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Résumé

Nous consacrons cette dissertation a une étude algébrique de certaines généralisations
multivaluées des logiques modales. Notre point de départ est la définition des modéle de
KRIPKE [0, 1]-valués et L,-valués, ou [0, 1] désigne la MV-algébre bien connue et L., sa sous-
algebre {0, %, cel "771, 1} pour tout naturel non nul n.

Nous utilisons deux types de structures pour définir une relation de validité : la classe des
L-structures et celles des L-structures L.,-valuées. Ces derniéres sont des L-structures dans
lesquelles nous précisons pour chaque monde u ’ensemble L, (ot m est un diviseur de n) des
valeurs de vérité que les formules sont autorisées & prendre en wu.

Ces deux classes de structures définissent deux notions distinctes de validité. Nous les
utilisons pour étudier le probléme de la définissabilité des classes de structures a ’aide du
langage modal. Nous obtenons dans les deux cas ’équivalent du théoréme de GOLDBLATT -
THOMASON.

Nous considérons aussi les problémes de complétude vis a vis de ces sémantiques relation-
nelles & l'aide des liens qui les lient a la sémantique algébrique. Les résultats les plus forts
que nous obtenons concernent les logiques modales L.,,-valuées. En effet, dans ce cas, nous
pouvons appliquer et développer des outils algébriques (a savoir, les extensions canoniques et
les extensions canoniques fortes) qui permettent de générer des logiques complétes.

Abstract

This dissertation is focused on an algebraic approach of some many-valued generalizations
of modal logics. The starting point is the definition of the [0, 1]-valued and the k,-valued
KRIPKE models, where [0, 1] denotes the well known MV-algebra and L., its finite subalgebra
{0, %, e "T_l, 1} for any positive integer n.

Two types of structures are used to define validity of formulas: the class of £-frames and
the class of t.,-valued L-frames. The latter structures are L-frames in which we specify in
each world u the set L, (where m is a divisor of n) of the possible truth values of the formulas
in u.

These two classes of structures define two distinct notions of validity. We use these notions
to study the problem of definability of classes of structures with modal formulas. We obtain
for these two classes an equivalent of the GOLDBLATT - THOMASON theorem.

We are able to consider completeness problems with respect to these relational semantics
thanks to the connections between relational and algebraic semantics. Our strongest results
are about L,-valued logic. We are indeed able to apply and develop algebraic tools (namely,
canonical and strong canonical extensions) that allow to generate complete L.,-valued logics.



Thanks

I would like to thank Georges HANSOUL who led me to the problem of the algebraic
approach of many-valued modal logics and who helped me when I was facing difficulties by
providing me with, sometimes advices, sometimes answers.

I also thank my parents for the support they give me and my wife in everyday life and
during the most painful moments.

Since the publication of this dissertation coincide more or less with the end of my appoint-
ment as an Assistant at the Department of Mathematic of the University of Liége, [ would
like to express my gratitude to my colleagues with whom I had very good times.

But above all, I would like to thank my wife Sarah for proving everyday to her family and
relatives that it is possible and even necessary in all circumstances to live happier each day
than the day before. Thank you, Sarah, for the way you lead your life, guide mine and for
your constant struggle to live. It is really the greatest proof your love.

In o manner of speaking

I just want to say

That I could never forget the way
You told me everything

By saying nothing.

In a manner of speaking, Tuxedomoon



Contents

Introduction

Chapter 1. Prolegomena

1.
2.
3.
4.

MV-algebras

More about finitely generated varieties
More about MV-terms

Complete MV-algebras

Chapter 2. Models and structures

1.

SEE AN A

Language and models

Structures, frames and frame constructions
Integration of the algebraic ingredient
Duality for frames

Canonical extension of structures

Modally definable classes

Chapter 3. Many-valued modal systems and completness

1.

2.
3.
4

Logics

The algebraic semantic

More about varieties of finitely-valued modal logics
Completeness results

Chapter 4. Canonicity in ./\/l./\/lVﬁ . a syntactic approach

1.
2.
3.

Chapter 5. A topological duality for the category MMV~
A natural duality for the algebras of LUKASIEWICZ n + 1-valued logic

Index

Canonical extensions of bounded distributive lattice expansions

Back to canonicity
Strong canonical extensions

Dualization of objects

Dualization of morphisms

Duality between MMVE and MXE
Coproducts in MX~

Bibliography

vi

[

co

15
19
29
35
41

45
45
47
20
ol

62
62
71
75

83
83
85
87
88
89

93
97



Introduction

Une naissance commune, des vies distinctes

En se penchant sur ’histoire de la logique moderne, on peut constater que les logiques
modales et les logiques multivaluées ont été introduites a la méme époque. Mieux, il apparait
que certains logiciens, LUKASIEWICZ en particulier, définirent des systémes multivalués avec
pour premier but de pouvoir rendre compte de certaines modalités (voir [26]). L’ajout d’une
troisiéme valeur de vérité permettait par exemple d’exprimer qu’une formule est possible sans
étre vraie.

Néanmoins, ces deux types de formalismes empruntérent rapidement des chemins indépen-
dants parce qu’ils se révélérent étre deux généralisations aux caractéristiques trés distinctes
du calcul propositionnel. D’une part, avec les logiques multivaluées comme définies par t.U-
KASIEWICZ (voir [40, 41, 42]), le logicien peut choisir les valeurs de vérité de ses variables
propositionnelles dans un ensemble & plus de deux éléments. L’accent était donc ici mis du
coté de la sémantique.

D’autre part, en enrichissant le langage propositionnel de nouveaux connecteurs, appelés
modalités, le logicien a pour but de pouvoir nuancer chacune de ses formules : une formule
peut étre possible, connue, prouvable etc. L’accent était mis du cété syntaxique.

Dans les deux cas, 'approche algébrique de ces systémes formels donna d’intéressants
résultats. Ainsi, les logiques multivaluées de LUKASIEWICZ furent approchées au travers de
la variété des MV-algebres introduite par CHANG dans [5] et [6]. Cette approche algébrique
permit par exemple & CHANG de donner une preuve algébrique du théoréme de complétude de
la logique infivaluée de LUKASIEWICZ (voir [6]). Depuis lors, cette variété n’a eu cesse d’attirer
I'attention des algébristes pour ses multiples propriétés généralisant celles des algébres de Boole
(voir [10] et [22]).

L’approche algébrique des logiques modales fut quand & elle introduite par JONSSON et
TARsKI dans [33] et [34]. La variété des algébres de Boole a opérateurs qu’ils définirent fournit
une sémantique vis & vis de laquelle toute logique modale normale est compléte. Mais, comme
nous allons le préciser, cette sémantique algébrique ne regut qu’une vingtaine d’années plus
tard toute I'attention qu’elle mérite.

Entre temps, les années soixante virent naitre un type de sémantique qui fut responsable
du succés des logiques modales chez les mathématiciens, les informaticiens, les philosophes
et les linguistes. Il s’agit de la classe des sémantiques relationnelles. I.'idée de base de cette
approche est trés attirante intuitivement. Un modeéle de KRIPKE est un ensemble non vide W
(qu’on appelle univers et dont les éléments sont appelés mondes) muni d’une relation binaire R
et d’une valuation Val, c’est & dire d’une fonction qui associe & toute variable propositionnelle
en tout monde une valeur de vérité dans {0, 1}. Cette valuation est étendue inductivement a

vi



INTRODUCTION vii

I’ensemble des formules en utilisant les régles évidentes pour les connecteurs booléens. En ce
qui concerne le connecteur ¢ de possibilité, la régle stipule que la formule ¢¢ est vraie en un
monde u s'il existe un monde v accessible & partir de u (c’est-a-dire tel que (u,v) € R) en
lequel la formule ¢ est vraie.

Les logiciens constatérent rapidement qu’en ajoutant des conditions sur la relation d’acces-
sibilité R, les modéles de KRIPKE fournissent une sémantique compléte pour divers types de
logiques modales normales (voir [38| pour les premiers résultats de complétude de KRIPKE ou
[1] ou [4] pour une synthése des résultats actuels). C’est ainsi que débuta ’étude systématique
des liens entre les structures relationnelles et les logiques modales.

Une approche multiple des structures relationnelles

L’universalité des structures de KRIPKE permet d’aborder cette étude (de maniére non
exclusive) a l'aide de différents outils mathématiques. Parmi ceux-ci, notons la théorie des
modeéles, 'algébre universelle et la théorie des coalgébres dont 'application & 1’étude des lo-
giques modales est plus récente.

Une structure de KRIPKE peut étre considérée comme un modeéle pour un langage du
premier ordre ne contenant qu’un unique symbole relationnel binaire. Certaines propriétés de
ces structures peuvent donc étre a la fois définies par des formules modales ou des formules du
premier ordre. L’étude générale de ces problémes de définissabilité et des correspondances entre
langage du premier ordre et langage de la logique modale peut naturellement étre abordé grace
a la théorie des modeéles. Parmi les résultats célébres obtenus par ce biais, citons les résultats
de SAHLQVIST (voir [50]) qui caractérisent une famille de propriétés du premier ordre qui sont
également définissables par des formules modales et qui donnent une traduction automatique
de ces propriétés entre les deux langages. Notons également bien sir les résultats de vAN
BENTHEM (voir [55]) qui caractérisent la logique modale comme le fragment de la logique du
premier ordre qui est invariant par bisimulation.

L’approche algébrique des structures de KRIPKE apparait de maniére déguisée dans les
articles fondateurs [33| et [34] de la théorie des algebres de Boole & opérateurs. Ce n’est que
bien des années plus tard que les mathématiciens prirent pleinement conscience de la richesse
des liens qui existent entre la sémantique relationnelle et la sémantique algébrique. Ces liens se
matérialisent au travers de deux types de construction : la construction de I'algébre complexe
associée & une structure d’une part et la construction de la structure canonique associée a une
algébre de Boole & opérateurs d’autre part.

Trés briévement, 'algébre complexe d’une structure § basée sur 'univers W est ’algébre
de Boole des fonctions de W dans ’algébre de Boole & deux éléments 2 sur laquelle est greffée
une nouvelle opération dont le but est de traduire I'information contenue dans la relation
d’accessibilité de §. L’algébre complexe encapsule la théorie modale de § puisqu’une formule
¢ < 1 est valide dans § si et seulement si I’équation correspondante ¢ = v est satisfaite dans
I’algébre complexe de §.

La structure canonique d’une algébre de Boole & opérateur A a pour univers 'ensemble des
homomorphismes de A dans 2 et pour relation d’accessibilité la plus grande relation compatible
avec I'opérateur modal de A. Si une formule ¢ < 1 est valide dans cette structure canonique
alors I’équation ¢ = 1) correspondante est satisfaite dans I’algébre & laquelle la structure est
associée.
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Les combinaisons de ces constructions permettent une traduction algébrique des questions
concernant le couple langage modal - structure relationnelle. Elles permettent par exemple de
résoudre des problémes de complétude et d’incomplétude, de définissabilité etc.

Les résultats obtenus grace & cette approche algébrique sont nombreux. Citons, parce
que nous en considérons des généralisations dans cette thése, les travaux de GOLDBLATT et
THOMASON a propos de la définissabilité des classes élémentaires de structures (voir [24]),
ceux de JONSSON (voir [32]) qui constituent une version algébrique de ceux de SAHLQVIST
ainsi que les résultats qui étendent la dualité de STONE aux algébres de Boole & opérateurs
(voir [29, 52]).

Fusion des genres

Nous consacrons cette dissertation a une étude de certaines généralisations multivaluées
des logiques modales. Certains auteurs ont déja initié de telles généralisations (voir [15], [13],
[14], [48]). Puisque c’est lexistence des sémantiques relationnelles qui donna a la logique
modale ses lettres de noblesse, il a semblé cohérent & ces auteurs de considérer ce type de
sémantique comme point de départ d'une approche multivaluée des logiques modales. Il s’agit
donc de sauver la sémantique de KRIPKE afin de maximiser les chances de survie des logiques
développées.

La variété des systémes déja introduits le prouve, cette contrainte laisse encore énormé-
ment de libertés dans le choix de la sémantique & adopter : il y a de nombreuses possibilités de
généraliser la définition d’un modéle de KRIPKE & un cadre mutlivalué. Néanmoins, ces géné-
ralisations peuvent se répartir en deux classes, non disjointes. 1l s’agit de la classe des modéles
de KRIPKE dans lesquels les variables propositionnelles sont évaluées dans un ensemble & plus
de deux valeurs de vérité et de la classe des modéles de KRIPKE dont la relation d’accessibilité
est multivaluée.

Face a ces deux types de généralisations, le choix du logicien est dicté par différents
critéres : il peut s’agir des applications qu'il envisage pour ces systémes formels (comme dans
[14]), du théme des résultats qu’il désire obtenir en priorité (translation entre les formules
modales et les formules du premier ordre par exemple), de leur portée ou de leur profondeur,
des outils qu’il envisage d’appliquer (algebres, coalgebres, théorie des modeéles), d’une intuition
ou d’appétences.

Dans notre choix, nous avons été guidé par la volonté de considérer des modéles de KRIPKE
multivalués pour lesquels les outils algébriques existant pouvaient étre appliqués ou généralisés.
C’est ainsi que nous avons décidé de reposer notre approche sur les logiques multivaluées de
L ukaAsiEwicz. Les modéles de KRIPKE que nous considérons sont ainsi des modéles dans
lesquels les variables propositionnelles sont évaluées dans une sous MV-algebre compléte de
la MV-algébre [0, 1] (les relations ne sont pas multivaluées). Etant donné que la variété des
MV-algebres partage beaucoup de propriétés avec celle des algébres de Boole, nous avions
espoir de trouver dans cette variété les caractéristiques requises pour une approche algébrique
menant au moins & un théoréme de complétude.

Malheureusement, méme si nous obtenons des résultats intéressants dans le cas le plus
général des modeles [0, 1]-valués, les résultats les plus forts que nous prouvons dans cette
dissertation concernent les modeéles ¥.,,-valués (ou L, désigne la sous-algebre {0, %, ey ”T_l, 1}
de [0, 1] pour tout entier strictement positif n). Ainsi, par exemple, ce n’est que dans les cas
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L,-valués que nous parvenons & décrire la plus petite logique modale normale, c’est a dire
I’ensemble des formules qui sont vraies dans tous les modéles L.,,-valués. La difficulté d’obtenir
des résultats pour les modéles [0, 1]-valués est imputable a certains défauts des théorémes de
représentation des MV-algébres. En effet si, comme c’est le cas pour les algébres de Boole,
une MV-algébre d’une variété finiment engendrée peut étre représentée comme un produit
booléen de ses quotients simples, ce résultat n’est pas vrai dans la variété des MV-algébres
(dans laquelle les filtres premiers et maximaux ne coincident pas).

Le contenu

Prolégomeénes. Le premier chapitre de cette dissertation rappelle quelques notions a
propos de la variété des MV-algébres. Le choix de ces notions est forcément orienté, et le lecteur
qui désire plus d’informations & propos de cette variété est invité a consulter la monographie
[10] ou larticle [22]. Outre des généralités, nous rappelons aussi dans la troisiéme section de
ce chapitre quelques résultats & propos de la construction de certains termes du langage des
MV-algebres. Ces résultats sont d’une importance capitale pour le reste de la dissertation.

Modéles et structures. Le deuxiéme chapitre débute par l'introduction des modéles
de KRIPKE A-valués o A est une MV-algébre compléte. Nous prouvons que si A est une
MV-algébre compléte et complétement distributive, alors dans un certain sens, tout probléme
concernant les modeéles A-valués équivaut a un probléme a propos de modéles [0, 1]-valués.
Nous introduisons également les modéles pour une généralisation multivaluée de la logique
dynamique propositionnelle qui est une logique de programmes qui repose sur une interpréta-
tion des programmes dans le langage modal. Nous illustrons ces définitions en montrant qu’il
est possible de rajouter une « couche dynamique » a l'interprétation du jeux de RENYI - ULAM
développée dans [45] en termes de MV-algébres et de logiques finivaluées de LUKASIEWICZ.

Nous introduisons alors un deuxiéme niveau dans la gamme des sémantiques relationnelles :
le niveau des structures. Une structure de KRIPKE est un ensemble muni d’une relation binaire
(un modele sans valuation). Une formule est valide dans une structure de KRIPKE si elle est
vraie dans tous les modéles obtenus en rajoutant une valuation & la structure. Il s’agit donc
du niveau adéquat pour ’étude des structures relationnelles a ’aide du langage modal.

Nous définissons alors un niveau supplémentaire, celui des p-structures et des L,-structu-
res. [l s’agit de structures de KRIPKE dans lesquelles on précise, pour chaque monde, ’ensemble
des valeurs de verités que les formules sont autorisées a prendre en ce monde (cet ensemble
est une sous-algébre compléte de [0, 1]). Les valuations qui sont autorisées sur ces structures
doivent respecter ces régles. La classe des f.,-structures est une sous-classe élémentaire de la
classe des p-structures. Quant & celle-ci, elle est obtenue comme une classe élémentaire dans
I’extension du langage des structures de KRIPKE qui contient un prédicat unaire rp pour
toute sous-algebre compléte B de [0, 1]. La relation rp contient les mondes qui évaluent leurs
formules dans B.

A ce stade des constructions, le lecteur ne réalise peut-étre pas I'importance de ces classes
de structures dans la gamme des sémantiques relationnelles pour les logiques modales mul-
tivaluées. En fait, il s’agit du niveau le plus naturel pour I’étude algébrique des liens entre
logiques modales multivaluées et sémantique relationnelles. En effet, la théorie des extensions
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canoniques peut étre appliquée pour étudier des problémes de complétude de logiques k-
valuées, mais les résultats obtenus impliquent des classes de F.,-structures et non simplement
des classes de structures de KRIPKE.

Le deuxiéme chapitre se poursuit par la présentation d’une panoplie de constructions de
structures auxquelles sont associées des résultats de préservation de validité de formules du
langage modal. Ces constructions permettent d’emblée de donner des exemples de propriétés
de structures ou de L,-structures qui ne peuvent pas étre définies par des formules modales
parce qu’elles ne sont pas conservées par une de ces constructions. De plus, elles apparaitront
dans la version f.,-valuée du théoréme de GOLBLATT - THOMASON qui caractérise ces classes
modalement définissables.

L’outil algébrique entre alors en jeu par l'intermédiaire de la variété des MV-algébres &
opérateurs que nous définissons. Nous introduisons également diverses notions d’algébres com-
plexes associées a des structures (ou p-structures) afin de capturer dans le langage algébrique
les théories modales de ces structures.

Les constructions inverses, celles qui permettent d’associer des structures aux algébres sont
alors envisagées. Ainsi, si A est une MV-algébre & opérateurs, ses structures canoniques ont
pour univers 'ensemble des filtres maximaux de A. A cet égard, le Lemme 2.40 est fondamen-
tal pour la suite de la dissertation. Il prouve que le modéle canonique associé & un modéle
algébrique s’étend naturellement aux formules.

L’occasion se présente alors de prouver que les différents types de constructions de struc-
tures que nous avons précédemment introduits possédent un correspondant algébrique.

Nous généralisons ensuite dans la cinquiéme section du deuxiéme chapitre la célébre dua-
lité entre la catégorie des algébres de Boole complétes et complétement distributives avec
opérateurs complets d’une part (dont les fleches sont les homomorphismes complets) et la ca-
tégorie des structures de KRIPKE (dont les fleches sont les morphismes bornés) a des dualités
pour des sous-catégories complétes de la catégorie des MV-algebres complétes et complétement
distributives d’'une part et des catégories de structures.

Nous considérons ensuite un dernier type de construction de structures. Il s’agit de ’exten-
sion canonique, obtenue en composant la construction de ’algébre complexe d’une structure
avec celle de la structure canonique d’une algébre.

Enfin, nous obtenons, en suivant les traces des résultats des auteurs, deux généralisations
du théoréme de GOLDBLATT - THOMSASON. En effet, les Théorémes 2.75 et 2.78 caractérisent
respectivement les classes de L,-structures et de structures fermées par ultraproduit qui sont
I.,,-modalement définissables.

Systémes modaux multivalués et complétude. Nous consacrons le troisiéme chapitre
au probleme général de complétude des logiques modales vis & vis des classes de structures
relationnelles. Les résultats s’obtiennent par l'intermédiaire de la sémantique algébrique. En
effet, toute logique modale normale multivaluée est compléte vis a vis de la variété des algébres
qu’elle définit.

Cette complétude algébrique peut dans certains cas étre traduite en un résultat de com-
plétude vis & vis des sémantiques de KRIPKE via les constructions des structures canoniques
et des algébres complexes. A cet effet, le Lemme 2.40 déja mentionné joue un réle d’une
importance capitale.
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C’est ainsi que nous obtenons une description syntaxique de la plus petite logique modale
L,-valuée K,,, c’est-a-dire de ’ensemble des formules qui sont vraies dans tous les modeéles
L,-valués. Nous obtenons également un tel résultat pour les modeéles L,-valués de la logique
propositionnelle dynamique k,,-valuée.

Malheureusement, nous n’obtenons qu’un résultat partiel pour la description de la plus
petite logique modale [0, 1]-valuée K, c’est a dire l’ensemble des formules qui sont vraies
dans tout modele [0,1]-valué. En effet, dans le résultat que nous obtenons intervient une
régle d’inférence non finie : cette régle nous améne & spécifier que ¢ est un théoréme si nous
pouvons prouver que ¢ @ ¢" est un théoréme pour tout naturel non nul n. Le probléme de
I’axiomatisation de K sans une telle régle infinie reste ouvert.

Nous introduisons alors deux types de canonicités : la canonicité et la canonicité forte.
A l'aide de leur traduction algébrique, ces deux types de canonicité permettent d’obtenir des
logiques modales T.,-valuées qui sont complétes vis & vis de classes des structures (pour la
canonicité forte) et de L,-structures (pour la canonicité). Nous obtenons par exemple que les
classes de structures et L,-structures élémentaires ont des théories modales complétes (voir
Théoréme 3.47) généralisant un résultat bien connu.

Canonicité dans MMVﬁ : une chemin syntaxique. Obtenir des variétés canoniques
et fortement canoniques permet donc de définir des logiques complétes. Une des méthodes
les plus fécondes pour la construction de telles variétés consiste & étudier la conservation
d’équations au travers de ces constructions. Un ensemble d’équations conservées par exten-
sion canonique (forte) définit une variété (fortement) canonique. Cette approche syntaxique
de la canonicité fut initiée dans [33] et [34] pour les algebres de Boole & opérateurs pour étre
pleinement exploitée dans [32] afin de donner une preuve algébrique des résultats de complé-
tude de SAHLQVIST. Depuis généralisée & la classe des expansions de treillis distributifs bornés
[20], puis des expansions des treillis bornés [17], cette approche de la canonicité a déja produit
d’intéressants résultats (voir [21] par exemple).

Comme il est possible de considérer la variété des MV-algébres comme une variété d’ex-
pansions de treillis distributifs bornés, notre approche de la canonicité repose sur les résultats
de [20]. La variété des MV-algeébres n’étant pas canonique (voir [16]), nous restreignons notre
étude aux variétés de MV-algébres a opérateurs dont la MV-algébre sous-jacente appartient a
une variété finiment engendrée.

Aprés avoir rappelé les résultats de [20], nous prouvons que la définition d’extension
canonique d’une MV ,-algébre & opérateurs que nous avons adoptée dans le chapitre 2 coincide
avec la définition classique (c’est-a-dire selon I’approche de [20]). Il s’agit d’un résultat essentiel
puisqu’il permet de connecter ’approche classique de la canonicité avec les sémantiques de
KRIPKE pour les logiques modales t.,,-valuées.

Ensuite, nous pouvons adopter la technique classique pour étudier la stabilité des équations
au travers de ces extensions. Cette technique repose sur 'existence de liens entre les propriétés
de stabilité des termes et les propriétés de continuité des connecteurs qui les composent.

En mimant la démonstration du résultat pour les logiques modales bivaluées, nous obte-
nons le correspondant du théoréme de SAHLQVIST pour les logiques modales ¥.,-valuées et les
extensions canoniques. Ce résultat corrobore notre point de vue sur ’approche algébrique des
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sémantiques relationnelles pour les logiques modales F.,,-valuées : cette approche est adaptée
a I’étude des t.,-structures plutét que des structures.

Pour étudier la canonicité forte des logiques modales t.,-valuées, aucun outil existant
ne pouvait étre appliqué. Bien str, la définition de 'extension canonique forte d’'une MV,,-
algébre & opérateurs A s’impose d’elle méme : elle s’obtient en considérant la MV,,-algébre
complexe associée & la structure canonique de A. Cette construction peut étre caractérisée
a isomorphisme prés comme la plus grande extension de A dont I'algébre d’idempotents est
isomorphe & ’extension canonique de I'algébre d’idempotents de A.

Nous exploitons cette description pour étendre une application définie entre deux algébres
A et B en une application entre leurs extensions canoniques fortes. En effet, certaines appli-
cations entre MV, -algébres, que nous appelons idemorphismes, sont entiérement caractérisées
par les valeurs qu’elle prennent sur les algébres d’idempotents. Ainsi, si f : A — B est une telle
application, nous pouvons définir f7 sur 'extension canonique forte A™ de A comme 'unique
idemorphisme dont la restriction a l'algébre de Boole d’idempotents de A7 est I’extension
canonique de la restriction de f & ’algébre d’idempotents de A.

En transportant les propriétés de stabilité des termes au travers de l'extension canonique
dans 'univers des extensions canoniques fortes, nous sommes amenés & prouver le Théoréme
4.61 qui est un équivalent du théoréme de SAHLQVIST pour les extensions canoniques fortes.

Une dualité topologique pour la catégorie MMVﬁ. L’extension canonique n’a pas
toutes les qualités. En effet, cette construction fournit un théoréme de représentation impar-
fait : cette extension ne satisfait peut-étre pas toutes les équations satisfaites par ’algébre de
départ.

De linformation s’est donc perdue dans la construction. Comme pour les algébres de
Boole & opérateurs, I'information se perd au niveau de la construction de ’algébre complexe :
considérer ’ensemble des valuations possibles sur la structure canonique d’une algébre A est
trop général pour retrouver exactement le contenu algébrique de A.

Il est possible de remédier & ce défaut en ajoutant une nouvelle couche, de nature topolo-
gique, aux structures canoniques. Dans ['aventure, nous quittons donc le monde des structures
définissables au premier ordre.

Pour ajouter cette couche, nous fusionnons deux types de constructions : la construction
d’une dualité forte (en sens des dualités naturelles, voir [11]) pour la catégorie des MV,,-
algébres et la construction de la ¥.,-structure canonique associée & une MV,,-algébre & opéra-
teurs.

Nous obtenons alors une dualité ente la catégorie MMVE des MV ,-algébres & opérateurs
et une classe de structures topologiques. Cette dualité étend a M./\/lVfl la dualité de STONE
pour les algebres de Boole & opérateurs.

Ceci nous fournit bien str un résultat de complétude pour toute logique modale finivaluée
L. Enfin, nous envisageons le probléme de la construction des coproduits dans la catégorie
duale.
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Modalités

Pour terminer, précisons que, si dans cette introduction nous n’avons considéré que des
logiques modales dans un langage ne contenant qu’un seul opérateur unaire, nous proposons
dans cette dissertation des résultats plus généraux puisque nous autorisons autant de modalités
d’arité quelconque que désiré.
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Born together, live apart

When one looks backwards in the history of modern logic, one can notice that modal logics
and many-valued logics are born approximatively at the same time (see [26]). It even appears
that some logicians, such as LUKASIEWICZ, defined many-valued systems in order to deal with
modalities. By considering a third truth value, they meant to express that a formula can, for
example, be possible without being true.

Nevertheless, these two types of formalisms followed their own ways. They are indeed
two generalizations of propositional calculus with very different properties. On the one hand,
with many-valued logics as defined, e.g., by LUKASIEWICZ (see [40, 41, 42]), the logician can
choose his truth values in a set containing more than two elements. The focus is set on the
semantic side.

On the other hand, by enriching the propositional language with new connectives, called
modalities, the logician aims to modify the meaning of his formulas: a formula can be possible,
known, etc. The focus is set on the syntactic side.

In both cases, the algebraic approach of these formal systems brought lots of interesting
results. Hence, LUKASIEWICZ many-valued logics were studied through the variety of MV-
algebras that was defined by CHANG in [5] and [6]. This approach lead for example to an
algebraic proof of the completeness result for LUKASIEWICZ’ infinite-valued logic (see [6]).
Ever since CHANG introduced this variety, the algebraist s studied it extensively as an exten-
sion of the variety of boolean algebras that has a lot of interesting properties (see [10] and
22]).

The algebraic approach of modal logics was initiated by JONSSON and TARSKI in their
seminal papers [33] and [34]. They defined the variety of boolean algebras with operators that
provides an algebraic semantic with respect to which every normal modal logic is complete.
But, as we are going to realize, this semantic did not receive the attention it deserves for about
twenty years.

Meanwhile, a new type of semantics for modal logics, called relational semantics, appeared
during the sixties. This class of semantics is responsible for the success of modal logic in the
areas of mathematic, computer science, linguistic and philosophy. The idea that underlies
this approach is very appealing and intuitive. A KRIPKE model is given by a nonempty set
W (called the universe) whose elements are called worlds together with a binary accessibility
relation R on W and a valuation map Val, i.e., a map that assigns a truth valued in {0, 1} to
any propositional variable p in a world w. This map is extended to formulas by following the
obvious rules for boolean connectives. For the modality ¢, the rule specifies that the formula

xiv
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Q¢ (read “¢ is possible”) is true in a world w if there is a world accessible from u in which the
formula ¢ is true, i.e., the truth value Val(u, 0¢) is defined as \/{Val(v, ¢) | (u,v) € R}.
Logicians realized that they can obtain completeness results for various normal modal
logics and KRIPKE models by adding conditions on the accessibility relation R (see [38] for
the first completeness results and [1] or [4] for surveys of up to date results). This was the
birth of the in-depth study of the links that connect relational structures and modal logics.

Many-sided approach of relational structures

The universal aspect of KRIPKE structures allows to approach them with the help of
numerous mathematical tools. Among them, let us cite model theory, universal algebra,
category and coalgebra theory.

A KRIPKE frame can be seen as a first order model for a language containing a single binary
relational symbol. Among the properties of these structures, some of them can be defined both
by first order and modal formulas. The problem of definability and correspondence between
first order formulas and modal ones can obviously be tackled by a model theoric approach.
Among the results obtained in this way, let us cite SAHLQVIST’s results that characterize
a family of first order properties that can also be defined by modal formulas and that also
provide an automatic translation of these properties between the two languages (see [50]). Let
us also cite VAN BENTHEM’s results that describe modal logic as the bisimulation invariant
fragment of first order logic (see [55, 56]).

The first steps in the algebraic approach of KRIPKE frames already appeared in a disguised
form in the seminal works [33] and [34] about boolean algebras with operators. Only many
years later, mathematicians realized how deep the connections are between relational and
algebraic semantics. These connections materialize through two types of constructions: the
construction of the complex algebra associated to a frame on the one hand and the construction
of the canonical frame associated to a boolean algebra with operators on the other hand.

Roughly speaking, the complex algebra of a frame § with universe W is the boolean
algebra of functions from W to the two element boolean algebra 2 on which a new operation
is added in order to grab the information of the accessibility relation of §. The complex
algebra contains the modal theory of § since a formula ¢ < 4 is valid in § if and only if the
corresponding equation ¢ = 1 is satisfied in the complex algebra of §.

The universe of the canonical frame associated to a boolean algebra with operator A is the
set of boolean homomorphisms from A to 2 and its accessibility relation is the biggest relation
compatible with the modal operator of A. The canonical structure only validates formulas
¢ < 1 whose corresponding equation ¢ = 1) is satisfied in A.

The compositions of these constructions allow an algebraic translation of questions about
the connections between modal language and relational structures. For example, completeness,
incompleteness and definability can be tackled with these tools.

