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Dans les cours d’analyse, le nombre e est ’

parfois défini comme la limite de la suite
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e = lim
et parfois comme la somme illimitée
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I’équivalence de ces deux définitions, si elle
n’est pas trés compliquée a montrer, n’est pas
non plus évidente. En outre, la plupart des
textes d’analyse ne l’établissent pas directe-
ment : elle résulte par exemple, comme sous-
produit, du développement de ’exponentielle
en série de Maclaurin. Cette courte note a pour
objet de montrer, d’abord, que les deux défi-
nitions ont un sens, c’est-a-dire que la limite
existe et que la série converge, et ensuite que
leurs valeurs coincident. Elle est inspirée de [3],
un petit livre peu connu, et cependant fort re-

commandable.
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1. Posons, pour n > 0, a, = <1 + ) et,
n

pour faire joli, ag = 1. Le premier de nos buts
est de montrer que la suite (a,)neNn est conver-
gente.
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Considérons également la série 1 + 1 + a1 +

1 . . .
§+' .., ¢’est-a~dire (voir 'encadré “Les séries”)

Les séries

L’algébre nous apprend ce qu’est la somme
de deux nombres. Il est ensuite possible de
définir, de proche en proche, des sommes de
trois termes, de quatre termes, ..., et ainsi
nous sommes a méme d’additionner n’im-
porte quel nombre fini de termes. Mais la
somme d’une série, c¢’est-a-dire d’une infinité
de termes, c’est une autre histoire! La so-
lution repose sur le concept de limite : il
ne s’agit donc plus d’algébre, mais d’ana-
Iyse. Ainsi, pour définir la somme de la sé-

rie a; + as + as + - -+, on calcule d’abord les
sommes partielles s1 = a1, s2 = a1 + aog,
s3 = a1 + as + as, etc.; ce qu'on appelle

somme de la série, c’est alors la limite de ces

sommes partielles : s = lim s,. Mais ceci
n—oo

nécessite des précautions : une limite, cela

n’existe pas toujours; donc les séries n’au-

ront pas toutes de somme. Celles qui en ont

une sont dites convergentes.

la suite (s,)nen des sommes partielles s, =

1 1 1 .
=141+ =4 =+ ...+ —. Notre deuxiéme
2! 3l n!
but est de montrer que cette suite (s,)nenN est
elle aussi convergente ; notre troisiéme but est
de montrer que les limites de ces deux suites

sont les mémes.

2. D’aprés le théoréme du binome,

w= ()G GG ()G

ou () est le coefficient binomial : (}) =



‘ Le symbole de sommation ‘

Que signifie une construction telle que

n
S
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Tout simplement ceci : dans le terme général
ax, nous devons remplacer I'indice de som-
mation k successivement par toutes les va-
leurs entiéres comprises entre les deux bornes
indiquées, ici 1 et n ; ceci nous fournit succes-
sivement les termes ay, as, ..., a,, qu’il ne
nous reste plus qu’a additionner. Ainsi, I’ex-
pression ci-dessus ne représente rien d’autre
que
ar+ag+ -+ ay.

Pour ceux qui ont la fibre informatique, on
peut encore dire que Y _, ay est la valeur
de la variable s aprés exécution du petit pro-
gramme suivant :

s+ 0;
pour k del an, s <+ s+ ai.

n!
 k!(n—k)!
Sin et k sont deux naturels, posons donc

bn,k = (Z) /nk’

n
an = bn,O + bn,l +--+ bn,n = Z bn,k-
k=0

sikgnet(Z):Osik>n.

de sorte que

Sik =0, b,o=1, tandis que si k > 0,

nn—1)---(n—(k—1))
k! nk
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en particulier, b, = 0 dés que k > n. [SUG-
GESTION AU LECTEUR : Dressez une table &
double entrée de ces nombres b, j,, par exemple

bn,k:

pour n et k < 5 ou 6; vous “sentirez” ainsi
beaucoup mieux la suite de ’argumentation.
(Cette table est vraiment admirable, mais la
colonne est trop étroite pour que je puisse 1’y
consigner. )|

Ces coeflicients jouissent encore des proprié-
tés suivantes :

(1) Pour tous n et k, by i < bpt1k;

(2) Pour tous n et k, b, < 1/k!;

(3) Pour tout k, lim b, = 1/k!
n—oo

Les deux premiéres propriétés découlent direc-
tement, lorsque k£ > 0, de ce que

1-L<1-— <
n n+1

pour tous n € N et j € {1,2,...,k — 1}, et

la troisiéme de ce que lim
n—oo

tout j € {1,2,...,k —1}.

1—‘7>:1pour
n

3. Comme chacun des termes de la série est
positif, la suite (s,)n,eN est croissante.
D’aprés la propriété (1) ci-dessus,

n n
apn = an,k < § bn+1,k <
k=0 k=0

n+1
< § bn+1,k = An+41,
k=0

donc la suite (a,)neN est également croissante.

D’aprés la propriété (2) ci-dessus, et en te-
nant compte que k! =2 x 3 x --- x k > 2k1
pour tout £ > 0 : d’abord,

n n
1

anzzbn,k<ZE:3n;
k=0 k=0

ensuite,
n 1\n
1, 1-(3)
o<1+ grg = 1+ =7 <
k=1 2 1
<l+——=3



(on a utilisé pour (x) la régle de sommation
d'une suite géométrique : 1 + 7 4+ 72 + - +
+ 7"t = (1 —7r")/(1 —r)); donc les suites
(Sn)neN €t (an)neN sont majorées.

Or, un théoréme d’analyse affirme que Dans
R, toute suite croissante et majorée est conver-
gente. (On se souvient que cette propriété dis-
tingue de maniére essentielle les réels des ra-
tionnels!) Des deux observations précédentes,
il résulte donc que ces deux suites sont conver-

gentes : nous noterons, provisoirement :
1 n
a= lim a, = lim <1+>
n—oo n—oo n
et
o0
) 1
s= lim s, = E —.
n—00 n!
n=0

Comme, pour tout n, a, < s, < 3, ces deux
limites satisfont : a < s < 3.

4. Introduisons encore
Cnym = bn,O + bn,l +--- 4+ bn,m-

Ainsi, a, = ¢, ; en fait, puisque b, = 0
lorsque &k > n, a, = cpm pour tout m = n;
de la (puisque tous les by, j, sont positifs), pour
tout m € N, a, = ¢cm-

Dés lors, et en utilisant la propriété (3) plus
haut,

a= lim a, > lim ¢, =
n—oo n—oo
m

) 1
= lim by _ZH = Sm,
k=0 k=0
quel que soit m; il en résulte que a >

> lim s, = s.
m—r0o0

Ceci, avec 'inégalité en sens inverse, établie
plus haut, montre que a = s; depuis Euler, au
XVIII® siécle (& ce sujet, voir par exemple [1]
ou, pour davantage de détails, [2]), la valeur

commune de ces deux limites est traditionnel-
lement notée e, initiale de exponentielle — ou,
comme de petits futés le font malicieusement
remarquer, de Fuler!
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