbole,
on a

pla)(y(h)S) = ~(Ad(a)h)(p(a)S) (15)
DEMONSTRATION. La preuve est un calcul direct qui utilise la pro-
position 19. 0
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1.5. Opérateurs de Casimir. Dans |8, 2|, la construction de
la quantification est basée sur la comparaison du spectre et des vec-
teurs propres de certains opérateurs de Casimir (du second ordre). Ces
opérateurs sont d’une part 'opérateur de Casimir C' associé a la repré-
sentation (S(R™), L) et d’autre part 'opérateur de Casimir C associé
a la représentation (S(R™), £). Nous allons briévement adapter les ré-
sultats de [2] dans le but de calculer ces opérateurs.

A partir de maintenant jusqu’a la fin de cette section, nous choisis-
sons une base (e, hy, £, €') de sl(m + 1,R) dans laquelle les bases e; et
¢/ de g_ et g; sont Killing-duales et dans laquelle h; est une base de b.
Il a été alors prouvé dans [2] que la base duale s’écrit (€", h, 7-E, ;)
et que de plus on a

}:@heq::—%g. (16)

Nous posons aussi

N =2 Z (") Lxe;.

Le résultat suivant est alors une généralisation directe de celui exposé
dans [2] :

PROPOSITION 21. Les deux opérateurs de Casimir sont reliés de la
maniere sutvante !

C=C+N. (17)

La prochaine étape est d’analyser le probléme des valeurs propres
de l'opérateur C'. Pour cela, nous allons tout d’abord fixer quelques
notations : comme représentation de hy = sl(m,R), S{ZVQ = SFR™ ®
V" ® V4 se décompose en une somme de représentations irréductibles

k
SV1V2 = @Zi1lk,s' (18)

Pour chaque représentation irréductible I 5, on note Ej ; I'espace de
sections correspondant, i.e.

Eps = C®(R™, I,).

De plus, dans sl(m, C), on considére la sous-algébre de Cartan usuelle
¢ constituée des matrices diagonales de trace nulle. On considére les
éléments de €* définis par

5i(diag(al7 T 7am)) = Q.
Il est connu qu’un systéme simple de racines est donné par {0; —
div1, (1 =1,...,m—1)}. Le vecteur de Weyl est défini comme étant la
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moitié de la somme des racines positives et est donné par

ps = Z(m —1)0;.
La forme de Killing de si(m,C) est 'extension de la forme de Killing
de sl(m,R) et induit un produit scalaire (,) sur l’espace vectoriel réel
engendré par les racines. Ce produit scalaire satisfait

1 m—21+1
(0i,05) = 5—5(mdij — 1) et (6, 2ps) = ————
pour tout ¢ =1,...,m.

2m
Pour chaque représentation irréductible I ; de sl(m,R), la repré-
sentation complexifiée I}, ; ® C de si(m,C) est aussi irréductible et on
notera jiy, . son plus haut poids.
Au vu des définitions des représentations Vi et V5, il existe des nombres
réels a; et as tels que

: (19)

2m

p«(Id)]y, = a; 1d.
Afin d’étre cohérent par rapport a la définition du “shift” donnée dans
|2, 8], on définit le “shift” d’un couple (V;, V3) par
1
0= —(ay — ag).
m(al az)

On est a présent en mesure d’établir le résultat principal concernant
lopérateur C' :

THEOREME 22. L’espace des symboles S(R™) est la somme directe
des espaces propres de C. Plus précisément, si k € N, la restriction de
C a By, est égale a oy s1dg, ,, ou

(b — )m(5 — 1)~ k) + F2ps). (20)
aps=—(md—k)(m(d—1) — — , .

P om m+ 1 Flisor Blis T 205

DEMONSTRATION. Avec notre choix de bases duales, 'opérateur C'
s’écrit

1
Z<LXEZ (@) LXF’Z + LX(’Z (@) LXEZ) + %(LX5>2 —|— ZLth O LXh;f,
i J
i.e., en utilisant la relation (16),

1 1
2Z(LX€1 @] LXE'L) —_— §LX‘€ + %(LXg)Q —I— ZLth (] LXh;‘

J

Comme C commute avec Lxn pour tout h € g_; = R™, il doit étre a
coefficients constants. Il suffit donc de prendre uniquement ces termes

40



en considération. En utilisant expression de la dérivée de Lie (11) et
I'expression des champs de vecteurs X", nous obtenons
1 1
C = —5pu(ad(€)) + 5~ (pu(ad(€ 24 Z,o* (ad(h;)) o p.(ad(hy)),
ol ad est la représentation adjointe de gg sur g_;. Les termes faisant
intervenir I’élément d’Euler peuvent étre facilement calculés puisque
ad(€)|y_, = —Id. La restriction de la forme de Killing de sl(m + 1,R)
a la sous-algebre si(m,R) est égale a ™+ fois la forme de Killing de
sl(m,R); les bases (h;) et ("Lh¥) sont ainsi duales par rapport a cette
derniére. On a ainsi
m
«(ad(h;)) o p.(ad(h; —C,
Zp pad(hy) = "
ou C' représente l'opérateur de Casimir de sl(m,R) agissant sur Ij g

ou l'opérateur de Casimir de sl(m,C) agissant sur [ ; @ C. Il est bien
connu (voir par exemple [13, p. 122]) que cet opérateur est égal a

(1ss 11y, + 2p5)
fois I'identité sur Ij . ]
1.6. Arbres et situations critiques. Pour analyser le spectre

de I'opérateur C, nous introduisons, comme dans |2, 8|, I'arbre T ([} 5)
associé a une représentation irréductible I C S{ZVQ : NOUS posons

Ik: s @ Tl ]k’ s
leN
ou T(Iis) = Ins et T/ (Ins) = 7(91) (T} (Ix,s)), pour tout I € N. Les
espaces T (Ey,s) sont définis de la méme maniére :
Ty (Brs) = C®(R™, T (k)
pour tout [ € N. Les espaces T, (Ej ) ont une propriété importante :

PROPOSITION 23. L’espace T,(E}.s) est stable sous les actions de
Lxn et de Lxn, pour tout h € sl(m + 1,R).