Among the results obtained thanks to this algebraic approach, let us cite GOLDBLATT
and THOMASON’s results (that we generalize in this dissertation) about modal definability
of elementary classes of structures (see [24]). Let us also cite JONSSON’s results (see [32])
which are an algebraic version of SAHLQVIST’s completeness results and finally the results
that extend STONE duality to boolean algebras with operators (see [29, 52]).
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Fusion of style

This dissertation is focused on some many-valued generalizations of modal logics. Many
authors have already initiated such studies (see [15], [13], [14], [48]). As each of these authors
realized, since the success of modal logics is a consequence of their KRIPKE semantics, it is
wise to consider this semantics as a starting point for many-valued generalizations of modal
logics. In other words, let us keep KRIPKE semantic to optimize the survival rate of these new
many-valued modal logics.

The diversity of the many-valued modal systems that have already been introduced proves
that the principle of “keeping KRIPKE semantic” still allows a lot of freedom in the definitions.
Indeed, there are many ways in which one can generalize KRIPKE models to a many-valued
realm. Nevertheless, these generalizations can be classified in two (non exclusive) classes: the
class of the KRIPKE models in which propositional variables are evaluated in a set with more
than two elements and the class of the KRIPKE models in which the accessibility relation is
many-valued.

Facing these possibilities, the logician may combine several criteria to determine the ap-
proach he want to follow. His choice can be guided by the applications he wishes to develop
for his systems (as in [14]), by the theme of the results that are to be obtained in priority
(translation between modal formulas and first order formulas for example), by the tools he
wishes to apply (algebras, coalgebras, model theory, ...), by his intuition and his abilities.

In our case, we were guided by the will to consider many-valued KRIPKE models for which
the existing algebraic tools could be applied or generalized. Hence, we have decided to base our
approach on LUKASIEWICZ logic. The KRIPKE models that we consider are models in which
variables have their truth value in a complete subalgebra of the MV-algebra [0, 1] (relations
are not many-valued). Since the variety of MV-algebras shares a lot of properties with the
variety of boolean algebras, we hoped to find in this variety the properties required for an
algebraic approach that would lead, at least, to a completeness result.

Unfortunately, even if we obtain interesting results in the general case of [0, 1]-valued
models, the strongest results we could prove are about L,-valued models (where L, is the
subalgebra {0, %, e ”T_l, 1} of [0, 1] for any strictly positive integer n). Hence, for example,
we are able to describe the smallest A-valued modal logic, i.e., the set of formulas that are
true in any A-valued KRIPKE-model, only of A is equal to L., for a strictly positive integer n.
The difficulty in getting results for [0, 1]-valued models is a consequence of some weaknesses
in the representation theorems for MV-algebras. Indeed, as in the case of boolean algebras,
any MV-algebra that belongs to a finitely generated variety can be represented as a subdirect
product of its simple quotients, but this results is not true in the whole variety of MV-algebras
(in which prime filters and maximal filters do not coincide).

The content of the dissertation

Prolegomena. In the first chapter of this dissertation, we recall some definitions and
results about MV-algebras. The style may seem rough and the lost reader may consult the
monograph [10] or the paper [22] to obtain complementary information about this variety.
Besides the necessary general results, we recall in section 3 of chapter 1 some (folklore) results
about the constructions of some terms in the language of MV-algebras. These results are
widely applied in the entire dissertation.
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Models and structures. We start the second chapter by introducing the A-valued
KRIPKE models where A is a complete MV-algebra. We prove that if A is a complete and
completely distributive MV-algebra then, in a way, any problem about A-valued models is
equivalent to a problem about [0, 1]-valued models. We also introduce the models for a many-
valued generalization of propositional dynamic logic which is a logic of programs that is build
upon an interpretation of programs in the modal language. We illustrate these definitions
by showing that it is possible to add a “dynamic layer” to the interpretation in terms of
MV-algebras and LUKASIEWICZ finitely-valued logics of the RENYT - ULAM’s game that is
developed in [45].

Then we define a second level in the class of relational semantics: the level of frames. A
KRIPKE frame is given by a set together with a binary relation on that set (i.e., a frame is a
model without valuation). A formula is valid in a frame if it is true in any model obtained
by adding a valuation to the frame. Thus, the level of frames is the adequate level for the
approach of relational structures with the modal language.

Another level is introduced: the level of p-frames and L,-frames. These are frames in
which we specify in every world the set of allowed truth values for the formulas in that world
(this set is a complete subalgebra of [0, 1]). Any valuation added to the frame has to respect
these rules. The class of the L.,-frames is an elementary subclass of the class of the p-frames.
The class of the p-frames is defined as an elementary class in the extension of the language
of frames that contains a unary predicate rp for any complete subalgebra B of [0,1]. By
definition, the relation rp contains the worlds that evaluate their formulas in B.

At this step, the reader may not realize how important is this level in the family of relational
semantics for many-valued modal logics. The level of ¥.,-frames is actually the more natural
one for an algebraic approach of the connections between t.,,-valued modal logics and relational
semantic. Indeed, the theory of canonical extension can be applied to obtain completeness
results for t.,,-valued modal logics, but these results involve classes of L,-frames and not simply
classes of frames.

The second chapter continues with the introduction of several types of constructions of
structures. Each of this type of construction preserves validity of modal formulas in a way or
another. Thus, these are tools that can be used to provide examples of frames or p-frames
properties that cannot be defined by modal formulas since they are not preserved by one of
these constructions. Moreover, they appear in the L,-valued counterpart of the GOLBLATT -
THOMASON theorem that characterizes modally definable classes of frames and t.,,-frames that
are closed under ultraproducts.

The algebraic tool comes then into the picture through a suitable variety of MV-algebras
with operators. We also introduce several notions of complex algebras that we associate to
frames (or p-frames) in order to capture the modal theory of these structures in the algebraic
language.

The reverse constructions that associate structures to algebras are then considered. If
A is an MV-algebra with operators, the universe of its canonical structures is the set of the
maximal filters of A. In this respect, Lemma 2.40 is an essential result for the dissertation.
This result proves that the canonical model associated to an algebraic model extends naturally
to formulas.
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Then, we take the opportunity to show that the different types of constructions of stru-
ctures that we have previously introduced have an algebraic counterpart.

In section 4 of chapter 2, we generalize the famous duality between the category of complete
and completely distributive boolean algebras with complete operators (whose arrows are the
complete homomorphisms) and the category of KRIPKE frames (whose arrows are the bounded
morphisms). We obtain dualities for some complete subcategories of the category of complete
and completely distributive MV-algebras and some categories of structures (frames and p-
frames).

We continue by introducing a last type of construction of structures, namely, the canonical
extension. This extension is obtained as the canonical structures of the complex algebra of a
structure.

Eventually, we obtain two generalizations of the GOLDBLATT - THOMSASON theorem by
mimicking the original proof. Our results characterize the classes of frames and %.,-frames
closed under ultraproducts that are ¥.,-modally definable.

Many-valued modal systems and completeness. The third chapter is dedicated to
the problem of completeness of many-valued modal logics with respect to relational semantics.
The results are obtained through the algebraic semantic. Indeed, any many-valued normal
modal logic is complete with respect to the variety of algebras that it defines.

These algebraic completeness results can, in some cases, be translated into relational com-
pleteness results thanks to the construction of the canonical structures and complex algebras.
Lemma 2.40 plays a key role to that aim.

In that way, we obtain a syntactic description of the smallest normal modal t.,-valued
logic K,,, which is the set of formulas that are true in every bL,-valued KRIPKE model. We
also prove such a result for ¥.,-valued models of propositional t.,,-valued dynamic logic.

Unfortunately, we only obtain partial results for the description of the smallest normal
modal [0, 1]-valued logic K which is the set of formulas that are true in any [0, 1]-valued
KRIPKE model. Indeed, in our results, we use an infinitary deduction rule. This rule states
that we have to accept that ¢ is a theorem whenever we find that ¢ @ ¢™ is a theorem for
every strictly positive integer n. The problem of the axiomatization of K without such an
infinitary rule is still open (see [2]).

We also introduce two types of canonicity: the canonicity and the strong canonicity.
Thanks to their algebraic translation, these two types of canonicity allow to obtain t.,-valued
modal logics that are complete with respect to classes of frames (strongly canonical logics)
or with respect to classes of L,,-frames (canonical logics). Hence, we obtain for example that
elementary classes of frames and ¥.,,-frames have a modal theory that is complete (see Theorem
3.47).

Canonicity in MMV%: a syntactic approach. Obtaining canonical and strongly
canonical varieties helps to define complete logics. One of the most fruitful methods to con-
struct such varieties is a syntactical one: any variety that is defined by equations that are
preserved by (strong) canonical extensions is a (strongly) canonical variety. This approach
was initiated in [33] and [34] for varieties of boolean algebras with operators and was fully
developed in [32] in which an algebraic proof of SAHLQVIST’s canonicity result is given. Since
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then, the theory of canonical extensions was generalized to bounded distributive lattice ex-
pansions in [20], then to bounded lattice expansions in [17]. It is nowadays recognized for its
applications (e.g, [21]).

Since the variety of MV-algebras can be considered as a variety of bounded distributive
lattice expansions, our approach of canonicity is based on the results of [20]. As the whole
variety of MV-algebras is not canonical (see [16]), we focus our work on varieties of MV-
algebras with operators whose MV-reduct belongs to a finitely generated variety.

We first recall the results of [20]. Then, we prove that the definition of the canonical
extension of an MV,-algebra with operators that we have adopted in the second chapter
coincides with the classical definition (i.e., the definition of [20]) for which an algebra is
considered as a bounded distributive lattice expansion. This result is fundamental since it
allows to connect the classical approach of canonicity with KRIPKE semantics for t.,-valued
modal logics.

Afterwards, we apply and adapt the classical techniques to study stability of equations
through canonical extensions. These techniques are based on the links between stability
properties of term functions and continuity properties of the interpretation of their connectives.

Hence, we obtain a SAHLQVIST equivalent for t.,-valued modal logics by mimicking the
algebraic proof of the corresponding result for classical modal logic. This result sustains our
claim that the algebraic approach of relational semantics for ¥.,-valued modal logics fits more
the class of L,-frames than the class of frames.

In order to study strong canonicity for t.,-valued modal logics, no existing tool could be
applied. The definition of the strong canonical extension of an MV,,-algebra with operators A
is prescribed by the desired applications: this extension is defined as the t.,-complex algebra
associated to the canonical frame of A. This construction can be characterized up to isomor-
phism as the greatest extension of A whose algebra of idempotent elements is isomorphic to
the canonical extension of the algebra of idempotent elements of A.

We use that description to define the extension of some maps between two algebras A and
B to maps between their strong canonical extensions. Indeed, there is a class of applications
(that we call idemorphisms) between MV,-algebras that are characterized by their restriction
to the algebra of idempotent elements. Hence, if f : A — B is such an application, we
can define f7 on the strong canonical extension A” of A as the unique idemorphism whose
restriction to the algebra of idempotent elements of AT is the canonical extension of the
restriction of f to the algebra of idempotents of A.

By transporting the properties of stability of terms through canonical extensions into the
realm of strong canonical extensions, we are able to prove Theorem 4.61 which is an equivalent
of SAHLQVIST’s canonicity result for strong canonical extensions.

A topological duality for the category MMVﬁ. The theory of canonical extensions
provides an imperfect representation result: the canonical extension of an algebra A may not
satisfy every equation that is satisfied in A.

Some information has been lost in the process. Similarly to boolean algebras with opera-
tors, the information is lost when the ¥.,-tight complex algebra of the canonical ¥.,,-frame of
A is constructed: the algebra of all the possible valuations on that structure is in general too
wide to embody exactly the algebraic content of A.
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It is possible to compensate for the missing information by adding a new topological layer
to canonical structures. We thus leave the world of the structures that are definable by first
order formulas.

We combine two types of constructions in order to obtain the desired layer. The first
one is the construction of a strong duality (in the sense of natural duality, see [11]) for the
category of MV,-algebras and the construction of the canonical L,-frame associated to an
MV ,,-algebra with operators.

In that way, we obtain a duality between the category ./\/lMVﬁ of MV ,-algebras with
operators and a category of topological structures. This duality is an extension of the STONE
duality for boolean algebras with operators.

Of course, this duality provides a completeness result for any t.,-valued normal modal
logic L. We eventually consider the problem of the construction of the coproducts in the dual
category.

Modalities

To conclude, let us precise that, if in this introduction we have only considered modal
logics in a language that contains a single unary modality, the framework of this dissertation
is more general since we allow in the language any set of modalities of any finite arity.



CHAPTER 1

Prolegomena

We provide in this chapter the building blocks of the results developed in this dissertation.
We assume that the reader is familiar with the theory of universal algebra (see [3] and [27])
and general topology, that he knows the basic vocabulary of category theory (see [43]), and
that he has already been introduced to the algebraic treatment of (modal or many-valued)
logics (see [1], [10], |28]).

1. MV-algebras

MV-algebras were introduced by C.C. CHANG (cf. [5] and [6]) as an algebraic counterpart
of LUKASIEWICZ’s many-valued logics (see [40] and [41]). LINDENBAUM algebras of many-
valued logics are indeed MV-algebras and this algebraic approach lead, for example, to an
algebraic proof of the completeness of LUKASIEWICZ infinite-valued logic (see [6]).

From then on, the variety of MV-algebras, which is an extension of the variety of boolean
algebras, and its connections with other areas of mathematics were studied by various math-
ematicians with various aims. The reader may consult [10] and [22] to obtain proofs and
references for the results we state in this section.

Since 1958, the variety of MV-algebras has been given several equational bases (in the lit-
erature, MV-algebras are sometimes called WAJSBERG algebras, bounded commutative BCK-
algebras and you may consider them as a subvariety of the variety of BL-algebras). Following
recent authors, we prefer the following definition.

DEFINITION 1.1. An algebra A = (A,®,®,—,0,1) of type (2,2,1,0,0) is an MV-algebra

if (A, ®,0) is an abelian monoid and if A satisfies the following equations :

(1) e =1,

2)zel=1

(3) ~0=1,

(4) z0y=-(-zoy)),

(B) oy oy=(yo ) d.
We denote by MV the variety of MV-algebras. If A is an MV-algebra, we denote by — the
operation defined on A by

r—y=yb .

For convenience’s sake, as it appears in this definition, we do not distinguish in the nota-
tions an algebra from its universe and we do not, in general, distinguish an operation symbol
with its interpretation on an algebra.

LEMMA 1.2. If A is an MV-algebra, the relation < defined on A by
z<y if rz—oy=1
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is a bounded distributive lattice order on A (the lower bound is O et the upper bound is 1). The
associated lattice operations V and A are obtained in the following way :

zVy = (yo—z)dx

zANy = (y®-z)ox.

Moreover, the operations @ and ® distributes over V and A.

Of course, an MV-chain is an MV-algebra whose lattice order is a total order. In any
MV-algebra, you can find a privileged boolean algebra.

DEeFINITION 1.3. If A is an MV-algebra, an idempotent element of A is an element x of A
such that x @ x = x. The algebra of idempotents of A is the subalgebra

BA)={zecA|lzdx =21}
of A.

One can prove that B(A) is the largest subalgebra of an MV-algebra A which is a boolean
algebra. Moreover, the variety of boolean algebras can be obtained by adding the equation
x @ x = x to the equational base of the variety of MV-algebras.

ExAMPLE 1.4. We present a few important examples of MV-algebras.
(1) The algebra [0,1] = ([0, 1],®,®, —,0, 1) where [0, 1] is the real unit interval and where
x®y =min(x +y,1) and - = 1 — x is an MV-algebra. We sometimes denote by
Lo this MV-algebra.
(2) For any positive integer n, the set £, = {0,1,...,2=1 1} is a subalgebra of [0, 1].

(3) The algebra C = (C,®,®,—,(0,0), (1,0)) of CHANG is defined on
C={0.a)|acZ }U{(1,b)[beZ},

by
0,z +y) ifi+j=0
(,,2) ® (J,y) =< (1,min(0,z +vy)) ifi+j=1
(1,0) ifitj=2
and
) 0,—z) ifi=1
ﬁ(z’m)_{ El,—:& if i = 0.

The algebra C is an MV-algebra.
We give a glimpse of the properties of the the variety MV and of its subvarieties.

THEOREM 1.5. The variety MV is generated by the algebra [0,1]. The finitely generated
subvarieties of MV are exactly the varieties generated by a finite number of finite subalgebras
L, of [0,1]. Moreover, the algebra C of CHANG belongs to any non-finitely generated subvariety
of MV.

Note that the completeness result for LUKASIEWICZ’s infinite valued logic appears as a
consequence of the first statement of the previous Theorem.
A complete classification of the subvarieties of MV was obtained by KOMORI in [36].
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1.1. Congruences and implicative filters. As for boolean algebras, any congruence
O of an MV-algebra is characterized by 1/© (the class of 1 for ©).

DEFINITION 1.6. Assume that A is an MV-algebra. A subset F' of A is an implicative filter
(or simply a filter) if F' contains 1 and if F' contains y whenever F' contains x and  — y.

As usual, a filter F is a proper filter if it does not contain 0 and a non trivial filter if
F # {1}. A mazimal filter is a filter which is maximal (for inclusion) among the proper
filters. We denote by Max(A) the set of maximal filters of A.

The distance function on A? is defined by

d:A2—>A:(m,y)*—>(:v®—'y)@(y®_'l‘)-

A filter F of A is a prime filter of A if for any x and y in A, either x — y or y — x belongs
to A.

One may equivalently defines a filter of an MV-algebra A as an increasing non-empty
subset of A which is closed under the operation ®. Note that any maximal filter is a prime
filter.

PROPOSITION 1.7. Assume that A is an MV-algebra.
(1) If F is a filter of A then the relation ©p defined by

(z,y) €Op if —d(z,y)eF

s a congruence of A.

(2) If © is a congruence of A, then 1/0© is a filter of A.

(3) The maps defined in the two previous items are two inverse isomorphisms between
the lattice of filters of A and the lattice of congruences of A.

The previous proposition allows us to use the well established notations : we denote by
A/F the algebra A/Op when F'is a filter of A.

The following result justifies the terminology since it is the equivalent for the variety of
MV-algebras of the STONE extension theorem for boolean algebras.

THEOREM 1.8. Assume that A is an MV-algebra, that F is a filter of A and that a is an
element of A that does not belong to F. Then there is a prime filler F' of A that contains F
but not a.

Unfortunately, unlike boolean algebras, in an MV-algebra, maximal filters do not coincide
with prime filters. Nevertheless, they coincide in any finitely generated variety.

PROPOSITION 1.9. Assume that A is an MV-algebra and that F is a filter of A.
(1) The algebra A/F is an MV-chain if and only if F' is a prime filter of A.

(2) The algebra AJF is simple if and only if F' is a mazimal filter of A.

(3) The algebra A is a subdirect-product of MV-chains.

(4) The algebra A is simple if and only if there is a unique embedding A — [0, 1].
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2. More about finitely generated varieties

We have already stated that the finitely generated varieties of MV-algebras are exactly the
varieties generated by a finite number of finite MV-chains. Among them, the varieties HSP(L,,)
generated by a single MV-chain are even more interesting since any finitely generated variety
of MV-algebras is a subvariety of HSP(L,,) for a positive integer n. Moreover, the variety
HSP(L,,), that we denote by MV),,, is the algebraic countepart of LUKASIEWICZ n + 1-valued
logic.

PropoSITION 1.10. The variety MV, is obtained from the variety MYV by adding to the
aziomatisation of MV the equations (pzP~1)"*1 «— (n + 1)aP for any prime p < n that does
not divide n and the formula (n + 1)z < nz.

Algebras of MYV,, can be represented as a boolean products of subalgebras of L,,.

DEFINITION 1.11. Assume that A is a member of MV,,. We denote by MV(A,L,,) the
set of MV-homomorphisms from A to L,. If a belongs to A and i belongs to {0,...,n}, we
denote by [a : ] the set {u € MV(A,L,) | u(a) = L}.

We equip the set MV(A,L,) with the topology that has {[a: ] :a € A,i € {0,...,n}}
as a subbase.

PROPOSITION 1.12. Assume that A is an MV, -algebra.

(1) the topological space MV (A, Ly,) is a boolean space (i.e., a compact, HAUSDORFF and
zero-dimensional space),
(2) the evaluation map

ea:A— ] e (u@)wermviar
uEMV(ALy)

provides a representation of A as a boolean product of its simple quotients.

3. More about MV-terms

Let us recall some folklore results about the construction of some MV-terms. The idea of
using “special” MV-terms to develop many-valued modal systems can be traced back to [48].
In the sequel of the dissertation, we denote by Ny the set of the positive integers and by N
the set of the strictly positive integers (i.e., we have 0 € Ny but 0 ¢ N).

DEFINITION 1.13. The set D of dyadic numbers is the set of the rational numbers that
can be written as a finite sum of power of 2.

If a is a number of [0, 1], a dyadic decomposition of a is a sequence a* = (a;);en of elements
of {0,1} such that a = 3", a;27". We denote by a} the i*" element of any sequence (of length
greater than i) a*.

If a is a dyadic number of [0, 1], then a admits a unique finite dyadic decomposition, called
the dyadic decomposition of a.

If a* is a dyadic decomposition of a real a and if k is a positive integer then we denote by
fa*, the finite sequence (ay, ..., ax) defined by the first k£ elements of a*.

We temporarily denote by fo(z) and fi(z) the terms z @ x and x ® x respectively, and by
Tp the clone generated by fo(z) and fi(z). Further in the dissertation, we denote by 7¢, the
term fo and by 7 the term fj.
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We also denote by g, the mapping between the set of finite sequences of elements of {0, 1}
(and thus of dyadic numbers in [0, 1]) and Tp defined by:
Y(a,...,ar) — fak ©---0 fa1
for any finite sequence (ay,...,ax) of elements of {0,1}. If a = Zle a;27%, we sometimes
write g, instead of g(a, ... q;)-
The terms in T are heavily used in the sequel of this dissertation. We therefore give some
details about these terms.

LEMMA 1.14. If a* = (a;)ien and x* = (x;)ien are dyadic decompositions of two elements
of [0,1], then, for any positive integer k,
1 if © > Zle a2~k 427k
g, (z) =14 0 if v < Zle ap2~Fk
S w2t if Zle a2k <z < Zle ap2 k4 27k,

PrOOF. We proceed by induction on k. If £ = 1, the result is clear. Let us assume that
the decomposition of g+, (x) is obtained for any [ < k and let us obtain the decomposition
of g, (z). By definition,

9a*y (:L') = fak (gra*—'kﬂ (:C))
Thus, if x > Z 1 ' q;271 + 2= (=1 e obtain by induction hypothesis that g, () =1 and
that g, (2) = 0if 2 < S5 a;. Let us now assume that

— k—1
Zai <z< Z ai2_i + 2~ (k=1),
i=1 i=1

If a, = 0, we conclude successively that
o0
g (T) = fo(z Tt (k—1)2
i=1

{ 1 if 2y, =1
2. Zzoil ZCZ-Jr(k,l)Q_I if x, = 0.
Thus, we have obtained that if

2%2 + 2~ (k=1) Zaﬂ +2kza22 + 2~ (=1)] Zaﬂ 427k )

then gramk(x) =1, that if

k
€ [0, Z a; 27"
=1

then g, () = 0, and eventually that if

a; 27", a; 27" -
Z 2 Z 27 4 27H)

=1

then g, () = > ooy z; 127", which is the desired result when a; = 0. We proceed in a
similar way when ay = 1. O
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COROLLARY 1.15. Ifr and s are two dyadic numbers of [0, 1] and if n is a positive integer,

(1) there is a term 7, in Tp such that 7.(x) = 1 if and only if © > r;
(2) if s <, then there is a term Ts, in Tp such that

1 dfx>r _
Tor(x) = { 0 ifr<s and  Tsp(x) <1 if x €]s,r

(3) ifi € {1,...,n}, then there is a term 7;), in Tp such that if x belongs to L, then

o
o) ={ § 7S

S|e=3|e.

Proor. (1) If r = Zle 727" with r;, = 1, then we can set 7, = 9(r1,rn1,0)-
(2) If s = Zle 5;27% with s;, = 1, then the desired term can be obtained by considering
g(0770) © 9(817“'757€)
for a suitable finite sequence (0,...,0) of 0.

(3) The term 7;/,, can be obtained if we apply (2) with s <7 in (=L, 4], O

We can use the terms 7;,, to compute a term that recognize elements of L., that belongs
to L, (where m is a divisor of n).

DEFINITION 1.16. Assume that m is in div(n). We denote by 73, the term
(@) =\ Titaym)/n(®) A Tignjmys1/n ()
1€{0,...,m}

We obviously obtain that

(@) 1if x € by,
T3 =
Lm 0 otherwise.

for any x in L.

4. Complete MV-algebras

Complex algebras that appear in the sequel of the dissertation are complete and completely
distributive. We recall here a few results about these algebras.

LEMMA 1.17. If A is a complete MV-algebra, then B(A) is a complete boolean algebra.
Moreover, if A is completly distributive, so is B(A).

LEMMA 1.18. If A is a complete MV-algebra and if {b; | j € J} is a subset of B(A) such
that bj Nby, =0 for any j # k in J and \/{b; | j € J} =1, then A is isomorphic to [[;c ;(b;].
LEMMA 1.19. If A is a complete MV-algebra and a is an atom of B(A) then,

(1) if there is a atom of A above a, then the MV-algebra (a] is a finite MV-chain;
(2) if there is no dual atom above a, then the MV-algebra (a] is isomorphic to [0,1].

Thus, the only totally ordered complete MV-algebras are the algebras [0,1] and L, for n € N.
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We now turn to complete and completely distributive MV-algebras. Since any complete
and completely distributive boolean algebra is atomic and is isomorphic to the powerset algebra
of a set, we can conclude from Lemma 1.18 that if A is a complete and completely distributive
MV-algebra, then A is isomorphic to [[{(a] | a € Atom(B(A))}. Moreover for any a in
Atom(A), the algebra (A] is isomorphic to A/(—al, i.e., (—a] is a maximal filter of A. We turn
the preceding lines into the following result.

LEMMA 1.20. An MV-algebra A is complete and completely distributive if and only if it
is isomorphic to a direct product of finite MV-chains and isomorphic copies of [0,1]. More
precisely, the algebra A is complete and completely distributive if and only if the map

ha:A— II (@2 (@A a)wcaomay
acAtom(B(A))
18 an MV-isomorphism.
If A is a complete and completely distributive MV-algebra, we will often work modulo the

isomorphism hy of Lemma 1.20. Note that in hy(A) the V-irreducible elements are simply
the elements (74),eatom(28(4)) for which there is a b in Atom(B(A)) such that x, = 0 if a # b.



CHAPTER 2

Models and structures

1. Language and models

The standard definition a KRIPKE model can be adapted to a many-valued (LUKASIEWICZ)
realm in a straightforward way. The basic idea is to set the truth value of any propositional
variable in each world in a complete MV-algebra A. We temporally consider models that are
valued in any complete MV-algebra, but from subsection 1.2 to the end of the dissertation,
we will only consider [0, 1]-valued models. KRIPKE models for many-valued modal logics have
already been considered (see, e.g., [15], [13], [14]). Our approach is a generalization of the
approach of [48|.

Let us first introduce the languages of the formulas that are interpreted in these models.

DEFINITION 2.1. A language is a set £ of symbols, called connectives together with a map
n.: L — N: f ky where k; is the arity of f. Connectives with arity 0 are called constants.
If £ is a similarity type, the L-formulas over the set of variables Prop are defined inductively
by the following rules:

e e¢very variable p of Prop is an L-formula,
e if fisa connective of £ with arity k and if ¢1, . .., ¢y are L-formulas then f(¢1,..., dk)
is an L-formula.

In the sequel, if not stated otherwise, we assume that Prop is a enumerable set of propo-
sitional variables and that £ is a language £ = {—,—,0,1} U{V,; | ¢ € I} such that the
connective — is of arity 2, the connective — is unary, and 0 and 1 are constants. We denote
by Form, the set of the L-formulas over the set of variables Prop. Note that, by using the
following standard abbreviations:

PDY = —¢ PO = (n¢ & )
PVY = (p— ) =t PN = (m¢ V)
Pt i=(p =)A= @) Aildr,...,bk,) = Vi(=d1,..., 2r,),
we can usually consider that the connectives @, ®, V, A, <> and A; (with ¢ € I) belong to L.

Indeed, the problem of defining a set of primitive connectives does not play any key role in
our developments but in Chapter 4 in which we are more careful about the subject.

DEFINITION 2.2. The elements of {V; | i € I} are called dual MV-modalities or dual
modalities. The dual A; of any dual MV-modality V; is named an M V-modality or a modality.
The arity of V; is denoted by k;. For any j in {1,...,k;} we use the following abbreviation

VU (p) =V(0,...,0,p,0,...,0)

where p is the j*® element in (0,...,0,p,0,...,0).

8
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We call any unary dual MV-modality a boz and its dual a diamond. We denote boxes by
symbols like [0, [a] and diamonds by ¢, (a) etc.

We decide to call dual MV-modalities (and not simply MV-modalities) the primitive con-
nectives V; in order to reconnect with classical definitions of modal logics. This will appear
clearly in the sequel. Moreover, working with modalities or dual modalities as primitive con-
nectives is a matter of taste, culture and opportunism.

DEFINITION 2.3. If A is a complete MV-algebra, an A-valued KRIPKE L-model
M= W/ {R;|ie€ I}, Val)

is given by a non empty set W (the elements of W are often called worlds, points or states,
and W is often called the universe or the carrier of M), an accessibility relation R; C Whitl
for any modality V; of arity k; in {V; | i € I'} and a map Val : Prop x W — A, called the

valuation of the model.

When A or L is clearly determined by the context, we often abbreviate “ A-valued KRIPKE
L-model” by L-model or A-valued KRIPKE model or A-valued model or model. The class
that contains every A-valued L-model for every complete MV-algebra A is the class of the
many-valued L-models or many-valued models.

Sometimes, when we feel the need to be more precise, we denote by Valys and RlM with
(7 in I) the valuation map of M and the accessibility relations of M respectively.

If Ris a k+1-ary relation on W and if u belongs to W, we denote by R(u) or by Ru the
set of successors {(vi,...,vg) | (u,v1,...,v;) € R} of .

We extend the valuation to formulas in the natural way. In the sequel, we use the same
notations — and — to denote the previously defined connectives but also the corresponding
operations —4 and = on an MV-algebra A (recall for example that —%1: [0,1]? — [0,1] :
(z,) — min(1,1 — x4 y) and =% : [0,1] = [0,1] : &+ 1 — z). The following lemma is used
a a definition.

LEMMA 24. If M = (W, R, Val) is a many-valued L-model, then there is a unique exten-
sion Val' : Form — [0,1] of the map Val that satisfies the two following conditions:
e Val'(w,¢ — ¢) = Val'(w, ¢) — Val'(w,v) and Val'(w, —p) = =Val'(w, ) for any w
m W and any ¢ and ¢ in Form,
o Val'(w,Vi(¢1,...,0)) = N{Val'(v1,¢1) V- -V Val (v, dx,) | (w,v1,...,0,) € R}
for any V; of arity k; in {V; |i € I};
Thanks to this unicity property, we simply denote the map Val' by Val.
The previous Lemma explains why we have restricted our definition of A-valued £-models
to MV-algebras A that are complete (we really need to be able to compute infinite meets).

We may deduce the following useful and easy result that details how the valuation maps
act on the dual A; of a modality V;,.

LEMMA 2.5. If M is a L-model, then for any w in W, any i in I and any L-formulas
le, ey ¢ki7

Val(w, Ag(¢1, ..., ¢r,)) = \{Val(vi, 1) A -+ A Val(vg,, ér,) | (w01, ,08,) € Ri}.
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The definition of the satisfaction relation in a model M follows the classical one.

DEFINITION 2.6. If w is a world of an £-model M and if ¢ is a L-formula such that
Vala(w, ¢) = 1, we say that ¢ is true in w and write M,w = ¢. When M, w | ¢ for any
world w of M, we say that ¢ is true in M and write M |= ¢. A formula that is true in any
model of a class M of models is called an M -tautology (or simply a tautology if M is clearly
determined by the context or if it is a tautology in any many-valued model).

We illustrate this definition.

