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Abstract Patients in a minimally conscious state (MCS)

show restricted signs of awareness but are unable to

communicate. We assessed cerebral glucose metabolism in

MCS patients and tested the hypothesis that this entity can

be subcategorized into MCS- (i.e., patients only showing

nonreflex behavior such as visual pursuit, localization of

noxious stimulation and/or contingent behavior) and

MCS? (i.e., patients showing command following).

Patterns of cerebral glucose metabolism were studied using

[18F]-fluorodeoxyglucose-PET in 39 healthy volunteers (aged

46 ± 18 years) and 27 MCS patients of whom 13 were

MCS- (aged 49 ± 19 years; 4 traumatic; 21 ± 23 months

post injury) and 14 MCS? (aged 43 ± 19 years; 5 traumatic;

19 ± 26 months post injury). Results were thresholded for

significance at false discovery rate corrected p \ 0.05.

We observed a metabolic impairment in a bilateral

subcortical (thalamus and caudate) and cortical (fronto-

temporo-parietal) network in nontraumatic and traumatic

MCS patients. Compared to MCS-, patients in MCS?

showed higher cerebral metabolism in left-sided cortical

areas encompassing the language network, premotor, pre-

supplementary motor, and sensorimotor cortices. A func-

tional connectivity study showed that Broca’s region was

disconnected from the rest of the language network, me-

siofrontal and cerebellar areas in MCS- as compared to

MCS? patients.

The proposed subcategorization of MCS based on the

presence or absence of command following showed a

different functional neuroanatomy. MCS- is character-

ized by preserved right hemispheric cortical metabolism

M.-A. Bruno � M. Boly � A. Vanhaudenhuyse � C. Schnakers �
O. Gosseries � P. Boveroux � M. Kirsch � A. Demertzi �
G. Moonen � S. Laureys (&)

Coma Science Group, Cyclotron Research Center,
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interpreted as evidence of residual sensory consciousness.

MCS? patients showed preserved metabolism and func-

tional connectivity in language networks arguably

reflecting some additional higher order or extended con-

sciousness albeit devoid of clinical verbal or nonverbal

expression.

Keywords Coma � Consciousness � Minimally conscious

state � Positron-emission tomography � Neuroanatomy

Introduction

The minimally conscious state (MCS) describes a condi-

tion of severely altered consciousness in which patients

demonstrate minimal but definite behavioral evidence of

awareness but are, by definition, unable to effectively

communicate [1]. We recently propose to subcategorize

MCS patients based on the complexity of their behavior

into two entities: ‘‘MCS minus’’ (MCS-) and ‘‘MCS plus’’

(MCS?) [2]. MCS- describes patients with minimal level

of behavioral interactions without command following

(e.g., visual pursuit, localization of noxious stimulation

and/or smiling/crying in contingent relationship to external

stimuli). MCS? patients show higher-level behavioral

responses such as command following (Figure 1). Since

the subcategorization of MCS is based on the complexity

of behavior as previously proposed [2], the aim of this

study was to characterize the integrity of residual cortical

networks in MCS patients using [18F]-fluorodeoxyglucose-

PET (FDG-PET) testing the hypothesis that this heteroge-

neous clinical entity can be subcategorized into MCS- and

MCS?, each subcategory characterized by its own func-

tional neuroanatomy.

Methods

Cerebral metabolic rates for glucose (CMRGlu) [3] were

studied by means of FDG-PET in 27 subacute and chronic

MCS patients (10 women; aged 45 ± 16 years) and 39 age-

matched healthy controls (21 women; aged 46 ± 18 years).