DEMONSTRATION. La proposition 20 permet de prouver par in-
duction que T, (Ejs) est stable sous l'action de p.(A) pour tout A €
gl(m,R). Il est alors forcément stable sous I'action de la dérivée de Lie
Lxn pour tout h € sl(m + 1,R) & cause de I'expression 11 de Lxn. Le
résultat s’ensuit puisque Lyrn = Lxn + y(h). d

La définition suivante est une généralisation directe de celles don-
nées dans |2, 8] :
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DEFINITION 6. Un couple de représentations (Vi,V3) est critique
s’il existe £, s tels que la valeur propre «y, , appartient au spectre de la

restriction de C'a @5, T} (Ej.)-

1.7. Construction de la quantification. Le résultat est le sui-
vant :

THEOREME 24. Si le couple (V1,Va) n’est pas critique, il existe une
quantification projectivement équivariante de S(E1(R™), Ex(R™)) dans
D(E1(R™), E2(R™)).

DEMONSTRATION. La preuve est analogue a celles données dans [8]
et [2]. Nous en donnons ici les idées principales par souci de complétude.

Premiérement, remarquons que pour tout S € FEj, il existe un
unique vecteur propre S de valeur propre oy, s de C tel que

S=8p+Sk1+--+S, Si=S
S; € ﬂk_l(Ek,s) pour tout! < k — 1.

En effet, ces conditions peuvent s’écrire

C(S) = a5
(C — ahsld)Sk,l = —N(Sk,l+1) Vil e {1, cee ,k} (21)
Sk—l € H(Ek7s).

La premiere condition est satisfaite puisque S appartient a Ej, ;. Pour la
deuxiéme et la troisiéme, remarquons que si Si_;;1 est dans ﬁ_l(Ek,s),
alors N(Sk_;41) appartient a H(Eks) par la proposition 23. A présent,
7:}(Ek75) se décompose comme une somme directe d’espaces propres
de C', comme l'indique le théoréme 22. La restriction de 'opérateur
C — aysld a chacun de ces sous-espaces est un multiple scalaire non-
nul de l'identité, d’on l'existence et 'unicité de Sj_;. Définissons la
quantification () par R

Qle.(S) = 5.
C’est évidemment une bijection.

Cette bijection satisfait

QoLxn=Lxno@Q Vhe si(im+1,R).

En effet, pour tout S € Ejg, Q(LxnS) et Lxn(Q(S)) partagent les
propriétés suivantes :

— Ce sont des vecteurs propres de C de valeur propre a4, parce que
d’une part, C commute avec Lx» pour tout h et d’autre part,
LS appartient a Ej, ; par la proposition 23,

— Leur terme de degré k est exactement LynS,

— Ils appartiennent & 7, (E}) s) par la proposition 23.

La premiére partie de la preuve assure alors qu’ils doivent coincider. []
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1.8. Un résultat technique. La proposition suivante sera fon-
damentale pour la suite :

PROPOSITION 25. La relation

est vraie pour tout h € g;.

DEMONSTRATION. Comme un opérateur de Casimir commute avec
la représentation correspondante, on a :

|:£Xh7 C] — 0,
[LXh, C] = 0

Ces équations font en sorte que
[Lxn, N]+ [y(h),C] + [7(h), N] = 0.

On peut voir facilement en utilisant la proposition 18 que [y(h), N]
s’annule. De plus, nous avons

[Lxn, N] =2 Z(LXHV(Ei)LXEi — (€) Lxei Lxn).

Les termes d’ordre strictement supérieur a 0 dans cette expression
doivent s’annuler puisque [y(h), C] est d’ordre 0. Il suffit donc de col-
lecter les termes d’ordre 0.

En utilisant la formule (11), on peut voir que le premier terme est
d’ordre supérieur ou égal a 1. Le second terme s’écrit

_2 Z’Y LXhLXE'L _|_ LX[e h] )

Les termes d’ordre 0 dans cette expression sont
2 Z V() p (DX ),

d’oul le résultat. O

2. Outils du cas courbe

Nous allons adapter ici les outils présentés dans la section 1 a la
situation courbe.
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2.1. La quantification affine courbe. La construction de ’ana-
logue courbe de la quantification affine est basée sur la différentiation
invariante. En effet, en utilisant celle-ci, on peut transformer un sym-
bole S € C(P, Sy, y,) en un opérateur différentiel Q,,(S) agissant sur
les fonctions f € C*°(P,V;) en posant

Qu(S)(f) = (S, V<" f). (22)

Explicitement, si le symbole S s’écrit SA®hy V- - -V h; avec s € C(P),
AeVr®Vyet hy,--- by € R™ = g_4, alors on a

1
Qu(S)f =5 > Ao Ly, 00 Lo, f,

ol v parcourt toutes les permutations des indices {1,--- ,k} et ou s
est considéré comme un opérateur de multiplication.

REMARQUE 1. Si S € C(P, Sf, y,) est H—équivariant, I'opérateur
différentiel @, (5) ne transforme pas les fonctions H—équivariantes en
fonctions H —équivariantes. En effet, si f est H—équivariant, la fonction
V<" f est seulement Go—équivariante. La fonction Q,(S)f ne corres-
pond donc pas a une section de Fy(M). Nous allons montrer que 'on
peut modifier le symbole S par des termes correctifs d’ordres inférieurs
pour remédier a ce probléme.

2.2. Mesure du défaut d’équivariance. Dans cette section, S
désignera un élément de C*(P, Sy, 1,)a, et [ € C®(P,V})g, (remar-
quons que cela assure le fait que Q,(S)(f) appartient & C°(P, Va)q,).

Puisque fondamentalement, nos outils préservent la Gy-équivariance,
nous sommes principalement intéressés par la gi-équivariance. Le ré-
sultat suivant est la clé de voiite de notre méthode :

PROPOSITION 26. La relation

L Qu(S)(f) = Qu(S)(Lif) = Qu((Ln- + (1)) S)(f)
est valable pour tout f € C®(P,Vi)g,, h € g1 et S € C®(P, S"thQ).