PROPOSITION 2.7. It T is a unary formula constructed only with the connectives & and ©
then the formulas
(1) VO(p — q) = (VO (p) — VO)(q)),
(2) VO(p Ag) = (VO (p) AVI(q)),
(3) 7(V(p1,-..,pk)) < V(T(p1),...,7(pr))
are tautologies for any k-ary dual MV-modality V and any i in {1,...,k}.

1.1. Models valued in complete and completely distributive MV-algebras. We
have seen in Lemma 1.20 that any complete and completely distributive MV-algebra A is
canonically isomorphic to a product of finite MV-chains and copies of [0, 1]. From that result,
we are going to deduce that, in some way, any problem about validity of formulas in A-valued
models where A is complete and completely distributive, is equivalent to a problem about
validity of the same formulas in [0, 1]-valued models.

Recall for such an algebra A, the map

ha:A— II (@2~ (@AD)peaomea)
pEAtom(B(A))
is an isomorphism. Moreover, for any p in Atom(B(A)), the algebra (p] is a finite MV-chain
or a copy of [0,1] and we denote by 7, the map 7, o h;, where
hy:A— (pl:z—2xAp
and iy, is the unique embedding of (p] into [0, 1].
DEFINITION 2.8. Assume that A is a complete and completely distributive MV-algebra

and that M = (W, {R; | i € I}, Val) is an A-valued L-model. The unraveled [0, 1]-valued
model associated to M is the model M* = (W" {R}" | i € I}, Val*) where

e the universe W" of M is equal to [J{{w} x Atom(B(A)) | w € W},
e for any i in I the relation R contains ((u,p), (vi,q1),--., (g, qr,)) fp=q =--- =
qx; and (u,v1,...,vg,) belongs to R;,
e for any propositional variable r of Prop and any world (v, p) of W*, the truth value
Val“((v,p),r) of rin (v,p) is equal to m,(Val(v,r)).
Actually, the definition of Val* extends nicely to formulas.

LeMMA 2.9. Assume that A is a complete and completely distributive MV-algebra and that
M= W {R; | i€ I}, Val) is an A-valued model with unraveled [0, 1]-valued model M™. Then,

Val*((v, p), ¢) = mp(Val(v, $))
for any L-formula ¢ and any world (v,p) of W*.
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PRrROOF. The proof is done by induction on the number of connectives in ¢. The induction
step ¢ = V(¢1,...,9) is the only step that deserves some attention. But the proof is an
exercise if we note that m, is a complete homomorphism for any p in Atom(B(A)). O

COROLLARY 2.10. Assume that A is a complete and completely distributive MV-algebra.

(1) A formula ¢ is satisfiable or refutable in the class of A-valued models if and only if
it is respectively satisfiable or refutable in the class of [0, 1]-valued model.

(2) If M is a class of A-valued models and if L denotes {¢ € Formy | VM € M, M = ¢},
then there is a class M’ of [0, 1]-valued models such that L = {¢ € Form; | VM €
M/, M = 6}

Since every complete MV-algebra A is semi-simple, i.e., is canonically embeddable in a
power of [0, 1] (see [39]), we could hope to extend these results to the class of A-valued models
for any complete MV-algebra A. But in trying to generalize these results we come up against
the fact that in the subdirect representation

ian:A— [ A/F
FeMax(A)
of A by its simple quotients the maps pg o iy (where pr denotes the projection map of
[[{A/F | F € Max(A)} onto A/F) is not a complete homomorphism.
From now on, we only consider A-valued models where A is a complete subalgebra of [0, 1].

1.2. Models for MPDL. We introduce the languages and the models for a many-valued
generalization of propositional dynamic logic with tests. (Propositional) dynamic logic (PDL)
is a modal logic of programs introduced by in [30]. We refer any reader that is not already
acquainted with PDL to [31].

To define formulas of MPDL, we need, besides a (countable) set of propositional variables
Prop (the elements of Prop are denoted by p,q,...,p1,p2,...), a set IIy of atomic programs
(that are denoted by a,b,...,a1,b1,...). The set II of programs and Form of well formed
formulas are defined by mutual induction according to the following rules:

e any atomic program a of Il is a program of Il and any propositional variable p of
Prop is a formula of Form;

e if @ and (8 are in II than so are «; 3, o U 8 and «o*;

e if ¢ and v are in Form then so are ¢ — 1 and —;

o if a belongs to IT and ¢ belongs to Form then [a]¢ is a formula of Form and 7 is a
program of II.

Thus, we have an infinite set of modalities in the language of MPDL since it contains a
modality [a] for any program « of II. For the sake of readability, we consider that IIp and
Prop are defined once for all. A KRIPKE model for MPDL is thus defined with an infinite set
of binary relations : each program « of II has its corresponding relation R, on the model.
In order to model the program operators ; , * and U, we define the relation associated to a
program « from the relations of the atomic programs that appear in a.

DEFINITION 2.11. If A is a complete subalgebra of [0, 1], an A-valued KRIPKE model for
MPDL (or simply an A-valued KRIPKE model) M = (W, R, Val) is given by a non empty set
W, a map R, : Il — 2W>*W that assigns a binary relation R, to every atomic program a of
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[Ty and a map Val : W x Prop — A that assigns a truth value to each propositional variable
p of Prop in any world w of W.

The maps Val and R, are extended to formulas and programs respectively by mutual
induction according to the following rules.

for any programs « and 3, we set R,.3 = Rq 0 Rg, and Ry 3 = Ra U Rp;

for any formula ¢, we define Ry as the relation {(u,u) | Val(u, ) = 1};

for any program «, the relation R+ is the transitive and reflexive closure of R, that
is Ry = Unew R,n where o denotes the composition under ; of n factors a.

if ¢ and ¢ are two formulas and w belongs to W then Val(w, ¢ — ) = Val(w, ¢) —
Val(w, v) and Val(w, =) = =Val(w, ¢).

if ¢ is a formula, if o is a program and if w belongs to W then Val(w, [a]y) =
/\veRaw Val(vv w)

Our intentions are clear : we want to interpret the operator ; as the concatenation operator,
the operator U as the alternative operator and the operator x as the KLEENE operator. Hence,
if @ and 8 are programs, the connective [o] is read “after any execution of o, the connective
[aUQ] is read “after any execution of o or 57, the connective [o; ] is read “after any consecutive
execution of a and (37 and [«*] is read “after any finite number of executions of o

It is now time to produce a few examples of tautologies.

PROPOSITION 2.12. Assume that A is a complete subalgebra of [0,1]. The following for-
mulas are true in any A-valued KRIPKE model :

(1) [aUBlp < [alp A [Blp.

(2) [ Blp < [A[B]p-

(3) (@UB)p < ()pV (B)p.
(4) (o B)p < (@)(B)p

(5) [a*]p — p.

(6) p— (a®)p.

(7) [*]p — [a]p.

(8) (a)p — (a*)p.

9) [o*]p < (p A [a][a*]p).
(10) (a@®)p < (pV (@){a™)p).

If A =L, then the formula p A ([a*](p — [a]p)”) — [a*]p is a tautology.

1.3. An example: the RENYI-ULAM Game. We can use the previously defined mod-
els to provide a framework for an interpretation of the famous RENYI-ULAM game. ULAM’s
formulation of the game in [54|, which was previously and independently introduced by RENYI,
is the following:

Someone thinks of a number between one and one million (which is just less
than 22°). Another person is allowed to ask up to twenty questions, to each
of which the first person is supposed to answer only yes or no. Obviously the
number can be guessed by asking first: is the number in the first half-million?
and again reduce the reservoir of numbers in the next question by one-half,
and so-on. Finally, the number is obtained in less than log, 1000000. Now,
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suppose that one were allowed to lie once or twice, then how many questions
would one need to get the right answer?

Lots of researchers (mainly computer scientists) have focused their attention on that game
since the publication of ULAM’s book [54]. The success of the game is due to its connection
with the theory of error-correcting codes with feedbacks in a noisy channel and the complexity
of the problem of finding an optimal strategy for the game. We refer to [49] for an overview
of the literature about the RENYI-ULAM game.

The game has also been considered by many-valued logicians as a way to give a concrete
interpretation of LUKASIEWICZ finitely-valued calculi and their associated algebras (see [45]).
Up to now, mathematician have modeled the game in a simple way by coding algebraically
questions and answers. We start by introducing this interpretation, which is due to MUNDICI,
and then add to it a dynamic layer in order to model the interactions between the two gamers.

1.3.1. Algebraic approach of the states of knowledge. We call the first gamer (the one who
chooses a number and can lie) Pinocchio, and the second gamer Geppetto. Let us denote by
M the search space, i.e., the finite set of integers (or whatever) in which Pinocchio can pick
up his number. Let us also assume that Pinocchio can lie n — 1 times (where n > 1).

We first have to determine a way to algebraicly encode the information defined by Pinoc-
chio’s answers, i.e., to model Geppetto’s state of knowledge of the game after each of Pinoc-
chio’s answers. This can be done by considering at step ¢ of the game the map

ri: M —{0,1,...,n}

where 7;(m) is defined as the number of the i previous answers that refute the element m of
M as Pinocchio’s number. Indeed, once r(m) = n, since Pinocchio is allowed to lie n — 1
times, Geppetto can safely conclude that m is not the “right” number. Hence, the game ends
once Geppetto encodes its knowledge by a map r which is null except for one m in M, which
is the searched number. In such a final state, Geppeto can even determine the number of lies
of Pinocchio in the game: this numer is equal to n — r(m).

In order to introduce MV-algebras in the interpretation of the game, we will consider a
equivalent representation of Geppetto’s states of knowledge. The approach we now consider
was introduced in [45].

DEFINITION 2.13. A state of knowledge is a map f : M — Y,. The state of knowledge f
at some step of the game is the state of knowledge f defined by f(m) =1 — 7(77—”1) where 7(m)
denotes for any m in M the number of Pinocchio’s answers that refute m as the searched

number.

Hence, if f is a state of knowledge at some step of the game, the number f(m) can be
viewed for any m in M as the relative distance between m and the set of the elements of M
that can be safely discarded as unappropriate.

1.3.2. Questions and answers. We are now concerned by the modifications that have to
be taken into account in the states of knowledge between two steps of the games, i.e., after
one of Pinocchio’s answer. First note that any question that Geppetto can ask is equivalent to
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a question of the form “Does the searched number belong to Q7" for a subset @ of the search
space M. Hence, in the sequel, we will denote any question by its associated subset @) of M.

Let us assume that Geppetto has reached the state of knowledge f and that he asks
question Q. What is the state of knowledge f’ of the game after Pinocchio’s answer? If
Pinocchio answers positively (“Yes, the number belongs to Q") then Gepetto increments r(m)
by one (if necessary) for any m in M \ @ since a positive answer to @ is equivalent to a negative
answer to M \ Q, i.e.,

’ _ f(m) ifmeQ
! 'M*L"_”W’{ max{f(m) — L0} ifme M\ Q.

On the contrary, if Pinocchio answers negatively to @, then Gepetto increments r(m) by one
(if necessary) for any m in @, i.e.,

;- B f(m) itme M\ Q
/ ’Mﬂhn_m}_){ max{f(m)—%,O} if me Q.

This line of argument justifies the following definition.

DEFINITION 2.14. If @) is a subset of M, the positive answer to () is the map

1 tme@

n—1 1}
N —
T =L e M\ Q.

fo: M —{
The negative answer to @ is the positive answer fyng to M\ Q.

We can thus encode algebraically any of Pinocchio’s answers.

LEMMA 2.15. Assume that Geppetto has reached the state of knowledge f and that he asks
question Q. After Pinocchio’s answer to Q, the stage of knowledge f' of the game is f o fq if
Pinocchio’s answer 1s positive and f o fypq if it is negative.

1.3.3. A dynamic layer. Roughly speaking, we have modeled the game in a static way.
There is no possibility yet to model all the possible interactions between the gamers. We now
add our touch to this interpretation of the game by encoding every possible run of the game
in an t,-valued KRIPKE model for MPDL. The idea of the construction of the model is clear:
the universe of the model is the set EM of the states of knowledge, the set of atomic programs
Iy is the set of questions 2™ and the set of propositional variables {pm | m € M} that are
relevant to the problem is made of a variable p,, for any m in M that can be read as “m is far
from the set of rejected element” or “the relative distance between m and the set of rejected
elements is”.

DEFINITION 2.16. The model of the RENYI - ULAM game with search space M and n — 1
lies is the L,-valued KRIPKE model for MPDL M = (LM R, Val) where

e the set of atomic programs is Iy = 2M
e for any Q in 2 the relation R¢ contains (f, /) if f' = fo fq orif /' = fo fang,
e for any m in M and any f in B we set Val(f, pn) = f(m).

This model provides a way to interpret any run of the game as a path from the initial
state f : m — 1 to any final state. Examples of formulas that are true in the model are
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(mpm)" = [Q7pm and Ti(pm) — [@Q; M \ Ql7i=2(pm) (if we agree that 7is(pm) = 1 if
i—2<0). ! " ’

What are the formulas that are true in any model for MPDL,,? That is, what are the
properties that are shared in any model of programs? This question is answered in subsection
4.3 of chapter 3 in which we develop an axiomatic system that generates any MPDL,,-tautology.

2. Structures, frames and frame constructions

If we remove the contingent information provided by the valuation map in the definition
of a many-valued KRIPKE model, the object we obtain is a very simple structure : it is a
relational structure that has a k + 1-ary relation R for any k-ary dual modality V in £. This
led modal logicians to use modal languages to describe or define classes of relational structures.

In this section, we introduce several classes of structures in which many-valued modal
formulas can be interpreted. We then extend the classical constructions of structures to our
new classes. Preservation of the validity relation through these constructions routes us to
very simple examples of classes of structures that cannot be defined by many-valued modal
languages.

The general problem of the characterization of classes of structures by mean of modal
formulas can be approached by at least two ways : a model theoric one and an algebraic
one. In section 3, we introduce the basic tools for a successful algebraic approach (the one we
follow in this dissertation) of the problem : complex and canonical entities. They provide a
translation in the algebraic language of validity relations in the structures of different types.
So, the tools we introduced here are important building blocks for the sequel of the dissertation.

2.1. Structures. The first structures that we consider are the well known L£-frames.

DEFINITION 2.17. An L-frame (or simply a frame) is a structure § = (W, {R; | i € I})
where W is a non empty set and R; is an k; + l-ary relation on W for any ¢ in 1. We denote
by Fr¥ the class of L-frames. Hence, we use £ to denote a modal language but also a first
order language (that contains a k; + 1-relational symbol for ani i in I).

A model M = (W', {R/ | i € I}, Val) is based on a frame § = (W, {R; | i € I}) if W =W’
and R; = R} for any i € I. We extend to frames the vocabulary introduced for models (W is
called the universe of §, elements of W are called worlds, ...)

An L-formula ¢ is valid (resp. Ly-valid) in a state w € W of a frame § = (W, {R; | i € I}),
in notation §,w | ¢ (resp. §,w =, @), if M, w = ¢ for any model M (resp. any f.,-valued
model) based on §. This formula is valid in § (resp. L,-valid in §), in notations § |= ¢ (resp.
S En @), if ¢ is valid (resp. L,-valid) in any state of §.

Two frames § and § are modally equivalent (resp. L,-modally equivalent) if they validate
(resp. Lj,-validate) the same L-formulas.

In sections in which we consider exclusively validity of formulas in frames modulo k-
valued models, we replace =, by = and “L,-valid” by “valid” to improve readability.

History has proved that, roughly speaking, frames are the structures of the two-valued
normal modal logics (validity is in that case defined with {0, 1}-valued models). Obviously,
thanks to the previous definition, frames can also be used to interpret formulas of Form, .
But, since no information about the many-valued nature of £ is contained in the definition
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of a frame, it should exists other types of structures that are more efficiently describe by
L-formulas. We introduce one of these types of structures in the following definition. Recall
that we denote by Ly the MV-algebra [0, 1].

DEFINITION 2.18. A p-L-frame (or simply a p-frame) is a structure
(W {rm | m e No}, {R; | i € I})

where

(1) the structure (W,{R; | i € I}) is an L-frame,

(2) for any m in Ny, the set 7, is a subset of W and rg = W,

(3) for any m and k in Np, we have 7, N 7% = Tged(m,k)-

(4) for any i in I, any m in Ng and u in r,,, the set R;u is a subset of r¥i.

We denote by PFr® the class of p-L-frames. If § is a p-L-frame, we denote by S« the
underlying L-frame of §.

A model M = (W' {R] | i € I}, Val) is based on a p-L-frame § = (W, {rm, | m € No}, {R; |
i€ I})if W =W/ if the relation R; is equal to R for any ¢ in I and if Val(w, p) belongs to
L., for any w in 7, and any propositional variable p in Prop.

Validity of formulas in p-L-frames is defined similarly as in the case of frames (for example,
an L-fromula is valid at w in the p-L-frame § if M, w |= ¢ for any model M based on F).

Section 4 of this chapter is devoted to a generalization of the well-known duality between
complete boolean algebras with complete operators and complete homomorphisms as arrows
on the one side and frames on the other side. The structures involved in this generalization
are the p-L-frames.

The last classes of structures that we have to introduce are subclasses of the class of p-
L-frames. These structures appear throughout the dissertation because in a way, they are
more suitable than frames for an algebraic approach of finitely-valued modal logics (see 4.31
for example). From now on, the letter n denotes a positive integer.

DEFINITION 2.19. An L, -valued L-frame is a p-L-frame § = (W, {r,,, | m € No},{R; | i €
I}) such that r, = ro = W. We prefer the notation

(W, {rm | mediv(n)},{R; | i€ I})

to denote this frame. We denote by Fr% the class of L,-valued L-frames.
Two t.,-valued L-frames are modally equivalent if they validate the same L-formulas.

Hence, the class of L.,,-valued £-frames can equivalently be defined as the class of structures
(W, {rpm | m € div(n)},{R; | i € I})

such that
(1) the structure (W,{R; | i € I}) is an L-frame,
(2) for any m in div(n), the set 7, is a subset of W and r, = W,
(3) for any m and k in div(n), the intersection r,, N7y, is equal t0 Tgeq(m k),
(4) for any i in I and any m in div(n), the set R;ju is a subset of rk:.
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The t.,,-valued £ frames will be extensively used in connection with the t,-valued modal
logics.

In the sequel, when we write a class of L-structures (or simply a class of structures), we
mean a class of L-frames, or a class of p-L-frames or a class of t.,,-valued L-frames.

2.2. Constructions of structures. In this section, we introduce some ways to construct
new structures from existing ones. Each of these constructions is associated with a result about
preservation of validity of L-formulas. Thus, they provide a way to produce simple examples
of classes of structures that cannot be defined by L-formulas (any class of structures that is
not closed for one of these constructions cannot be defined by L-formulas). In section 3.3,
we prove that these constructions have natural algebraic translations. This correspondence
is deeply used in section 6 in order to obtain the many-valued counterpart of the famous
GOLDBLATT - THOMASON theorem about modally definable classes.

We first recall and adapt to the new structures the well known definition of a bounded
morphism. If R is a k + l-ary relation on W, if u belongs to W and if ¢ : W — W' is a map
then we denote by ¥(Ru) the set {(¢(v1),...,¢¥(vg)) | (v1,...,vk) € Ru}.

DEFINITION 2.20. A map ¢ : § — § between two L-frames § = (W,{R; | i € I}) and
§' = (W' {R}|ieI})is a bounded morphism if {(R;(u)) = R(¢(u)) for any state u of W.

A map ¢ : § — F between two p-L-frames § = (W, {r,, | m € No},{R; | i € I}) and
§ = W' {r, | meN},{R,| i€ I})isa p-bounded morphism if ¢ is a bounded morphism
between the underlying frames of § and § and if ¢(r,,) C 7/, for any m in Ny.

A p-bounded morphism between two ¥.,-valued L-frames is called an Y.,-bounded mor-
phism.

Sometimes, when we state results about the different types of structures in a same sen-
tence, we use the word morphism as a general term to denote these various types of bounded
morphisms.

These definition of bounded morphisms are the natural definitions of morphisms between
the respective classes of structures that we have previously introduced since they preserve
validity of formulas in a way that is precised in the following result.

PROPOSITION 2.21. Assume that § and §' are two L-frame (resp. two p-L-frames, two

L,-valued L-frames). If ¢ : § — § is an onto bounded morphism (resp. an onto p-bounded
morphism, an onto Y., -bounded morphism) and if § = ¢ then §F | ¢.

PROOF. At this point of the dissertation, the proofs can be considered as exercices. The
results will nevertheless follow as consequences of the algebraic treatment of the corresponding
constructions of algebras to which section 3 of the present chapter is devoted. ]

We can use the previous result to construct examples of non-equational properties, i.e. to
prove that there are properties (first order properties for example) about these structures that
cannot be defined by L-formulas.

DEFINITION 2.22. A class K of L-frames is [0, 1]-modally definable if there is a subset ©
of Form such that K = {§ € Fr* | § |= ©}. The class K is L,-modally definable if there is
a subset © of Form such that K = {F € Frf | § =, ©}. A class K of L,-valued L-frames
is modally definable if there is a subset © of Form, such that K = {§ € Fr% | § = ©}.
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EXAMPLE 2.23. Assume that £ contains just one dual unary modality. The class K of
L,-valued L-frames that satisfy the first order formula Vs(s & r,,) for a strict divisor m of n
is not L,-modally definable. Indeed, let us denote by § the one irreflexive t.,,-valued L-framne
whose universe is {s} with s belonging only to r, and by § the one irreflexive ¥.,-valued
L-frame whose universe is {t} with ¢ belonging to |J{rx | k¥ € div(n), m € div(k)}.

Then, the L,-valued L-frame §' is the image of § by an L,,-bounded morphism and the
formula Vs(s & r,,) is valid in § but is not valid in §'.

DEFINITION 2.24. If ¢ : § — § is a one-to-one bounded morphism between two L-frames
F and § then v is an embedding.

If ¢ : § — §F is a one-to-one p-L-bounded morphism (resp. a one-to-one k,-bounded
morphism) such that =1 : ¢(F) — § is also a p-bounded morphism (resp. an ¥.,-bounded
morphism) then v is a p-embedding (resp. an L,,-embedding).

An isomorphism (resp. p-isomorphism, Y., -isomorphism) is an onto p-embedding (resp.
onto p-embedding, onto ¥.,,-embedding).

If §is a frame (resp. a p-L-frame, an L,-valued L-frame) and if §F is a substructure
of § such that the inclusion map i : § < § is an embedding (resp. a p-embedding, an
L,-embedding) then § is a generated subframe (resp. a generated p-subframe, a generated
L, -valued subframe) of §.

Note that in the definition of a p-embedding, the fact that we require that 1~! is also
a p-embedding means that @b‘l(rﬁ(@) C 5. We need to add this condition since it is not
satisfied for every one-to-one map.

If we use the notation <— instead of — in the notation of a map between structures,
we mean that the map is, according to the context, an embedding, a p-embedding or an
L,-embedding.

Once again, we can obtain a preserving result.

PROPOSITION 2.25. If¢) : § — §F is an embedding (resp. a p-embedding, an Y.,,-embedding)
between two L-frames (resp. two p-L-frames, two Ly, -valued L-frames) § and §' then for any

L-formula ¢, if § = ¢ then § = ¢.

EXAMPLE 2.26. Assume that £ contains just one unary dual modality. We can use the
preserving result to prove that, for any divisor m of n, the class of L.,-valued L-frames that
satisfy the first order formula 3s(r,;,, C Rs) is not L,-modally definable. Indeed, assume that
§ is the L,-valued L-frame whose universe is {u,v,w} with R = {(u,v), (u,w), (u,u)} and
u,v,w € J{rr | m € div(k)}. If § denotes the substructure {v, w} of F then F is a generated
L,,-valued subframe of §’'. The formula 3s(r,, C Rs) is true in § but not in §.

There are two last constructions that we would like to introduce at this point.

DEFINITION 2.27. A family {§; | j € J} of structures is a family of disjoint structures if
the universe of the structures of the family are pairwise disjoint.

If {§; | j € J} is a family of disjoint structures, the disjoint union of the §; with j in J, in
notation H{F; | j € J} is the structure whose universe is the union for j in J of the universe
of §; and whose relations are the unions for j in J of the corresponding relations of the §;.
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A structure § is the bounded union of the family {§; | j € J} of structures if the universe
of § is equal to the union for j in J of the universe of the structures §; and if §; is a generated
substructure of § for any j in J.

If a family {F; | j € J} of structures is not disjoint, we can replace each structure §; by
an isomorphic copy §; x {j} of §; constructed on W; x {j} (where W} is the universe of §;)
in the obvious way. The family {§; x {j} | j € J} is then a family of disjoint structures.

Let us note the almost obvious following results.

PROPOSITION 2.28. If {§; | j € J} is a familly of disjoint L-frames (resp. disjoint p-L-
frames, disjoint L,,-valued L-frames), then W{3j | j € J} |= ¢ for any L-formula ¢ such that
S = ¢ for any j in J.

LEMMA 2.29. Assume that {§; | j € J} is a family of structures.

(1) The disjoint union and the bounded union of {§; x {j} | j € J} coincide.
(2) If § is the bounded union of {§; | j € J}, then it is an homomorphic image of the
disjoint union of {§; x {j}|j e J}.

3. Integration of the algebraic ingredient

As suggested by its title, this dissertation is focused on an algebraic view of problems
related to validity of formulas in structures and on the links between logics, algebras and
structures. We have reached the point where algebras come into action.

3.1. MV-algebras with L-operators. We start by introducing the variety of MV-
algebras with dual L-operators. This variety is the many-valued analog of the variety of
boolean algebras with dual L-operators. The reader may question about the axiomatization
that appears in its definition. One may indeed wonder why we consider this particular gener-
alization of the boolean definition of an operator. But one should keep in mind that we later
use this variety to provide a complete algebraic semantic for the many-valued modal logics
that we introduce in the next chapter (see Theorem 3.9). This completeness result justifies
the definition of the variety.

To improve the readability of the dissertation, we sometimes use a vectorial notation to
denote k-uples: the k-uple (x1,...,xx) may simply be denoted by Z.

DEFINITION 2.30. Assume that A, Ay, ..., Ay are MV-algebras and that f : A;x---x A —
A is a map. Then, for any j in {1,...,k}, we denote by @) the map

f(j) A — Az f(0,...,0,2,0,...,0))

where the j™-element of the sequence (0,...,0,z,0,...,0) is equal to z.
Amap V: Ay x--- x Ay — Ais a k-ary dual MV-operator if V is a map

(1) that satisfies the axiom (K) of modal logic on any of its arguments:
V(al, ey Q1,05 — bi, Aj41y--- ,ak) < V(al, ce ,ak) - V(al, ey Qi1 bi, Ajg1y ey ak);

for any 7 in {1,...,k} and any a; in Ay, ..., a; in Ay and b; in A;;
(2) that is conormal, i.e. that satisfies VU)(1) = 1 for any j in {1,...,k}.



3. INTEGRATION OF THE ALGEBRAIC INGREDIENT 20

(3) that satisfies
Vi@eda)=VadVa, V(@aca)=VacVa and V(ada™)=Vad (Va)™
for any a in Ay X --- x A and m in Np.

The map g : Ay X -+ x Ay, — A is a k-ary MV-operator if the map g: A1 X -+ X A —
A:(ar,...,ax) — —g(—ay,...,nag) is a dual MV-operator.

A (complete) dual lattice MV-operator on a complete MV-algebra A is a dual MV-operator
which is a dual (complete) lattice operator. A complete L-homomorphism between two com-
plete MV-algebras with dual L-operators is an £-homomorphism which is a complete lattice
homomorphism.

An MV-algebra with dual L-operators is an algebra A on the language £ such that
(A,®,®,7,0,1) is an MV-algebra and such that V; is a k;-ary dual MV-operator for any
i in I. The variety of MV-algebras with dual £-operators is denoted by MMV~. We also
denote by /\/l./\/lVﬁ the subvariety of MMV¥* that contains the algebras whose MV-reduct is
in the variety HSP(L,,).

An MV-algebra with (complete) dual lattice L-operators is an MV-algebra with dual £-
operators such that V; is a (complete) lattice dual MV-operator for any ¢ in 1.

To save words, we usually omit the word “dual” in the expression “MV-algebra with dual
L-operators”. After all, considering MV-operators or dual MV-operators in the definition of
L-algebras is much a matter of taste since the definition of an MV-operator and the definition
of a dual MV-operator are interdependent.

Note that we provide in Proposition 3.24 a more simple axiomatization of /\/l/\/lVﬁ in
which the equations V(z & 2™) = Vz & (V(z))™ (with m in Ng) do not appear.

ExaMPLE 2.31. Here are some simple examples of dual MV-operators.
(1) The identity map is a unary dual MV-operator on any MV-algebra A.
(2) The constant map 1 : A — A : a — 1 is a unary dual MV-operator on any MV-
algebra A.
(3) O:[0,1] x [0,1] — [0,1] : (x,y) — (min{x,y},y) is a unary dual MV-operator on
[0,1] x [0, 1].
(4) If C denotes CHANG’s MV-algebra and if k is a positive integer, then the map Oy :
x +— k.x is a dual operator on C.
At this point, the reader may note that, even on an MV ,-algebra, being a dual lattice operator
is not enough to be a dual MV-operator. For example, the dual unary discriminator on .o

1 ifz=1
D'“H{ 0 ifz<l

is a dual lattice operator on ¥.5 but is not a dual MV-operator (for example D(% P %) =1 but
D(3) @ D(3) = 0).
Algebras of MMV* can be used to interpret £-formulas.

DEFINITION 2.32. Assume that A is an MMV¥%-algebra. An algebraic valuation on A is
a map a, : Prop — A. An algebraic valuation a, on A is naturally extended inductively to
formulas in the obvious way.
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An algebraic model (A, a.) is given by an MMV*-algebra A and an algebraic valuation a,
on A. A formula ¢ is true in an algebraic model (4, a.), in notation (A,a,) = ¢, if ag = 1.

3.2. Canonical and complex entities. In this subsection, we show how MV-algebras
with L-operators can be used to encode the information contained in a structure thanks to the
construction of a complex algebra. We also prove that it is possible to associate a canonical
KRIPKE model to any algebraic model (4, a,) in such a way that any true formula in (A, a,) is
true in its associated model. This result, which is the content of Lemma 2.40, is fundamental
in regard to the algebraic approach of the various relational semantics we have previously
introduced in this chapter.

3.2.1. Complex algebras. We first note that it is possible to associate to any structure an
MV-algebra with L-operators in a very natural way, by mimicking the classical construction.

DEFINITION 2.33. If § = (W,{R; | i € I}) is an L-frame, the complez algebra F* of § is
the algebra
Sﬁ_ = <[07 1]W7 @, 7, (vi)iela 1)
where the operations @, — and 1 are defined pointwise and where, for every ¢ in I, the operation
V; is defined by

Vilaq,...,ag)(u) = /\{al(vl) Vo Vg, (vg,;) | © € Riu}.
The t.,,-complex algebra of § is the algebra
13:—"_” = <L%V7 D, 7, (vi)iel’ 07 1>7

where the operations are defined as for the complex algebra of a frame.

If§= W, {rm | meNo},{R;| i€ I})is a p-L-frame, the p-complezx algebra of § is the
algebra

§7 = < H LSuv @, (vi)ieb 0, 1>7
ueW

where s, = gecd{m € N | u € rp,} (so, s, = 0if {m € N | u € ry,} is empty) and where
operations are defined as for the complex algebra of a frame.

If§ = (W, {rm | mediv(n)},{R;| i€ I})is an Ly-valued L-frame, the L, -tight complex
algebra F* of § is its p-complex algebra.

The following lemma helps to justify this new vocabulary.

LeEMMA 2.34. Assume that n is a positive integer.

(1) The complex algebra of a frame is a complete, completely distributive and atomless
MV-algebra with dual complete lattice L-operators.

(2) The p-complex algebra of a frame is a complete and completely distributive MV-algebra
with dual complete lattice L-operators.

(3) The L,-complex algebra of a frame and the Y., -tight complex algebra of an Y., -valued
L-frame are complete, completely distributive and atomic MVy-algebras with dual
complete lattice L-operators.