Inclusion criteria were the presence of acute brain damage,

coma on admission, absence of sedation, and the presence of

operational criteria for MCS (i.e., patients showing minimal

but definite behavioral evidence of awareness). Exclusion

criteria were patients with extremely vast structural damage

encompassing more than two-thirds of one hemisphere in

order to allow for reliable spatial normalization of brain

images. Table 1 shows the patients’ demographic and clin-

ical data. Patients were diagnosed as being in a MCS

according to the Aspen Neurobehavioral Conference

Workgroup clinical criteria [1] and had repeated Coma

Recovery Scale-Revised (CRS-R) [4] assessments (day of

scanning, and in the week before and the week after) per-

formed by an experienced multidisciplinary team (i.e.,

neurologists MB and SL and neuropsychologists MAB, AV,

CS, OG, and AD). Given the known behavioral variability in

this pathology, the diagnosis of MCS- was made if the

patient repeatedly failed to show command following on all

CRS-R assessments. Thirteen patients were classified as

MCS- (6 women; aged 49 ± 19 years; 4 traumatic;

21 ± 23 months post injury) meaning they did not show

command following but presented clearly discernible evi-

dence of nonreflex ‘‘purposeful’’ behavior. Nonreflex

behavior included (1) localization to noxious stimulation, (2)

visual pursuit movements, (3) ‘‘automatic’’ motor responses

(e.g., mouth opening to an approaching spoon, nose

scratching, grasping the bedrail), (4) object manipulation

(i.e., nongrasp reflex hand movements), (5) affective

Fig. 1 Clinical criteria of

disorders of consciousness

illustrating the proposed

difference between MCS- and

MCS?. MCS- describes

patients with minimal level of

behavioral interactions such as

visual pursuit, localization of

noxious stimulation and/or

appropriate smiling/crying.

MCS? is characterized by the

presence of high-level

behavioral responses as

command following
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behaviors occurring in contingent relation to relevant envi-

ronmental stimuli and are not due to reflexive activity (e.g.,

smiling in response to a specific eliciting stimulus such as the

patient’s mother) as defined by CRS-R criteria [4]. Fourteen

patients were classified as MCS? (4 women; aged

43 ± 19 years; 5 traumatic; 19 ± 26 months post injury)

meaning they showed reproducible command following

(i.e., at least three correct responses out of four identical

commands) as defined by CRS-R criteria. Commands were

presented verbally and in written form. All patients were

studied free of sedative drugs and following administration

of a standardized arousal facilitation protocol [4]. MCS-

and MCS? groups were matched for age, etiology, and time

since insult.

FDG-PET data were acquired after intravenous injection

of 300 MBq of FDG on a Philips Gemini TF PET-CT

scanner [5]. Patients were monitored by two anesthesiolo-

gists throughout the procedure. PET data were spatially

normalized, smoothed (14 mm full width at a half maxi-

mum) and analyzed using Statistical Parametric Mapping

(SPM8; www.fil.ion.ucl.ac.uk/spm). The first analysis

identified brain regions with significant decreased metabo-

lism in the following: (1) MCS patients as compared to

controls, (2) MCS- compared to control subjects, (3)

MCS? compared to control subjects, (4) MCS? compared

to MCS-. The design matrix included 13 MCS-, 14

MCS?, and 39 control subjects’ scans and global normali-

zation was performed by proportional scaling. A second

analysis looked for differences in brain metabolism between

MCS of traumatic (n = 9) and nontraumatic (n = 18) ori-

gin, taking into account age and duration since onset as

confounding factors. A third analysis identified brain

regions where residual metabolism correlated with the time

spent since onset. We also identified areas showing a cor-

relation with the CRS-R total scores. Next, a psychophysi-

ological interaction analysis [3] tested the hypothesis on

altered functional cortical connectivity in MCS- as com-

pared to MCS? and control subjects. This design matrix

included the same scans as described above and took into

account group differences in mean levels of glucose con-

sumption. Now the analysis looked for brain regions that

experienced a significant difference in reciprocal modula-

tion with/from the cortical area that most differentiated

MCS- from MCS? (i.e., Broca’s area; stereotaxic coordi-

nates -44, 22, 4 mm). It assessed the difference in modu-

lation of Broca’s area depending on the condition MCS-

versus MCS? or control subjects. A conjunction analysis [6]

identified areas showing functional connectivity (i.e., cross-

correlation in metabolic activity) with the seed voxel (Bro-

ca’s area) in healthy controls which also showed higher

connectivity in MCS? as compared to MCS-.