DEMONSTRATION. La relation que nous avons a prouver s’écrit
k k k—
(S, L VS f =V L ) = (y(W)S, VS ).
Comme les deux membres sont C*°(P)-linéaires en S, il suffit de vérifier
cette relation pour un symbole constant S qui a la forme X* @ A, ou
X €g et Ae Vi®Vy Dans ces conditions, le membre de gauche
s’écrit
A(Lh*Lw—l(X) R Lw—l(X)f — Lw—l(X) ce wal(X)Lh*f)
44



et est égal a
. ()
A(Zj:l Lw—l X)--- L[h X Lw—l(X)f>
(i
= A(Z 1 2ing Lo D Lo qrx) x)) - - - o100 f)

_A(Zi:1 L.~ H( )-(-)‘L h([haX])f)’
d’ou le résultat par la proposition 19. En effet, les champs w™(X) et
“I([[h, X], X]) commutent puisque [[h, X], X] = —2(h, X) X. O

2.3. Opérateurs de Casimir courbes. Le parallélisme entre les
situations plate et courbe suggére de définir un analogue de 'opérateur

C.

Nous définissons tout d’abord un analogue de N en posant
N“ = =23 "y(e") Ly~

Ensuite, nous pouvons définir les opérateurs C¥ et C* par leurs restric-
tions aux espaces C®(P, I} s) : pour tout S € C°(P, I ), on pose

C“(S) = .S
{cw(S) = C%(S)+ N¥(9),

oll ay s est la valeur propre de C sur By, = C®(R™, I} ;).
L’opérateur C¥ a la propriété suivante :

PROPOSITION 27. Pour tout h € g1, on a
[Lps +v(h),C¥] =0
sur C™(P, 5§, v,)co-
DEMONSTRATION. Tout d’abord, nous avons
[Li» +7(h), % 4+ N¥] = [Lp=, C¥]+ [Li=, N¥]+ [ (R), C¥T + [y(h), N¥.

Ensuite [Lp+, C*] = 0 puisque L+ stabilise chaque espace propre

C>®(P, 1Ii5) de C¥. De la méme maniére, nous avons [y(h), N¥] = 0
puisque

— par la proposition 18, [y(h),y(e')] =

— [v(h), Ly-1(e;)] = 0 puisque y(h) agit seulement sur l'espace d’ar-

rivée S§. 1.
Finalement, nous obtenons

[Lh*an] = _22 7(61)[141 » Hw 1(ei)]
= —23 ’Y(El)L[he
= 237()ps([h, ez]),

grace & la Gg-équivariance. On conclut par la proposition 25. 0
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En ce qui concerne 'opérateur N“, nous avons le résultat suivant :

PROPOSITION 28. L’opérateur N¥ préserve la Gy-équivariance des
fonctions.

DEMONSTRATION. Cette propriété est une conséquence de la pro-
position 20 et du fait que la différentiation invariante préserve la G-
équivariance. On a successivement, pour tout f € C*(P, S}, ), u € P
et g € Gy :

(N“(f))(ug) = (ug)

27,’7(6 —1(e, )f
= 27NV ) (ug )( i)
= > P( OV f)(u)(Ad(g)e))
= >, P97 ) (v(Ad(g)e) (V¥ f)(u)(Ad(g)es))
= p(g7") 22 (€) L1 f (w),
d’otu le résultat. ]

3. Construction de la quantification

La construction de la quantification est basée sur le probléme des
valeurs propres de 'opérateur C¥.

Remarquons tout d’abord que la construction de la section 1.7 est
encore valable dans le cas courbe.

THEOREME 29. Si le couple (Vi,Vs) nlest pas critique, pour tout
S appartenant a C®(P, Is), il existe une unique fonction S dans

C>®(P,T,(1x;)) telle que

{S = Sp+-+S), Sp=5

. A 23
CW(S) = O./k7SS. ( )

De plus, si S est Gy-équivariant, alors S est Go-Equivariant.

DEMONSTRATION. La fonction S existe et est unique. Il suffit sim-
plement de noter que les conditions dans (23) sont celles de (21) ou
C est remplacé par C* et ou N est remplacé par N¥. Le point prin-
cipal qui permettait de résoudre (21) était que N envoie 7;1_1(Ek75)
dans 77(Eks) Ce dernier fait est en réalité une propriété de vy et par
conséquent nous avons

Nw(COO(Pv 7tyl_l(]k:,s))) C COO(P77;Z(IIC,S>>'

Si de plus S est Gg-équivariant, alors S est Go-équivariant. De fait, S
est obtenu a partir de S en appliquant successivement les opérateurs
N et les projecteurs de T (1)) sur ses composantes irréductibles et ces

opérations préservent la GO équivariance des fonctions (voir proposition
28). O
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Ce résultat permet de définir 'ingrédient principal servant a définir
la quantification.

DEFINITION 7. Supposons que le couple (V}, V3) ne soit pas critique.
L’application
Q : COO(P7 SV1,V2) — COO(P7 SV17V2)
est alors Uextension linéaire de I’association S — S.
L’application () a la propriété importante suivante :

ProrosIiTION 30. On a

(Lne +7(R)Q(S) = Q(Ln+S), (24)
pour tout h € gy et tout S € C°(P, Sv, »s)c,-

DEMONSTRATION. La preuve est simplement une adaptation de
celle du théoréme 24. Il suffit de vérifier la propriété pour
S € C®(P, I1.s)g, (pour tout k et s). Pour un tel S, la fonction Q(Lp+S)
est définie par (23) : ¢’est 'unique vecteur propre de C* appartenant a
C>(P,T,(Iy,s)) de valeur propre ay, 5 et dont le terme de plus haut degré
est Ly« S. Le membre de gauche de I'équation (24) a Lj+T comme terme
de plus haut degré puisque ~y(h) abaisse le degré de ses arguments. Il
appartient clairement a C*°(P,T,(Ixs)). Enfin, puisque Q(S) est Go-
équivariant, la proposition 27 implique que (Lp« + v(h))Q(S) est un
vecteur propre de C* de valeur propre oy, ;. 0

Ces résultats plutot techniques permettent d’établir le théoréme
principal.

