

The fourth meeting on hot subdwarf stars and related objects

Progress in the asteroseismic analysis of the pulsating sdB star PG 1605+072

Valérie Van Grootel (Laboratoire d'Astrophysique de Toulouse, France)

S. Charpinet (Laboratoire d'Astrophysique de Toulouse) G. Fontaine and P. Brassard (Université de Montréal)

Outline

1. Introduction to the pulsating sdB star PG 1605+072

- Photometric observations
- Spectroscopic observations
- Is PG 1605+072 a fast rotator ?
- 2. Models and Method for the asteroseismic analysis
- 3. Asteroseismic analysis : hypothesis of a slow rotation
- 4. Asteroseismic analysis : hypothesis of a fast rotation
- 5. Comparison between the two hypotheses
- 6. Conclusion and raising questions

"PG 1605+072, a unique pulsating sdB star"

- > Koen et al. (1998a) : discovery of a rapidly pulsating sdB star (EC14026 class) with an unusually rich pulsation spectrum and long periods (200 - 600 s)
	- $>$ Kilkenny et al. (1999), multi-site campaign (180h data over 15 days 1 μ Hz resolution) : 44 pulsation periods useful for asteroseismology (28 totally reliable)
	- $>$ van Spaandonk et al. (2008), from 4-days campaign ω CFHT (\sim 4 μ Hz resolution) : 46 pulsation periods useful for asteroseismology, including 38 common with Kilkenny

Light curve particularities

- no real sinusoidal form
- no clear pseudo-period
- very high amplitudes for dominant modes :
	- $-f_1$: A=64 mmags (~2.5%)

-f₂ to f₅: A $\geq 1\%$

• no sign of companion

Spectroscopic observations : atmospheric parameters

• Heber et al. (1999), Keck-HIRES (0.1Å), averaged LTE with metals and NLTE models:

 $-T_{\text{eff}} = 32\,300 \pm 300 \, \text{K}$

 $-$ log g = 5.25 \pm 0.1

- G. Fontaine, 2.3-m Kitt Peak (9Å), NLTE: $-T_{\text{eff}} = 32940 \pm 450$ K $-$ log g = 5.31 \pm 0.08
- G. Fontaine, 6-m MMT (1Å), NLTE: $-T_{\text{eff}} = 32\,660 \pm 390\,K$ $-$ log g = 5.26 \pm 0.05

Averaged mean value : $T_{\text{eff}} = 32\,630 \pm 600$ K and log g = 5.273 ± 0.07

Evolved state beyond TA-EHB ?

Very high-mass sdB star ?

Valerie Van Grootel - 4th meeting on sdOB stars - Shanghai 2009 4

Very low surface gravity for an EC14026 star

1. Introduction to PG 1605+072

Is PG 1605+072 a fast rotator ?

> Rotational broadening ? \Rightarrow V_{eq} sin i = 39 km s⁻¹

• PG 1605+072 is a fast rotator, as suggested by Kawaler (1999). This explains the complexity of the pulsation spectrum, by the lift of (2l+1)-fold degeneracy in frequencies

- > Pulsational broadening ?
	- Kuassivi et al. (2005), FUSE spectra : Doppler shift of 17 km s-1

• O'Toole et al. (2005), MSST : 20 pulsation modes by RV method, amplitudes between 0.8 and 15.4 km s-1

 \Rightarrow V_{eq} sin i << 39 km s⁻¹ \Rightarrow origin of the complexity of the pulsation spectrum ?

Suggestion from P. Brassard :

Lots of low-amplitude pulsation frequencies are due to 2nd- and 3rd-order harmonics and nonlinear combinations of high amplitude frequencies.