All results were corrected for multiple comparisons and

considered significant at false discovery rate correctedT
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Table 2 Statistical results and localization of peak voxels where cerebral metabolism was impaired in patients in a minimally conscious state

(MCS), MCS- (showing non-reflex behavior without command following) and MCS? (showing command following)

Brain region (area) Side x (mm) y (mm) z (mm) z-value Corrected p-value

MCS

Caudate L -8 12 10 6.15 \0.001

R 14 14 8 7.6 \0.001

Bilateral thalamus 6 -16 8 7.24 \0.001

Posterior cingulate/precuneus (31/7) 0 -30 32 Inf \0.001

Anterior cingulate (24/31) R 4 12 24 5.83 \0.001

Premotor (6) L -30 6 52 5.26 \0.001

Middle frontal gyrus (9) L -44 12 34 4.66 \0.001

Superior frontal gyrus (10) L -32 54 14 3.73 0.001

Inferior frontal gyrus (47) L -40 20 -4 4.69 \0.001

Premotor cortex (6) R 38 4 50 4.50 \0.001

Superior frontal gyrus (8) R 2 18 50 4.64 \0.001

Superior temporal gyrus (38) R 42 24 -22 4.5 \0.001

Inferior temporal gyrus (20) L -62 -26 -16 2.88 0.013

R 64 -18 -18 2.95 0.011

Angular gyrus (39/40) L -44 -70 42 3.68 0.001

R 54 -52 52 2.99 0.010

MCS-

Caudate L -8 12 8 5.75 \0.001

R 14 14 8 6.44 \0.001

Bilateral thalamus 0 -18 6 5.82 \0.001

Posterior cingulate/precuneus (31/7) 0 -26 32 6.93 \0.001

Anterior cingulate (33) R 4 12 24 5.5 \0.001

Premotor (6) L -30 8 54 5.96 \0.001

Middle frontal gyrus (9/6) L -44 14 32 5.61 \0.001

R 36 4 62 4.18 \0.001

Inferior frontal gyrus (47) L -40 20 -2 5.49 \0.001

Inferior temporal gyrus (20) L -60 -22 -16 3.96 0.001

R 62 -20 -18 2.42 0.008

Angular gyrus (39/38) L -46 -68 40 4.58 \0.001

R 42 24 -22 3.18 0.006

MCS?

Caudate L -8 10 12 4.48 \0.001

R 14 14 6 6.53 \0.001

Right thalamus R 10 -16 10 6.86 \0.001

Posterior cingulate/precuneus (31/7) 0 -36 32 7.04 \0.001

Anterior cingulate (32) R 8 12 38 4.21 \0.001

Middle frontal gyrus (9) R 46 12 30 4.3 \0.001

Middle temporal gyrus (21) R 68 -50 -2 2.67 0.033

Superior temporal gyrus (22) R 52 12 -4 4.89 \0.001

Postcentral gyrus (7) R 38 -70 52 2.69 0.031

Angular gyrus (39/40) R 54 -50 52 3.08 0.012

Right premotor gyrus R 48 10 48 3.85 \0.001

Preserved area in MCS? as compared to MCS-

Caudate L -8 8 -6 2.62 0.048

Sensory-motor area (4/3) L -60 -8 26 3.37 0.023

Premotor (6) L -30 8 56 3.76 0.023

Inferior frontal gyrus (45) L -44 22 4 3.99 0.023
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p \ 0.05 [7]. The study was approved by the Ethics

Committee of the Faculty of Medicine of the University of

Liege and written informed consent was obtained from all

healthy controls and the patients’ legal representatives.