PRrROOF. The proof is just a matter of computation that uses elementary properties of MV-
algebras and complete MV-algebras and the continuity of MV-terms when they are interpreted
on [0,1]. O
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The idea that underlies these constructions is that they translate the concept of validity in
the algebraic language. In order to state this result, we use the usual correspondence between
L-formulas and £-terms: to any formula ¢, we associate the L-term ¢! whose variables are in
X = {x, | p € Prop} and which is defined inductively by the following rules (we temporally
denote by f! the algebraic operation symbol associated to f for any connective f of £):

e if p € Prop, we set p' =z,
o if ¢1,..., P are formulas and f is a k-ary connective of £, the term (f(¢1,..., )
is fi(gh, ..., 9h).

Since this definition is clear and natural, if ¢ is an £-formula and if ® is a set of L-formulas,
we simply denote by ¢ the term ¢! and by ® the set &' = {¢! | ¢ € ®} if this convention does
not jeopardize the understanding of the results.

LEMMA 2.35. Assume that ¢ is an L-formula and n is a positive integer.
(1) If § is a frame, then § = ¢ if and only if T | ¢ = 1.
(2) If § is a frame, then § =y ¢ if and only if §T0 = ¢ = 1.
(3) If § is a p-frame, then § = ¢ if and only if F¥ = ¢ = 1.
(4) If § is an Ly, -frame, then § = ¢ if and only if §* = ¢ = 1.

PRrROOF. The proofs of the four results are similar. Let us sketch the proof of the first
result. First note that for any MV-algebra with L-operators A, the equation ¢ = 1 is satsified
in A if and only if ¢ is true in any algebraic KRIPKE model (A, a,) based on A.

Let M = (3, Val) be a model based on § and a, the algebraic valuation defined on §* by

a, = Val(-,p)
for any p in Prop. It is easy to prove by induction on the number of connectives in ¢ that

Gy = Val('? d))
for any ¢ in Form. Thus, if §+ = ¢ = 1, we obtain that (F1,a.) = ¢ so that M = ¢.
Conversely, let (31, a,) be an algebraic model based on §* and M = (g, Val) be the model

defined by

Val(w, p) = ap(w)
for any propositional variable p and any w in §. It is easy to prove by induction on the number
of connectives in ¢ that

Val(w, ¢) = ag(w)
for any ¢ in Form and any w in §. Hence, if ¢ is valid in §, it is valid in any algebraic model
based on §* and T = ¢ = 1. O

The following result is clear and does not require a proof.

PROPOSITION 2.36. Assume that n is a strictly positive integer.
(1) If § is a frame, then T is a complete subalgebra of I+ and B(FT) coincides with
B(F).
(2) If § is a p-frame, then FP is a complete subalgebra of I+ and B(FP) coincides with
B(FT).
(3) if § is an Ly,-frame, then F*" is a complete subalgebra of T and B(F*") coincides
with B(F ).
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Actually, albeit obvious, the third statement of Proposition 2.36 is central to our devel-
opments about the strong canonicity of SAHLQVIST equations in the variety of MV ,-algebras
with L-operators.

3.2.2. Canonical frames and models. Complex algebras translate validity of formulas in
the algebraic language. We could hope to have a similar construction for the converse problem,
i.e., a construction that would associate a first order structure to any MV-algebra with £-
operators A in such a way that A would satisfy the equation ¢ = 1 if and only if the formula
¢ < 1 is valid in that structure. This project can be categorized as a dream since such
a construction is not known for the extensively studied variety of boolean algebras with L-
operators, which is a subvariety of MMV~ . But, it is possible to associate a canonical frame
A, to any boolean algebra with L-operators A in such a way that any L-formula ¢ = 1 that
is valid in A4 induces an equation ¢ < 1 which is valid in A. In other words, the frame A
only validates formulas that are valid in A.

In this part of the dissertation, we try to generalize this classical construction for the
variety MMV . Unfortunately, we are able to ensure that the canonical frame Ay that we
associate to A validates formulas that are valid in A only if the MV-reduct of A is an MV,,-
algebra for some n in N. The best result we provide for the general case is Lemma 2.40. This
result is not about canonical frames but about canonical models. It states that if (A, a,) is
an algebraic valuation and if M4, is the canonical model associated to (A,a.), then the
formula ¢ < 1 is true in My, if it is true in (4, a,).

DEFINITION 2.37. If A is an MV-algebra with L-operators, the canonical frame Ay of A
is the frame

Ap = (Wa, (R |ieI})
where

(1) the universe Wy, of Ay is the set MV(A,[0,1]) of the homomorphisms of MV-
algebras from A to [0, 1];
(2) for any i in I, the relation R?J“ is defined by

(u,v1,...,v%) € R?* ifVay,...,ap, € A (w(Vi(ar,...,ax,)) =1= \/ vg(ag) = 1)
1<k<k;

If a, : Prop — A is an algebraic valuation, the canonical KRIPKE-model associated to the
algebraic model (A, a,) is the model M4 4y based on the canonical frame of A and defined by

ValM<A,a.> (uap) = u(ap)
for any propositional variable p and any element u of MV(A4, [0, 1]).

Note that if A is a boolean algebra with L-operators, these definitions boil down to the
standard ones. If A is an algebra of MMV~ the canonical frame of A and the canonical
frame of B(A) are actually isomorphic.

LEMMA 2.38. Assume that A is an algebra of MMV%. The map
YAy — B(A)4 s u ulpa

1S an isomorphism.
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PROOF. It is a well known result that 1 is a bijective map (see [46] for example). It is
also clear that if R is any k+ l-ary relational symbol associated to a a dual modality of £ and
if (u,v1,...,v) belongs to R4 then (¢(u),v¥(v1), ..., ¥ (vx)) belongs to R4+, Conversely,

assume that (u |p3(4), v1 l93(4), - - Uk Los(a)) belongs to R®A and that ay, . .., ay, are elements
of A such that u(V(a1,...,ar)) = 1. Tt follows that u|g4) (V(71(a1),...,71(ax))) = 1, so
that there is a ¢ in {1,...,k} such that v;(71(a;)) = 1, which means that v;(a;) = 1. O

Note that the following proposition provides a definition of Rf* which is easier to remem-
ber, but heavier to check.

PROPOSITION 2.39. Assume that A is an algebra of MMV* and that i € I. An element
(w,v1,...,v;) of (AL)*FL belongs to R?* if and only if w(V(x1,...,2x,)) < V{vi(x;) | i €
{1,...,ki}} for any x1, ..., xg, in A.

PRrROOF. The right to left part of the statement is trivial. Let us the left to right part.
Proceed ad absurdum and assume that z1, ..., zp are elements of A and that d is a dyadic
number of [0, 1] such that

VAvi(as) [i € {1,... ki}} <d <u(Vi(x, ... z5)).
Then, it follows that
\A{vilra(zi)) [ i € {1,... ki}} #1
while
w(V(ra(z1),. .., ma(zr,)) =1

which is the desired contradiction. OJ

We now prove that the canonical valuation associated to an algebraic valuation extends
naturally to formulas. This lemma is a central result and will allow us to represent any MV ,,-
algebra with L-operators as a subalgebra of the ¥.,-tight complex algebra of an t.,-valued
L-frame (see Corollary 2.43).

LEMMA 2.40 (Truth lemma). Assume that A is an algebra of MMV* and that a, : Prop —
A is an algebraic valuation. If one of the following two conditions is satisfied,

(1) the MV-reduct of A is an MVy-algebra for a positive integer n,
(2) every MV-operator of L is unary,
then
Valu ., (U, @) = u(ag)
for any formula ¢ and any world u of the canonical model M4, of (A, a.).

PrOOF. We proceed by induction on the number of connectives of ¢. The non trivial case
is the case of a formula ¢ = V;(¢n,...,9y,) for an i in 1.

It is sufficient to prove that if V is a k-ary dual MV-operator on A, if R denotes the relation
associated to V in the canonical frame of A, if u denotes a world of §4 and if a4, ..., ax belong
to A, then

u(Viar,...,ax) = N\ wia).

DERU1<i<k
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We first prove that
u(V(ar,...,ax)) < \/ vi(ai)
1<i<k
for any v in Ru. Otherwise, there are a v in Ru and an element d in D N[0, 1] (recall that D
denotes the set of the dyadic numbers) such that

\ vi(a) <d<u(V(ar,... ).
1<i<k

Thus, for every i in {1,...,k}, we obtain that
T4(vi(a;)) = vi(14(a;)) <1  and  719(u(V(ay,...,ar))) = 1.

If follows that u(V(7q(a1),...,74(ar))) = 1 while \/,., 0i(74(a;)) < 1, a contradiction since v
belongs to Ru. -
For the other inequality, we first assume that condition (1) is satisfied. In fact, in that
case, the equality
u(V(ar,...,ap) = N\ Bilas)
v€Ru 1<i<k

is satisfied if and only if, for any 7 in {1,...,n},

Tz’/n(u(v(alv s 76%))) = Tz/n( /\ \/ T}l(al))

BERu 1<i<k

The latter equality is in turn equivalent to

u(V(Tim(ar), - Tim(an)) = N\ vilmim(ai).
BERu 1<i<k
Eventually, we can conclude the proof of case (1) with the help of the Truth Lemma in boolean
algebras with operators and Lemma 2.38.
Let us now assume that condition (2) is satisfied. Then, the considered operator V is
unary, and we prefer to denote it by J. We prove that if there is a d in DN [0,1] and an a in
A such that u(Oa) < d, then we can find a w in Ru such that w(ry(a)) < 1. If

u(a) < d < /\ v(a)
veERu
then for any v in Ru, we obtain 74(v(a)) = 1. This condition is not satisfied for the constructed
w, a contradiction.

So, proceed ab absurdum and suppose that v(7g(a)) = 1 for every v in Ru. Since (u,v)
belongs to R if and only if 0~ 1u~1(1) C v~1(1), the maximal filters that contain (O~ tu~1(1)
are exactly the v=1(1) with v in Ru. If in addition condition (1) is satisfied, we can conclude
that u(7g(a)) = 1 since in any MV,-algebra, any filter can be obtained as the intersection
of the maximal filters containing it. Otherwise, it follows that the class of 74(a) is infinitely
great in A/O71u=1(1) so that 74(a) ® 74(a)™ belongs to O~ tu~1(1) for any positive integer
m. Then,

1 =u(d(rq(a) ® 1a(a)™)) = u(r4(0a)) & u(r4(Ca))™
for any positive integer m. We conclude that u(74(a)) is inifinitly great in u(A). Since u(A) has
no non trivial infinitely great element, we have proved that u(74(a)) = 1, a contradiction. [



3. INTEGRATION OF THE ALGEBRAIC INGREDIENT 26

By canonically adding a relational layer to the canonical frame of an MMV~-algebra A,
we define the canonical t.,-valued L-frame associated to A. At this point of the dissertation,
the reader may not realize that these structures are more adapted for an algebraic approach
of relational semantics of ¥.,-valued modal logics than the canonical frames. This will appear
clearly in Chapter 4 in which we use this canonical t.,,-valued £-frame to construct a concrete
representation of the canonical extension of A (see Proposition 4.31).

DEFINITION 2.41. If A is a member of MMV~ the canonical L.,,-valued L-frame Ay, of
A is the structure

A = Wy {rm™™ | m € div(m)}, (R | € 1)
where
(1) this structure (Wa, {RZAX" | i € I'}) is the canonical frame of A,

Xn

(2) for any divisor m of n, the set r,’% contains the homomorphisms that are valued in
L,

rn " = {u € MV(A,[0,1]) | u(4) € By}

We first prove that canonical L.,,-valued L-frames deserve their names, 4.e., that Ri(r,’?f") -
Axn\k
(rm ™ )",

LEMMA 2.42. Assume that A belongs to MMVﬁ. The structure Ay, s an Y,-valued
L-frame. As a consequence, the canonical model associated to an algebraic model (A, a,) is
based on the canonical Y.,-valued L-frame of A.

PRrROOF. We first prove the result for a unary dual MV-operator [J with canonical relation
R. Let us assume ab absurdum that there is a w in " for which the set RunN X \ rf@x” is
not empty. Now, since the subalgebras of ¥.,, are the algebras L., with m in div(n), we can
find an m/ in div(n) such that
1
— = /\{v(x) | v e Ru\ r}ix",x € A and v(z) # 0}.

Xn

Obviously, the integer m’ is not a divisor of m and we can find a v € Ru \ 7“;2 and a ¢ in A
such that v(a) = ;.
Let us recall that the universe of Ax, can be equipped with a boolean topology in such a
way that the evaluation map
eq: A— H u(A):a— (u(a))ueAXn

u€Ax,

is a boolean representation of A such that the set rﬁlx” is a closed set for this topology
(see Proposition 1.12). We can thus construct a clopen set Q containing v and included in
Ay, \r}?f”. Then the element

b=aloUl[4, \o
belongs to A. It follows that

w@b) = N wb)= J\ w)=v()=—

weERu weE RuN$

L . . A
which is a contradiction since u € 7,,°™.
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Let us now consider the case of a k-ary dual MV-operator V with canonical relation R.
Suppose ad absurdum that there is an element u of rﬁ‘lx” for such that the set

ROy = U{v €Ay, | vty 0im1, Vg, Uk | (W01, 021, 0, Vi1, ., 0) € R}
i<k

is not a subset of réx". Then, define m’ by
% = /\{v(x) | v e R\ rm" .z € A and v(x) # 0}.
Obviously, m’ is not a divisor of m and we can find a v in R and a a in A such that
% = v(a). Then, thereis a i < k and v1,...,0;—1,Vi41,...,V in Ay, such that
(u,v1,...,i-1,0,Vi41,...,0p) € R.
Let us now consider the unary dual MV-operator
v . A—A:x2—V(0,...,0,2,0,...,0)

where x appears as the " argument of V. We prove that (u, v) belongs to Ry i), an absurdity
by the unary case since u belongs to 7’;41*” but v does not. If x belongs to A, we obtain
w(VO(z) =1 < w(V(0,...,0,z,0,...0)) =1

wWERu

thanks to Lemma 2.40. Thus, if u(V®(z)) = 1, we can conclude that v(z) = 1 since the
k + 1-uple

(uvvlw -y Ui—1,U, Vit 1, - - - ,’Uk-)

belongs to R. O

This result as an important consequence.

COROLLARY 2.43. If A is an MV,-algebra with L-operators, then the n-tight complex
algebra (Ax, )™ of the canonical Ly, -valued L-frame Ay of A is an extension of A.

Similarly as in the case of boolean algebras with operators, we call that extension the
canonical extension of A. In the sequel of the dissertation, we will show that it is more than
a similarity. . .

DEFINITION 2.44. If A is an MV ,-algebra with L-operators, then the algebra (A, )*",
sometimes denoted by A?, is called the canonical extension of A.

Unfortunately, as proved by the following example, the algebra (A, )" is not in general an
extension of A.

ExAMPLE 2.45. CHANG’s MV-algebra C is not a a subalgebra of (C;)". Indeed, the
algebra C has only one maximal filter, while C is not a subalgebra of [0, 1].
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3.3. Dual constructions. We show that the constructions introduced in subsection 2.2
have a algebraic translations.

PROPOSITION 2.46. If ¢ : § — § is a bounded morphism between two frames § and §,
then the map v+ : FT — F 1 a— ao) is a complete L-homomorphism.

PROOF. Let us assume that ¥ : § — § is a bounded morphism. It is easy to prove that
YT is a complete map. If a and § are two elements of 1 and if w is an element of § , then

W a®p)(u) = (a®pB)(¥(u)
= a((u) & B(e(u)).
It follows that ¥ (a @ ) = ¥ (a) ® T (B). We proceed in a similar way to prove that
P(—a) = )(a) for any a in F'T.
Now, assume that V is a k-ary dual modality of £. Denote by R and R’ the k + l-ary

relational translations of V in § and § respectively. If a1, ..., ay are elements of § and if u
belongs to §, then, on the one hand,

W (Vliay,...,o0)(u) = (Vo ..., ax))(¥(u))
= /\ 04] 11)
WERM(u) 1<5<k
On the other hand,
(V@ (), 0t (@) w) = A\ @ (ay)())

v€ERu1<j<p
= NV a@@))
vERuU 1<5<k

The result is then obtained thanks to the definition of a bounded morphism. O
Of course, similar results can be stated for the two other classes of structures.

PROPOSITION 2.47. Assume that ¢ : § — FT is a map between two p-L-frames (resp. two
L -valued L-frames) § and §'. Denote by WP : FP — FP (resp. by > : F*n — F* ) the map
defined by (a) = aop. If ¢ is a p-bounded morphism (resp. an Ly, -bounded morphism) then
WP (resp. > ) is a complete L-homomorphism.

PROOF. If ¥ : § — & is a p-bounded-morphism between two p-L-frames § and § then
the map ? is an £-homomorphism from " to F+ according to proposition 2.46. Then, since
Y(rS) C rS for any m in Ny, the map 1 |30 is valued in §? (recall that the p-complex algebra
of a frame is a complete subalgebra of its complex algebra). O

We now dualize onto bounded morphisms and embeddings.

PROPOSITION 2.48. Assume that § and §' are two L-frames.
(1) If ¢ : § — F is an onto bounded morphism, then ¥+ : F+ — Ft is an embedding.
(2) If Y : § — F is an embedding, then Y : FT — FT is an onto L-homomorphism.
A similar result can be stated for p-bounded morphisms (resp. Ly, -valued bounded morphisms)
between p-L-frames (resp. L-valued L-frames).
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PRrROOF. The proofs are exercices. O

Note that Proposition 2.21 and Proposition 2.25 appear now as consequences of the pre-
ceding result and Lemma 2.35.
Here is the dual translation of the disjoint unions of structures.

PROPOSITION 2.49. If {§; | j € J} is a family of disjoint L-frames, then (h—JjEJ Si)T s
isomorphic to Hjejsj. The corresponding result can be stated for disjoint unions of p-L-
frames and disjoint unions of Y., -valued L-frames.

4. Duality for frames

The preceding developments can be lifted up to a categorical level into a dual equivalence
between the category CMMV* of complete and completely distributive MV-algebras with
complete L-operators on the one hand and the category of p-£-frames on the other hand. Such
a duality can also be obtained for the full subcategory CMMVE of CMMV* whose objects are
the algebras of CMMVE whose MV-reduct is an MYV ,,-algebra and the category of ¥.,-valued
L-frames (which is a full subcategory of the category of p-L-frames). These dualities generalize
the well known duality between complete and completely distributive boolean algebras with
L-operators and the category of L-frames (see [53]).

We first fix the notations for the various categories involved.

DEFINITION 2.50. We denote by CMMV* the category of complete and completely dis-
tributive MV-algebras with complete-L£ operators as objects and complete £-homomorphisms
as arrows and by CMMVE the full subcategory of CMMV* whose objects are the objects
of CMMV* whose MV-reduct is an MV,,-algebra.

We denote by PFr¥ the category of p-L-frames as objects and p-bounded-morphisms as
arrows and by Fr~ the full subcategory of PFr* whose objects are the F.,-valued L-frames
(the arrows of FrZ are called L, -bounded morphisms instead of p-bounded morphisms).

In this section we switch our approach of the modalities: we temporarily consider that
the language £ is obtained from Ly by adding connectives A; (i € I) that are interpreted
as MV-operators (instead of connectives V; (i € I) interpreted as dual MV-operators). This
helps to give a nice form to the results.

LEMMA 2.51. If A is a complete and completely distributive MV-algebra, any complete
k-ary MV-operator A on A is completely determined by its restriction to B(A)F.

PROOF. In this proof, we identify A with its (completely) isomorphic copy
II i
peAtom(B(A))

where i, denotes the unique embedding of (p] in [0, 1] (see Lemma 1.20).

Let us define D as the subset of A that contains any element d for which there is a p
in Atom(B(A)) such that d(q) = 0 if ¢ # p, d(p) belongs to D N [0,1] if i,((p]) = [0, 1] and
d(p) € Ly, if i, ((p]) = B Thus, if a belongs to A, then

a=\/{d|deDandd<a}.
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Since A is a complete operator, we obtain that
Alay,...,ax) = \/{A(dy, ..., dx) | (d1,...,dy) € DX and (dy,...,dy) < (a1,...ax)}

for any (a1,...,a;) in A¥. Hence, the operator A is determined by its value on D*. Now, to
conclude the proof, it suffices to show that if (di, ..., d;) belongs to D* and if p is an atom of
B(A), the value of (A(dy,...,dx))(p) is determined by A | Atom((a))t - Note that

l
(A(drs- -, dn))(p) = \{D_ 27" [ 1 € No,¢ € {0, 1} and g+ ((A(dy, .., d1))(p)) = 0},
=1

and that ge~((A(dy,...,dr))(p)) = (A(gex(dr),...,9e(dg)))(p) for any finite sequence ¢* of
elements of {0,1}. We can always refine such a sequence ¢* in a new sequence ¢ by adding
a finite number of 0 to its right end in such a way that g.=(d;) is an atom of B(A) for any
iin {1,...,k} and such that the dyadic numbers represented by ¢* and ¢* are equal. Thus,
(A(di,...,d;))(p) is equal to

l
VA 627 [ k€ Nove* € {0, 11, (ger (da), - ges () € (Atom(B(A))"
=1

and (A(ge(d1), - - ge= (di))) () = 0},
and (A(dy, ..., dx))(p) is effectively determined by Al agom(m(a)))t- O

This result indicates us that if we want to construct the analog for a CMMV¥%-algebra A
of the atomic frame of a complete and completely distributive boolean algebra with operators,
it will be sufficient to consider the atomic frame of its algebra of idempotent elements.

DEFINITION 2.52. If A is a complete and completely distributive MV-algebra with com-
plete L-operators, the atomic frame A, of A is the atomic frame of B(A). Precisely, the frame
A, is the frame whose universe is the set Atom(B(A)) of atoms of B(A) and whose structure
is defined by

(a,al, e ,aki) eR;ifa< Ai(al, e ,aki)
for any 7 in I and any a, b, ..., by, in Atom(B(A)).

Here is a technical lemma which is part of folklore.

LEMMA 2.53. If A and B are two complete and completely distributive boolean algebras
and f : A — B is a complete homomorphism then
(1) the map fa: Atom(B) — A:b— N{a€ A|b< f(a)} is valued in Atom(A),
(2) for any b in Atom(B) there is a unique c in Atom(A) such that b < f(c)
(3) if f1 : Atom(B) — Atom(A) denotes the map defined by

fa)=c if b< f(o)
then f. = fa.

PROOF. To obtain the first result, it is sufficient to prove that f,(b) is completely join-
prime. Let us assume that f,(b) < \/ X for a subset X of A. Then,

b< f(fa(0) < F\/ X) = F(X).
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Since b is an atom of B(B), it follows that there is an x in X such that b < f(z). We obtain
that f,(b) < x by definition of the map f,.

The second result is trivial: if ¢ and ¢ are two atoms of A with b < f(c¢) and b < f(c),
then b < f(eA ) =0.

Now, thanks to the second result, the map f, is well defined. Clearly, f2(b) < f1(b) for any
atom b of B and the other inequality holds because f,(b) and f.(b) are two atoms of A. [

In the following definition, we define the dual of an arrow f : A — B of CMMV* as the
dual of its restriction to B(A).

DEFINITION 2.54. If f: A — B is a complete homomorphism between two complete and
completely distributive MV-algebras with complete operators A and B, the map f, : By — A,
is defined by fa(b) = A{a € B(A) | b < f(a)} for any b in Atom(B(B)).

To complete the construction of the first layer of the duality (the layer that only involves
complete and completely distributive MV-algebras with complete operators and frames), we
state the following result.

LemMma 2.55. If f : A — B is a complete L-homomorphism between two complete and
completely distributive MV-algebras with complete L-operators, then f, is a bounded morphism
between B, and A,.

PrOOF. The proof follows from the well known corresponding results for the complete
and completely distributive boolean algebras with complete operators and complete £-homo-
morphisms. We nevertheless include a standalone proof.

Let us consider a k-ary MV-operator A of £ and (b,by,...,b)in Ria. Using the alternative
definition of f; proposed in part (3) of Lemma 2.53, we obtain that

b< F(fa(b) A Db, by).
Then, since b; < f(fa(b;)) for any i in {1,...,k}, we obtain that
b= (0 A S(a(B)
= f(fa@) NA(fa(br), - -, fa(br)))-

It follows that fa(b) < A(fa(b1),..., fa(bg)) since f4(b) is an atom and b # 0.
Let us now assume that b is an atom of B(B) and ay, ..., a are atoms of B(A) such that
(fa(b),a1,...,ax) € RA*, i.e., such that

fa(b) < A(aq,...,ax).
If we define b; as f(a;) for any ¢ in {1,...,k}, we obtain that
b< f(fa(b)) < Ay, ... by).
Moreover, for any i in {1,...,k},
fabi) = \aeBA)| f(@) < fla)}
< a

and so fa(b;) = a; since f5(b;) and a; are two atoms of B(A). O
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Obviously, the category of L-frames does not contain enough information to be the dual
of the category CMMV~. To get the missing information, we add a layer to the atomic frame
of a CMMV*-algebra A.

DEFINITION 2.56. If A is an algebra of CMMV* | the atomic p-L-frame of A, denoted by
Ap, is the structure

Ay = (Atom(B(A)), {rm | m € No},{R; | i € I}),

where

(1) the structure (Atom(B(A)),{R; | ¢ € I'}) is the atomic frame of A,
(2) for any m in Ny, the subset r,, contains p if the MV-algebra (p] is embeddable into
L, where Lo denotes the MV-algebra [0, 1].

Up to now, we can state that if A is a CMMV*-algebra then the map

(4.1) Ea:A— (Ap)° 2z = (ip(z AD))petom(B(A))

where i, denotes the unique embedding from (p] into [0, 1] is an isomorphism of MV-algebras.
We can now prove that it also preserves operators of £. Note that this result is well known if
A is a boolean algebra with L-operators

Recall that if p is an idempotent element of A, we denote by h), the onto MV-homomor-
phism h, : A — (p] : x — = A p (see Lemma 1.18).

DEFINITION 2.57. If A is a complete and completely distributive MV-algebra and if p is
an atom of B(A), we denote by u, the map
Up = 1p 0 hy
where 4, denotes the unique MV-embedding of (p] into [0, 1].

We also denote by J(A) the set of the V-irreducible elements of A. Note that, thanks to
isomorphism (4.1), we obtain that a = \/{b| b € J(A) N (a]} for any a in A.

LEMMA 2.58. If A belongs to CMMV*, if A is a k-ary modality of £ and if p and
q1,- -, qr are atoms of B(A) then (p,q1,...,qx) belongs to Ri” if and only if (up, uq,, ..., Ug,)
belongs to Rgﬁ.

PRrROOF. First assume that (up,ug,,...,uq,) belongs to RA+. For any ai,...,a; in A if
Ug, (@1) N -+ Nug, (ar) = 1 then uy(A(ar, ..., ax)) =1 or equivalently if g1 < ay,...,qr < ag
then p < A(aq, ..., ax). We conclude this part of the proof by considering a; = ¢, . . ., ax = qx.

Conversely, assume that (p,qi,...,q:) € R, ie., that p < A(qy,...,qc). Then, if
@ <ai,...q < ag, te., if ug (a1) A ANug,(ag) = 1, we obtain that

p<Aq,---q) < Aa, ..., ak)

and eventually that u,(A(ar,...,a;)) =1 O
PROPOSITION 2.59. If A is an algebra of CMMV* then the map

Eq: A= (Ap)°: x = (up(x)) peAtom(B(4))

1s an L-isomorphism.
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PrROOF. Let us assume that A is a k-ary modality of £. We have to prove that
(4.2) Ea(AMar, .., ax)) = AU (Ba(ar),..., Ba(ay)).

It is a well known result that this property is satisfied if (a1,...,a) belongs to B(A)*.
Moreover, we have proved in Lemma 2.40 that for any u in AL,

w(AMay, .. ak)) = \[{oi(ar) A=+ Avglag) | (w0 0) € RA)

Thus, thanks to Lemma 2.58, we obtain that for any p in Atom(B(A)),

Ea(AMar,.. . a0))(0) = \/{ug(ar) A Aug(an) | (poar.- - qr) € R}
= (AW (Ba(ar), ..., Ealar)))(p).

We now prove that equation (4.2) holds if ay,...,a; are V-irreducible elements of A.
Proceed ad absurdum and assume that there are V-irreducible elements a1, ...,a; of A, a pin
Atom(B(A)) and a d in D N[0, 1] such that

\/{ug (@) A+ Aug(ar) | (pra1s- - ax) € B} < d < Ea(A%as, ..., ar)))(p).

Since ay, ..., ai are V-irreducible elements, we can choose (see the remark that follows Lemma
1.20) the term 74 in such a way that 74(a1), ..., 74(ax) belong to Atom(B(A)). It follows that

up(AA(Td(al), o 1alar))) = 1 but ug (tg(ar)) A+ - Aug, (ta(ar)) = 0if (p,q1, ..., qr) belongs
to R(4)°  This is a contradiction since

up(A (ra(ar), - malar))) = \/{ug (ra(ar) A - Nug(ra(ar)) | (01, - - ax) € RAY.
It then follows successively that, if p belongs to Atom(B(A)) and if ay,...,a; belong to A

up(Aar, .. ar)) = up(\/{AA b1, bk) | b1 € (@] NT(A),... b € (ax] N T(A)})

= VA{up(A? by, b)) | b1 € (1] N T(A), ... by € (a] N T(A)}

since u,, is a complete homomorphism. The later element is equal to
VIV g (b) A+ At () | (B k) € R4} [ by € (an] N I(A), .., by € (ag]NI(A)}
and so to
VAV {tgy (b1) A+ Mg, (be) | b1 € (aa] NI (A), ... bk € (ar]NI(A)} | (p,aqu,- .. q) € R}
and finally, by complete distributivity of A, to

Vg (@) A+ Nug(ar) | 0, a1, - ax) € R}

which drives us to the desired conclusion. O

The next result justifies the vocabulary introduced in Definition 2.56.

LEMMA 2.60. If A is a CMMV*-algebra, then the atomic p-L-frame Ap of A is a p-L-

frame.
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PrOOF. The only non trivial part is to prove that if A is an k-ary MV-operator on A
with associated relation R on the atomic p-frame of A, if m is a positive integer, if p belongs
to 7, and if (p, q1,. .., qx) belongs to R4, then (q1,...,qx) belongs to (rﬁp)k. We proceed ad
absurdum and assume that there is a p in 7“;?{’ and (q1,...,qx) in (R4)* with ¢ in Ap \ rf,‘lp.
Now, let us pick an element x in (g¢i] such that iy, () does not belong to L,, (where i, denotes
the embedding defined in the proof of Proposition 2.59) and define the element oy of (Ap)°

by
0 ifr#aq
on(r) = { r ifr=q,

for any r in A,. By definition of A" it follows that

(A(Ap)p(oa,l,... 1))(p) = \/ (1)
(p7r17~~.,7‘k)€RAp

a contradiction since a(p) belongs to Ly, for any « in (A4,)P. O

Recall that we have proved in Lemma in 2.34 that the dual of an object of PFr® is an
object of CMMV¥* and in Proposition 2.47 that the dual of an arrow of PFr~ is an arrow of
CMMV*.

We now dualize arrows of CMMV* into arrows of PFrL, i.e., we add a p-frame layer to
Lemma 2.55. We use this result as a definition.

PROPOSITION 2.61. If f : A — B is a complete L-homomorphism between two CMMV*-
algebras A and B, then the map fa: Bs — Ay :p— N{a € B(A) | p < f(a)} is a p-bounded
morphism. In order to lift our results at a the level of categories, we denote this map by fp.

Proor. Thanks to Lemma 2.55, we already know that f, is a bounded morphism between
the underlying frames of B, and A,. Let us now assume that p is an atom of B(B) that belongs
to rn? with m € Ny. Then, the map

gp: (fa@)] = (p]: 2 — f(z) Ap
is an homomorphism of MV-algebras. Thus, (p| contains a non trivial quotient of (fa(p)] as

a subalgebra (g, cannot be the constant map 0 otherwise p = 0 since p = f(fa(p)) Ap =
9p(fo(p))), which implies that f.(p) belongs to . O

The preceding developments can be turned into a duality result. Actually two duality
results.