- All the pulsation spectrum can be reconstructed from 22 basic frequencies, including the highest amplitude ones
- Some of these can be interpreted as very close frequency multiplets (slow rotation)

 \Rightarrow 14 independent pulsation modes remain to test the idea of a slow rotation for PG 1605+072, in a seismic analysis by comparison with $\sigma_{kl,m=0}$ theoretical frequencies

> 2nd generation models

- static envelope structures; central regions (e.g. convective core) \equiv hard ball
- include detailed envelope microscopic diffusion (nonuniform envelope Fe abundance)
- $\bm{\cdot}$ 4 input parameters : $\mathsf{T}_{\mathsf{eff}},$ log g, M $_{*},$ envelope thickness log (M $_{\mathsf{env}}$ /M $_{*})$

> 3rd generation models

- complete static structures; including detailed central regions description
- include detailed envelope microscopic diffusion (nonuniform envelope Fe abundance)

 \cdot input parameters : total mass M_{*}, envelope thickness log (M_{env}/M_{*}), convective core size log (M $_{\rm core}$ /M $_{\ast}$), convective core composition He/C/O (under constraint C+O+He = 1)

With 3rd generation models, T_{eff} and log g are computed a posteriori \Rightarrow Atmospheric parameters from spectroscopy are used as external constraints for seismic analysis

The forward modeling approach for asteroseismology

Fit directly and simultaneously all observed pulsation periods with theoretical ones calculated from sdB models, in order to minimize

$$
S^2 = \sum_{i=1}^{N_{\rm obs}} \Big(\frac{P^i_{\rm obs} - P^i_{\rm th}}{\sigma_i} \Big)^2
$$

• The rotational multiplets (lifting (2*l*+1)-fold degeneracy) are calculated by 1st order perturbative approach :

$$
\sigma_{klm} = \sigma_{kl} - m\int_0^R \Omega(r) K_{kl}(r) dr \quad , \quad K_{kl}(r) = \frac{\xi_r^2 - [l(l+1)-1]\xi_h^2 - 2\xi_r \xi_h}{\int_0^R [\xi_r^2 + l(l+1)\xi_h^2] \rho r^2 dr} \rho r^2
$$

• Efficient optimization algorithms are used to explore the vast model parameter space in order to find the minima of S^2 i.e. the potential asteroseismic solutions

Results :

- Structural parameters of the star $(T_{\text{eff}}$, log g, M_{*}, envelope thickness, etc.)
- Identification (*k*,*l*,*m*) of pulsation modes (with or without external constraints)
- Internal dynamics $\Omega(r)$

Search the model whose $\sigma_{kl,m=0}$ theoretical frequencies best fit the 14 observed ones (other frequencies can be interpreted as very close frequency multiplets, or harmonics, or nonlinear combinations) Hypotheses :

> Search parameter space : \bullet 0.30 \leq M $_{*}/M_{s}$ \leq 1.10 (Han et al. 2002, 2003)

\n- $$
-6.0 \leq \log (M_{\text{env}}/M_*) \leq -1.8
$$
\n- $-0.40 \leq \log (M_{\text{core}}/M_*) \leq -0.02$
\n- $0 \leq X(C+O) \leq 1$
\n

Under the constraints T_{eff} = 32 630 \pm 600 K and log g = 5.273 \pm 0.07

> Forbid l=3 associations for visibility reasons (Randall et al. 2005)

Best-fit model by optimization procedure :

 $M_* = 0.7624 M_s$ ■ $log (M_{env}/M_*) = -2.6362$ ■ $log (M_{core}/M_*) = -0.0240$ \bullet X(C+O) = 0.45; X(He) = 0.65 T_{eff} = 32 555 K $log g = 5.2906$ \Rightarrow

Period fit : $S^2 \sim 3.71 \Leftrightarrow \Delta P/P \sim 1.03\%$ or $\overline{\Delta P} \sim 4.45$ s (relatively good fit)

Period fit and mode identification

Comments on structural parameters

We *find* a very-high mass and thick envelope model on EHB for PG 1605+072, consistent with the hypothesis of a slow rotation

Search the model whose σ_{klm} theoretical frequencies best fit the 28 "totally reliable" observed ones (Kilkenny et al. 1999)

Kolmogorov-Smirnov test

(gives the credibility of regular spacings in pulsation spectrum)

> $\Delta v \sim 90.4 \mu$ Hz \Leftrightarrow $P_{\rm rot}$ ~ 11 000 s (~ 3 h)