Results

Patients in MCS (as compared to healthy controls) showed

hypometabolism in bilateral thalamus, caudate, posterior

Table 2 continued

Brain region (area) Side x (mm) y (mm) z (mm) z-value Corrected p-value

Middle frontal gyrus (9) L -42 14 30 3.87 0.023

Superior temporal gyrus (39) L -58 -56 26 3.19 0.024

Middle temporal gyrus (21) L -54 -8 -14 3.77 0.023

Coordinates are in standardized stereotaxic Montreal Neurological Institute space

Fig. 2 Areas with impaired

metabolism (shown in blue) in

patients in a minimally

conscious state (MCS), MCS-

(showing nonreflex behavior)

and MCS? (showing command

following). The lowest panel

shows areas with higher

metabolism in MCS? as

compared to MCS- (shown in
orange). All results are shown

on a 3D MRI template and

thresholded at false discovery

rate corrected p \ 0.05
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cingulate and precuneal, anterior cingulate and mesiofron-

tal, posterior parietal, temporal, and dorsolateral prefrontal

cortices. Patients in MCS- showed metabolic dysfunction

in bilateral thalami, caudate, posterior cingulate and precu-

neal, anterior cingulate and mesiofrontal, angular gyrus, left

posterior parietal and bilateral temporal and dorsolateral

prefrontal cortices. Patients in MCS? showed hypometab-

olism in right thalamus, bilateral caudate, posterior cingulate

and precuneal, anterior cingulate and mesiofrontal, right

posterior parietal, temporal, and premotor cortices. Finally,

MCS? patients showed significant higher metabolism as

compared to MCS- in Broca’s and Wernicke’s regions, left

premotor, left caudate, and post- and precentral cortices

(Table 2; Fig. 2). No differences were observed between

traumatic and nontraumatic etiology.

This analysis as a function of lesion type was also per-

formed for each MCS group separately (MCS- traumatic

versus MCS- nontraumatic; MCS? traumatic versus

MCS? nontraumatic). No differences were found between

traumatic and nontraumatic groups within each subcate-

gory. Time since onset showed no negative correlation with

brain metabolism (similar results were observed when

acute (\3 months) and subacute/chronic patients were

compared). Conversely, a positive correlation was

observed with precuneus—albeit at a less conservative

threshold (coordinates x = 10 y = -58 z = 48 mm,

z value = 3.72; small volume corrected p \ 0.05).

CRS-R total scores showed a linear correlation with

metabolism in the left thalamus, precuneus, posterior pari-

etal, left primary and associative auditory cortices, bilateral

premotor cortex, frontal eye field, insula, dorsolateral pre-

frontal and anterior cingulate cortices (Table 3; Fig. 3).

The connectivity study showed that Broca’s area was

functionally connected with the language network, mesio-

frontal and cerebellar areas in controls and that this con-

nectivity was significantly higher in MCS? as compared to

MCS- patients (Table 4; Fig. 4).