THEOREME 31. Si le couple (V1,Va) n'est pas critique, alors la for-
mule

Qu = (V,8) = Qu(V, 9)(f) = (1) ' 1Qu(Qp" ) (»" /)]

définit une quantification naturelle projectivement invariante.

DEMONSTRATION. Tout d’abord, la formule a un sens : la fonc-
tion Q,(Q(p*S))(p* f) est H-équivariante. La Go-équivariance provient
du théoréme 29 et de la remarque 1. La gi-équivariance provient des
relations

Ly [Qu(@QpS)) (™ /)] = L+ [Qu(Q(p*9))](p"f)
= Qul(Ln= +v(h)(Q(p*S)I(p*f)
= QuQ(Ln-(p"9))](»" f).
Ensuite, le symbole principal de @ (V, S)(f) est exactement S. Il suffit
de noter que le terme de plus haut degré de Q(p*S) is p*S et d’utiliser
les résultats du chapitre 2.
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Ainsi, Qp(V) est une quantification. Elle est projectivement inva-
riante par définition de w.

Enfin, la naturalité des quantifications ainsi définies est une consé-
quence de la naturalité de tous les objets utilisés dans la formule. [
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CHAPITRE 5

Une formule explicite

Le but de ce chapitre est d’établir une formule explicite pour la
quantification dont il est question au chapitre 3. Cette formule expli-
cite est construite a partir d’opérateurs naturels sur M et constitue
la généralisation a un ordre quelconque des formules aux deuxiéme et
troisiéme ordres déja publiées par Bouarroudj dans [4] et dans [5].

La formule s’obtient grace a des outils exposés en détail dans [6].
Nous allons les rappeler briévement mais nous invitons le lecteur a
consulter cette référence s’il désire des informations supplémentaires.

1. Le tenseur de déformation

Comme on le fait remarquer & la page 147 de [14], une connexion
d’Ehresmann Y sur P'M appartenant a une structure projective P
donne lieu a une section GL(m, R)-équivariante oy de P — P'M telle
que 050y = Y et telle que o%0_; est égal a la forme canonique de P'M.
Sachant qu’a T correspond une réduction de P?M a GL(m,R) (voir
chapitre 2), la section oy associe & u 'unique repére de cette réduction
qui se projette sur u. Explicitement, on a donc :

oy : P'M — P: (2" u}) — (2,85, —T%,).(u},0),

B

ott les T, sont les symboles de Christoffel correspondant a la connexion

En fait, la correspondance qui vient d’étre décrite entre connexions
et sections établit une bijection entre I’ensemble des connexions appar-
tenant a la structure projective P et 'ensemble des sections G L(m, R)-
équivariantes de P — P'M. De fait, cette correspondance est évi-
demment injective. Elle est de plus surjective : si ¢’ est une section
G L(m,R)-équivariante, alors il existe une fonction « & valeurs dans g;
et GL(m,R)-équivariante telle que

o' (u) = e (). expla(u)).
La section ¢’ peut alors s’écrire de la maniére suivante :

o P'M — P: (2", u’) = (2", 6" —Fﬂ).(ué,,()),

J VA
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. /i . .
si les I/, sont donnés par cette relation :
i T i i
ou les o sont les composantes de la 1-forme représentée par .

Si oy est la section correspondant & une connexion Y sur PlM on
)
peut définir une application TP — g1 de la maniére suivante :

u = ox(p(u)). exp(7(u)).
Signalons le résultat suivant (voir [6] page 43) :

PROPOSITION 32. Pour toute section GL(m,R)-équivariante ox :

P'M — P, il existe une unique connezion de Cartan w = 0_, ® 0y D w;
satisfaisant wi|(or.(TPYM)) = 0.

Si oy est la section correspondant & une connexion Y sur P'M,
nous appellerons cette connexion de Cartan la connexion de Cartan

induite par Y et nous la noterons 1.

La connexion de Cartan normale w associée a la classe projective
de T et la connexion de Cartan T induite par Y différent uniquement
par leurs composantes dans g;. De plus, comme la différence w — T
s’annule sur les champs de vecteurs verticaux, il existe une fonction
I'e C®(P,g*, ® g1) telle que

w:T—FOG,l.

Cette fonction est H-équivariante. De fait, I' est défini de la maniére
suivante :

Lu(X) = (T ~ wulwy,

u

1
(X)) N

ot u € P, X € g . En vertu de I’ Ad-invariance de w et T, il vient
alors successivement, si g € H :

Pug(X) = (

= ( )ug
= Ad(g7)(T — w)u(w, ' (Ad(9)X)).

Jug(Wig (X))
(Rguw, ™ (Ad(9)X))

u

T-w
T-w

D’une part, si ¢ € Gy, la restriction de Ad(g) a g; et la projection
sur g_; de sa restriction a g_; sont égales a 'identité. D’autre part, si
g € Gy, les restrictions de Ad(g) & g_ et & gy coincident respectivement
avec les actions canoniques de GL(m, R) sur R™ et sur R"™* et on peut
alors conclure.

La fonction I' représente donc un 2-tenseur covariant sur M ; c’est
pourquoi nous Pappellerons le tenseur de déformation (voir |6] page
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45, paragraphe 3.9.). Cette fonction posséde notamment la propriété
suivante (voir lemme 3.10.) :

(Fo — ko) (u)(X,Y) = [X, T'(u). Y] + [[(u). X, Y] (25)

siu € P, X,Y € gy et si Ky et ko sont les fonctions induites
respectivement par les courbures de T et de w.

2. Calcul du tenseur de déformation

Dans ce paragraphe, nous calculons le tenseur de déformation dans
le cas projectif de la méme maniére qu’il est calculé dans le cas conforme
a la page 63 de [6].