PROPOSITION 2.62. The functors -, and -+ define a dual equivalence between the full
subcategory of CMMVE whose objects are the atomless objects of CMMVE and the category
Fr£. The map

Ea:A— (A" i a (ip(a AD)))peatom(s(a))
(where iy, denotes the unique isomorphism from (p] to [0,1] for any p in Atom(B(A))) is an
1somorphism for any atomless complete and completely distributive MV-algebra with complete
L-opeartors A. The map defined by

o ={ J17
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is an isomorphism from § to ()4 for any L-frame § and any p and q in §.
The functors -, and -P define a dual equivalence between the category CMMV* and the
category PFr=. The map

Ely: A— (Ap)°:a v (iy(a A p)))peatom((a))

(where i), denotes the unique embedding from (p] into [0,1] for any p in Atom(B(A))) is an
isomorphism for any CMMV*-algebra A. The map defined by

0 ifq#p
€ = .
o ={ ] 4177
is an isomorphism from § to (§p)® for any L-frame § and any p and q in §.
The restrictions of - and P to the full subcategory CMMVE of CMMV* and the full

subcategory Fr= of PFrr respectively define a dual equivalence between these two categories.

PRrROOF. The easy details are left to the reader. ([l

5. Canonical extension of structures

There is another construction of structures that we should now introduce. This construc-
tion is fundamental for the characterization of classes of structures that are modally definable.

DEFINITION 2.63. If § is a frame, the [0, 1]-valued canonical extension of §, in notation
FMe0.1 is the canonical frame (F1)4 of the complex algebra 1 of . If M = (F, Valy) is a
model based on §, the canonical extension of M is the model M™¢ based on F"¢0:1 defined
by Valyme(w, p) = w(Valpy(+, p)) for any propositional variable p and any w in FmMe0.1.

If § is an L,,-valued L-frame, the L., -valued canonical extension of §, in notation FMe», is
the canonical L,,-valued L-frame (%), associated to its L,-tight complex algebra §*~.

If § is an L-frame, the L., -valued canonical extensionindexcanonicallt.,-valued extension of
a frame of §, in notation ™", is defined as the underlying L-frame of the ¥.,-valued canonical
extension of the trivial L,-valued L-frame based on §. In other words, the L-frame §™M¢" is
isomorphic to (F1)4, .

If M is an Lj-valued L-model, the underlying L,-valued L-frame §p(M) of M is the
b,-valued L-frame based on form the underlying L-frame of M by defining the subset ry, of
W for any m € div(n) by

u € 1y if Val(u, Form) C L,,.

The L,-valued canonical extension MM of M is the model based on F,(M)™" defined by
Val pqmen (w, p) = w(Valp(+, p)) for any p in Prop and w in §,(M)™"

Note that if § is an L-frame, one can recover the classical (i.e., bi-valued) definition of
the canonical extension of § by considering § as the trivial t.1-valued L-frame based on § and
by getting rid of the Lj-valued layer of the ¥;-valued canonical extension of the latter. We
obtain directly the following result.

PROPOSITION 2.64. If § is an Y,-valued L-frame, the underlying L-frame of 7 is
isomorphic to the Li-valued canonical extension of the underlying frame of §.
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PROPOSITION 2.65. Assume that § is a frame, that M is a model based on § and that ¢
denotes the map
0:F— Dyt w e pu,
where p,, denotes the projection map from I+ = [0, 1]V onto its w-th factor.
(1) The map ¢ identifies § as a subframe of (F7)4,
(2) The map ¢ identifies M as a submodel of M™¢.

The corresponding result can be stated for the class of Y, -valued L-frames and the t.,-
valued canonical extensions.

PROOF. (1) The map ¢ is clearly one-to-one. Assume that V is a k-ary dual modality of £
and denote by R (resp. R™€0.11) its associated relation on § (resp. on ()4 ). Let us prove that
L(R) = R™01 N o(W)F*1 Note that if u, vy, ..., v belong to W, then (c(u),t(v1), ..., t(vr))

belongs to R™0:11 if and only if, for every aq,...,ay in [0, 1]V,
pu(V(ag,...,ap)) =1= \/ Do () =1
1<i<k

or equivalently, by definition of V on §,

(5.1) /\ \/ ai(@i) =1= \/ Oéi(’UZ') =1.

weRu 1<i<k 1<i<k
Assume now that (py, py,,--., Py, ) belongs to «(R) and that A{\V{ai(w;) |1 <i<k}|we
Ru} = 1. Then, since v € Ru, there is a ¢ in {1,...,k} such that p,, (o) = @;(v;) = 1, which
proves that (¢(u),c(v1)...,et(vg)) belongs to R™E.

To prove the other inclusion, we first consider the case of a unary modal operator O (i.e.,
of a binary accessibility relation R). Assume that (¢(u),:¢(v)) belongs to R™0-1. Then, by
defining ay (in this case k = 1) as the characteristic function of Ru in (5.1), we obtain that
aq(v) = 1, which means that (u,v) is a member of R. We can now consider the general case of
a k + l-ary accessibility relation R with k£ > 1. Let us pick an element (¢(u),c(v1),...,t(vg))
in R™€0.1 and define the binary relations R’ and R” by

Rw={veW|(wuv,uvs,...,v05) € R}
and
R'w={veW| ((w),cv),vs),...,(v)) € R™}
for any w in W.
It suffices to prove that «(R”) C R'™1. Indeed, in that case, since (¢(u), t(v1),. .., t(vg))

belongs to R™¢, it follows that (:(u),c(v1)) is a member of ((R”) and thus of R'™€%1. Now,
since R is a binary relation, we can conclude that (u,v1) belongs to R’ and eventually that

(u,v1,v2,...,v;) is in R.
So, let us pick (u,v) in R” and an « in [0,1]" such that A{a(w) | w € R'u} = 1. We
aim to conclude that a(v) = 1. Since (u,v) belongs to R”, we obtain by definition that

(t(u), t(v), t(v2),...,t(vg)) is in R™. With the help of (5.1), we conclude that, if ag,...,ax
are any members of [0,1]" such that

(5.2) VweRu, \/ ai(w)=1,
1<i<k
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then aj(v) V ag(ve) V- -+ V ag(vg) = 1. By defining «; as the characteristic function of R'u:

1if (u,w,v9,...,ux) € R

W=k { o

and «a; as the characteristic function of W'\ {v;}:

1if w # v
0 if w = vy,

aj:W—>[0,1]:w|—>{

for any 2 < j < k, we obtain that (aq,...,qx) satisfies condition (5.2). We thus obtain that
a1(v) Vag(ve) V -+ V ag(vgy) = 1. We conclude by definition of the maps a; (where j is in
{1,...,k}) that a;(v) =1, so that (u,v,ve,...,v;) belongs to R. Thus, we obtain that (u,v)
belongs to R so that a(v) = 1 according to our hypothesis on a.
(2) If p is in Prop and w is in W then
Val oy (t(w),p) = v(w)(Val(-, p))
= Val(w,p)
which concludes the proof. ]
To obtain the following result, we apply Lemma 2.40 which has been obtained for the
whole variety MMV* only if the language £ does not contain any k-ary dual modality with

k > 2. No such restriction was added for the varieties MMV~ for any n. This asymmetry
appears in the following statement.

LEMMA 2.66. Assume that L is a many-valued language with unary modalities. If M is a
[0, 1]-valued L-model then

V&lee[Oyl] (Ula ¢) = (Val./\/l ('7 1/}))

for any ¥ of Form® and any world v’ of M™0.11,
The corresponding result can be stated for any language L of any type and any Y.,-valued
L-frame and its L, -valued canonical extension MM,

PROOF. Let us denote by «, the algebraic valuation on §+ defined by

ap = Valy(-,p)

for any p in Prop. Then, the model M™®0.11 appears as the canonical model associated to the
algebraic model (§1,a,). Thanks to the Lemma 2.40, we obtain that

Val \ mejq 1) (W', ) = v/(aw)

for any L-formula ¢ and any world v’ of ™11, Since it is clear that

Valp (-, 1) = auy,

we obtain the desired result. OJ

PROPOSITION 2.67. Assume that L is a many-valued modal language with unary modali-
ties. If M s an L-model then for any world u of M and any L-formula ¢,

ValM (U, QZS) = Valee(L(U), ¢)
where v denotes the map defined in Proposition 2.65.
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PrOOF. We prove by induction on the number of connectives of ¢ that for any w in M,
the truth value Valp(u, ¢) is equal to Valame(t(u), @). If ¢ is a propositional variable, the
result follows by definition of Valame. If ¢ = —) or if ¢ = ¢ & p, the proof is easy. Assume
now that ¢ = [h) and that w is a world of M. It follows successively that

Valyme (1(u),00) = [\ {Valyme(v',9) | o € R™001(u)}
< AdValume(1(v),9) | (v) € R™00u(u)}
= A{Valy(v,9) | 1(v) € R™011(u)}
= Valpy(u, )

where we have used induction hypothesis in the third step and the fact that ¢ identifies § as
a subframe of §™M€ in the last step.
Let us then proceed ad absurdum and assume that there is a d in D N [0, 1] such that

(5.3) Valpme (e(u), O¢) < d < Valpq(u, O).
Note that a v’ in F"¢0:1 belongs to R™(u) if and only if
Va € 7 (u(u)(Ora) =1 =1/'(a) = 1)
or equivalently if and only if
(o)™ (1) | v € Ru} S o'~ (1).
From inequations (5.3) we obtain on the one hand that there is a v' in R™€0.114(u) such that
Valyme (v', 1)) < d or equivalently such that 74(Valpme(v',1)) # 1. On the other hand, we
obtain that 74(Valaq(u,0y)) = 1, which means that 74(Valpy(v,v)) = 1 for any v in Ru.
Since 74(Valpq(v, 7)) = Valu (v, Td(l/))) = i(v)(ValM(- 74(1))), it follows that

Valp (-, ﬂ{ 1) | v € Ru}.

Thus, for any v’ in R™0.11,(u), we can state with the help of Lemma 2.66 that
v (Valpm (-, 7a(¥))) = Valyme (v, 7a()) = 1.

We have thus obtained the desired contradiction. 0

Because we have proved Lemma 2.40 for L,-valued L£-models where £ contains modal
operators of any arity, we can state the following result.

LeMMA 2.68. If M is an b, -valued L-model then for any u in M and any L-formula ¢,

Valp(u, ¢) = Valpmen (1(u), @)
where v denotes the map defined in Proposition 2.65.

PRrROOF. The proof is easily obtained by adapting the proof of the corresponding result for
two-valued modal logics with the help of the terms 7;/,. O

COROLLARY 2.69. Assume that L is o many-valued modal language with unary operators
and that § is an L-frame. If ¢ is an L-formula such that F"°01 |= ¢ then § = ¢.

The corresponding result can be stated for an Yu,-valued L-frame and its Y, -valued canonical
extension where L is any many-valued modal language (without any restriction on the arity of
the modalities).
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5.1. Canonical L,-valued extensions as ultrapowers. A very important result for
our algebraic developments is that the ¥.,-valued canonical extension of an t.,-valued L-frame
§ can be obtained as an ultrapower of §.

In two-valued modal logic, this result is due to GOLBLATT (see [25]). His proof is actually
almost sufficient to obtain the desired result for ¥.,-valued L-frames. Indeed, if § is an L,,-
valued L-frame, his proof provides us with a way to construct the underlying £-frame (™) 4
of the L,-valued canonical extension of § as an ultrapower of (§)4. This also explains why
this construction cannot be mimic for [0, 1]-valued canonical extensions.

DEFINITION 2.70. Assume that £ is a first order language and that Y is a set. We denote
by Ly the language LU{P, | y € Y} where for any y in Y we denote by P, a unary predicate.

Then, if § is a first-order £-model on the universe W (for example if § is a frame or an
L,-valued L-frame) we denote by Fo the first order Low-model whose L-reduct is equal to §
and that satisfies

32}:Py(w)<:>w€Y

for any w in W and any subset Y of W.

The first order £-model § is w-saturated if for any finite subset Y of the universe of § and
any set I'(z) of Ly-formulas with a single free variable z, the set I'(z) is satisfiable in o if it
is finitely satisfiable in §o.

THEOREM 2.71. If § is a first-order L-model then there is an elementary extension §. of
T2 which is w-saturated. Actually, the extension §., can be constructed as an ultrapower of §.

PRrROOF. See Theorem 6.1.8 in |7]. O

We are now able to prove the desired result. The proof of the following result is a slight
adapation to our many-valued settings of the original proof of GOLDBLATT (see [25]).

THEOREM 2.72. If § is an Ly -valued L-frame then the Y., -valued canonical extension §M"
of § can be obtained as an Y, -valued bounded morphic image of an ultrapower of §.

PROOF. In this proof, we identify a subset Y of a set X with its characteristic function
on X. Assume that § is frame based on W. We prove that §™¢" is an L,-valued bounded
morphic image of the L-reduct of a frame §, given by Theorem 2.71. For any element x of
T, we define F, = {Y CW | ., 2 |= Py(v)}. Let us prove that F, is a prime filter of 2"V for
any x in W. Indeed, for any subsets Y and Z of W, the structure §o satisfies the following
sentences : —JxPy(x), Ya(Pynz(z) < (Py(z) A Pz(x))), Ya(Pyuz(xz) = (Py(z) V Pz(x))),
Va Py (z). Since §,, is an elementary extension of §o, these sentences are also true in §,, which
is sufficient to conclude that F} is a prime filter of 2"V for any z in Fo. Hence, there is a unique
Uy in MV (F*", Fy,) such that u, (1) N B(F*") = F,. We are going to prove that the map

e e A

is an onto ¥.,-valued bounded morphism.
Let us first prove that ¢ is an onto map. Assume that u belongs to ™. Denote by I'
the type

I'={Py [ulxy) =1} U{=FPy | u(xy) = 0}.
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We prove that T' is finitely satisfiable in Fo. Indeed if U and U’ are two finite sets of subsets
of W such that u(yy) =1 for any Y in U and u(—yy) =1 for any Y in U’, then

uw(Axy |V €U} =u(N\{-xv | Y €U} =1.

Hence, there is a w in W such that xy(w) =1 for any Y in U and such that xy(w) = 0 for
any Y in U’. This shows that

(Py |Y eUYU{Py | Y €U}

is satisfiable by w in §2. Hence, since §,, is an elementary extension of Fo, the type I is also
finitely satisfiable in §,. Thanks to the w-saturation of §,, we deduce that I' is satisfiable in
Sw. If  is an element of §,, such that §,,z = I', we obtain that ¥ (x) = u.

Let us then prove that 1 is a bounded morphism. First assume that (x,y1, ..., yx) belongs
to RS« for a k + 1-ary relation of £. We have to prove that (1 (u),¥(y1),...,¥(yx)) belongs
to RS™™", or equivalently, thanks to Lemma 2.38, that

Vay,...,op € 2V ((2) (Vs (oa,. . ) = 1) = (y1) (1) V- V o (yi) (ax) = 1).

Clearly, by definition of the L,-tight complex algebra of §,
o | YuVuy - 'Vvk(Png(al,...,ak)(w A(u,v1,...,0%) € R) = (Pa,(v1) V-V Py, (vk))).

Hence, the elementary extension §,, of §o satisfies that same sentence. Then, for any aq, . .., ag
in 2" such that ¥(x)(Vgs (a1, ...,ax)) = 1, we obtain by definition of ¥ (x) that

Swa z ': PVRg (Oq,...,oak)(v)?

and since (2, y1,...,yx) belongs to RS, we can conclude that Pu, (y1) V -V Pa, (yx) is true
in §, which means exactly by definition of ¢ that ¥(y1)(a1) V + -+ V¥ (yg)(ag) = 1.

Let us then assume that (1(2),u1, ..., u) belongs to RS" " and prove that there are some
r1,...,x) in F, such that (z,21,...,2%) belongs to RS and that 9 (z;) = u; for any i in
{1,...,k}. We first prove that the set of formulas in the variables vy, ..., v

I'={R(z,v1,..,v6) } U{Pyy (v1) | ua(xvy) = 13U -+ U{Py; (vg) [ur(xy,) = 1}

is satisfiable in §,,. By w-saturation of §,,, it is sufficient to prove that I is finitely satisfiable in
Sw- Since each map wu;’s is A-preserving, it is equivalent to show that for any subset Yi,... Yy
of W such that u;(xy;) = 1 for any ¢ in {1,...,k}, the set of formulas in vy,...,vg

F, = {R(Z, (%R ,vk), Py1 (’Ul), ey Pyk (’Uk)}

is satisfiable in . Now, since (¥(2), u1, . ..,ux) belongs to RS " and u;(xy;) = 1 for any i in

{1,...,k}, we obtain by definition of RS"" that 1(2)(Ags (Xvi,---,Xy;)) = 1, which means
that §u,2z Py s (Xy17--~7xyk)(”)' Then, since the sentence

VU(PARg( )(7}) = Juy,... ,vk((v, Uy ,’Uk) € RN Py, (?)1) JANREIVAN Pyk(vk)))

XY1 XY,

is true in §2 and so in F,,, we obtain that there are xy, ...,z in §, such that (z,z1,...,2%) €
RS and §,,,7; = Py.(v) for any i € {1,...,k} which means that I" is satisfiable in §,,.
From the fact that I' is satisfiable, we obtain that there are some z1,...,z; in §, such
that (z,1,...,7)) belongs to RS~ and such that §,,,7; = Py,(v) for any i in {1,... k} and
any Y; such that u;(xy;) = 1. We deduce that ¢ (z;)(xy;) = 1 for any ¢ in {1,...,k} and
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any Y; such that u;(xy;) = 1. It means that u; |pggxn)= ¥(7;) loyg=n) and eventually that
Y(x;) = u; for any i in {1,...,k}.

We now prove that ¢(rS¢) C r5 " for any divisor m of n. So, let us assume that m is a
divisor of n, that  belongs to r3¢ and that a is an element of the algebra §*». We have to
prove that ¢(x)(a) belongs to L,,, or equivalently that ¢ (z)(m,, (o)) = 1. From the fact that

S2 EVo(v € r = Py (4)(v))

we deduce that the same sentence is true in §,. Hence, since x belongs to rﬁ;, we conclude

that §u,7 = Py, (4)(v), and so, by definition of the map 1, that ¢ (z)(7,, (o)) = 1. O

6. Modally definable classes

The previous results can be used to characterize the classes of structures that are modally
definable. Our aim is to obtain the equivalent of the GOLDBLATT - THOMASON theorem
(recall that this theorem characterize modally definable classes of frames in terms of closure
properties). We are going to provide two theorems: a characterization of modally definable
classes of t.,-valued L-frames and a characterization of ¥.,-modally definable classes of L-
frames. The general problem of the characterization of [0, 1]-modally definable classes of
L-frames is unreachable with the tools we developed.

The tools we need to prove these results have been introduced in the previous sections.
We can mimic GOLDBLATT - THOMASON’s proof. Let us first introduce some notations.

Recall that we denote by n a fixed positive integer. The first group of notations is about
constructions associated to L, -valued L-frames. The second group is about the corresponding
constructions for £-frames but with the validity relation =, in mind (i.e., the complex algebras
that we consider are the L.,,-complex algebras). To make this asymmetry clear in the notations,
we have decided to recall the dependence on n in the first group of notations, but not in the
second group.

DEFINITION 2.73. If K is a class of bi,-valued L-frames, we denote by

Cm,,(K) the class of the L,-tight complex algebras of the structures of K;

S,.(K) the class of the generated L,,-valued subframes of the structures of K;
H,,(K) the class of the L,-valued bounded-morphic images of the structures of K,
Ud(K) the class of the disjoint unions of the structures of K,

Ex, (K) the class of the L,-valued canonical extensions of the structures of K;
Var, (K) the variety generated by Cm,,(K).

If Ais a class of MMV.-algebras, we denote by Cst,,(A) the class of the canonical E.,-valued
L-frames of the algebras of A and by Str,,(A) the class of the L,-valued L-frames of A, i.e.,
Str,(A) = (3| 3 € A}

If K is a class of L-frames, we denote by

Cm(K) the class of the L,,-complex algebras of the structures of K;

S(K) the class of the generated subframes of the structures of K;

H(K) the class of the bounded-morphic images of the structures of K,
Ud(K) the class of the disjoint unions of the structures of K,

Ex(K) the class of the ¥.,,-valued canonical extensions of the structures of K;
Var(K) the variety generated by Cm(K).
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If Ais a class of MMV%-algebras, we denote by Cst(A) the class of the canonical £-frames
of the algebras of A and by Str(.A) the class of L-frames of A, i.e., Str(A) = {F | F*" € A}

If K is a class of structures, we denote by Pw(K) the class of the ultrapowers of the
structures of K and by Pu(K) the class of ultraproducts of structures of K.

Theorem 2.75 is the equivalent to the GOLDBLATT - THOMASON theorem (see [24], [25]).
The proof of this theorem is a direct adaptation of the original proof.

LEMMA 2.74. A class K of Y, -valued L-frames is modally definable if and only if K =
Str, Var,(K).

PRroOOF. First note that any class of ¥,,-valued L-frames K is included in Str, Var, (K).

Then, assume that K = {§ € Fr, | § = ®} for a set of L-formulas ®. It follows that
Var,(K) = @, hence that Str,Var,(K) = ®, which means that Str,Var,(K) C K as
desired.

Conversely, if K = Str, Var,(K), and if ® is a set of L-formulas such that ®' axiomatizes
Var,, (K), we obtain that

K = Str,Var,(K) = {F | §"" = ®'} = {§ | § = &} = Mod(®),
and K is definable by ®. O

THEOREM 2.75. Assume that K is a class of L, -valued L-frames which is closed under
taking ultrapowers. Then K is modally definable if and only if the two following conditions
are satisfied :

(1) the class K 1is closed under taking Y., -valued generated subframes, disjoint union and
L., -valued bounded morphic images;

(2) the class K reflects L,-valued canonical extensions: if Ex,(F) belongs to K then §
belongs to K.

PrOOF. We have already proved the left to right part of the proposition. For the right to
left part, it suffices to prove that for any class of t.,,-valued L-frames K,

(6.1) Cst,Var,(K) C S,H,PwUd(K).

Indeed, if relation (6.1) is true, it follows that Cst, Var,(K) C K since K is closed under
taking ultrapowers and satisfies condition (1). Then, for any § in Str, Var, (K), the algebra
§*~ belongs to Var,(K) and we obtain

Ex, () = Cst,(§*") € Cst,Var,(K) C K.

Since K reflects t.,,-valued canonical extensions, we obtain thet § belongs to K. It follows
that

Str,Var,(K) = K

as desired.
So, let us prove that relation (6.1) is true. We obtain that

Cst,Var,(K) = Cst,HSPCm,(K)
= Cst,,HSCm,Ud(K),
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where the first equality is obtained by definition of Var, (K) and the second one is obtained
thanks to Proposition 2.49.

Then, if § belongs to Cst,HSCm,Ud(K), there is a subalgebra A of an algebra of
Cm, Ud(K) such that § is the canonical structure of an homomorphic image B of A. By
the duality theory that we have developed in subsection 3.3, it means that § is a generated
L,-valued subframe of an L,-valued bounded morphic image of the ¥.,-valued canonical frame
associated to an L,-tight complex algebra of Ud(K), i.e., we obtain that

Cst,,HSCm,Ud(K) < S,H,Str,Cm,Ud(K)
= S,H,Ex,Ud(K).
An application of Theorem 2.72 gives
S, H,Ex,Ud(K) < S,H,H,PwUd(K)
= S,H,PwUd(K)
which proves relation (6.1). O

One may be tempted to think that there is no need to consider the problem of the character-
ization of modally definable classes of L-frames separately from the problem of the characteri-
zation of modally definable classes of ¥.,-valued L-frames. Indeed, roughly speaking, a class of
frames can be viewed as a class of trivial L,-valued L-frames: an L-frame § = (W, {R; | i € I})
is L.,,-modally equivalent to the trivial ¥.,,-valued L-frame based on §.

So, one may think that to define a class K of L-frames by a set of modal formulas, it
suffices to define the class K’ of the trivial L.,,-valued £-frames associated to the L-frames of
K by a set of modal formulas, i.e., try to find ® such that K/ = {§ € Fr, | § = ®} and you
will obtain K = {§ € Fr | § =, ®}. This is not true because K may me definable (if K is
the class of transitive frames for example) while K’ is not definable, because it is not closed
under t.,-bounded morphic images.

Similarly, one may think that K is modally definable by @ if and only if the class K" of
all the L,,-valued £-frames whose underlying £-frame belongs to K is definable by ®. It is for
example the case for the class K of transitive frames. The following lemma proves that it

PROPOSITION 2.76. Assume that K is a class of L-frames and denote by ® a set of L-
formulas and by K" the class of the Y., -valued L-frames based on members of K.
(1) If K" ={F € Fr, | § = P} then K ={F € Fr | § Fn }.
(2) f K={F € Fr |3 [, @} then K" C{F € Fr, | § = ®} but the converse inclusion
15 not satisfied in general.

PROOF. (1) Assume that K" = {§ € Fr, | § = ®}. If § belongs to K then obviously,
any model based on § can be viewed as a model based on an t.,,-valued L-frame constructed
on §. Hence, we obtain § |, ®.

Conversely, if § is an L-frame such that § |, ® then ® is true in the trivial L,-valued
L-frame § associated to §. It follows that §’ belongs to K", which implies that § belongs to
K.

(2) The desired inclusion is clear. We provide a counterexample for the other inclusion.
Assume that £ contains just one unary dual modality [0 and that ® = {d(p V —p)}. If
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we denote by K the class K = {§ € Fr | § En @} then K can be described as the class
of frames whose accessibility relation is empty. Thus, on the one hand, K” is the class of
the L,-valued L-frames whose accessibility relation is empty. On the other hand, the class
{§ € Fr, | § = ®} contains exactly the L,,-valued £-frames that satisfy the first order formula
Ve Rx C rq. O

Nevertheless, we can deduce an L-frame version of Theorem 2.75.

PROPOSITION 2.77. Assume that K is a class of L-frames which is closed under ultrapow-
ers and denote by K" the class of the YL,-valued L-frames whose underlying L-frame belongs

to K. The class K is L,-modally definable if and only if K" is modally definable.

PROOF. Thanks to the first part of Proposition 2.76, we obtain that if K” is modally
definable then K is t.,-modally definable. Now, assume that K is modally definable. Then,
the class K is closed under taking generated subframes, bounded-morphic images and disjoint
unions and reflects canonical extensions. It follows directly that K” is closed under taking
ultrapowers, f.,-valued generated subframes, t,-valued bounded morphic images, disjoint
unions and reflects ¥.,,-valued canonical extensions. Thanks to Theorem 2.76, we obtain that
K" is modally definable. O

THEOREM 2.78. Assume that K is a class of L-frames which is closed under taking ul-
trapowers. Then K is L,-modally definable if and only if the two following conditions are
satisfied :

(1) the class K 1is closed under taking generated subframes, disjoint unions and bounded
morphic tmages;
(2) the class K reflects canonical extensions: if Ex(§) belongs to K then § belongs to K.

Proor. We already know that an f.,-modally definable class K of L-frames satisfies
conditions (1) and (2). Let us prove the converse result.

Thanks to Proposition 2.77, we know that K is f,-modally definable if and only if the
class K" of the L,-valued L-frames based on the L-frames of K is modally definable. Now,
since K is closed under ultrapowers and satisfies conditions (1) and (2), it is clear that K”
is closed under ultrapowers and satisfies conditions (1) and (2) of Theorem 2.75. Hence the
class K" is modally definable. O



CHAPTER 3

Many-valued modal systems and completness

In the previous chapters, we have introduced tools to describe (properties of) and define
(classes of) structures. Thus, our approach has been, up to now, a strictly semantical one.
No effort has indeed been made to reason about frames. This chapter is dedicated to this
important side of the modal approach of the various types of structures.

We introduce the many-valued normal modal £-logics, give examples of theorems of these
logics, and tackle the problem of completeness of some of these logics with respect to the
algebraic semantic and the relational ones.

1. Logics

The modal theories of the L-structures have some part in common. With many-valued
normal modal L-logics we intend to provide a way to generate this common part in a syntactic
way. The best results (completeness with respect to a finite deductive system) is obtained for
L,-valued logics. For [0, 1]-valued logics, we are just able to provide a completeness result for
an infinitary deductive system.

DEFINITION 3.1. Assume that £ is a many-valued modal language. A many-valued modal
(normal) L-logic (or simply an L-logic or a logic) is a set L of L-formulas which is closed
under the detachment rule (MP), the uniform substitution rule, the necessitation rule (RN)
(if ¢ € L then V() € L for any k-ary dual modality V of £ and any i € {1,...,k}) and
that contains

e an axiomatic base of L, UKASIEWICZ logic:
p—(g—p), =9 —=(g—=r)={@—r1)),
(p—=a)—qg—eg—p)—p), (p—-9—(1—p)
for example;
e the formulas corresponding to the scheme (K) of modal logic:

v(plv ey Pi—15DPi — Qis Di+1s - - - 7pk‘) - (v(pla cee 7pk) - v(ph ey Pi—1545, Pit1y - - - 7pk‘))
for any k-ary dual modality V of £, and any ¢ in {1,...,k};
e the formulas
v(pl @pla -y Pk ®pk) - (V(pl, v apk) D V(pl, o 7pk))

and
V(p1©p1, - ok ©pi) < (V(p1, - pk) O V(p1, - k)
for any dual modality V of Z;
e the formulas V(p1 & p1",....pr ® 0J*) < (V(p1,-..,0k) ® (V(p1,...,pk))") for any
k-ary dual modality V of £ and every positive integer m.

45
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e the definitions of the modalities A: for any k-ary dual modality V of £, formula

A(p1,---pk) < =V (71, Pk

As usual, we write 1, ¢ and say that ¢ is a theorem of L whenever ¢ € L and denote by
K*, or K if no confusion on £ is possible, the smallest modal many-valued £-logic.

We often define an L-logic L by adding a set of axioms I' to another logic L. It means
that L is defined as the smallest extension of L’ that contains I" and that is closed under the
rules of substitution, detachment and necessitation. In that case, we denote the logic L by
L'+T.

For instance, we denote by K
the formulas (pzP~1)"*! « (n + 1)aP for any prime p < n that does not divide n and the
formula (n 4+ 1)z < nz.

Any extension L of K% is called a modal n + 1-valued L-logic or simply a modal L,,-valued
logic.

L

no

or simply by K,,, the logic K + I';, where I';, is made of

The logic K41 (where £; denote the basic modal language that contains just one unary
dual modality OJ) is a generalization of a logic introduced in [48|.

We can obviously associate to each many-valued modal logic an HILBERT system defined
in a natural way.

In order to become acquainted with these modal many-valued logics, it is worth to give
some basic examples of theorems. For sake of readability, we provide these theorems for the
basic modal language L;.

PROPOSITION 3.2. The following formulas are theorems of K1 :

(1) Ok —q) — (Op — O9),
(2) (OpAOq) — GlpAq),
(3) OpoOg—DO(poq)

(4) O(p@q) — (Op® 0q)

(5) O(pAgq) — (BpAQg),
(6) OpV Oq— O(pVq).

Moreover, the logic K is closed under the following deduction rules:

— — —

p=4q
(1) Up « Ug
Ué1 © -+ © Uep, — L

PRrOOF. We provide a proof of (1).

K“ + (p— q) — (~g — —p) (contraposition)
F O((p — q) — (—g — —p)) (necessitation rule (1.1))
= O —q) — (=g = —p)) = [Bp — ¢) = (O-~¢ — O-p)) (K)
= O(p — q) — (O-q — O-p) (detachment (1.2), (1.3))
o (=0gq — =0p) — (Op — Oq) (converse contraposition )
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(1.6) F O —q) — (=0 — —0p)) = [((=0g — =0p) — (Op — Oq))
(1.7) — (B(p — q) — (Op — 0q))] (transitivity of —)
(1.8) F (Op— q) — (Op — 0q)) (double detachment (1.4), (1.5), (1.7)).
The other theorems and the deduction rules are left as exercises. ]

We claim that many-valued modal logics are suitable to reason about many-valued models
and frames. The first step in the process of proving that claim consists in convincing us that
we cannot derive as a theorem of K a formula that is not valid in the class of [0, 1]-valued
KRIPKE models.