Remark : our 1st order perturbative approach for rotation is valid up to ≥ 2.5 h (Charpinet et al. 2008)

4. Asteroseismic analysis : Hypothesis of a fast rotation

> Search parameter space : \blacksquare 0.30 \leq M $_{*}/\mathrm{M}_{\mathrm{s}}$ \leq 1.10 (Han et al. 2002, 2003)

- –6.0 ≤ log (M_{env}/M_{*}) ≤ –1.8
- $-0.40 \leq log (M_{core}/M_*) \leq -0.02$
- $-0 \le X(C+O) \le 1$
- **solid rotation : 8000 s** \leq P_{rot} \leq 16000s

Under the constraints T_{eff} = 32 630 \pm 600 K and log g = 5.273 \pm 0.07

> Forbid l=3 associations for visibility reasons (Randall et al. 2005)

Best-fit model by optimization procedure :

\n- \n
$$
M_* = 0.7686 \, M_s
$$
\n
\n- \n $\log (M_{env}/M_*) = -2.7114$ \n
\n- \n $\log (M_{core}/M_*) = -0.0722$ \n
\n- \n $X(C+O) = 0.28$; $X(He) = 0.72$ \n
\n- \n $\log g = 5.2783$ \n
\n

 \bullet P_{rot} = 11 075 s = 3.076 h

Period fit : $S^2 \sim 8.04 \Leftrightarrow \Delta P/P \sim 0.21\%$ or $\overline{\Delta P} \sim 0.87$ s (excellent fit)

4. Asteroseismic analysis : Hypothesis of a fast rotation

Comments on structural parameters

A very-high mass model and thick envelope on EHB is found for PG 1605+072, consistent with the hypothesis of a fast rotation $($ \sim 3 h)

5. Asteroseismic analysis : Comparison between the 2 hypotheses

Slow rotation

- \blacksquare M_{*} = 0.7624 M_s
- $log (M_{env}/M_*) = -2.6362$
- \bullet (log (M_{core}/M_{*}) = -0.0240)
- \bullet (X(C+O) = 0.45; X(He) = 0.65)

 T_{eff} = 32 555 K $log g = 5.2906$

Fast rotation

- \blacksquare M_{*} = 0.7686 M_s
- log (M_{env}/M_{*}) = –2.7114

$$
\bullet \ \ P_{rot} = 11\ 075 \ s = 3.076 \ h
$$

• (log
$$
(M_{core}/M_*) = -0.0722
$$
)

$$
• (X(C+O) = 0.28 ; X(He) = 0.72)
$$

 T_{eff} = 32 723 K $log g = 5.2783$

Similarity of model found in both cases !

(associated errors still have to be calculated)

- Star *structure* is very well defined (except core parameters)
- Star *rotation* not. Independent problems !

Remark : all the *m*=0 identified in the analysis with rotation belong to the 14 "basic frequencies" (NOT a hypothesis !)

Conclusion :

We have found very high-mass and thick envelope model for PG1605+072 from asteroseismology

- Model consistent with a star on the EHB :
	- \blacksquare M_{*} ~ 0.765 M_s • T_{eff} ~ 32 600 K
	- log (M_{env}/M_{*}) ~ –2.65 \blacksquare log g ~ 5.285

Raising questions :

 \checkmark Is PG 1605+072 a fast rotator ? (asteroseismology cannot help on this question)

Line broadening $=$ rotational broadening $+$ pulsational broadening in which proportions ?

- \checkmark What is the formation channel for PG 1605+072 ???
	- PG 1605+072 is most probably a single star
	- We are "in the tail" of all formation channels ! (Han et al.
	- 2002, 2003). Even "two WD merger" scenario

Evaluation of higher orders effects from polytropic (*N*=3) model of sdB star, with full treatment of rotation (work of D. Reese & F. Lignières)

- Rotation period greater than \sim 9 h : 1st order completely valid
- Rotation period to \sim 2.5 h : corrections due to high orders (mainly 2nd order) have the same scale than the accuracy of asteroseismic fits $(10 - 15 \mu Hz)$

Conclusion : 1st order perturbative approach valid for our purposes