Fixons tout d’abord une base e; de g_1, €} de go, ¢ de g;. On a

alors
= E T (U)jlfj R
61 ) 6] E : K’O lzg

eza e] § HO lz]

La structure d’algébre de Lie de g_1 ® go D g1 fait en sorte que
le;, €] = € + &7 1d.

et

Dés lors, il vient

Ceeje] = [Ceses] = [ Tpe el =D Tpe, el
p p
= Z Tpi(—el = 00Id) = > Tp(—e? — 6%1d)

= (- ijél Fij(% + Fk:ifsé‘ + Fjifsi)ef

Si on appelle 0k la différence kg — kg, on obtient donc en utilisant
I’égalité 25 les relations suivantes :

(0k0 )y = Tje — mDij; (26)
(0ko)ii; = (m+1)(Tj; — Tyy). (27)

D’une part, les fonctions (kq)j,; et (ko)y; sont identiquement nulles

par normalité de w (voir par exemple [14] page 136). D’autre part, les
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fonctions (/fo)f” sont les composantes de la fonction équivariante sur P
représentant le tenseur de courbure correspondant a la connexion Y.
En effet, appellons R le tenseur de courbure correspondant a T et
désignons par f la fonction équivariante représentant R sur P'M. 11
vient alors, si on note 2 la 2-forme de courbure de Y, si on utilise la
définition de © donnée dans [15] page 133 et si I'on désigne par 7 la

projection de P'M sur M :

P Hw)r; = flp(u);

= (p(w) ™" Repuy) (p(w)i, p(w));
= Qp(u)(leXQ)éca

si p(u);, p(u); sont les composantes i et j du repére p(u) et si X, Xp €
TywyP' M sont tels que T, X1 = p(u); et Ty Xe = p(u);. Si lon
désigne par 0p1 la forme canonique de P'M, on sait que 6p1 + Y consti-
tue une connexion de Cartan sur P'M (voir [6] page 42). On peut
alors grace a la définition de 9P1 prendre pour X; et Xy les vecteurs
(Op1 + T) y(ei) et (0pr + 1), )( e;). Si Pon remarque que Q = 05Qy,

p(u
Q de81gnant 1a courbure de T (voir [6] page 44), il vient
D (X1, X2)i = (030 (B +T)p(u)( ei), (Opr + 1) 0 ()i
= Qoo (o (07 (0p1 + 1) 0 (e), o4 (01 + 1)y, (€))7
= Qoor(pan (T~ (e1), T (eg))r

De fait, on a d'une part oy, (6p1 + 1) 1(e;) = T71(e ;). En effet,
T(UT*(epl + 1) e;)) = e; en vertu du fait que 04T est égal & Op1 +
T + 04T, (voir |6] page 42) et de la définition de T qui dit que
T1|(or.(TP'M)) = 0.

D’autre part, Ro(u)(X,Y) = Fo(or(p(u)))(X,Y) pour tous X,Y
appartenant a g_; (voir [6] page 44) et on peut alors conclure.

Un peu de calcul permet alors d’obtenir I'expression du tenseur de
déformation a partir des relations 26 et 27 :

Ricy; m trR
I1-m (m+1)(m-1)

ou Ric et trR représentent les fonctions équivariantes sur P qui corres-
pondent respectivement au tenseur de Ricci et a la trace de la courbure.

L = (28)
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3. Développements de v+ et de Div*'

Dans le but d’obtenir des formules explicites pour la quantification,
nous avons besoin de connaitre les développements des opérateurs \
et Div® en fonction d’opérateurs sur M.

Soit T une connexion sur P'M donnant lieu & une dérivation co-
variante V et appartenant & une structure projective P. Notons w la
connexion de Cartan sur P associée.

Soit, également (V) p) une représentation de GL(m,R) induisant
une représentation (V,p,) de gl(m,R). Si on note o 1a représenta-
tion canonique sur ®'g*; @ Vet si s € C°(P'M,V)grump), alors
Fls := V¥ (p*s) — p*(V's) est donné par 'induction suivante (voir [6]
page 51) :

FO(u) =0
Fls(u)(X1,..., X)) = p (X0, 7(w)]) (F s () (X, . . ., Xi—1)
+S-(F 1 s(u)(Xq, ..., Xi1)
+Sv (F' 1 s(u)) (X, ..., Xi1)
+Sp(F = ts(u) (X, ..., Xi1)
+o V(X0 T (W) (0" (V) () (X, -, Xia).

Cette expression s’écrit comme une somme de termes de la forme

(8. o () Vs

oll a est un scalaire, les 5; sont des crochets itérés faisant intervenir cer-
tains arguments X, les différentielles itérées V"I évaluées sur d’autres

arguments X; et application 7. Les t; premiers arguments Xy, ..., Xy,

4 . N . ts; .
sont évalués aprés I'action de pi])(ﬁj), les autres arguments apparais-
sant a leur droite sont évalués avant. Les transformations S,, Sy et Sr
sont définies de la maniére suivante :

(1) L’action de S, remplace chaque terme apffl)(ﬁl) i) (B:)p*V7

par une somme de termes qu’on obtient en substituant
—%[7', [7,Xi]] 4un 7.

(2) La transformation Sy remplace chaque terme dans F'~! par
une somme de termes qu’on obtient en substituant & un I" ou a
une de ses différentielles sa dérivée covariante Vx,. En outre, on
ajoute un terme supplémentaire dans lequel V’s est remplacé
par Vi, (V/s).

53



(3) La transformation Sr remplace enfin chaque terme par une
somme de termes qu’on obtient en substituant I'(u).X; & un 7.

En fait, cet algorithme peut étre trivialement linéarisé de la maniére
suivante :

PROPOSITION 33. Le développement de V' (p*s) (X1, ..., X;) s’ob-
tient comme suit :

V(") (X, X0) = o (X 7)) (V9 (0%9)) (X Xi)
+S,(VY () (X, X))
+S9 (V' (%)) (X, -, Xi1)
+Sp (VT () (X, -, X ).

PROPOSITION 34. i f € C®(P'M, AYR™))Grmr), alors

“(p ey est une combinaison linéaire de termes de la forme
v ()X, X) binaison linéaire d de la f
(@™ 7 @ p*"(@"2V T I'®...@ "I ® VIf)(X,...,X).

