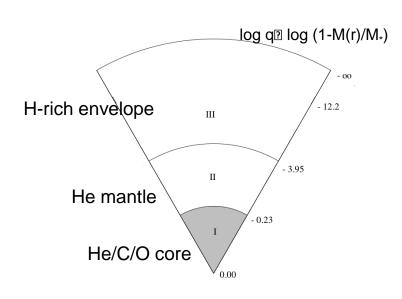
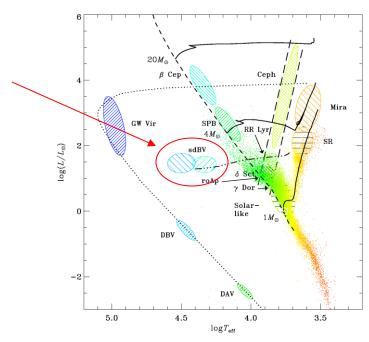

The Impact of Asteroseismology across Stellar Astrophysics KITP October 2011

The Empirical Mass Distribution of Hot B Subdwarfs derived by asteroseismology and other means

Valerie Van Grootel⁽¹⁾

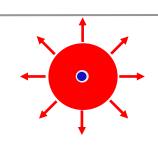
- G. Fontaine⁽²⁾, P. Brassard⁽²⁾, S. Charpinet⁽³⁾, E.M. Green⁽⁴⁾, S.K. Randall⁽⁵⁾
- (1) Institut d'Astrophysique, Université de Liège, Belgium
- (2) Université de Montréal, Canada
- (3) IRAP, Toulouse, France
- (4) University of Arizona, USA
- (5) European Southern Observatory, Germany


1. Introduction to sdB stars

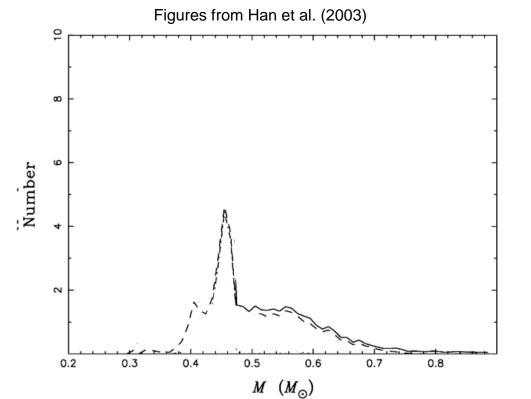

Hot (T_{eff} = 20 000 - 40 000 K) and compact (log g = 5.2 - 6.2) stars belonging to Extreme Horizontal Branch (EHB)

- convective He-burning core (I), radiative He mantle (II) and very thin H-rich envelope (III)
- lifetime of ~ 10⁸ yr (100 Myr) on EHB, then evolve as low-mass white dwarfs
- At least 50% of sdB stars reside in binary systems, generally in close orbit (P_{orb} ≤ 10 days)

Two classes of multi-periodic sdB pulsators:


- > short-periods (P \sim 80 600 s), A \leq 1%, p-modes (envelope)
- > long-periods (P ~ 45 min 2 h), A ≤ 0.1%, g-modes (core). Space observations required!

2. Single and binary formation scenarios


Single star evolution (enhanced mass loss at tip of RGB)
 Mass range in 0.40 - 0.43 ≤ M_{*}/Ms ≤ 0.52 (Dorman et al. 1993)

Binary star evolution (Han et al. 2002, 2003)

Common envelope ejection (CE), stable mass transfer by Roche lobe overflow

(RLOF), and He-white dwarf mergers

Weighted mean distribution for binary evolution: (including selection effects)

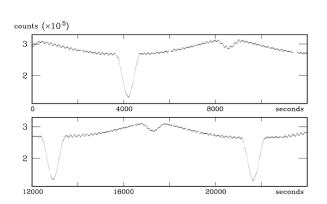
0.30 ≤ M_{*}/Ms ≤ 0.70 peak ~ 0.46 Ms (CE, RLOF) high masses (mergers)

3. Method for sdB asteroseismology

Search the star model(s) whose theoretical periods best fit all the observed ones, in order to minimize

$$S^2 = \sum \frac{1}{\sigma} (P_{\text{obs}} - P_{\text{th}})^2$$

- Static models including detailed envelope microscopic diffusion (nonuniform envelope Fe abundance)
- Efficient optimization codes (based on *Genetic Algorithms*) are used to find the minima of S², i.e. the potential asteroseismic solutions
- > Example: PG 1336-018, pulsating sdB + dM eclipsing binary
 - ✓ Light curve modeling (Vuckovic et al. 2007):