THEOREM 3.3 (Soundness). Assume that L is a many-valued modal language.

(1) If ¢ is a theorem of K- and if M is a [0, 1]-valued KRIPKE model, then M |= ¢.
(2) Similarly, if ¢ is a theorem of K= and if M is an Ep-valued KRIPKE model, then

ME 6.

PROOF. We have already proved in Proposition 2.7 that the axioms of K* and Kﬁ are
valid in any [0, 1]-valued KRIPKE model and any k,-valued KRIPKE model respectively. To
conclude the proof, we just note that if ¢ and ¢ — 1 are true in a class M of models, then v is
also true in M, that if ¢ is true in M, then (¢ is true in M and eventually that if ¢(p1,...px)
is true in M, then ¢(¢1,...,1) is true in M for any formulas 91, ..., ¢y. ([l

We can define a notion of deduction from a set of assumptions I' in the usual way.

DEFINITION 3.4. If L is a many-valued modal logic and I'U {¢} is a set of formulas, then
¢ is deducible from I' in L, in notation I' i1, ¢, if ¢ belongs to the smallest extension of L
that is closed under substitution and detachment.

Note that any many-valued modal logic L coincides with the set of formulas that are
deducible in L from the empty set.

For the readers that prefer to use the HILBERT system associated to L, note that a formula
¢ is deducible from I' in L if and only if there is a proof of ¢ in the system associated to L
in which the necessitation rule is never applied to a formula that is dependent on I' (where a
formula is dependent on I if it belongs to I' or if it is obtained by discharging a formula that
depends on T).

2. The algebraic semantic

Here we apply the classical LINDENBAUM-TARSKI construction to the many-valued modal
logics in order to incorporate the algebraic tool in our approach of the problem of completeness
of these logics.

Before reading this definition, recall the conventions about algebraic terms and formulas
that we have set up in our remark that follows Lemma 2.34.

DEFINITION 3.5. For any many-valued modal £-logic L, we denote by MMVf the variety
MMVE ={A e MMV* |Vpe L, Al=¢ =1},
that we call the variety of L-algebras.
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Note that MMV = MMV and that MMVE = MMV .

LEMMA 3.6. Assume that A is an MMV*-algebra and $(p1, ..., py) is an L-formula.
(1) If a, is an algebraic valuation on A then (A,a) | ¢ if and only if the equation
O (ap,, ... ap,) =1 is satisfied in A.
(2) A= ¢ if and only if (A,a,) = ¢ for any algebraic valuation a, on A.

PrOOF. The proof is a routine argument. g

DEFINITION 3.7. If L is a many-valued modal L-logic and if X is a set, we denote by
F1(X) the free L-algebra over the set X of generators, i.e., the algebra Fi,(X) is the quotient
of the algebra of the L-terms whose variables are in X by the syntactic equivalence relation
=y, which is defined by

O =p Yt if LE¢ e
We simply denote by Fi, the free L-algebra over a enumerable set of generators. For any

formula ¢, we denote by ¢ the element ¢!/ =g, of F. If ' is a set of formulas, we naturally
denote by 'V the subset {¢% | ¢ € T'} of Fp.

Recall that if YV is a subset of an MV-algebra A, we denote by (V') the implicative filter
of A generated by Y.

PROPOSITION 3.8. Assume that L is a many-valued modal L-logic and that T'U {¢} is a
set of L-formulas. Then T g, ¢ if and only if ¢¥/(TY) =1 4in Fr/(T'T).

The preceding Proposition is particularly interesting when I' = () because it provides us
with a completeness result.

THEOREM 3.9. Assume that L is a many-valued modal L-logic and that ¢ is an L-formula.
The formula ¢ is a theorem of L if and only if ¢ is valid in any L-algebra.

DEFINITION 3.10. If A is a class of L-algebras, we denote by Log(A) the set

Log(A) ={¢ €| A= ¢ =1}

If L is a many-valued modal L-logic, we denote by Next(L) the lattice of the normal
extensions of L, that is, Next(L) is made of the many-valued modal L-logics that contain L
and is ordered by inclusion.

If A is a variety of MMV*-algebras, then we denote by SubVar(A) the lattice of the
subvarieties of A.

We can state the following result which may be considered as a good starting point for
the study of the lattice of many-valued modal L-logics. It is nevertheless not our purpose to
initiate such a study in this dissertation.

PROPOSITION 3.11. The maps Log(-) : SubVar(MMV*) — Next(K.) and MMV~ :
Next(Kz) — SubVar(MMV*) are two dual lattice isomorphisms that are inverse to each
other.

Note that we can still characterize congruences by means of subsets.
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DEFINITION 3.12. Assume that £ is a many-valued modal language. We define a family
C*(x) of unary L-terms in the following inductive way:

e the variable x belongs to C*(z),
e for any k-ary dual operator V of £, any B(z) in C*(z) and any i in {1,...,k},
the term V(0,...,0,M(x),0,...,0) (where only the i*" component is not equal to 0)
belongs to C* (),
o if Mi(z) and My(x) belong to C*(z) and if m is a positive integer then W (x) and
M, (z) A By(z) belong C*(x).
If Ais an MMV -algebra, a non-empty subset F of A is a modal filter if F is an implicative
filter of the MV-algebra reduct of A and if F' contains BM(z) whenever z belongs to F' and B
belongs to C*(x).

LemMmA 3.13. The terms of C‘:(X) are interpreted as dual MV-operators on any algebra
of MMV~

PRrROOF. The proof is an easy induction. The only non trivial part is to proof that if [y
and O are two unary dual MV-operators on an MV-algebra A, then [J; A Oy satisfies (K).
On the one hand we obtain for any x and y in A,

(O AD2)(2) = (E1AD)(y) = (Chz Alzx) — (Ohy ADay)
((Dlx A\ Dgw) — Dly) N ((Dlx A Dgx) — Dgy)
(O — Oiy) Vv (O — Dhy))

AN(Chz — Oay) V (Hez — Day)).

On the other hand,

(L AD2)(z — y) Uiz — y) ADa(z — y)

< (O — Ohy) A (O — Oay)
< ((Chz — Opy) V (Ooz — Dhy))
A(O1z — Ooy) V (Oaz — Oay)).
We have eventually proved that (O; Ag)(x — y) < (Oy ADg)(x) — (O1 A2)(y) -

PROPOSITION 3.14. Assume that A is a member of MMV*.
(1) If 0 is a congruence on A then 1/0 is a modal filter of A.
(2) If F is a modal filter of A then the binary relation Op defined on A by
(z,y)ebp if (x—y)O(y—a)eF

is a congruence on A.

(3) These correspondences provide two isomorphisms between the lattice of congruences
of A and the lattice of modal filters of A (ordered by inclusion). Moreover, these
isomorphisms are inverse to each other.

PRrOOF. The proof is routine. O
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3. More about varieties of finitely-valued modal logics

More specific results can be proved for the varieties MMV?L of K,-algebras and their
corresponding logics.

The first result we provide proves that a dual MV-operator on an MV ,-algebra A is entirely
characterized by its value on B(A).

PROPOSITION 3.15. Assume that f: A — B and f' : A — B are two maps belween two
MVy,-algebras A and B. If flpga)= I lw(a) and of [ and I preserve the terms 1o and Tq
then f = f'.

PROOF. Assume that a belongs to A. Then f(a) = f'(a) if and only if for any 4 in
{1,...,n}
Ti/a(f(a)) = Tim(f'(a)).
This equation is equivalent to
f(ign(a)) = f(7ijn(a))
since f and f’ preserve the term 7; /n- We can conclude the proof since, according to our

conventions of Chapter 1 about the terms 7;/,, we can assume that 7;/,(a) belongs to B(A)
for any i in {1,...,n}. O

COROLLARY 3.16. Any dual MV-operator on an MV, -algebra A is completely characterized
by its restriction to B(A).

We just have proved that any dual operator on the idempotent algebra of an MV ,-algebra
A can be extended in at most one way to an MV-operator an A. The question to determine
which of them can actually be extended will be answered in Proposition 5.16, with the help
of topological dualities for the varieties MMV,

Even though we provide a proof of the following result in Chapter 5 (see page 89), it is
interesting to state it here.

PROPOSITION 3.17. If A belongs to MMVE then the lattice Con(A) of congruences of A
is isomorphic to the lattice Con(B(A)) of congruences of B(A).

Properties about congruence lattices in the varieties of boolean algebras with L£-operators
can thus be translated in the varieties MMV%. Here is a famous example.

THEOREM 3.18. The variety /\/l/\/lVﬁ 15 congruence distributive and congruence permu-
table.

The problem of the characterization of subdirectly irreducible algebras in MMVﬁ can be
tackled in different ways. First, we need a construction of the modal filter (X)g generated
by a subset X of an MMVﬁ—algebra A (which is defined as usual as the intersection of the
modal filters of A that contain X).

LEMMA 3.19. If A is a member of M/\/ﬂ/ﬁ and X is a subset of A, then
(X)a={acAla>Mz} A NIz} for some Wy,... B, € C5(z) and z1,...,x1 € X}.

PRrROOF. The proof is routine. O
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We adapt the definition of an opremum (see [37]| and [51]) to our many-valued settings.

DEFINITION 3.20. An element m of an an /\/l./\/lVﬁ—algebra A is an opremum if m # 1
and if for any @ in A, there are some Wy, ..., B, in C*(z) such that m > Ba™ A --- A Bya™.

This definition leads us to a characterization of subdirectly irreducible algebras in MMV~
which is very similar to the characterization that exists for the corresponding boolean algebras
with operators (see [37], [51] and [57]).

PROPOSITION 3.21. Assume that A is a member of MMVE. The following conditions are
equivalent.

(1) the algebra A is subdirectly irreducible,

(2) the boolean algebra with operators (B(A),{V; lgayn:| @ € I}) is subdirectly irre-
ducible,

(3) the algebra A has an opremum,

(4) the algebra (B(A), {Vilga| i € I}) has an opremum.

PROOF. The equivalence between (1) and (2) is a consequence of Proposition 3.17. Since
(B(A),{Vilgay: |t € I}) is an algebra of MMVE in order to prove that (2) is equivalent
to (4), it suffices to prove that (1) is equivalent to (3).

Now, according to Lemma 3.19, condition (3) means that there is an element m in A\ {1}
which is in the modal filter generated by any element of A\ {1}, hence it is in any non
trivial modal filter. Thanks to Proposition 3.14, it means that the intersection of the non
trivial congruences of A is not the identity relation. Thus, condition (3) is equivalent to the

subirreducibility of A. O

4. Completeness results

We detail in this section several completeness results with respect to relational semantics.
The results are obtained thanks to a construction of a canonical model and by application of
Lemma 2.40. The first result is about the logic K,, and the ¥.,-valued KRIPKE-models.

DEFINITION 3.22. Assume that L is a many-valued modal £-logic. The algebraic canonical
model of L is the algebraic model (Fy,,a,) defined by a, = p® for any propositional variable p.

The canonical model of L is the canonical KRIPKE-model associated to the algebraic
canonical model of L.

4.1. Completeness for K,,. With the help of the Truth Lemma and the Prime Ideal
Theorem for the varieties MV,,, we can derive the completeness of K, with respect to the
class of the L,-valued KRIPKE models.

THEOREM 3.23. For any positive integer n, an L-formula ¢ is a theorem of K, if and
only if ¢ is true in any Y,-valued KRIPKE model.

ProOOF. The left to right part of the statement is known. We prove the right to left part.
If ¢ is valid in any KRIPKE model of K,,, then it is valid in the canonical model of K,,. Thus,
according to Lemma 2.40, the class of ¢ in Fx, is in any prime filter of Fx,, which means
that this class is equal to 1. O
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Thanks to Theorem 3.23, we can obtain the following simplier axiomatization of K.

PROPOSITION 3.24. Let us denote by K| the smallest set of L-formulas that contains
an axiomatization of LUKASIEWICZ n + l-valued logic, the formulas corresponding to the
scheme (K) of modal logics (as in Definition 3.1), the formulas V(p1 @ p1,...,px O Dk) <
(V(p1,--0k) ®V(p1,--spk), V(1 Op1s -0k O k) < (V(p1, -, 06) © V(D15 -, pr) for
any dual modality ¥V of L and that is closed under the uniform substitution rule, the detachment
rule and the necessitation rule.

Then, the logic K, is equal to K/, .

PROOF. In the proof of item (1) of Lemma 2.40, we have never used the fact that a dual
MV-operator V satisfies the equation

(4.1) Vizi @', ...,z @ a)') = (V(z, ... 2x) & (V(z1, ..., x28)™)

for any positive integer m.

Thus, Lemma 2.40 is still true in the variety {A | A | K/} of the K/ -algebras. It is
now easy to prove that Theorem 3.23 can also be stated if we repalce K,, by K/,. Since the
formulas from which equations (4.1) are issued are tautologies in L,-valued KRIPKE-models,
we can deduce that they belong to K/, and eventually that K,, = K. O

Recall Proposition 2.7 in which we list some tautologies for [0, 1]-valued £-models, which
are so theorems of K,, for any n.

4.2. Completeness for K. Unfortunately, the rules of the HILBERT system associated
to K are too narrow in order to generate in a syntactic way the modal theory of the [0, 1]-valued
models. To obtain such a result, we introduce an infinitary modal system.

DEFINITION 3.25. Assume that ¢ is an L-formula. We note }—é:o ¢, or simply Foo @, if
{p®¢™ | me Ny} C K-,

Obviously, the formula ¢ is such that F% ¢ if and only if Fx ¢ @ ¢™ for any non negative
integer m.
With this system, we can produce any tautology.

THEOREM 3.26. If ¢ is a formula of Form®, then Fo ¢ if and only if ¢ is true in any
[0, 1]-valued KRIPKE model.

PROOF. If ¢ is an L-formula such that o ¢, then Fg ¢ and MMV* = ¢ = 1 according
to Theorem 3.9. Then, if § is a frame, Lemma 2.35 states that § &= ¢ if and only if §* = ¢ = 1.
We conclude this part of the proof thanks to Lemma, 2.34 from which we derive that ' belongs
to MMV¥ so that ¢ is true in any model based on §.

Conversely, if ¢ is a tautology, then ¢ is true in the canonical model of K. It means that
¢ belongs to any maximal filter of Fk, i.e., that ¢ is an infinitely great element in Fx and
that ¢ & ¢™ belongs to K for any n € Ny. O

It is still an open problem to determine a minimal extension of K for which the complete-
ness result with respect to the to KRIPKE [0, 1]-valued models can be stated.
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4.3. Completness for MPDL,,. Let us now provide a set of rules to generate the modal
theory of the F,-valued models for MPDL. These rules are provided through the smallest
L, -valued propositional dynamic logic MPDL,. The most original difference between the
axiomatization of MPDL,, and PDL appears in the induction axiom and in the axiom that
defines the test operator [¢?].

The proofs of the results about MPDL,, are usually done by induction on the subexpres-
sion relation. The arguments are quite long and not so interesting. We thus avoid to bother
the reader with some of these long technical proofs.

DEFINITION 3.27. An L,,-valued propositional dynamic logic (or simply a logic) is a subset
L of formulas of Form that is closed under the rules of uniform substitution, detachment and
necessitation and that contains the following axioms:
(1) an axiomatic base of the LUKASIEWICZ n + 1-valued logic;
(2) the axioms [a](p — q) — ([a]p — [a]q), [a](p ® p) < [a]p @ [a]p and [o](p © p) <
[a]p ® [a]p for any program « of 1I;
(3) the axioms that define the program operators: [aUS]p < [a]A[B]p, [o; B]p < [o][B]p,
[q7]p < (=(¢™) Vp) and [a*]p < (p A [a][e*]p) for any programs « and § of II;
(4) the induction axiom p A ([a*](p — [a]p)"™) — [a*]p for any program a.
We denote by MPDL,, the smallest of the t.,,-valued propositional dynamic logics.

Note that, roughly speaking, the induction axiom means “if after an undetermined number
of executions of « the truth value of p cannot decrease after a new execution of «, then the
truth value of p cannot decrease after any undetermined number of executions of o”. This is a
simple generalization of the induction axiom of propositional dynamic logic (which could not
have been adopted without modification since it is not a tautology).

Since the axioms of MPDL,, are tautologies (see Proposition 2.12) and that tautologies are
preserved by application of the rules of uniform substitution, detachment and necessitation,
we obtain directly the the class of the t.,-valued KRIPKE models for MPDL forms a sound
semantic for MPDL,,.

The problems that arise in proving the completeness result for MPDL,, are similar to
the ones that arise for the completeness result for PDL. Indeed, in the construction of the
canonical model for MPDL,,, the relation associated to each program are not build inductively
from the relation associated to atomic programs. Instead, we directly associate to each « of II
a canonical relation R, in the canonical way defined in Definition 2.37. In fact, the inductive
rules involving the operators “;”, “U” and “? ” are satisfied in the canonical model, but Ry~ is
greater than the transitive and reflexive closure of R,. We use the technique of filtration to
construct an L,-valued KRIPKE model from this canonical model.

DEFINITION 3.28. A non standard Ly, -valued KRIPKE model M = (W, R,, Val) for MPDL,
2W>XW and a map Val : W x Prop — L,
(which is extended to formulas in the usual way) such that for any program « and  and any
formula 1 the identities Rq.3 = Ra © Rg, Ro U Rg and Ry? = {(u,u) | Val(u,v) = 1} are
satisfied and such that R}, is a transitive and reflexive extension of R,.

is given by an non empty set W, a map R : Il —

We use the FISHER - LADNER closure map FL : Form — 2Fo™ to prove a filtration
lemma for non standard models. This closure map is introduced in order to deal with the
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interdefinability of programs and formulas in proofs that use induction on the subexpression
relation. We follow section 6.1 of [31] to introduce this map, since there is nothing really new
in this syntactic aspect of MPDL,,.

DEFINITION 3.29. The FISHER - LADNER closure FL(¢) of a formula ¢ is defined induc-
tively with the help of the map FLY : {[a]¢ | a € II,¢ € Form} — 2F™ which is defined by
simultaneous induction with FL by the following rules:

(1) FL(p) = {p} for any propositional variable p,

(2) FL(t & ¢) = {$ & 6} UFL($) UFL(y),

(3) FL(0]6) = FL[a]d) U FL(9),

(4) FLP([a)¢) = {[a]¢} for any atomic program a,

(5) FLY([a U Bl¢) = {[a U Bl¢} U FL([a]¢) UFL([a]¢),
(6) FLZ([a; 519) = {[ov; B} U FLD([ 1816) UFLY([5]9),
(7) FL2([a )
) FLY([

7 “1¢) = {[a*]¢} UFL7([a][a"]9),
(8 P?]9) = {[¥7¢} UFL(4).

The following justifies the word “closure” in “FISHER - LADNER closure.”

=

LEMMA 3.30. Assume that ¢ belongs to Form.

(1) If ¥ belongs to FL(¢) then FL(v) C FL(¢).
(2) If o belongs to FLE([a]¢) then FL(¥) C FLE([o]¢) U FL(¢).

PrOOF. The proof is done by simultaneous induction on the subexpression relation. See
Lemma 6.1 in [31]. O

We can now turn to filtrations of non standard models.

DEFINITION 3.31. If M = (W, R,, Val) is a non standard L,-valued KRIPKE model for
MPDL, we define the equivalence relation =4 on W for any ¢ in Form by

u=yv if Vi € FL(¢) Val(u, ¢) = Val(v, ¢).

For the sake of readability, we denote by [W]y4 (or simply by [W]) the quotient of W by =,
and by [v]y (or simply by [v]) the class of an element v of W for =4.
Then, for any atomic program a of Il we define R([IM] as the binary relation on [W] that
collects the ([u], [v]) such that
[u] X W] N Ry # 0
and the map Val™! on [W] x Prop by

ValMI(fu] p) = mae{ - € Lo | Val(p) () 0 fu] £ 0).

The model [M]y = ([W]g, RMe, ValMle) (or simply [M] = (W], RM) VallM1)) is the
filtration of M through ¢.

LemMA 3.32 (Filtration). Assume that M = (W, R, Val) is a non standard model and ¢
18 a formula.
(1) Assume that v is in FL(¢) and that i is in {0,...,n}. Then Val(u,)) > % if and

only if Val™I([u], v) > L
(2) For every [a]y in FL(9),
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(a) if (u,v) € Ra then ([u), [v]) € RS,
(b) ifi € {0,...,n}, if ([ul, [v]) € R&Y and if Val(u, [a]y) > & then Val(v,) > &.

PRrROOF. The proof is a long but not so hard argument by induction on the subexpression
relation. We leave it to the reader. g

Let us define the canonical model of MPDL,,. This construction uses the LINDENBAUM -
TARSKI algebra of MPDL,,.

DEFINITION 3.33. We denote by FvpLp,, the LINDENBAUM - TARSKI algebra of MPDL,,,
ie., the quotient of Form by the relation of syntactical equivalence = (¢ = ¢ if ¢ — ¢ €
MPDL,).

Since the reduct of FvpLp,, to the language of MV-algebras is an MV, -algebra, we can
adopt the following definition.

DEFINITION 3.34. The canonical model of MPDL,, is the model

MMPDLn — <WMPDLn’ RMPDLn,ValMPDL">

where

o WMPDLy — MY(FuvppL,» En);
e for any program «, the relation RMPDPLn collects the (u,v) such that

Vz € FmppL, (u([a]r) =1=v(z) = 1);

o the map ValMPPLn ig defined by ValMPPLr (4 p) = u(p) for any propositional vari-
able p in Prop.

When no confusion is possible, we prefer to write R and Val instead of RMPPLn and
ValMPDLx

The major result is the following one.

THEOREM 3.35. The canonical model of MPDL,, is a non standard KRIPKE model. More-
over, for any formula ¢ and any element v of W™MPDLn

Val(u, ¢) = u(ip/ =).
ProOOF. The proof is once again an induction argument. g
This model provides the desired completeness result.
THEOREM 3.36. An Ly,-formula is a theorem of MPDL,, if and only if it is a tautology.

PRrROOF. Only the completeness part requires a proof. Assume that ¢ is a tautology. Then,
the formula ¢ is true in the filtration of the canonical model of MPDL,, through ¢, hence in
the canonical model of MPDL,, thanks to Lemma 3.32. ]
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4.4. Canonical logics and canonical varieties. Up to now, we have considered the
question of completeness relatively to classes of models (and varieties of algebras). We here
develop algebraic tools to tackle the question of completeness relatively to classes of structures.
Once again, the result we obtain are about finitely valued logics. The reader should so keep
in mind that we fix a positive integer n and consider ¥.,-valued logics and ¥.,-valued valuation
for the end of the dissertation.

DEFINITION 3.37. An L,-valued modal L-logic L is KRIPKE complete if there is a class
K of L,-valued L-frames such that L = {¢ € Form | V§ € K, § = ¢}.
The logic L is strongly KRIPKE complete if there is a class K of L-frames such that

L={¢p€Form|V§ e K, § =, ¢}

We have a few remarks about these definitions. First note that in the terms “KRIPKE
complete” and “strongly KRIPKE complete”, there is no explicit reference on n, even tough
the notions they define are dependent of n. This improper use of the vocabulary doe not
jeopardize the understanding of the results since we assume that the integer n is fixed one for
all for the end of the dissertation.

Furthermore, one who is used to classical modal logic would probably have called by
KRIPKE complete logic what we call a strongly KRIPKE complete logic, i.e., a logic which is
complete with respect to a class of L-frames. But then, one would have lost the connection
between canonical logics and KRIPKE complete logics. Thus, our choice of vocabulary is done
in a way that helps to compare our results with classical ones.

Finally, note that our definition of strong KRIPKE completeness has nothing to do with
the classical definition of a strongly complete logic with respect to a class K of structures (a
logic L such that any formula ¢ that is a local semantic consequence of a set of formulas ® in
the class K of structures is L-deducible from ®). Our choice is justified by the fact that the
notion of a strongly KRIPKE complete logic is definitely stronger than the notion of a KRIPKE
complete logic. Indeed, if L is an t,-valued logic and if K is a class of L-frames such that

L={¢¢cForm|VFeK,F .o}

then it follows obviously that if K’ denotes the class of the trivial L,-valued £-frames based
on the L-frames of K,

L = {¢ € Form* | V§ € K', § |= ¢}.
Moreover, the following example proves that there exists a logic that is strongly KRIPKE
complete without being KRIPKE complete.

ExaMPLE 3.38. The logic L = K,, + O(p V —p) is KRIPKE complete but is not strongly
KRIPKE complete.

We prove the completeness part in two steps. First, we prove that, the fact that O(pV —p)
is true in any algebraic model (Ff,, a.) based on Fi, forces the canonical frame of L to satisfy
the first order formula Yu(Ru C 7). Then, we prove that if an L,-valued L-frame satisfies
this first order formula, then it validates O(p V —p).

Let us prove that L is not strongly KRIPKE complete. Proceed ad absurdum and assume
that K is a class of frames such that L = {¢ | K &, ¢}. Then, K contains a frame whose
accessibility relation is not empty. Otherwise, the formula (¢ belongs to L for any ¢, while
O(p A —p) does not belong to L.
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So, let us denote by § such a frame, by M = (W, R, Val) a model based on § and by
u, v two elements of W such that (u,v) € R. Since M,w = O(p VvV —p), it follows that
Val(p,v) € {0,1}. Then, if we denote by M’ = (W, R, Val) the model based on § defined by

Val’(q, U) — { Val((Lu) lf q 7& p or u 7& Ua

%ifq:pandu:v,
it appears that O(p V —p) is not true in M’, which is the desired contradiction.
These notions of completeness have algebraic translations.

DEFINITION 3.39. A variety A of MV ,-algebras with L-operators is complete if there is a
class K of L,-valued L-frames such that A = Var,(K).
The variety A is strongly complete if there is a class K of L-frames such that A = Var(K).

Of course, a variety A is complete if and only if A = Var(Str,.A), i.e., if and only
if A is generated by its f.,-tight complex algebras. It is strongly complete if and only if
A = Var(StrA), i.e., if and only if A is generated by its L,,-valued complex algebras.

Once again, a strongly complete variety is a complete variety (since the L, -tight complex
algebra of an L,-valued L-frame is a subalgebra of the L,-valued complex algebra of its
underlying L-frame).

PRrROPOSITION 3.40. Assume that L is an Y., -valued modal L-logic.

(1) The logic L is KRIPKE complete if and only if the variety of L-algebras is complete.
(2) The logic L is strongly KRIPKE complete if and only if the variety of L-algebras is
strongly complete.

PROOF. (1) Assume that L = ({{¢ € Form | § = ¢} | § € K} for a class K of L,-valued
L-frames. Then, the variety ./\/l./\/lVf of L-algebras is the variety of the algebras that satisfy
the equation that are valid in F*» for every § in K. Equivalently, the variety MMVf is
generated by K.

The proof of (2) is similar. O

One way to obtain KRIPKE completeness results is through canonicity.

DEFINITION 3.41. An L,,-valued modal £L-logic L is canonical if L is valid in the canonical
L,-valued L-frame associated to Fr,(X) for any set X. The logic L is strongly canonical if L
is valid in the canonical £-frame associated to Fr,(X) for any set X.

Any canonical logic L is KRIPKE-complete. Indeed, thanks to Proposition 4.31, in that
case, the logic L coincides with the set of formulas that are valid in the canonical t.,-valued
L-frame of F1,(w). The same line of argument can be used to prove that any strongly canonical
logic L is strongly KRIPKE complete.

Determining which logics are canonical or strongly canonical is so a interesting problem.
This problem is associated to an algebraic one.

DEFINITION 3.42. A variety A of MMV%-algebras is canonical if A contains the canonical
extension of its members.

A variety A of MMVE-algebras is strongly canonical if A contains the algebra (A, )*»
for any A in A.
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Corollary 4.32 proves that this definition of canonicity coincides with the definition of the
canonicity for a class of expanded bounded distributive lattices. Furthermore, in the sequel,
we prove that an L,-valued L-logic L is (strongly) canonical if and only if the variety of L-
algebras is (strongly) canonical (see Proposition 4.33 and Proposition 4.59). Obtaining tools
that help to generate (strongly) canonical varieties is so an interesting problem.

We use in the sequel the notations introduced in Definition 2.73. Let us also recall that
the L.,-valued canonical extension has been defined for £-frames and L,-valued L-frames (see
Definition 2.63).

THEOREM 3.43. Assume that K is a class of structures.

(1) If K is a class of Ly,-valued L-frames then Var, (K) is a canonical variety if and only
if Str, Var, (K) is closed under L.,,-valued canonical extensions.

(2) If K is a class of L-frames then Var(K) is a strongly canonical variety if and only
if StrVar(K) is closed under L, -valued canonical extensions.

PRrROOF. Both results can be proved in parallel. We adopt the following notations

Notation Substitution rule for (1) | Substitution rule for (2)
Cm Cm,, Cm
Var Var,, Var
%ve Smen Sme
k2e Zxn g-&-n
Ay A, Ay,
Str Str, Str
canonical (about varieties) canonical strongly canonical.

To obtain a proof of (1) (resp. of (2)), we substitute in the sequel any occurrence of an element
of the first column of the previous array by its translation in the second column (resp. in the
third column).

First assume that Var(K) is canonical and that § belongs to StrVar(K). By definition,
the canonical extension §€ of § is the structure (§*)x where §* belongs to Var(K). Since
Var(K) is a canonical variety, we obtain that ((F*)x)* still belongs to Var(K) which means
that §¢ = ()« belongs to StrVar(K).

Conversely, assume that StrVar(K) is closed under L,-valued canonical extensions and
that A is a member of Var(K) = HSPCm(K). Then, there is a B in SPCm(K) such that A
is an homomorphic image of B. Thanks to Proposition 2.49, there is a family {§; | j € J}
of structures of K such that B appears as a subalgebra of (§)* = ({3, | j € J})*. By
dualizing the previous arrows, we obtain

(4.2) (Ax)™ = (Bx)™ = ((87)x)"
Since §* = [[{§; | j € J} belongs to Var(X), the structure § is a member of StrVar(K).
So, since StrVar(K) is closed for canonical extensions, we obtain that §¢ = (§*)x belongs to

StrVar(K') and eventually that ((§)x)* is a member of Var(K'), which concludes the proof
thanks to the arrows of (4.2). O

The next result, which is again a simple adaptation of a result of GOLDBLATT, (see [25])
requires the following lemma.
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LeEMMA 3.44. If (Cst,H,S,Cm, Ex) € {(Cst,,H,,S,,Cm,, Ex,), (Cst,H,S, Cm, Ex)},
then CstHS < SHCst and CstHSCm < SHEXx.

ProOF. The first inequality follows by dualization of arrows and the second is a conse-

quence of the first.

0

THEOREM 3.45. Assume that A is a variety of MV, -algebras with L-operators.

(1) The variety A is canonical if and only if it is complete and the class Str,(A) is closed
under L,-valued canonical extensions.

(2) The variety A is strongly canonical if and only if it is strongly complete and the class
Str(A) is closed under L, -valued canonical extensions.

PRrROOF. Once again, the two results can be proved in parallel. For the notations, we adopt
the same conventions as in the proof of Theorem 3.43 and we add the following rules to our

substitution guide :

Notation | Substitution rule for (1) | Substitution rule for (2)
complete complete strongly complete
complex L., -tight complex b.,-complex

H H, H

S Sn S

Ex Ex,, Ex.

We already know that a canonical variety is a complete variety. So, conversely, let us assume
that A is a complete variety and that the class Str(.A) is closed under canonical extensions.
We obtain successively

A

HSPCmStr(.A)
HSCmUdStr(A)
HSCmStr(.A)

where the last identity is obtained thanks to the fact that A is closed under P. It follows that
Cst(A) = CstHSCmStr(.A) C SHExStr(A) C SHStr(A) C Str(A),

where the first inclusion is obtained by Lemma 3.44, the second by the fact that Str(A) is
closed under canonical extensions and the third by using the property of closure of A under
H and S.