Si l’on note T'(n_1,...,n1_9,q) un tel terme, T'(n_1,...,n1_2,q) donne

lieu dans le développement de V“Hl(p*f)(X, ., X)a
(=A(m+1)=2l4n_)T(na+1,....,0-92,¢) +T(n_1,...,n1-—2,g+1)

-2
+ Z TLjT(?’L_l, ceey Ny — 1,7’Lj+1 + 1, PN ,m_g,q).
Jj=-1

DEMONSTRATION. On voit en effet facilement que ’application de
la premiére partie de I'algorithme donne

(=A(m+1) =20)T(n-1+1,...,n1-2,9).
La deuxiéme partie donne quant a elle
n—lT(n—l + 1a sy -2, q)

La troisiéme partie contribue a
1—2

Tn_y,...,n_9,q+1)+ anT(n,l, oy —Lnja 41,000, 0, q).
=0

La quatriéme partie rend quant a elle

n,lT(n,l — 1, Ng + 1, N 17N q)

On en déduit alors aisément le corollaire suivant :
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PROPOSITION 35. Si f € C™(P'M, ANR™))arimp), V¥ (p*f) est
une combinaison linéaire de termes de la forme

TV pr(V2r)m-2 v v e v V),
ot r désigne la partie symétrique du tenseur de Ricci divisée par 1 —m.
Si lon note T(n_1,...,n1_2,q) un tel terme, T(n_y,...,ny_o,q) donne
lieu dans le développement de V< (p* f) @
(=A(m+1)=2l4n_)T(na+1,....,0-92,¢) +T(n_1,...,n1-_2,g+1)
1-2
+ Z leT(’I'Lfl, ey — 1,’]’Lj+1 + 1, . ,nl,g,q).

DEMONSTRATION. Notons tout d’abord que la partie symétrique
de T' se réduit & r par antisymétrie du tenseur trR. Il suffit alors de
noter que si v (p*f)(X,..., X) est égal & une combinaison linéaire de
termes de la forme

(@17 @ p (@2 VT ®... 0™ @ VIf))X,...,X),

alors V' (p* f) est égal a la combinaison linéaire correspondante des
termes de la forme

TV p*((Vls_%’)"’*2 V.. Vv vIf.

En effet, les deux derniers tenseurs sont alors égaux puisqu’ils sont

tous les deux symétriques et qu’ils sont égaux lorsqu’ils sont évalués en
X!, O

Remarquons que 'action de l'algorithme sur le terme générique du
développement de V;Jl (p*f) peut étre résumée. En effet, cette action
donne tout d’abord

(=A(m+1)=2l4n_1)T(n1+1,...,n1-2,9).
Elle donne ensuite
naT(n_y—Lng+1,...,m-2,q).

Enfin, elle fait agir la dérivation covariante Vg sur

(Vi2pym=2 v o v VI,
Le résultat suivant nécessite un lemme :

LEMME 36. Si S € C®(P'M, A’R™ @ S*R™)gr(mr), alors

V< (p*S) (X1, ..., X)) est une combinaison linéaire de termes construits
de la maniére suivante. On évalue d’abord p*(V4S) sur certains X; et

on contracte le résultat un certain nombre de fois avec T. On contracte
ensuite le symbole obtenu avec des tenseurs de degré 1 obtenus en
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contractant des p*(V'T) avec t + 1 X;. On multiplie symétriquement
le résultat par d’autres X;. Enfin, on multiplie le tout par des nombres
obtenus en évaluant T sur des X; et des p*(V'T) surt +2 X;.

DEMONSTRATION. On vérifie en effet aisément que ’action de ’al-
gorithme stabilise la forme donnée dans I’énoncé. 0

PROPOSITION 37. Si S € C®(P'M,A°R™ @ S*R™)grmr), alors
Div*' (p*S) est une combinaison linéaire de termes de la forme

(T"t v p*((V’S“_QT)"’“—2 V. V) p*(Divls)).
Si l'on note T(n_1,...,n1_2,q) un tel terme, T'(n_y,...,ny_o,q) donne
lieu dans le développement de Dz’v“l+l(p*5) a

(72(k_l)_1(m+ 1) +n_1)T(n_1 + 1, e, N9, q) —|—T(n_1, ceoy,Ny—9,q+ 1)

+ Z leT(’I'Lfl, ey — 1,’]’Lj+1 + 1, . ,nl,g,q).
j=-1

DEMONSTRATION. Nous avons a calculer

Wtk i i
(V< (p"S)(eiys - h iy, ) (€70, €.
Comme la premiére partie du développement de

VS e i)

selon l'algorithme est

(P (e TV (0S) (W) (€l - - - s €4,),

nous avons d’abord a calculer

[ ([exyr, @)V (0 S) () (e i)} (€7 €00).

Cette derniere expression est égale a

[p*<[€iz+1>7—(u)])(vwl (p*S)(U) (611, ce eil))](Eil, .. ,eilﬂ)

l
=D (VEES) (W) (enrs - fei Tl o)) (€ ),

Jj=1
le. a

[P ([eines T (V2 (" S) () €y -y eq) (€7, €))] (€4
l

+ Z(vwl (p"S)(uw)(eiys - - - ,eil))(eil, ce ,Gij [eml, T(uw), ... ’Eil+1)

=S (VS Wi e (Wenys i) (€ ),
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si p' désigne l'action de GL(m,R) sur les symboles de degré k — [.
Les deuxiéme et troisiéme lignes de l'expression précédente donnent
respectivement 2/ et —2[ termes dans lesquels n_; est augmenté d’une
unité. Leurs contributions s’annihilent donc. On constate aisément que
la premiére ligne donne quant a elle

72(k—l)—1(m + 1T (n_y +1,...,m-9,q).

Grace au lemme, on voit que la deuxiéme partie de 'algorithme donne
n_y termes ot n_; devient n_; + 1. Le lemme permet aussi de montrer
que la troisiéeme partie de ’algorithme contribue a

-2

Tn_y,...,m_92,q+1)+ anT(n,l, oy —Lnja 41000, e, q).
=0

La quatriéme partie rend quant a elle
niT(ny—1ng+1,...,n9,q).
O
Remarquons que 'action de l'algorithme sur le terme générique du

développement de Div*' (p*S) peut étre résumée. En effet, cette action
donne tout d’abord

(Yoe—py—1(m +1) +n_1)T(n_1 +1,...,m_2,q).
Elle donne ensuite
naT(n_qy—1ng+1,...,n9,q).
Enfin, elle fait agir la divergence Div sur

<(Vf‘2r)"k—2 V. Vvt Dinls).