Discussion

Metabolic impairment in a bilateral subcortical (thalamus

and caudate) and cortical (fronto-temporo-parietal) net-

work in nontraumatic and traumatic MCS patients, com-

parable but less widespread than previously shown in the

vegetative state [3], was shown with this research. These

results are in line and extend a previous FDG-PET study

in 13 MCS patients of traumatic origin [8]. We observed

no differences in residual brain function depending on

etiology of MCS. In the vegetative state, a progressive

loss of cortical metabolic function was reported as a

function of the duration of the condition. The absence of

such decreased brain metabolism with time in our MCS

cohort might illustrate the absence of progressive Walle-

rian and transsynaptic degeneration characterizing the

chronic vegetative state [9]. In contrast, an increase in

metabolism seemed present in some areas such as the

precuneus in our subacute and chronic MCS patients. This

can be interpreted as a sign of residual cortical plasticity

in areas previously identified by means of diffusion tensor

Table 3 Peak voxels showing

linear correlation between

regional metabolism and Coma

Recovery Scale-Revised total

scores

Brain region (area) Side x (mm) y (mm) z (mm) z-value Corrected

p-value

Left caudate L -10 12 8 6.60 \0.001

R 14 14 8 6.63 \0.001

Left thalamus L -2 -18 6 6.76 \0.001

Insula L -38 20 -4 5.59 \0.001

R 38 24 -2 3.33 \0.001

Posterior cingulate (31) 0 -28 34 7.71 \0.001

Precuneus (7) L -2 -70 38 4.27 \0.001

Anterior cingulate (33) R 4 12 24 5.82 \0.001

Mesiofrontal (10) 0 52 0 3.46 0.002

Premotor (6) L -30 8 52 6.21 \0.001

R 34 6 64 4.09 \0.001

Superior frontal gyrus (8) L -4 48 42 4.31 \0.001

R 26 28 54 3.76 0.001

Middle frontal gyrus (9/10) L -44 14 30 5.92 \0.001

L -36 52 12 4.70 \0.001

Inferior parietal gyrus (39) L -46 -68 42 5.01 \0.001

Middle temporal gyrus (21)/

Primary auditory area

L -62 -26 -14 3.68 0.001
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MRI techniques in exceptional cases of recovery from

longstanding MCS [10].

We found a positive linear correlation between metab-

olism in frontoparietal cortices and the CRS-R total scores,

in line with our previous study showing a correlation

between this behavioral score and spontaneous ‘‘default

network’’ brain activity as measured by functional MRI in

‘‘resting state’’ conditions [11]. The identified polymodal

frontoparietal network is considered critical for the emer-

gence of conscious awareness [12]. These results corrob-

orate previous findings on pain [13, 14], auditory [15, 16],

and emotional [17, 18] processing showing that MCS

patients demonstrate a more elaborated and integrated level

of noxious, auditory, and emotional processing than veg-

etative state patients who only showed activation of pri-

mary ‘‘lower level’’ sensory cortices which are

disconnected from ‘‘higher order’’ associative cortical

networks [5, 14].

Clinically, the MCS entity regroups patients with dif-

ferent degrees of cognitive dysfunction or disability. We

here propose to subcategorize MCS in patients showing

only minimal levels of nonreflex behavioral responses

(coined MCS-) and patients showing higher levels of

behavioral interactions such as command following

(MCS?). Our FDG-PET results showed a different func-

tional neuroanatomy for both groups. MCS- seems char-

acterized by a partially preserved functioning brainstem

and right hemisphere with impaired left cortical networks

encompassing Broca’s and Wernicke’s regions, posterior

Fig. 3 Areas showing linear correlation of metabolism with Coma

Recovery Scale-Revised (CRS-R) total scores (shown in red) shown

on a 3D MRI template and thresholded at false discovery rate

corrected p \ 0.05. The lower panel graphically illustrates that CRS-

R scores increase as metabolic activity becomes more robust

Table 4 Peak voxels of functional connectivity assessment with Broca’s area (peak voxel identified in MCS? [ MCS- comparison) identi-

fying areas with higher connectivity in MCS? as compared to MCS- patients

Brain region (area) Side x (mm) y (mm) z (mm) z-value Corrected p-value

Posterior cingulate (30) L -14 -46 6 3.37 0.029

Middle frontal gyrus (10) L -42 52 6 4.46 0.003

Mesiofrontal (10) R 8 64 0 4.77 0.001

Superior frontal gyrus (10) R 30 54 16 3.49 0.023

Inferior frontal gyrus (44) R 64 14 16 3.09 0.048

Middle temporal gyrus (22) L -60 -40 6 3.56 0.020

Cerebellum L -52 -54 -46 4.15 0.005

Fig. 4 Functional disconnections with Broca’s area in MCS- as

compared to MCS? showing the language network, mesiofrontal and

cerebellar areas (thresholded at false discovery rate corrected

p \ 0.05; transparency denotes uncorrected p \ 0.05)
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parietal, presupplementary motor, sensorimotor and pre-