I.
$$M_{tot} = 0.389 \pm 0.005 M_s$$
 et $R = 0.14 \pm 0.01 R_s$

II.
$$M_{tot} = 0.466 \pm 0.006 M_s$$
 et $R = 0.15 \pm 0.01 R_s$

III.
$$M_{tot} = 0.530 \pm 0.007 M_s$$
 et $R = 0.15 \pm 0.01 R_s$

✓ Seismic analysis (Charpinet et al. 2008):

$$M_{tot} = 0.459 \pm 0.005 \; M_s$$
 et R = 0.151 \pm 0.001 R_s

⇒ Our asteroseismic method is sound and free of significant systematic effects

4. Available samples (of sdBs with known masses)

I. The asteroseismic sample

Name	$\log g \text{ (cm s}^{-2}\text{)}$	T _ (V)	$M(M_{-})$	100 M /M	References
		$T_{\rm eff}$ (K)	$M(M_{\odot})$	$\frac{\log M_{\rm env}/M}{4.21 + 0.22}$	
PG 0014+067	5.780±0.008	33550±380	0.490±0.019	-4.31±0.22	Brassard et al. (2001)
	5.775±0.009	34130±370	0.477 ± 0.024	-4.32 ± 0.23	Charpinet et al. (2005a)
	5.772	34130±370	0.478	-4.13	Brassard & Fontaine (2008)
PG 1047+003	5.800 ± 0.006	33150 ± 200	0.490 ± 0.014	-3.72 ± 0.11	Charpinet et al. (2003)
PG 1219+534	5.807±0.006	33600±370	0.457 ± 0.012	-4.25 ± 0.15	Charpinet et al. (2005b)
Feige 48	5.437±0.006	29580±370	0.460 ± 0.008	-2.97 ± 0.09	Charpinet et al. (2005c)
	5.462±0.006	29580±370	0.519 ± 0.009	-2.52 ± 0.06	Van Grootel et al. (2008a)
EC05217-3914	5.730	32000	0.490	-3.00	Billères & Fontaine (2005)
PG 1325+101	5.811±0.004	35050 ± 220	0.499 ± 0.011	-4.18 ± 0.10	Charpinet et al. (2006a)
PG 0048+092	5.711±0.010	33300±1700	0.447 ± 0.027	-4.92 ± 0.20	Charpinet et al. (2006b)
EC 20117-4014	5.856 ± 0.008	34800 ± 2000	0.540 ± 0.040	-4.17 ± 0.08	Randall et al. (2006b)
PG 0911+456	5.777±0.002	31940±220	0.390 ± 0.010	-4.69 ± 0.07	Randall et al. (2007)
BAL 090100001	5.383±0.004	28000±1200	0.432 ± 0.015	-4.89 ± 0.14	Van Grootel et al. (2008b)
PG 1336-018	5.739 ± 0.002	32780 ± 200	0.459 ± 0.005	-4.54 ± 0.07	Charpinet et al. (2008)
PG 1605+072	5.248	32300±300	0.707	-5.78	van Spaandonk et al. (2008)
	5.217	32300±300	0.561	-6.22	-
	5.226±0.004	32300±300	0.528 ± 0.002	-5.88 ± 0.04	Van Grootel (2008)
	5.276	32630±600	0.731	-2.83	Van Grootel et al. (2010a)
	5.278	32630±600	0.769	-2.71	
EC09582-1137	5.788 ± 0.004	34805 ± 230	0.485 ± 0.011	-4.39 ± 0.10	Randall et al. (2009)
KPD 1943+4058	5.520 ± 0.030	27730±270	0.496 ± 0.002	-2.55 ± 0.07	Van Grootel et al. (2010b)
KPD 0629-0016	5.450 ± 0.034	26485±195	0.471 ± 0.002	-2.42 ± 0.07	Van Grootel et al. (2010c)
KIC02697388	5.489 ± 0.033	25395±225	0.463±0.009	-2.30 ± 0.05	Charpinet et al. (2011)
	5.499±0.049	25395±225	0.452 ± 0.012	-2.35 ± 0.05	-

15 sdB stars modeled by asteroseismology

(we took the most recent value in case of several analyses)