4. La formule explicite

Au vu des propositions précédentes, la quantification s’écrit comme
une combinaison linéaire de termes de la forme
((t"1 \/p*((Vf’zr)"’“*2 V...V r"o),p*(Diqu)),p*(Vlsf)>.
Dans cette expression, il suffit de se préoccuper des termes pour lesquels
n_1; = 0. En effet, supposons que I'expression
k

> (a7 (29)

Jj=0

dans laquelle les fonctions a; sont H-équivariantes soit H-équivariante.
Notons tout d’abord que Ly«7 = h pour tout h € g; (voir 6] page 48).
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Le fait que I'application de Ly« a (29) donne 0 pour tout h € g; nous

dit alors que
k

Z(jajv Tj_1>
j=1
est nul, donc H-équivariant. En itérant le processus, on trouve pour finir
que ar = 0. On en déduit alors de proche en proche que les fonctions
a; sont nulles pour j variant de 1 a k.
Les résultats suivants donnent les développements explicites de V:’l (p*f)
et de Div® (p*S) :

PROPOSITION 38. Le terme de degré t en T dans le développement
de V¥ (p* f) est égal o

t I—t
(1) TIAm+ 1) =4 (e (T4 T,
Jj=1 Jj=0
si m_y désigne la projection sur les opérateurs de degré | —t (le degré
de Vs étant 1, le degré de Ty étant 2) et si la restriction de T) auz
tenseurs j fois covariants a valeurs dans les
A-densités est égale a

(=Am+1) =) +1)

fois le produit symétrique par r. Par convention, on posera que le pro-
duit T[i_(=A\(m+1) — L +j) est égal a1 sit =0.

DEMONSTRATION. Pour simplifier les notations, désignons par [ le
nombre —A\(m+1). La formule est évidemment vraie si [ et t sont égaux
a 0. Supposons la formule vérifiée pour tout t jusqu’a 'ordre [ — 1. Si
[—t>2etsit>2 alors le terme de degré ¢ en 7 a l'ordre [ est égal
en utilisant la procédure de récurrence a :

(t+1) ( ijr 1 ) H(ﬁ — U4+ 1+5)p"(r Vm_so _Z_ (Vs +T)))f)

Jj=1 Jj=0

+ ( : 4 . ) ':1(5 =1+ 14 7)p" (Va(m—ia( ; (Vs +T1))f)

J

+<ij ) (E<5—l+1+j))(6—2l+t+1)
p*(m(iws + T ) f).

Jj=0
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Remarquons que

I—t—2
B=l+t+2)(—t—DrVm (Y (Ve+T1))
j=0
est égal a
I—t—2
TS (Ve + 1)),
j=0

Deés lors, la somme des trois termes ci-dessus est égale a un multiple de
I—t

p*(m(Y (Ve + T 1),

=0
ce multiple étant égal a
t

H(ﬂ—l+j)((l_tl)(ﬁ—l+t+1)+(i:i)(ﬁ—2l+t+1)),

=2

(B —=1+7)
7j=2

=) e (320 D () e (120 )

On conclut en utilisant la formule du triangle de Pascal.

Lescas [ —t>2&t <2, |—t<2&t>2, [—t<2&t<?2
se traitent de maniére analogue. U

PROPOSITION 39. Le terme de degré t en T dans le développement
de Div*' (p*S) est égal a

-t

( i ) L1 Goemrlm+1) = 2 330" (me s (Div + T))8),

j=1 §=0
si iy désigne la projection sur les opérateurs de degré t — 1 (le degré
de Div étant -1, le degré de Ty étant -2) et si la restriction de Ty auz
symboles de degré j est égale a

((m+1)yep1 =k +j)(k—j+1)
fois la contraction par r. Par convention, on posera que le produit
H;Zl(fy%,l(m +1)—1+47) est égal a1 sit =0.
DEMONSTRATION. La preuve est entiérement similaire a celle de la
proposition précédente. O
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On est désormais en mesure d’écrire la formule explicite donnant la
quantification naturelle projectivement invariante du chapitre 3 :

THEOREME 40. La quantification Qp du théoréme 15 est donnée
par la formule suivante :

S

-l

Qu(V,9)( chl m Z (Div + T5)") S, 7, (2 (Vs + Ty f).

.
Il
=)

Remarque : On peut facilement montrer grace aux développe-
ments de Div*' (p*S) et de V¥ (p* f) que la formule du théoréme 15 est
H-équivariante. En effet, si on impose le fait que la partie de degré 1
en 7 soit égale & 0 dans cette fonction, on obtient sur les coefficients
Ck, la relation de récurrence 10 du théoréme 15.

Si'on appelle @ la fonction sur P donnant la quantification, il suffit
alors de montrer que Ly-Q(ug) = 0 pour tous h € g, ug € P. Si l'on
se place en un point uy € P, on considére une connexion Y sur P'M
donnant lieu & une section oy : P'M — P passant par ug. On a ainsi
7(up) = 0.

La somme des termes de degré strictement supérieur a 1 en 7 dans
() s’écrit

k
Z<CL]‘, 7—]>7
j=2
ou les fonctions a; sont H-équivariantes. Si 'on applique L, a cette
fonction et qu’on évalue le résultat en ug, on obtient alors
k
> (jaj(ug), 7 (ug) V h) = 0.

=2

60



CHAPITRE 6

Non-unicité des quantifications naturelles
projectivement invariantes

Il est connu que dans le cas des opérateurs différentiels agissant
entre densités, les quantifications sl(m-+1, R)-équivariantes sur R™ sont
uniques en dehors des situations critiques. Cette unicité n’implique pas
I'unicité des quantifications naturelles projectivement invariantes dont
il est question au chapitre 3. Le but de ce chapitre est de montrer que
ces quantifications ne sont pas uniques, méme en dehors des situations
critiques.

On commence par faire la remarque suivante :

PROPOSITION 41. Une quantification naturelle projectivement in-
variante QQpr n’est pas unique si et seulement s’il existe une application
naturelle projectivement invariante non nulle agissant entre S¥(M) et
S¥U(M) pour un certain k et un certain [ > 0.