motor cortices. Phylogenetically, the midbrain is capable of

driving the eyes to track objects [19, 20], and the human

phenomenon of blindsight in the absence of occipital lobe

function suggests that tracking could be coordinated in the

optic tectum [21]. Command following requires a series of

cognitive and motor skills, including language compre-

hension, memory, volition, and motor execution, each

depending on the functional integrity of multiple neuronal

networks. Given that the vast majority of the patients

sample had nonlateralizing injury etiologies, our observa-

tion that the syndrome lateralizes points to the critical role

of the dominant hemisphere and language functions. These

results are in line with a recent fMRI study in disorders of

consciousness and locked-in patients suggesting that

activity of the language network may serve as an indicator

of high-level cognition and possibly volitional processes

that cannot be discerned through conventional behavioral

assessment alone [22]. Understanding spoken language

requires a complex series of processing stages to translate

speech sounds into meaning encompassing left-lateralized

frontal and temporal cortical regions [23–25] shown to be

dysfunctional in MCS-. Moreover, our functional con-

nectivity analysis identified corticocortical disconnections

within these networks and with speech motor production

networks also involving the cerebellum [26, 27]. This

functional connectivity analysis was also performed on

patients without left focal lesions and showed the same

results. Previous work suggested that complementary

analyses should be used in studies comprising of traumatic

patients. Some of these patients may exhibit extreme focal

lesions and, as a result, any statistical inference could be

driven by such outliers [28]. Previous studies have located

various subprocesses of verbal working memory in struc-

tures of the left inferior frontal gyrus [29]. The capacity for

voluntary action is thought to depend on the functional

integrity of presupplementary motor area, anterior pre-

frontal, and parietal cortices [30]. Finally, limb praxis

control and motor sequencing are considered to depend

mainly upon left frontoparietal circuits [31]. All the

aforementioned areas were observed to be highly dys-

functional in MCS- but showed near-normal metabolism

in MCS? patients characterized by the clinical demon-

stration of reproducible but inconsistent command

following.

Our findings on MCS- suggest that the metabolically

functionally preserved but isolated right hemisphere

function might permit these patients to show nonreflex

behaviors such as visual pursuit, localization to pain,

‘‘automatic’’ movements such as scratching or affective

behaviors contingent upon emotionally relevant stimuli

[32], while remaining unable to show command following

as an unambiguous clinical proof of consciousness [31,

33]. Split-brain research has previously identified different

cognitive processing styles for each cerebral hemisphere

[34]. The right hemisphere appears to process what it

perceives and no more, while the left hemisphere is

considered to make elaborations above the level of min-

imal sensory consciousness [35]. It should be noted that

MCS- patients also showed more frequently left-sided

damage on structural MRI scans (5 out of 10 patients),

while MCS? patients had most frequently right hemi-

spheric lesions (3 out of 10 patients). Structural and

metabolic functions are obviously linked. These findings

can also be seen in light of Damasio’s [36] prelinguistic

core consciousness seemingly present in both MCS- and

MCS? patients. Core consciousness corresponds to the

transient process that is incessantly generated relative to

any external stimulation without requiring language.

Similarly, Edelman has differentiated ‘‘primary’’ from

‘‘higher order’’ consciousness, the latter considered to

require language for its most developed expression [37].

Damasio’s extended consciousness is a more complex

process depending on an autobiographical self and is

enhanced by language, possibly partially preserved in

MCS?. However, both MCS- and MCS? patients

showed a functional impairment in midline cortices (me-

siofrontal and precuneus) considered critical for the

emergence of self consciousness [38]. Our limited

understanding of the dynamical neural complexity

underlying consciousness and its resistance to quantifica-

tion in the absence of communication [39] makes it dif-

ficult to establish strong claims about the self-

consciousness in MCS patients. In our view, even MCS

patients lacking clinical proof of consciousness in terms

of command following (here coined MCS-) show a

functional neuroanatomy reflecting the presence of pre-

served sensory, core, or primary consciousness. An

alternative explanation might be that MCS- patients have

a comparable level of consciousness as MCS? patients

but that they fail to understand verbal or written com-

mands due to a selective impairment of language function

[40]. This may also explain why some MCS patients fail

to show activations during fMRI active paradigms [22,

41]. As discussed elsewhere since language function may

impact CRS-R scores, detecting impaired language net-

works may represent an important factor to consider for

the clinical evaluation of patients with disorders of con-

sciousness. This result emphasizes the importance of

language independent assessment [42].
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