4. Available samples

II. The extended sample (sdB + WD or dM star)

Name	$\log g \text{ (cm s}^{-2})$	T _{eff} (K)	$M_1 (M_{\odot})$	Nature	Eclipses	References
KPD 0422+5421	5.565±0.009	25000±1500	0.511±0.049	sdB+WD	yes	Orosz & Wade (1999)
PG 1241-084	5.63 ± 0.03	28490±210	0.48 ± 0.09	sdB+dM	yes	Wood & Saffer (1999)
	5.60 ± 0.12	28490±210	0.485±0.013			Lee et al. (2009)
HS 0705+6700	5.40 ± 0.10	28800 ± 900	0.48	sdB+dM	yes	Drechsel et al. (2001)
HS 2333+3927	5.70 ± 0.10	36500 ± 1000	0.38	sdB+dM	no	Heber et al. (2005)
NSVS 14256825	5.50 ± 0.02	35000±5000	0.46	sdB+dM	yes	Wils et al. (2007)
PG 1336-018	5.74 ± 0.05	31300±300	0.389 ± 0.005	sdB+dM	yes	Vuckovic et al. (2007)
	5.77±0.06	31300±300	0.466±0.006			
	5.79 ± 0.07	31300±300	0.530 ± 0.007			
2M 1533+3759	5.57 ± 0.07	29230±125	0.376 ± 0.055	sdB+dM	yes	For et al. (2010)
2M 1938+4603	5.425±0.009	29565 ± 105	0.48 ± 0.03	sdB+dM	yes	Østensen et al. (2010)
KPD 1946+4340	5.452±0.006	34500±400	0.47 ± 0.03	sdB+WD	yes	Bloemen et al. (2011)

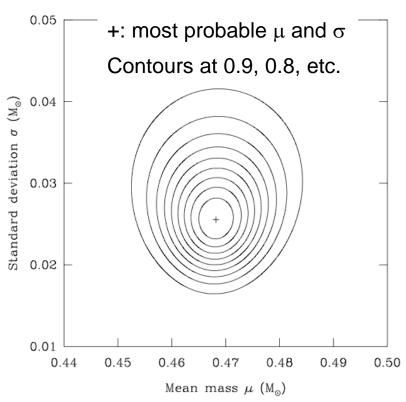
Light curve modeling + spectroscopy ⇒ mass of the sdB component

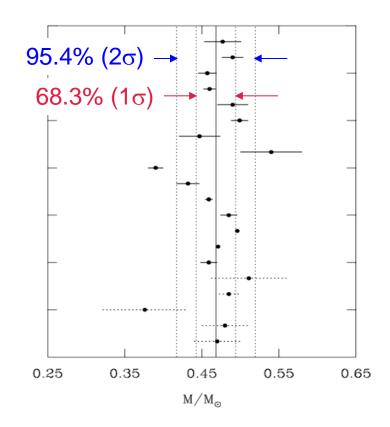
Need uncertainties to build a mass distribution

⇒ 5 sdB stars retained in this subsample

Extended sample: 15+5=20 sdB stars with accurate mass estimates

- 11 (apparently) single stars
- 9 in binaries (including 4 pulsators)

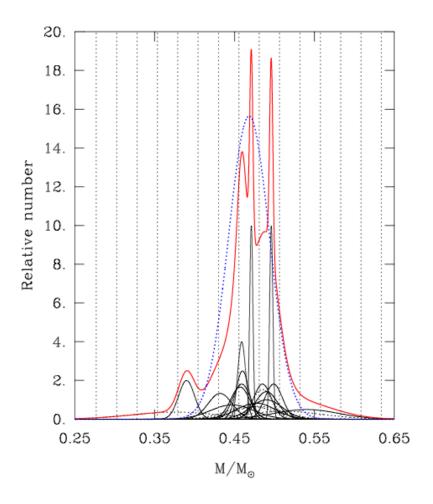

5. Mass distributions


I. Assumption of a normal distribution

$$L(\mu,\sigma) = \prod_{i=1}^{N} \left[2\pi(\sigma^2 + \sigma_i^2)\right]^{-1/2} \exp\{-\frac{(m_i - \mu)^2}{2(\sigma^2 + \sigma_i^2)}\} \quad \text{μ: mean mass} \\ \sigma : \text{standard deviation}$$