DEMONSTRATION. Les quantifications étant des bijections, la non-
unicité d’une quantification naturelle projectivement invariante est équi-
valente a l'existence de deux quantifications naturelles projectivement
invariantes @ et )’ et d’une application naturelle projectivement in-
variante T de Ss(M) dans Ss(M) différente de l'identité telle que
Q" = Qo T. 1l doit exister au moins un k tel que la restriction de
T a SE(M) soit différente de I'identité. Comme une quantification doit
préserver le symbole principal, la projection de cette restriction sur
SE(M) doit étre égale a 'identité. Les projections de la restriction sur
SZ;H(M), avec [ > 0, doivent étre nulles et on peut alors conclure. []

Nous allons baser la construction des applications naturelles projec-
tivement invariantes entre espaces de symboles sur un certain tenseur
que nous allons a présent introduire.

1. Le tenseur de Weyl

Si w désigne la connexion de Cartan normale associée a une struc-
ture projective P, la fonction s induite par sa courbure posséde une
importante propriété d’invariance (voir [6] page 44) : sih € H, u € P
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et X,Y € g4, la fonction k € C°(P,g"; ® g*, ® g) vérifie :

k(X,Y)(uh) = Ad(h™")k(Ad(R)X, Ad(h)Y)(u). (30)

De fait, il vient successivement, en utilisant 1’ Ad-invariance de w :

(X, Y)(uh) = K(w (X),w (Y))(uh)

= —w(w (X)), w (V)] (uh)
= —Ad(h™Y) o w(Ry-1.([w™H(X),
— —Ad(Y) ow(fw (Ad(R)X),
Ad(h N k(Ad(h)X, Ad(R)Y)(u).

~—

—(YV)](uh))
H(Ad(R)Y)](u)

—~

w
W

Si l'on considére les composantes selon gy des deux membres de (30),
il vient :

ro(X, V) (uh) = o (R ko (0" (M) X, P (R)Y) (w),
ot pR"ER™ et pR™ désignent respectivement les actions de H sur R ®
R™* et R™. De fait, les composantes selon g_; de Ad(h)X et Ad(h)Y
coincident respectivement avec p®" (h)X et p®"(h)Y. De plus, le fait
que k_; = 0 fait en sorte que la composante selon gy de

Ad(h™k(p™" (W)X, o (W)Y ) (u)

est égale a
P (RN R (P (M) X T ()Y ) ().

La fonction k¢ est donc H-équivariante. Elle représente alors un

1
tenseur de type ( ) sur M que 'on appelle le tenseur de Weyl.

3

2. Construction d’applications naturelles projectivement
invariantes

Si j est un naturel supérieur ou égal a 2, on définit une fonction
H-équivariante W € C°°(P, S¥R™) de la maniére suivante :

W(u)(ei, .- eip;) 1= Z Z HO(U)Tu) iv(2)To(1) "KO(u);{(zjflﬂv<2a‘>7‘o(a‘>’

ol o est une permutation de {1,...,j}. Vu la normalité de w, o ne doit
laisser aucun élément inchangé.

Le lemme suivant permet de calculer ’écart a I’équivariance des
différentielles invariantes itérées de la fonction W :
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LEMME 42. On a la formule suivante :
LoV W = —k(k + 45 — Dh Vv (VY W),
pour tout h € g;.

DEMONSTRATION. La preuve est similaire a celle de la proposition
14 du chapitre 3. Si £ = 0, la formule est vraie. On procéde alors par
induction. Si X € R™,

(L VW)X, ..., X)
est égal &
L1 L (V"W (X, o X) A+ (Lpx- (V7 W)X, ., X).
Par hypothése de récurrence, le premier terme est égal a
—(k—=1)(k+4j —2)(hV (V" W))(X,..., X).
En ce qui concerne le deuxiéme terme, on obtient
(0 ((h ® X) + (h, X)Id)(V" " W)H(X, ..., X).

Le résultat provient alors de la définition de p,. O

1

On est & présent en mesure de construire des applications naturelles
projectivement invariantes entre espaces de symboles :

THEOREME 43. $i S € SF(M) et sil > 25 , tous les multiples de
Uapplication
1-2j
S p () Cran(Div” pS, V¥

r=0

l—r—23

w))

sont naturels et projectivement invariants si
[+25—1)! — 27
Crir = ( i ) ( =2 ) NVr>1, Cruo =1
(m+1)r(l+2) —r = 1D)yap1 - Yar T
DEMONSTRATION. La preuve est entiérement similaire a celle du
théoréme 15 du chapitre 3. Il suffit de vérifier que la fonction
1—2j

Z Ck,l,r <D7;Upr*S, VLSU
=0

l—r—2j

W)

est gi-équivariante. Cela a lieu grace au lemme précédent, a la propo-
sition 13 du chapitre 3 et au fait que la relation suivante est vérifiée :

Crarr(m+2k—r—(m+1)0) = Crupa(l =7 =25+ 1)1 — 1+ 2j).
]

63



Remarques :

— Les applications que I'on vient de donner sont des exemples d’ap-
plications naturelles projectivement invariantes entre espaces de
symboles. Une description compléte de I'ensemble de ces applica-
tions semble assez délicate.

— On peut montrer “a la main” que la quantification naturelle pro-
jectivement invariante est unique jusqu’au troisiéme ordre dans
les situations non-critiques. Il suffit de considérer toutes les appli-
cations naturelles entre S*(M) and S* (M) (avec 1 <1 < 3) et
de montrer qu’il n’existe pas de combinaison linéaire de ces ap-
plications qui soit projectivement invariante dans les situations
non-critiques.

— En utilisant les méthodes décrites dans le chapitre 5, on pourrait
dériver des formules explicites pour les applications du théoréme
43. Aux quatriéme et cinquiéme ordres, si on désigne par T la
fonction équivariante sur P'M correspondant & W avec j = 2,
les applications du théoréme 43 sont égales respectivement a

(5,7)

et a
8

SV, I )+ ———
SV

(DivS,T).
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