
Histoires d’e

Pascal Dupont
Faculté universitaire des Sciences agronomiques de Gembloux

25 aout 1996

Dans les cours d’analyse, le nombre e est
parfois défini comme la limite de la suite〈
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:

e = lim
n→∞

(
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n

)n
et parfois comme la somme illimitée

e = 1 + 1 +
1

2!
+

1

3!
+ . . . ;

l’équivalence de ces deux définitions, si elle
n’est pas très compliquée à montrer, n’est pas
non plus évidente. En outre, la plupart des
textes d’analyse ne l’établissent pas directe-
ment : elle résulte par exemple, comme sous-
produit, du développement de l’exponentielle
en série de Maclaurin. Cette courte note a pour
objet de montrer, d’abord, que les deux défi-
nitions ont un sens, c’est-à-dire que la limite
existe et que la série converge, et ensuite que
leurs valeurs coïncident. Elle est inspirée de [3],
un petit livre peu connu, et cependant fort re-
commandable.

1. Posons, pour n > 0, an =

(
1 +

1

n

)n
et,

pour faire joli, a0 = 1. Le premier de nos buts
est de montrer que la suite 〈an〉n∈N est conver-
gente.

Considérons également la série 1 + 1 +
1

2!
+

1

3!
+. . ., c’est-à-dire (voir l’encadré “Les séries”)

Les séries
L’algèbre nous apprend ce qu’est la somme
de deux nombres. Il est ensuite possible de
définir, de proche en proche, des sommes de
trois termes, de quatre termes, . . ., et ainsi
nous sommes à même d’additionner n’im-
porte quel nombre fini de termes. Mais la
somme d’une série, c’est-à-dire d’une infinité
de termes, c’est une autre histoire ! La so-
lution repose sur le concept de limite : il
ne s’agit donc plus d’algèbre, mais d’ana-
lyse. Ainsi, pour définir la somme de la sé-
rie a1 + a2 + a3 + · · · , on calcule d’abord les
sommes partielles s1 = a1, s2 = a1 + a2,
s3 = a1 + a2 + a3, etc. ; ce qu’on appelle
somme de la série, c’est alors la limite de ces
sommes partielles : s = lim

n→∞
sn. Mais ceci

nécessite des précautions : une limite, cela
n’existe pas toujours ; donc les séries n’au-
ront pas toutes de somme. Celles qui en ont
une sont dites convergentes.

la suite 〈sn〉n∈N des sommes partielles sn =

= 1 + 1 +
1
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+ . . . +

1

n!
. Notre deuxième

but est de montrer que cette suite 〈sn〉n∈N est
elle aussi convergente ; notre troisième but est
de montrer que les limites de ces deux suites
sont les mêmes.

2. D’après le théorème du binome,
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où
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est le coefficient binomial :
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Le symbole de sommation
Que signifie une construction telle que

n∑
k=1

ak ?

Tout simplement ceci : dans le terme général
ak, nous devons remplacer l’indice de som-
mation k successivement par toutes les va-
leurs entières comprises entre les deux bornes
indiquées, ici 1 et n ; ceci nous fournit succes-
sivement les termes a1, a2, . . ., an, qu’il ne
nous reste plus qu’à additionner. Ainsi, l’ex-
pression ci-dessus ne représente rien d’autre
que

a1 + a2 + · · ·+ an.

Pour ceux qui ont la fibre informatique, on
peut encore dire que

∑n
k=1 ak est la valeur

de la variable s après exécution du petit pro-
gramme suivant :

s← 0 ;
pour k de 1 à n, s← s+ ak.

=
n!

k!(n− k)!
si k 6 n et

(
n
k

)
= 0 si k > n.

Si n et k sont deux naturels, posons donc

bn,k =

(
n

k

)
/nk,

de sorte que

an = bn,0 + bn,1 + · · ·+ bn,n =
n∑

k=0

bn,k.

Si k = 0, bn,0 = 1, tandis que si k > 0,

bn,k=
n(n− 1) · · · (n− (k − 1))

k!nk

=
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)
· · ·
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n

)
;

en particulier, bn,k = 0 dès que k > n. [Sug-
gestion au lecteur : Dressez une table à
double entrée de ces nombres bn,k, par exemple

pour n et k 6 5 ou 6 ; vous “sentirez” ainsi
beaucoup mieux la suite de l’argumentation.
(Cette table est vraiment admirable, mais la
colonne est trop étroite pour que je puisse l’y
consigner.)]

Ces coefficients jouissent encore des proprié-
tés suivantes :
(1) Pour tous n et k, bn,k 6 bn+1,k ;
(2) Pour tous n et k, bn,k 6 1/k! ;
(3) Pour tout k, lim

n→∞
bn,k = 1/k!.

Les deux premières propriétés découlent direc-
tement, lorsque k > 0, de ce que

1− j

n
6 1− j

n+ 1
6 1

pour tous n ∈ N et j ∈ {1, 2, . . . , k − 1}, et

la troisième de ce que lim
n→∞

(
1− j

n

)
= 1 pour

tout j ∈ {1, 2, . . . , k − 1}.

3. Comme chacun des termes de la série est
positif, la suite 〈sn〉n∈N est croissante.

D’après la propriété (1) ci-dessus,

an =

n∑
k=0

bn,k 6
n∑

k=0

bn+1,k 6

6
n+1∑
k=0

bn+1,k = an+1,

donc la suite 〈an〉n∈N est également croissante.
D’après la propriété (2) ci-dessus, et en te-

nant compte que k! = 2 × 3 × · · · × k > 2k−1

pour tout k > 0 : d’abord,

an =

n∑
k=0

bn,k 6
n∑

k=0

1

k!
= sn ;

ensuite,
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(on a utilisé pour (∗) la règle de sommation
d’une suite géométrique : 1 + r + r2 + · · · +
+ rn−1 = (1 − rn)/(1 − r)) ; donc les suites
〈sn〉n∈N et 〈an〉n∈N sont majorées.

Or, un théorème d’analyse affirme que Dans
R, toute suite croissante et majorée est conver-
gente. (On se souvient que cette propriété dis-
tingue de manière essentielle les réels des ra-
tionnels !) Des deux observations précédentes,
il résulte donc que ces deux suites sont conver-
gentes : nous noterons, provisoirement :

a = lim
n→∞

an = lim
n→∞

(
1 +

1

n

)n
et

s = lim
n→∞

sn =
∞∑
n=0

1

n!
.

Comme, pour tout n, an 6 sn 6 3, ces deux
limites satisfont : a 6 s 6 3.

4. Introduisons encore

cn,m = bn,0 + bn,1 + · · ·+ bn,m.

Ainsi, an = cn,n ; en fait, puisque bn,k = 0
lorsque k > n, an = cn,m pour tout m > n ;
de là (puisque tous les bn,k sont positifs), pour
tout m ∈ N, an > cn,m.

Dès lors, et en utilisant la propriété (3) plus
haut,

a = lim
n→∞

an > lim
n→∞

cn,m =

=
m∑
k=0

lim
n→∞

bn,k =
m∑
k=0

1

k!
= sm,

quel que soit m ; il en résulte que a >
> lim

m→∞
sm = s.

Ceci, avec l’inégalité en sens inverse, établie
plus haut, montre que a = s ; depuis Euler, au
XVIIIe siècle (à ce sujet, voir par exemple [1]
ou, pour davantage de détails, [2]), la valeur

commune de ces deux limites est traditionnel-
lement notée e, initiale de exponentielle ––– ou,
comme de petits futés le font malicieusement
remarquer, de Euler !
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