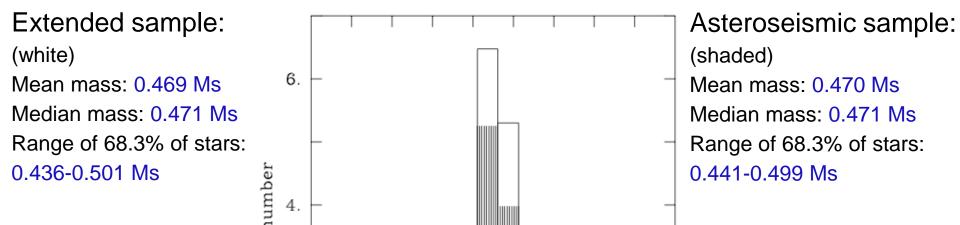
Extended sample: $\mu = 0.468$ Ms and $\sigma = 0.026$ Ms

Asteroseismic sample: $\mu = 0.467$ Ms and $\sigma = 0.027$ Ms


5. Mass distributions

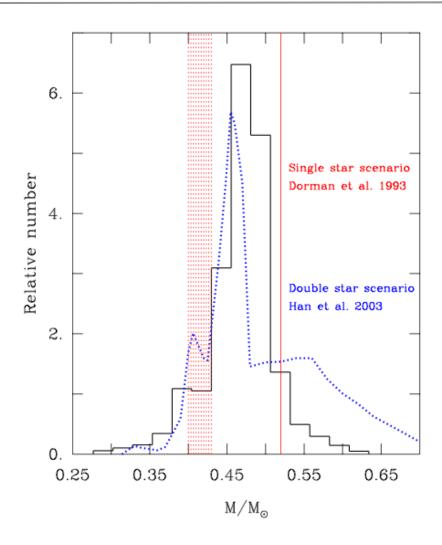
II. Model-free distribution

(only σ_i 's are assumed to obey normal distribution law)


Red curve: addition of all sdBs (mass with uncertainties) in extended sample

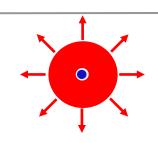
Blue curve: normal distribution ($\mu = 0.468$ Ms and $\sigma = 0.026$ Ms)

5. Mass distributions


Binning the distribution in the form of an histogram (bin width = σ = 0.026 Ms)

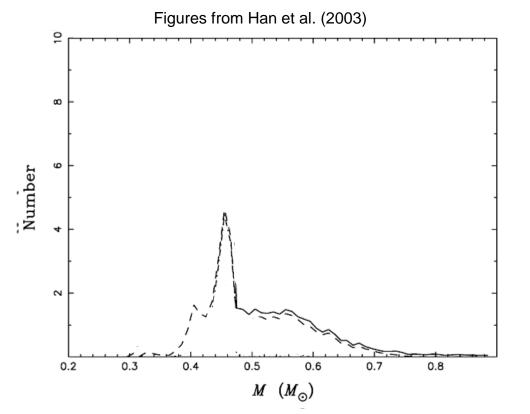
Sample	Mean mass (M_{\odot})	Median mass (M_{\odot})	Range of mass (68.3%; M_{\odot})		
extended (20 stars)	0.469	0.471	0.436-0.501		
15 pulsators	0.470	0.471	0.441-0.499		
5 binaries (orbits)	0.464	0.476	0.411-0.510		
9 binaries (total)	0.470	0.466	0.435-0.515		
11 singles	0.468	0.473	0.437-0.498		

No detectable significant differences between distributions (especially between singles and binaries)


6. Comparison with theoretical distributions

Empirical distribution agrees well with expectations of stellar evolution theory...but still small-number statistics!

2. Single and binary formation scenarios


Single star evolution (enhanced mass loss at tip of RGB)
 Mass range in 0.40 - 0.43 ≤ M_{*}/Ms ≤ 0.52 (Dorman et al. 1993)

Binary star evolution (Han et al. 2002, 2003)

Common envelope ejection (CE), stable mass transfer by Roche lobe overflow

(RLOF), and He-white dwarf mergers

•

Weighted mean distribution for binary evolution: (including selection effects)

0.30 ≤ M_{*}/Ms ≤ 0.70 peak ~ 0.46 Ms (CE, RLOF) high masses (mergers)

Conclusions and room for improvement

- ✓ No significant differences between distributions of various samples (asteroseismic, light curve modeling, single, binaries, etc.)
- ✓ Single star evolution scenario does exist
- ✓ Importance of the merger scenario? (single stars with fast rotation)
- ✓Our empirical mass distribution agrees well with theoretical expectations...

But:

- ✓ Currently only 20 objects: 11 (apparently) single stars and 9 binaries
- ✓ Among > 2000 known sdB, ~100 pulsators are now known (e.g. thanks to Kepler)
- ✓ Both light curve modeling and asteroseismology are a challenge (accurate spectroscopic and photometric observations, stellar models, etc.)