Hence, if A is an algebra of A, then its associated structure Ay belongs to Str(.A) which
means that (Ax)* belongs to A. O

LEMMA 3.46. If (Cst, Var, S, H) belongs to
{(Csty,, Var,,,S,,,H,,), (Cst, Var, S, H)}
then CstVar < SHUdPu.
Proor. It suffices to prove that

(4.3) PwUd < HUdPu.
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Indeed, we have proved in Theorem 2.75 that

Cst,Var, < S,H,PwUd.
The proof can be mimic in order to obtain
(4.4) CstVar < SHPwUd.

Thanks to (4.3), it then follows that CstVar < SHUdPu, which is the desired result.
To prove that inequality (4.3) is true, it suffices to prove that PuUb < UbPu. Indeed, it
then follows that

PwUd < PwUb < PuUb < UbPu < HUdPu

thanks to Lemma 2.29.

So, let us prove that PuUb < UbPu. Assume that § belongs to PuUb. Then § is
an ultraproduct HjeJ §;/F where for any j in J the structure §; is the bounded union
U{Ss, | 5 € I;} of some structures §;, (where i; belongs to I;) of K.

We are going to prove that for any w in § there is a generated substructure §,, of § that
contains w and that belongs to Pu(K). Let w be the element (w;);cs/F of §. Then, since
for any j in J the structure §; is the bounded union for i; in I; of the Sij’s, it follows that
there is a generated substructure &-jw with 4, € I; that contains w;. We denote by §,, the
structure [ [, ; §i,, /F that belongs to Pu(K). We prove that §,, is a generated substructure

of §. Indeed, if
o H Siju — H S
JjeJ Jj€J
denotes the natural inclusion map, then we can easily prove that the induced map
¢ 18/ F = T18i/F : (w)jes/F = o(ug)jen)/ F
jeJ jeJ
is one-to-one.
Let us prove that 1 is a bounded morphism. Assume that

((uj)jes/F, (viz)jes/F,. .., (vkj)jes/F) € R,
Then, F' contains
{7€Jd|(uj,vy,...,v) € RS%w)}
which is equal to
{j € J | (uj,vij,...,vkj) € RS}

since §j,,, is a generated substructure of §; for any j in J. This last set is equal to

{1 ((D((u5)5e0))5: (6((v15)5€0))js - - (D((vrg)jes));) € RS}

and this identity allows to conclude that

(W((wy)jes/F), b ((v15)jes/F), - .., ¥((vkj)jes/F)) € RS

Assume now that

(W((uy)jes/F)), (vllj)jEJ/F7 e (U;cj)jEJ/F) € RS.
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Since for any j in J the element (v((u;)jes))); = uj, we obtain that, if j is in J and if
(¢((uj)jes))j» i - - - vy;) belongs to RSi | then

($((1)jes))js Vs - k) € RS
since §i;w 15 a generated substructure of §;. This leads us to the desired result.

We eventually prove easily that ¢ (rS») C r3, and that ¢~ (r5) C r3v for any divisor m
of n. 0

THEOREM 3.47. Assume that A is a variety of MV, -algebras with L-operators.

(1) If the variety A is generated by a elementary class of L, -valued L-frames then it is a
canonical variety.

(2) If the variety A is generated by an elementary class of L-frames, then it is a strongly
canonical variety.

PRrROOF. Both proofs can be made in parallel. So assume that K is an elementary class of
structures. Then, thanks to the previous lemma, we obtain

CstVar(K) C SHUdPu(K) = SHUd(K) C StrVar(K)

since Var(K) is closed under P, S and H. Hence, if A belongs to Var(K), then (Ax)* belongs
to CmCstVar(K) and so to CmStrVar(K) and finally, by definition, to Var(K). O



CHAPTER 4

Canonicity in /\/l./\/lVfL:: a syntactic approach

It is the leitmotiv of algebraic logic to try to obtain results about logical systems by study-
ing some of their algebraic counterparts. We have illustrated this technique in the previous
chapters (completeness results are obtained thanks to canonical constructions based on LIN-
DENBAUM - TARKSI algebras, modally definable classes of structures are obtained through
complex algebras etc.)

We have for example emphasized the interest of producing (strong) canonical varieties.
We indeed know that if a variety associated to a logic L is (strongly) canonical, then so is
the logic. Since (strongly) canonical logics are (strongly) KRIPKE complete, the algebraic
problem of (strong) canonicity is deeply related to the logical problem of (strong) KRIPKE
completeness.

In this chapter, we approach the problem of canonicity in a syntactic way. Our goal is
to determine classes of equations that define canonical varieties. Because the variety of MV-
algebras is not canonical (only its finitely generated subvarieties are, see [16]), the presented
results are about b,-valued modal logics and their varieties.

This famous approach was initiated by JONSSON and TARSKI in their seminal work [33]
and [34] about canonical extension of boolean algebras with operators. Their work was later
extended to bounded distributive lattices with operators (see [18]), bounded distributive lat-
tices with monotone maps (see [19]), bounded distributive expansions (see [20]) and finally
to bounded lattices (see [17]).

We first recall the definitions and some usefsull results about the theory of canonical exten-
sions of bounded distributive lattice expansions. We then apply this theory to subvarieties of
MMV, and obtain the many-valued counterpart of the SAHLQVIST theorem about canonical
equations (Theorem 4.41 and 4.61).

Canonical properties are related to classes of ¥.,-valued L-frames. In order to obtain com-
pleteness results about L-frames, we need an other type of extension. We call that extension
the strong canonical extension. The last section of the chapter is devoted to that type of
extension and we obtain a SAHLQVIST equivalent.

1. Canonical extensions of bounded distributive lattice expansions

We first introduce in a succinct way the theory of canonical extensions for expanded
bounded distributive lattices. Our presentation follows the lines of the paper [20]. So, we
refer to [20] for the proofs of the results that we present. We denote by DL the variety of
bounded distributive lattices and we sometimes write “A is a DL” instead of “A belongs to
DL”. Moreover, every lattice that is considered in this dissertation is bounded. So, in the
sequel, by lattice we always bounded lattice.

62
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DEFINITION 4.1. A complete lattice A is doubly algebraic if it is algebraic and if its order
dual A% is algebraic. If A is a complete lattice, we denote respectively by J*°(A) and M*>°(A)
the set of the completely join irreducible elements of A and the set of the completely meet
irreducible elements of A. The set of the finite joins of elements of J*°(A) is denoted by
J°(A) and the set of the finite meets of elements of M (A) is denoted by MS°(A) (so that
0 belongs to J°(A) but does not belong to J*(A) and 1 belongs to M3°(A) but does not
belong to M>(A)).

In the variety of bounded distributive lattices, the class of doubly algebraic lattices can
be characterized in different ways.

LEMMA 4.2. Assume that A is a complete DL. Then, the following conditions are equiv-
alent.

(1) A is doubly algebraic,

(2) A is algebraic and every element of A is a join of elements of J*(A),

(3) A is completely distributive and every element of A is a join of elements of J*(A),

(4) A is isomorphic to the lattice of the isotone maps from J°°(A) to the two element
chain.

(5) there is a poset P such that A is isomorphic to the lattice of isotone maps from P to
the two element chain.

The canonical extension of a DL can be described in two different ways. We use the
following as a definition.

DEFINITION 4.3. The canonical extension A° of a DL A is defined, up to isomorphism,
as the lattice of isotone maps from the PRIESTLEY dual of A to the two element chain.

Apparently, this vocabulary and notation collide with the previously introduced canonical
extension of an MMVﬁ—algebra. The frightened reader may have a glimpse at Proposition
4.26 that makes this not so schizophrenic use of the vocabulary possible.

Thanks to Lemma 4.2, we get the following result easily.

LEMMA 4.4. The canonical extension of a DL A is a bounded doubly algebraic lattice.

DEFINITION 4.5. We denote by DL™T the class of doubly algebraic bounded distributive
lattices.

Even if the proposed definition is concrete, it turns out that is it more convenient to
characterized the canonical extension A7 of a distributive lattice A by properties involving A
and A?. This characterization requires the following definitions.

DEFINITION 4.6. A sublattice A of a DL B is a separating sublattice of B if for any p in
J*®(B) and u in M*°(B) such that p < u, the interval [p, u] contains an element of A.

The sublattice A is compact in B if for any subset S and T of A such that A S <\ T,
there are a finite subset S” of S and a finite subset 7" of T such that A S’ <\/T".

The following result is a useful criterion to recognize the canonical extension of a bounded
distributive lattice.
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PROPOSITION 4.7. If A is a DL, then A is a compact separating sublattice of its canonical
estension A°. Moreover if B is a DLT that contains A as a separating compact sublattice,
then there is a unique isomorphism f from A% to B such that f|a=id4.

As a consequence, we obtain for example the following lemma. We denote by A“ the order
dual of A for any poset A.

LEMMA 4.8. If Ay,..., A, are DLs then

(1) (A1%)7 is equal to (A7),
(2) (A1 x -+ x Ap)? is equal to A7 x --- x A7.

DEFINITION 4.9. Assume that A is a DL that is a sublattice of a DL B. A closed element
of B is an element that can be obtained as a meet of elements of A. An open element of B
is an element that can be obtained as a join of elements of A. We denote by K (B) the set of
the closed elements of B and by O(B) the set of the open elements of B.

The preceding definition makes reference to a subalgebra A of B. But for the sake of
readability, we decide not to recall that dependence in the notations. Actually, in the sequel,
we only use that definition for a DL A with B = A?. In that case, since A is a separating
subalgebra of A%, we obtain that J3°(A%) C K(A%) and M°(A%) C O(A?).

In order to define extension of maps and to study preservations of identities through
canonical extension, we need to add topologies to the canonical extension of a DL A. The
first family of topologies is defined without any reference to A, i.e., their definition involves
only the fact that A% is a doubly algebraic lattice.

DEFINITION 4.10. If B is a DL™T, then the topologies ¢!, +! and ¢ are defined as the
topologies that have for base the sets [p), (u] and [p) N (u] respectively where p ranges in
JS°(B) and u ranges in M°(B).

The second family of topologies involves A in their definition.

DEFINITION 4.11. If A is a DL, then the topologies ¢!, ot and ¢ are defined on A° as
the topologies that have respectively for base the sets [p), (u] and [p) N (u] where p ranges in
K(A%) and u e O(A?) .

We obtain directly that NNe UT, t C ol and ¢ € 0. A continuous map f : (A%, t) —
(B?,s) where s and t are among theses topologies is called a (s,t)-continuous map. Let us
note the following important result about o.

LEMMA 4.12. The topological structure (A%, <,0) is a totally order disconnected space and
A is a dense subspace of A°. The elements of A are exactly the isolated points of A°.

1.1. Canonical extensions of DL maps. Since we are interested in ezpanded DLs (such
as for example MV ,-algebras with dual L-operators), it is important to define a canonical way
to extend a map between two DLs A and B into a map between A% and B?. We use the
density of A in A% to define such an extension as a limit superior or a limit inferior. Recall
the following definition.
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DEFINITION 4.13. If (X, 7) is a topological space, if Y is a dense subset of X and if B is
a DLT, then for any map f :Y — B, the map liminf, f is defined by

liminf-f: X - C:a— \[{A\SUNY)|zeUcr}
and limsup, f by
limsupr:X—>C:x»—>/\{\/f(UﬁY) |z eUer}.

We can now define two extensions of a map f : A — B between two DLs A and B to a
map between A and B°.

DEFINITION 4.14. If f : A — B is a map between two DLs A and B then the maps
f7: A% - B and f™: A — B are defined by
f7 =liminf,f and f" = limsup,f.
and are respectively called the lower (canonical) extension of f and the upper (canonical)
extension of f.

It may be useful to note that for any f : A — B, the extensions f? and f7 can be
computed in that way:

@) =V{N{f(@ | p<a<u}|p<z<upeK(A7) and u € O(A)},
and

(@) = AV {f(@) |p<a<ul | p<e<upe K(A7) and u € O(A%)},
for any = in A?. Moreover, if f is an isotone map,

7@ =V{\{f@) | p<aecAy|z>pe K(A%)}
and
@) = NV{f(@) lu>ae A} |2 <ueO(A)}.

The following lemma proves that the maps f? and f™ are extensions of f.

LEMMA 4.15. If f: A — B is a map between two DLs A and B then
(1) the maps f and f™ are extensions of f, i.e., f7la= fTla= f,
(2) the map f7 is the largest (0, i!)-continuous extension of f to A% and f™ is the smallest
(0,})-continuous extension of f to A°.

The canonical extension of an expanded bounded distributive lattice A will be defined
as the canonical extension of the DL-reduct of A equipped with a canonical extension of the
non-lattice operations. The ideal case arises when we do not have to choose between the upper
and the lower extensions.

DEFINITION 4.16. A map f: A — B between two DLs A and B is smooth if f7 = f7.

For example, it is proved in Proposition 4.26 that the maps @& and — are smooth in the
variety of MV,-algebras.

LEMMA 4.17. A map f: A — B between two DLs A and B is smooth if and only if f° is
(0,1)-continuous. Conversely, any map f : A — B that admits a (o, )-continuous extension
g: A% — B is smooth and f° = g.
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Thanks to the definition of the extensions of maps between DLs, we can define the canon-
ical extensions of a bounded distributive expansion.

DEFINITION 4.18. If A = (A,{f; | i € I}) is a bounded distributive expansion of the
DL A, then the canonical extension A of A is the algebra (A%, {f? | i € I}) and the dual
canonical extension A™ of A is the algebra (A%, {f7 |i e I}).

Note that if A* denotes the algebra (A%, {f; | € I}), then AT = A*,

A map is join preserving if it preserves all binary (and thus all finite non empty) joins.
A map is completely join preserving if it preserves all non empty join. So, we do not require
that such maps preserve 0 and 1. But, we require that (complete) DL-homomorphisms do.

DEFINITION 4.19. Amap f: Ay x--- x A, — B between DLs Ay,...,A,, B is a lattice
operator or simply an operator if f is join preserving in each of its coordinate. Similarily,
the map f is a complete lattice operator or simply a complete operator if it is completely
join preserving in each of its coordinate. The map f is a dual (complete) operator if f :
Af x -+ x AY — B® is a (complete) operator.

We denote by MV(’),% the variety of MV,,-algebras with L-lattice operators, i.e., the variety
of algebras over the language £ whose MV-reduct belongs to MV,, and such that any f in
L\ {®,®,} is interpreted as a dual lattice operator on A.

The main result about canonical extension of operators is the following one.
PRrROPOSITION 4.20. The canonical extension of an operator is a complete operator.

In the approach of preservations of identities through canonical extensions, the following
results about continuity of the canonical extensions of maps are widely applied.

ProprosITION 4.21. If f : A — B is a map between two DLs A and B,

(1) if f is isotone then f° is isotone and (o, .1)-continuous,

(2) if f is an operator then the map f° is (i1, .1)-continuous,
(3) if f is join preserving then f7 is completely join preserving and is (o', ol)-continuous
(4)

4

if [ is meet preserving and join preserving then f is (o, 0)-continuous.
Let us also state the following result about composition of extensions.

ProrosITION 4.22. If f: B — C and g : A — B are two maps between DLs A, B and
c,
1) if f and g are isotone maps then (fg)° < f7¢°,
2) if f797 is (o,11)-continuous then (fg)” > f7g¢°,
3) if f7g7 is (o,1})-continuous then (fg)° < f7g°,
4) if [ is join preserving and meet preserving then (fg)? = f7¢°,
5)
6)

if g is join preserving and meet preserving then f°g° < (fg)?,

e

if g is join preserving, meet preserving and onto then (fg)? = f7¢°.

Assume that A is a bounded lattice expansion. The set of the terms ¢ whose term function
t4 on A satisfies (t4)7 = t47 is of particular interest. Indeed if ¢ and s are two such terms
and if if t4 = s4 it follows that 47 = (t4)7 = (s4)? = s4”. Thus, the equation s = t is also
satisfied in A?. This piece of argument justifies the following definition.
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DEFINITION 4.23. Assume that £ is an expansion of the language {V, A, 0,1} of bounded
distributive lattices. We denote by DLE » the variety of the distributive lattice L-expansions,
i.e., the variety of the algebras over the language £ whose reduct to {V, A, 0,1} is a DL.

If A belongs to DLE ., an L-term t is ezpanding on A if (t4)7 <47, Tt is contracting on
Aif (¢4)7 > t47 and stable if (t4)7 = t47.

A variety A of DLE rs is canonical if it contains the canonical extension of its members
and if the canonical extension of an L£-homomorphism between two algebras of A is an £-
homomorphism.

When we are not in the context of MMV~-algebras, we reserve the notation £ to denote
an expansion of the language {V, A, 0, 1} if no other specification is given. The following results
will turn out to be very useful.

PROPOSITION 4.24. Assume that A is a DLE » and that t is an L-term. If for any operation
symbol f that occurs in t, the map f* is isotone, then t is expanding on A.

PRrROOF. The proof is an easy induction on the number of connectives in ¢ with the help
of the first item of Proposition 4.22. O

1.2. Canonical extensions of MV ,-algebras with operators. It is time to apply
the previous results to the algebras of this dissertation.

The first result is about canonical extensions of MV -algebras. It can be obtained as a
direct consequence of Theorem 3.15 in [20], but we provide a stand-alone proof. Note that
LY = L, for any positive integer n. In the sequel, if f : A — B is a map, we denote by flE]
the map fI¥l : A% — B¥ : (ay,...,a) — (f(a1), ..., f(ax)).

LeMMA 4.25. Assume that A is an MV, -algebra. The canonical extension of any element
of MV(A,L,,) is an element of MV(A%, L,,).

PrROOF. Let us denote by m a positive divisor of n such that u : A — t.,;,. We prove that
u® : A — L, is an homomorphism. Indeed, if f belongs to {®4, =4} is of arity k, we obtain
successively

uofa _ (uf)o _ (fu[k]>a _ fou[k]o — fcruo[k]
where the first equality is obtained thanks to item (4) of Proposition 4.22, the third thanks
to its item (6) and where the other equalities are trivial. O

PROPOSITION 4.26. If A is an MV, -algebra, then the canonical extension A% of A is
I wa.
wEMV(ALn)

The operations & and —* are smooth and the variety of MV, -algebras is canonical.

PRrROOF. The underlying lattice of the MV ,-algebra
A= I w4
ueMV(ALy)

is clearly a doubly algebraic lattice. Recall that J°°(A’) contains exactly the elements z of
A’ for which there is a u in MV(A,L,) such that 2, # 0 and =, = 0 if v # u belongs to
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MV(A,Ly,). Similarly M>(A") contains exactly the elements y of A’ for which there is a u in
MV(A,L,) such that y, # 1 and y, = 1 if v # u belongs to MV(A, L,,).

Assume then that z belongs to J*°(A’), that y belongs to M*°(A’), that z < y and that
u,u’ are elements of MV(A,L,) such that z, # 0 and y,s # 1. If u # «/, since

ea: A= Aa— (u(a))yepmva L,

is a boolean representation of A, there are two elements ¢ and b in A such that a, = z, and
by = yu- If Q is a clopen subset of MV(A,¥,,) that contains u but does not contain v/, then

ag Ubpv(aL,)\o

is an element of A that belongs to [z,y]. If u = ', there is an element a of A such that
a,, = ,, and so that belongs to [z,y]. We thus have proved that A is a separating sublattice
of A

Let us now prove that A is compact in A’. Let us assume that X and Y are two subsets
of A with AX <\ Y. Then, for any u € MV(A,L,), there is an 2z is X and a y™ in Y
such that (), < (y™),. Then, the sets

1 ; (¥™)u ;

ro_ W, L W, L

= U o Yo
io(zw), )

n

form an open covering of MV(A,L,,) if u ranges through MV(A,L,,). Thus, there are some
ut, ..., up in MV(A,L,) such that {I'y,, ..., I'y, } is still a covering of MV(A, L,,). It follows
that, for any v in MV(A,L,,), there is a igp in {1,...,k} such that v € I';, and such that

/\ (), < (x(uio))uio S (y(uio))wo < \/ (y™),

1<i<k 1<i<k

and that proves that A is compact in A’.

We now prove that @4’ coincides with @?. Tt follows successively that for any 2 and y in
A,

r@d’y = \/{/\{a@A/a’\ae[p)ﬂA,a’e[p’)ﬂA}|p,p’€K(A’),p§x,p’§y}
= \/{< /\ a)@A/( /\ ad)|pp e KA),p<azp <y}

a€p)nNA a’€[p)NA
= \{pe"p |pp e K(A),p<ap <y}
= zaty,

thanks to the isotony of @4 and the fact that of A’ is a complete and completely distributive
MV-algebra. We proceed in a similar way to conclude that = = -4
Let us proof that @& is smooth. It follows successively that

(@™ = lim supa((Ag)g)GBA = liminf,((4o02) ot
= lim info((Aaa)z)@A = lim info-(AaO')2) @Aa

oo
= 4%,



1. CANONICAL EXTENSIONS OF BOUNDED DISTRIBUTIVE LATTICE EXPANSIONS 69

Then, 4" coincides with the operation ® on

[T w4y

uEMV(A L)

I w4

ueMV(AL,)

and is equal to the operation @ on

Thus, the operation 4" coincides with (94)°.

Let us now prove that if h : A — B is an homomorphism between two MV, -algebras
A and B then h? : A° — B? is an homomorphism. For any w in MV(B,L,), the map
pulB oh : A — u(B) is an homomorphism. Thanks to Lemma 4.25, we obtain that (p, |p
oh)? : A — wu(B) is an homomorphism. Thus, by item (4) of Proposition 4.22, the map

pu B oh? is an homomorphism. It follows that the map

W' A7 — B 1z (pulB (B (2))uemy(B,L,)

is an homomorphism. The conclusion follows from the fact that h' = h? since p, |f=p,. O

DEFINITION 4.27. If (X, 7) is a topological space and if Y is a subset of X, we denote by
7|y the topology induced by X on Y.

COROLLARY 4.28. If A is an MVy,-algebra, there is a unique isomorphism ¢ : B(A)7 —
B(A%) with ¢(a) = a for any a in B(A). Morevover, this map ¢ is an homeomorphism
between (B(A)7, s(B(A)?)) and (B(A7), s(A7) lg(ar)) for any s in {1t 0,01 0, 0}

PrOOF. We may for example obtain the isomorphism ¢ thanks to Proposition 4.26 and the
unicity of ¢ follows from Proposition 4.7 . Clearly, this isomorphism sends closed, open, com-
pletely meet irreducible and completely join irreducible elements to closed, open, completely
meet irreducible and completely join irreducible elements respectively and conversely.

Then, if p belongs to K (A7), it follows that B(A%)N[p) = B(A%)N[n.p) and ¢~ (B(A7)N
[p)) = [¢~1(n.p)). Sincenp=n.A{a|p<ac A} = N{n.a|p<a € A} is a closed element
of A%, we have proved that ¢ : (B(A)7,0!(B(A)7)) — (B(A7),01(A7) |p(ar)) is continuous.

Now, if p belongs to K(B(A)?), then ¢(p') = ¢(p)! which proves that ¢! is continuous
and so that ¢ is an homeomorphism.

We proceed in a similar way for the other topologies. O

Here is a sample illustration of the connections that exists between A% and B(A)°.

PROPOSITION 4.29. Assume that A is an MV, -algebra and that i is in {1,...,n}. Ifp
belongs to K(A?) then 7;,(p) belongs to K(B(A)7).

ProOF. The map (T{?n)a is completely meet-preserving since Tf‘/‘

<, 18 meet preserving.

Thanks to a repeated application of item (4) of Proposition 4.22, we obtain that (T{;‘n)" =
(Ti/n)AU. Thus, for any element p in A7 that satisfies p = A{a € A | p < a}, we have

Ti/n(P) = /\{Ti/n(a) |p<ac A}

Hence, the element 7;/,(p) can be written as a complete meet of elements of B(A7) = B(A)?
and the conclusion follows. O
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From now on, we will often prove results with the help of the representation of A% that
is proposed in Proposition 4.26. For example, we obtain easily that if p belongs to J°(A?)
then 7;,,(p) belongs to J°(B(A7)) = J°(B(A)7).

DErINITION 4.30. If A = (A,{fi | i € I}) is an MV ,-algebra with dual L-operators, the
canonical extension of A is the algebra (A%, {f7 |i e I}).

Apparently, this freshly introduced vocabulary collides with existing one. We indeed have
already introduced the canonical extension of an MMV%-algebra A as the algebra (A, )*"
in Definition 2.44. It is imperative to prove that Definition 2.44 and Definition 4.30 coincide.

PrOPOSITION 4.31. If A is an MV, -algebra with L-operators, then for any k-ary dual MV-
operator NV of L with canonical relation R, any a1, ..., o in A% and any u in MV(A,L,),

(Vo(ar,...,0n))u = /\ \/ i (v;).
(u,01,...,0,) ER 1<i<k
Consequently, the canonical extension A% of A is isomorphic to the algebra (A, )*™. More-

over, the variety MMVﬁ 15 canonical.

PROOF. Let us denote by Vg the operation defined on A% by

(Ve(at,...,an))u = /\ \/ a;(v;),

(u,v1,e0 ) ER 1<i<k

for any aq,...,ax in A% and any v in MV(A,L,), i.e., the operation Vg is the operation
defined in Definition 2.33. We already know that Vg and V7 are extensions of V4. Now, if
P1,- - -, pr are closed elements of A%, it follows that

Vopr,-me) = NVia....a) | (o1, pr) < (as, ... a) € A7}
= /\{VR(al,...,ak) ’ (pl,...,pk) < (al,...,ak) € AU}
= Vg(p1,...,0r),

since Vg is completely meet preserving on each of its arguments. Then, if ag,..., ay are
elements of A7,
Vo (a,...,ap) VAV (o1, ooe) | (ea,. o) = (o1, pr) € K(A7)}
= VAVe®1,--.po) | (1, k) = (p1,. . pi) € K (A7)}
If w belongs to MV(A, L,,), we obtain that (V7 (ai,...,ax)), is equal to

VAVE®DL - o)) | (a1, an) 2> (b1, o) € K(A%)},

S0 to

VAN VeV D)oy | (01,0 0) € RY | (- 0) 2 (prs- ., pp) € K(A%)}

and to

ANA@D o VeV (o), | (a1, ar) = (01, pk) € K(A7)} | (w01, ,v) € R}

This last element is by definition equal to

Ad(@)o, V-V (@), | (01, 0) € R}
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and eventually to (Vg(ai,...,ak))u.

Let us now assume that h : A — B is an £-homomorphism. We have to prove that
h? : A° — B is an L-homomorphism. According to Proposition 4.26, we just have to prove
that h7V? = VZhelH for any k-ary dual MV-operator V of £. This result is obtained thanks
to the sequence of identities

hove = (hV)U _ (Vh[k])a _ Vah[k:}a _ vaha[k]

in which the second and the last identities are trivial, the first one is obtained by item (4) of
Proposition 4.22 and the third one by item (1) and item (5) of the same result. O

We aslo have to prove that Definition 3.42 and Definition 4.23 of a canonical variety of
MMVE-algebras coincide.

COROLLARY 4.32. A wariety A of MMVE-algebras is canonical in the sense of Definition
3.42 if and only if A is in the sense of Definition 4.23 of any of its member.

2. Back to canonicity

We have already emphasized the importance of canonicity in the generation of ¥.,-valued
KRIPKE complete logics. Thanks to the previous developments, we are now able to provide a
proof of the following result, which was announced in subsection 4.4.

PROPOSITION 4.33. An YL, -valued modal logic L is canonical if and only if the variety of
L-algebras is canonical.

PRrOOF. The proof is now a routine argument now that we know that quotient maps are
preserved through canonical extensions. O

2.1. SAHLQVIST formulas to defined canonical varieties. We have reduced the
problem of finding canonical ¥,-valued modal L-logics to the problem of finding canonical
varieties of MMVE-algebras. A classical way to produce such varieties is to study the preser-
vation of equations through canonical extensions. Indeed, any set of equations that is preserved
under canonical extension defines a canonical variety.

SAHLQVIST formulas are a family of formulas over the language of boolean algebras with
operators that are preserved under canonical extensions. They were introduced by SAHLQVIST
in [50]. The algebraic treatment of this family of formulas was considered in [32]. This
success lead mathematicians to consider so called “SAHLQVIST formulas” in wider contexts
(e.g., [21, 23, 12]).

We here adapt the classical results about SAHLQVIST formulas and normal modal logics to
L.,-valued modal normal logics. The algebraic approach makes this adaptation quite painless.

For our purposes, it is important to set of primitive operations that we consider to define
algebras. So, we are going to denote by Laray aset {®,V,—,0,1} U{f; | i € I} where ®, V
are binary, the negation — is unary and f; is of arity k; for any ¢ in [I.

The language £4,,, is the language Lapv U {@®, A} U {f¢ | i € I}, where ® and A are
binary and fid is of arity k; for any ¢ € I.

The intended meaning of the operations &, ®, —, 0, 1 is clear. These are going to be
interpreted as the MV-algebra operations. Unless stated otherwise, we do not require any
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special property on the operations f; with ¢ in I. But, when we deal with algebras and terms
of the language L4, we restrict ourself to algebras that satisfy the following equations

(21) Qj/\y:—\(—\aj‘\/—\y)7 x@y:ﬁ(ﬁxQ_\y>’
and
(22) fid(xlw'kai):_\fi(_‘xlu'”v—‘xki)

for any i in I. More generally, if g : By X ---x By — A is a map (a term function for example),
then we denote by g¢ the map

g% Bux X By = At (w1, @) = g(om, ),

which is called the dual map of g, or simply the dual of g. The key idea is that by applying
equations (2.1) and (2.2) to an Lyspv-term 7, we are able to produce an equivalent £y~
term 7’/ that contains a considerably smaller number of negation symbols. This idea is made
clear in the sequel.

The following vocabulary was introduced in [32, 23].

DEFINITION 4.34. Let £ be the language Lasarv or Lysprya. An L-term 7 is

e positive primitive if it is a constant term (i.e., without variable) or if it is equal to
f(z1,...,x) for an k-ary operation f of £\ {—};

e strictly positive if no variable of 7 is in the scope of any negation symbol (thus, the
negation symbols have constant terms as arguments);

e positive if every variable of 7 is in the scope of an even number of negation symbol;

o negative if every variable of 7 is in the scope of an odd number of negation symbols.

We denote by 7* the term obtained from 7 by switching every operation that appears in
7 by its dual operation.

If A is a class of L-algebras, two terms 7 and 7’ are said A-equivalent (or simply equivalent
if A is the variety of £-algebras) if the term functions 74 and 74 are equal on every algebra
A of A (that satisfies, following our convention, equations (2.1) and (2.2) if £ = Ly pv4)-

Note that it is possible to give inductive definitions of the preceding classes of terms. Such
definitions would provide a good support for the proofs. But since the proofs of the results
that we are going to use can be found in [23], we do not bother with such definitions, neither
with the proofs. These results are anyway easy to accept without any proof.

LEMMA 4.35. If 7 is a term over Lyryv or Laravy, then

(1) the term T is equivalent to a positive (resp. negative) term if and only if T¢ is
equivalent to a positive (resp. negative) term.

(2) If o1,...,04 are terms then (1(o1,...,0,))% = 7%0cf, ..., 0d).

(3) If T is an Ly ppya-term then it is equivalent to a Lypppya-term written in standard
form, that is an Lypppyya term in which the negation symbols appear next to constant

terms or directly next to variables.

The last item of the preceding lemma is already a useful simplification of £,y 4-terms.
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DEFINITION 4.36. Let us denote by Wy the smallest set of Ly/pv-terms that contains the
positive primitive terms and that is closed under substitution, and by W the smallest set of
Ly yva-terms that contains the positive primitive terms and their dual terms and which is
closed under substitution.

PROPOSITION 4.37. With the previous definitions in mind,

(1) an Lyrary-term is equivalent to a strictly positive Lyppryv-term if and only if it is
equivalent to a term of Wy,

(2) an Ly -term is equivalent to a positive Lygpry -term if and only if it is equivalent
to a term of ¥,

(3) an Lyprv-term is equivalent to a negative Lyrpry -term if and only if it is equivalent
to the negation of a term of W.

The preceding Proposition allows us to restrict ourself to the terms of ¥ when we deal
with positive terms.
Let us define the class of SAHLQVIST equations for the t.,-valued modal logics.

DEFINITION 4.38. A boz is a unary dual MV-operator. A bozed atom is a variable preceded
by a string of boxes.
A SAHLQVIST equation is an equation ¢ < 1 where
e 1) is a positive term,
e ¢isaterm (called a SAHLQVIST antecedent) constructed from boxed atoms, constants
and negative terms with lattice operators of Lyrary, (that includes ®, @, V and A).

Note that we allow to construct SAHLQVIST antecedents with MV-operators since these
are lattice operators. Finally, note that we can equivalently replace the class of boxed atoms
by the class of the expanded box atoms which are defined as the compositions of the terms 74
and 75 preceded by a string of boxes. Indeed, any expanded boxed atom is equivalent to a
boxed atom in the variety of MV-algebras with L-operators.

To prove our SAHLQVIST equivalent, we follow the track proposed in [58|. The results are
indeed easily adaptable to our many-valued realm.

LEMMA 4.39. Assume that A is a DLE ; and that t is an L-term. If every operation symbol
that occurs in t is interpreted as a lattice operator on A then t is stable on A.

PRrROOF. Proposition 4.24 proves that the term t is expanding on A. Let us prove by
induction on the number of operation symbols that occur in ¢ that ¢ is contracting on A. The
base case is trivial. Let us then assume that ¢ = s(uq,...,ux) where s is an operation symbol
that is interpreted as a lattice operator on A and where u1, ...u, are terms constructed with
connectives that are interpreted as lattice operators on A. It follows that

A° A A A° A A A

7 = ()70 (ur g ) < (7)o ((u)7, - (u)7)
thanks to induction hypothesis. The map (s4)7 is (i1, :!)-continuous since s4 is a lattice
operator. Similarly, the map (uf)? is (o', .!)-continuous for any i in {1,...,k} since uf! is

isotone. Consequently, tha map

(s™)7 0 ((ug),-., (uit))



2. BACK TO CANONICITY 74

turns out to be (¢, ") continuous. The result then follows from the second item of Proposition
4.22. O

LEMMA 4.40. Let A be a DLE and t be a term. Ift = s(uy,...,ur) where for every oper-
ation symbol f that occurs in s, the map f* is a lattice operator and where all the connectives
i each of the u; are N-preserving operation on A, then T is stable on A.

PROOF. From Proposition 4.24, we deduce that ¢t is expanding. Let us prove that it is
contracting. We have

A A° A° A° A A A
th =5 o(uy ,...,uy ) =(57)7 o ((u)?, ..., (uy)?),

thanks to the two preceding lemmas. Then, since each of the w; is (o, :!)-continuous and
Ao = 47 is (u,11)-continuous, we obtain that (s4)7 o ((uf!)?,..., (ui)?) is (o, 1)-
continuous and so that

since (s

()70 ()7, (u)7) < (s (uds -y uid))”
thanks to the second item of Proposition 4.22. 0
The preceding developments lead us to the canonicity of SAHLQVIST equations.
THEOREM 4.41. Every SAHLQVIST equation 1s canonical over the variety ./\/lV(’)ﬁ.

PROOF. We first consider the case of an equation ¢(f1,. .., Bk) < ¥ where 9 is a positive
term, the [3;’s are boxed atoms and ¢ is constructed only with lattice operators (that includes
V, A, @, ® and MV-operators).

Let A be an algebra of MVOX. With the help of the preceding lemma, we obtain
that ¢(051,...,0k) is stable on A. Now, according to Propositions 4.37 and 4.24, the term
1 is (equivalent to) an expanding term on A. That is enough to conclude that the term

&(B, ..., Bk) — 1 is stable on A.
Then, consider any SAHLQVIST equation

OB, -, By 1,y g) U

where the §;’s and ¢ are as above, the )] are negative and ¢’ is a positive term. This equation
is equivalent to

' O OB, By Y, g) = 0.
Hence, any SAHLQVIST equation is equivalent to an equation of the kind

d)(ﬂlw”vﬁka_‘wlv'”y_‘wq) =0

where ¢ and the (3;’s as are above and the v; belongs to U. Since ¢ is isotone, this equation
is in turn equivalent to the quasi-equation

(xl S —\’(/}1’...,1'(1 S _‘wq) :>¢(/817"'7ﬁk7$17"'7xq) =0

where the x; are new variables or, equivalently, to

(131@77[)1:0,...,1‘(1@1/1(1:0):>¢(51,...,ﬁk,$1,...,l‘q):O.
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We now introduce a new lattice operator F in the language and interpret it as the global

1if z >0,
EA(””):{ 0if 2= 0.

Then, the latter quasi-equation is equivalent to the equation
¢(ﬁ17---aﬁk7xlv--->xq> < E(:Ul le) \ vE(xQqu)

which is an equation that has already been proved to be canonical. ]

modality:

If we apply Proposition 4.33 to the preceding theorem, we obtain the following complete-
ness result.

PROPOSITION 4.42. Assume that L is a many-valued modal language. If ¢ is a formula
constructed only with V,\,®,® and modalities, if the term associated to ¢ is positive and if
Bi is a boxed atom or a formula whose associated term is negative for any i in {1,...,k} then
K, + &(f1,...,0k) — ¢ is a KRIPKE complete logic.

The reader may note that surprisingly, to obtain Proposition 4.42, we had to temporarily
allow lattice (non MV-)operators in the language L.

ExamMpLE 4.43. The equation x®x = x is canonical since it is equivalent to the SAHLQVIST
equation x @ x < z. So, the logic K,, + (p @ p) < p is canonical. It is easy to see that this
logic is equal to K and hence, is not strongly KRIPKE complete.

Similarly, the equation O(x @ x) < Oz is a SAHLQVIST equation. Hence, the logic K,, +
O(p @ p) — Op is canonical. Actually, this is the logic that we have considered in Example
3.38. It is indeed easy to realize that for any L,-valued frame §, we have § = O(p@® p) — Op
if and only if § = O(p V —p). Hence, the formula O(p V —p) is valid in the canonical frame of
K, +0O(p @ p) — Op and belongs to K,, + O(p & p) — Op. Conversely, the canonical frame
of K,, + O(p Vv —p) validates the formula O(p & p) — Op, so that O(p & p) — Op belongs to
K, +O(pV —p).

3. Strong canonical extensions

Any strongly canonical logic L is strongly complete. In this section, we develop the
algebraic counterpart of strong canonicity. As already announced, a strong canonical logic
will correspond to a strongly canonical variety.

The construction of the strong canonical extension of an MV ,-algebra is more dependent
on the many-valued nature of A than on its lattice nature (unlike the construction of its
canonical extension). But, the strong canonical extension of an MV ,-algebra and its canonical
extension have, up to isomorphism, some important subalgebra in common, namely their
algebra of idempotent elements.

We use this property to extend maps between MV ,-algebras to maps between their strong
canonical extension. This will provide the strong canonical extension of an MMV, -algebra.

Our goal is Theorem 4.61 which is a SHALQVIST theorem to generate strongly canonical
varieties.

DEFINITION 4.44. If A is an MV ,-algebra, we denote by A7 the strong canonical extension
of A, i.e., the product MV ,-algebra Lo,
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LEMMA 4.45. If A is an MV,-algebra, then

(1) the algebra A™ is an MV, -algebra and A7 is an extension of A which is an extension
of A,

(2) the lattice reduct of A™ is a DLT,

(3) the boolean algebras B(AT) and B(A7) are isomorphic by a unique isomorphism that
fizes B(A),

(4) if B is a complete and completely distributive MV, -algebra that is an extension of
A such that B(B) is isomorphic to B(A7) by a necessarily unique isomorphism [ :
B(B) — B(A?) fizing B(A), then there is a unique embedding ¢ : B — AT that fizes
the elements of B(A?) (up to the isomorphism | and the isomorphism of item (3)).

PRrOOF. The proofs of (1), (2), (3) are easy. The existence of the map ¢ in (4) can be
obtained by carefully composing the various maps in game.

Let us prove that this map is unique. Assume that v satisfies the desired conditions. Then,
for any z in B, the element 1) () is fully determined by the element (74, (¥()), . .., Ty /n (¥ (2)))
of (B(AT))". Now, for any 4 in {1,...,n}, we have 7/, (¥(x)) = ¥ (7;/n(2)) = I(b). Thus, the
equality of ¥ and ¢ follows from the fact that [ is unique. O

The last item of the preceding lemma means that the strong canonical extension of an
MV ,,-algebra A can be defined, up to isomorphism, as the maximal extension of A that is a
complete and completely distributive MV ,-algebra and whose boolean algebra of idempotents
is isomorphic to the canonical extension of the boolean algebra of idempotents of A.

LEMMA 4.46. If A1, ..., A are MV,-algebras then (Ay x --- x Ap)" = AT x -+ x A].
PRroOF. The proof is direct. O

We now introduce a way to extend maps between two MV,-algebras to maps between
their strong canonical extensions. Unfortunately, the definition we adopt will not provide an
extension for any map.

Recall that in an MV ,-algebra A, any element x is completely determined by the n-uple
(Ti/n(2)s -+, Tyn(x)) of elements of B(A). Hence, if A and B are two MV-algebras and if
" :B(A) — B(B) is a map, then we can define a map f : A — B by defining f as the unique
map that satisfies 7/, (f(x)) = f'(7;/n (7)) for any x in A and any i in {1,...,n}.

This is the track we follow to define an extension f7 : A7 — B" of amap f: A — B
between two MV,-algebras A and B. According to our track, the building block of the
extension is a map f': B(AT) — B(B7). Since B(A") is isomorphic to B(A7) and to B(A4)7,
we may ride on the existing construction of canonical extension and want to define f’ as one
of the maps (f |p(4))” or f7|p(ar). Of course, in either case, the proposed map f’ has to be
valued in B(B7). A natural way to achieve this condition is to ensure that

(3.1) Ve fea) = f(x) @ f()
for the first case and that

(3.2) Ve e A%, ff(z @ x) = f7(x) ® f7(x)
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for the second case. Condition (3.2) implies obviously (3.1). Now, if (15 o f)? = 7Z o f7 and
(foTg)? = f?org, then, for any map f that satisfies (3.1)

[7 078 = (fore)” = (re0 ) =70 f7
and so (3.1) implies (3.2). We are so naturally lead to a problem about composition of
canonical extensions that can be solved thanks to the tools that we have previously developed.

LEMMA 4.47. Assume that f : A — B is a map between two MV, -algebras A and B.
(1) The identity 78 o f7 = (1@ o f)? and the inequality f7 o 78 < (f 0 75)? are satisfied.
(2) If f is an isotone map then the inequality 7 o 78 > (f o 7)) is satisfied.

PROOF. The identity 7 o f7 = (7g o f)7 is a consequence of item (4) of Proposition 4.22.
The inequality f7 o7 < (f o7g)? is an application of item (5) of the same proposition. The
last inequation is a consequence of item (2) of this proposition since 7§ is (o, o)-continuous
and f° is (o,!)-continuous. O

Recall that the map f7 : A” — B7 that we want to define has to be an extension of f.
The following lemma states that our methods of construction of f7 provide an extension of f
only if f commutes with 7¢ and 7¢.

LEMMA 4.48. Assume that f : A — B is a map between two MV, -algebras A and B.
(1) If f7(B(A%)) € B(B?) and if f' : AT — BT denotes the map defined by 7, (f'(x)) =
f7 a0y (Tijn(®)) for any x in A™ and any i in {1,...,n} then f'|a= f if and only
if f(Tipn(x)) = Ty (f(2)) for any i in {1,...,n}.
(2) If f( A)) € B(B) and if f': AT — B" denotes the map defined by 7, (f'(x)) =
(Tz n()) for any x in AT and any i in {1,...,n} then f' | ay= [ if and only
zf f(T,L/n( r)) = 7;/n(f(x)) for any i in {1,...,n}.
(3) The map f satisfies f(7;/,(x)) = Tim(f(x)) for any i in {1,...,n} if and only if
flzoz)=f(z)© f(z) and f(x® z) = f(x D x) for any z in A.

PROOF. (1) First assume that f'|4= f. If = belongs to A and i belongs to {1,...,n},
then 7;,,(z) belongs to B(A) and we obtain that

Tin(f () = 7o (f'(2)) = f7 lp(ae) (Tin(@)) = f(7i/n())

since [ |g(4-) 18 an extension of f |-
Conversely, if f(7;/,(2)) = 7i/n(f(z)) for any z in A and any i in {1,...,n} then if x
belongs to A and i to {1,...,n},

Tim(f' (@) = f7 locary (Tin (@) = F(Tin (@) = 730 (f(2)).
Thus, f(x) and f/(z) are equal.

(2) We proceed in a similar way.

(3) The right to left part of the statement is clear. For the left to right part we note that
f(B(A)) € B(B) and that (f o 7g) lwa)= (7o © f) lm(a) since 7o Loy is the identity map
for any MV-algebra C'. We conclude that f o g = 7 o f thanks to Proposition 3.15. We
proceed in a similar way to prove that fory =750 f. O

The preceding lemmas give a justification to the following definition.
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DEFINITION 4.49. A map f: A — B between two MV-algebras A and B is an idemorphism
if fza@x)=f(x)® f(zr)and f(x ©x) = f(x) ® f(x) for any x in A.

Let us sum up briefly the results we have obtained for the construction of f7. We want to
ride on a map f': B(A7) — B(B7) to define an extension f7: A" — B" of amap f: A — B.
We have identified two candidates for the map f’. These candidates are f° |4y and f L%(A)
In both cases, the map f” is an extension of f if and only if f is an idemorphism. We now
prove that in that case, if further more f is isotone, then we do not have to choose between

I L%(AU) and f L%(A)
LEMMA 4.50. If f: A — B is an idemorphism between two MV, -algebras A and B such
that f7(z @7 ) = f7(x) @7 f7(x) for any x in A%, then (flpa))” = f° L%(Acr)
Consequently, if f : A — B is an isotone idemorphism, then (f|sa))” = f71|

Proor. We already know that
7 Lon(ary: (B(A7),0(A7) L(aey) — (B(B?), ¢! (B7) Lan())

is continuous. Up to the isomorphism and homeomorphism ¢ of Corollary 4.28, it means that
the map
7 lm(ar): (B(A)7,0(B(A)7)) — (B(B)7,./(B(B)7))

is continuous. We conclude that f7 [g40)< (f la3(4))” since (f |ps4))7 is the largest exten-
sion of (f|p(4)) to B(A)? that enjoys this property of continuity.

To obtain the other inequality, let us define the map g : A — B by setting g(z) = y if
f 34 (Tin (7)) = Ti/m(y). Of course, the maps g and f [%(4) coincide on B(A7). Then, if
we prove that g is (o,¢!)-continuous, we will obtain that g < f° on B(A%) so that f L%(A)g
I a0y

Let us prove that g is (o, :!)-continuous. Assume that p belongs to J°(B?). We obtain
successively that

g () = {z|g(x) >p}
= =z I 7img@) = 7/mp)} i€ {L,...,n}}
= (= | f1a) Gim(@) = 7imp)} i€ {1,...,n}}
= (o Tm@)) 1i€ {1, n}}.

Then, since 7;/,(p) belongs to J(B(A7)) = JF(B(A)?), we can deduce from the (o,l)-
continuity of f|% 4 that f L"_l ([Tl/n( ))) is an open of o(*B(A)?). The conclusion then
follows from the fact that the map T/n = (Tzf;‘n)“ is (0(A%),0(B(A)?))-continuous since 7

i/n
is both meet and join preserving. O

In the applications we develop, the maps that we consider are isotone. Thus, we no not
have to bother to distinguish f [ from J7 Lpao).-

DEFINITION 4.51. Assume that f : A — B is an idemorphism between two MV ,,-algebras
A and B. The map f7: A™ — BT is defined by

vie{l....n}, i (f7(@) = [l (7.(2),
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and is called the strong canonical extension of f

LEMMA 4.52. Assume that f : A — B is an idemorphism between two MV, -algebras A
and B. Then f7 is an idemorphism. If f is an isotone map, a lattice operator, a dual lattice
operator, a join preserving map or ¢ meet preserving map then 7 is a lattice operator, a dual
lattice operator, a join preserving map, a meet preserving map respectively.

PROOF. These results are proved in a similar way. We provide the proof for an idemor-
phism and a lattice operator.

If f is an idemorphism and if x is an element of A then for any 7 in {1,...,n} we obtain
successively, if [ denotes the real min[ﬁ, 1Nk,

Tm(ffx@z) = f 1%y (Tijn(z @ ))
= 1% (n()),
and
Tim(fT(x) & fT(2) = 7(f7(z))
= f[%(A) (1i()).
We follow that line of argument to prove that f7(z © z) = f7(z) © f7(x).

Let us then assume that f : Ay x --- X Ay, — B is an idemorphism and a lattice operator.
We prove that f7 respects the join on the first argument. If 21 and 2 belong to A; and if
(x9,...,x)) belongs to Ag X -+ x Ay then for any i in {1,...,n}

Tim(fT(@1 Vol 2o, ) = flga (Tyn(e Va2, .. 2p))
= fl%a) (Tinlz V), ..., Tim(Tr))
=[S (Tiyn(@1) V 7)), - Tipn(2r)))
and we finally obtain that 7;,,(f7 (21 V 27, 2, ..., 7)) is equal to
fL‘{B(A) ((Ti/n(xl)a EE 7Ti/n<xk))) Vv fL?B(A) (Ti/n(xll)7 e 7Ti/n(xk)))

since f L%(A) is a lattice operator. This last element is in turn equal to

Ti/n(fT(wh s 7xk)) v Ti/n(fT(x/h s 7xk)) = Ti/n(fT(wh e )xk) v fT(x/la oo 733k))
thanks to the definition of f7. O

EXAMPLE 4.53. If A is an MV ,-algebra then VA : A x A — Aand A% : A x A — A are
two isotone idemorphisms. It is not hard to check that V7™ = VA" and that A™ = A4".

Let us also remark that it is possible to consider the negation — as an idemorphism. To
do so, we need to consider — as the map — : A% — A. Then, we can prove that the map
-7 AT — A7 is equal to the map =", Indeed, the map =7 : A7 — A7 is defined for every
x in A™ by

() = e (@) Vi€ i),
Then, it follows successively that

() (x)) = =4 (@)

= () (@)

T (= ().
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PROPOSITION 4.54. If V is a k-ary dual MV-operator on an MV, -algebra A then for any
(ai,...,ag) in (AT and any u in A,
V(ar,..op)(w) = N\ (ea(vi) V-V ag(og))
vERuU
where R denotes the canonical relation associated to V. Consequently, the map V7 is a dual

MV-operator.

PROOF. Assume that (o, ...,ax) belongs to (A7)* and u belongs to A,. For any 4 in
{1,...,n} we obtain successively since V is isotone that

(Tipn(V7 (a1, a)) (W) = (VO (Tipm(cr),- - Tim(on))) (w)
= /\ (Ti/n(al)(@l) VeV Tz/n(ak)(ﬂk))

vERu
= Tl \ (@) V-V ar(Dr)).
vERu
We then obtain that V™ is a dual MV-operator thanks to Lemma 2.34 for example. g

It is now time to give results about composition of T-extensions. Once again, our results
follow from the results about composition of canonical extensions.

PROPOSITION 4.55. Assume that f : B — C and g : A — B are two idemorphisms between
the MV, -algebras A, B and C. If > belongs to {<,>,=} and if (fg) L%(A)M f LU%(A) g L%(A)
then (fg)" > f7g".

PROOF. Assume that (fg) L%(A)Dd f L%(A) g L"%(A). If 2 belongs to A™ and i belongs to
{1,...,n}, we obtain successively

Tim((f9)7 () = (fg) L%(A) (Ti/n())
s F 1% (9150 (T/m(@)))
1%y (Tign(97 (@)
= 779" (@),
which concludes the proof. O

In order to determine if a variety A of MV,-algebras with L-operators is closed under
taking T-extensions, it is useful to prove that if B is a quotient of the A-algebra A, then
B7 is a quotient of A”. We first consider the more general problem of the conservation of
homomorphisms: if f: A — B is an homomorphism between two A-algebras A and B, can
we deduce that f7: A™ — B7 is an homomorphism?

We have to take care that, unlike the case of canonical extension, the operation @4 is
not obtained as the T-extensions @4 since it is not an idemorphism.

The result we obtain is more general than needed.

DEFINITION 4.56. An algebra A is an MV, -algebra with L-idemorphisms (resp. MV,-
algebra with L-lattice idemorphisms) if it is an L-algebra such that (A, ®,—,0,1) is an MV,,-
algebra and if any operation g of £\ Ly is interpreted as an idemorphism (resp. and as a
lattice operator) g4 on the MV-algebra reduct of A.
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If Ais an MV,-algebra with L-idemorphisms, the strong canonical extension AT of A is
defined as the L-algebra whose MV-reduct is the strong canonical extension of the MV-reduct
of A and that satisfies g4" = (¢)" for any operation symbol g in £\ Ly .

So, in the construction of strong canonical extensions of MV, -algebras, the algebras are
considered more as expanded MV-algebras than expanded DLs.

Examples of L-algebras with lattice idemorphisms are given by L-algebras with MV-
operators.

LEMMA 4.57. Assume that A and B are MV, -algebras with L-lattice idemorphisms. For
any L-homomorphism f: A — B the map f™ : AT — B is an L-homomorphism.

PRrROOF. First, assume that g is a k-ary operation of £\ Ly;y interpreted as a lattice
idemorphism on the algebras AF and B*. If (x1,..., ;) belongs to (A7)* and i belongs to
{1,...,n}, we obtain successively on the one hand that

T (T (@ zn)) = (Flay 97 1 %seaye) (Tim(@1), - Tim (@)
= (0% G ) T (@), Tagm ()

((gB)TfT[k] (wla R :Ek))

since we have showed in the proof of in Proposition 4.31 that the canonical extension of an
L-homomorphism respects isotone operations.

Let us now prove that f7(z @4 y) = f7(x) 5" f7(y) for any = and y in A7. Let i be an
element of {1,...,n}. The equation

= T

sl

(33) 7_2/71('r ® y) = Tz/n(x) \ (T(z—l)/n(x) A Tl/n(y>) VeV (Tl/n(x) A T(z—l)/n(y)) v Tz/n(y)

(where we 7 is defined as the constant term 1) is satisfied in the variety of MV,,-algebras. If
z and y belong to A7, then 7;/,,(f7 () © f7(y)) is equal, thanks to equation (3.3), to

Tifn(FT @)V (7= (FT (@) AT (FT W)V N (T (FT (@) AT 1) /0 ((FT0)) VT (7 (),

which is in turn equal, by definition of 7, to

ST @)V (7 () (@) AT (T @DV -V (7 (T (@) A S (T1) a9V I (Tign ()

Then, since f7 : A° — B¢ is an homomorphism of MV-algebras, this last element is equal to
Fo(Tim (@) V (T m(@) AT n(@) VoV (T (@) A T=1)m(Y) V Tim (),

1.e., to

fU(Ti/n(w ® y)) = Tz/n<f7($ D y))

We proceed in a similar way to prove that f7(—z) = = f(x) for any = in A". O

DEFINITION 4.58. A variety A of L-algebras with MV-operators is strongly canonical if it
contains the strong canonical extension of any of its algebras.

PROPOSITION 4.59. Assume that L is an Ly, -valued modal logic. The variety of L-algebras
1s strongly canonical if and only if L is a strongly canonical logic.



3. STRONG CANONICAL EXTENSIONS 82

PrROOF. Assume that the variety Ay, of L-algebras is strongly canonical. Then, for any
set X, the algebra F1,(X)” belongs to A, which means that Fi,(X)+ = L.

Assume conversely that L is a strongly canonical logic. For any algebra A of MMV,
there is a set X such that A is a quotient of Fr(X). Since FL(X)+ = L, we obtain that
FL(X)™ belongs to MMVy, and an application of Lemma 4.57 proves that A™ also belongs
to MMVy,. ]

So, the preceding lemma provides a tool to obtain strongly KRIPKE-complete logics.
We can for example determine the equations that are strongly canonical (i.e., define
strongly canonical varieties) among SAHLQVIST equations.

LEMMA 4.60. Assume that A is an MV,,-algebra with L-operators.

(1) If t is an L-term constructed with operations that are interpreted as isotone idemor-
phisms on A then t4" > (t4)7.

(2) If t is an L-term constructed with operations that are interpreted as lattice idemor-
phisms on A then t4" = (t4)7.

(3) If t = s(uq,...,ux) is an L-term where for every operation symbol f that appears in
s the map f4 is a lattice idemorphism and where all the operations in each of the u;
are interpreted as meet preserving idemorphisms, then (t47) = (t4)7.

PRrROOF. The proofs are done by induction on the number of connectives in ¢ with the help
of proposition 4.55 and the corresponding results for canonical extensions. (]

THEOREM 4.61. Assume that ¢ < 1) is a SAHLQVIST equation over the language Ly pryd
where

e the term v is constructed only with the operations -, V, A, constants, modalities and
dual modalities,
o the term ¢ is constructed from boxed atoms, constants with the operations V, N\ and
modalities.
The equation ¢ < 9 is strongly canonical and thus the logic K,,+¢ — 1 is a KRIPKE-complete
logic.

EXAMPLE 4.62. The equations Up — p, Up — OUp, p — OOp are all strongly canonical
and hence define strongly KRIPKE complete logics.



CHAPTER 5

A topological duality for the category MMV~

By adding a topological layer to the ¥.,-valued L-frames, we are going to produce a category
which is dually equivalent to the category of MMVﬁ—algebras. This duality is an extension
of the STONE duality for boolean algebras with L-operators.

To construct this duality, we can follow two different but equivalent paths : we can add a
topological ingredient to the existing structures or we can add structure to an existing duality
for the variety of MV ,-algebras. Because this last path drives us to the desired result more
quickly, we have decided to follow that one.

1. A natural duality for the algebras of LUKASIEWICZ n + 1-valued logic

It is well known that a strong natural duality (in the sense of DAVEY and WERNER in
[11]) can be constructed for each of the varieties MV,, = HSP(L,,) = ISP(L,,). The existence
of these natural dualities is a consequence of the semi-primality of ¥.,,. This fact was first
noticed by CIGNOLI in [9] and the consequences of this duality were studied with more details
in [46].

These dualities, from which we can recover the STONE duality for boolean algebras by
considering n = 1, are a good starting point for the construction of a duality for the varieties
of MV ,-algebras with L-operators. Indeed, in the classical two-valued case, the dual of a
boolean algebra with operators is obtained by adding a structure (a k + l-ary relation R for
any k-ary boolean operator of £) to the STONE dual of the boolean reduct of B. It is the idea
we propose to follow in this section : the dual of an MV,-algebra with L-operators A will be
obtained by adding a structure to the dual of the reduct of A in MV),,.

We recall the basic facts about the natural duality for MV,,. In order to improve the
readability of this document, we do not follow strictly the notations that are in effect in the
theory of natural duality (usually, algebras are denoted by underlined Roman capital letters
and structures by “undertilded” Roman capital letters).

DEFINITION 5.1. We denote by L, the topological structure
L, = & {by | m € div(n)}, 1),

where 7 is the discrete topology, div(n) is the set of the positive divisors of n and ¥.,,, (with
m € div(n)) is the subalgebra of L, viewed as a distinguished (closed) subspace of (L, 7)
(and can also be viewed as an unary relation on L.,,).

We denote by MV, the category whose objects are the members of the variety MV, =
HSP(L,) = ISP(L,,) and whose morphisms are the MV-homomorphisms.

83
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Finally, we denote by X, the category whose objects are the members of the topological
quasi-variety IS.P(L,,) (i.e., the topological structures that are isomorphic to a closed sub-
structure of a power of L,) and whose morphisms are the continuous maps ¢ : X — Y such
that ¢(r;),) CrY.

If Ais an MV,-algebra, the set MV, (A,L,) is viewed as a substructure of L,‘? and
is equipped with the topology induced by L2, So, if [a : 1] denotes the subspace {u €
MV, (AL, | u(a) = £} whenever a € A and i € {0,...,n}, then {[a: 2] |a € Aand i €
{0,...,n}} is a clopen subbasis of the topology of MV,,(A,L,). Note that it is also the case
of {[b:1] | beB(A)}.

The results about natural duality for MV,, can be briefly summarized by the following
proposition (see [46]).

PROPOSITION 5.2. Let us denote by D, and E,, the functors

A€ MV, — D,(A) = MV, (A, Ly,)
f € MV, (A, B) — Dn(f) € Xn(Dy(B),Dy(A)),

where Dy, (f)(u) =wo f for all u € D, (B), and

X € X, — Ep(X) = X, (X, L)
€ Xp(X,Y) > En(1h) € MVp(En(Y), En(X)),

where E,(¢Y)(a) = a0 for all « € E,(Y).
The functors D,, and E,, define a strong natural duality between the category MV, and

Dn:MVn—w‘(n:{
En:Xn—w\/ﬂ/n:{

X,. Thus, these two functors map embeddings onto surjective morphisms and conversely.

The canonical isomorphism between an MV,-algebra A and its bidual E,D,(A) is the
evaluation map
eqa: A—E,Dp(A):a— esla):u— u(a),
and if X is an object of A},, the map
ex : X = DpEn(X) tu—ex(u) : a— a(u)

is the canonical X,-isomorphism between X and D, E,(X).

As we have already taken some liberty in our notations, if X is a structure of X, we
are going to denote by X the structure, the universe of the structure but also the underlying
topological space of X. The context is always clear enough to suggest the right level behind
such a notation.

The following result is a characterization of the objects of A}, (see [46] or [11]).

PROPOSITION 5.3. A structure
X = (X;{ry, | m e div(n)}, 7),
15 an object of X, if and only if
(X1) (X, 7) is a BOOLEAN space (i.e., T is a compact HAUSDORFF zero-dimensional topol-

0gy);
(X2) rX is a closed subspace of X for every m € div(n);

m
(X3) rX =X and rif Nrif = Tg:d(m,k) for every m and k in div(n).
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If no confusion is possible, we prefer to denote by r,, the relation 7X. Note that if we
consider n = 1, it is easy to realize that the duality for MV, is equivalent to the well known
STONE duality for boolean algebras (there is no need in that case to add the information
provided by the subalgebras of L since the only subalgebra of ¥ is L1). We thus naturally
denote by D;1(A) the STONE dual of any boolean algebra A.

LEMMA 5.4. If A is an MV,-algebra then the underlying topological space of Dn(A) is
homeomorphic to D1 ($B(A)).

PRrOOF. We work up to the canonical homeomorphism beetween D (8(A)) and D,,(B(A)).
If i : B(A) — A denotes the inclusion map, then we prove that D, (i) : D,(A) — D1(B(A)) :
u +— w04 is an homeomorphism. Since i is an embedding, we already know that D, (i) is a
continuous onto map. If we prove that it is a one-to-one map, we can conclude that it is an
homeomorphism since Dy, (A) is compact and D;(B(A)) is HAUSDORFF.

Now, assume that u and v are two elements of D,,(A) such that woi = v oid. Then, since
u # v, there is an z in A and an ¢ in {1,...,n} such that u(z) < £ < v(z). It follows that
u(7i/n () = 0 and v(7;/,(x)) = 1, which is a contradiction since 7;/,(z) belongs to B(A). O

Eventually, note that other types of dualities have been considered for the variety of MV-
algebras, e.g., [44, 8].

2. Dualization of objects

We just have to add a topological layer to the canonical t.,-valued L-frame associated to
a MMVE-algebra A in order to obtain a representation result of A as a concrete algebra of
morphisms. We actually mix the topological duality for MV,, with the results about canonical
entities associated to MMVE~-algebras.

DEFINITION 5.5. If A is an /\/l./\/lVﬁ—a,lgebra then for any k-ary dual modality V of L, we
denote by Rg’”(A) (or simply Ry if no confusion is possible) the canonical k + 1-ary relation
associated to V in Definition 2.37.

That is, if we equip D, (A) with the relations Rg"(A) for any dual modality V of £ and

forget the topology of D,,(A), we obtain the canonical L,-valued L-frame associated to A.
Dy (A)

Thus, for any u in D,,(A4) and any divisor m of n, if u belongs to r,"*" and (u,v1,...,vk)
belongs to Ra then v; belongs to oA for any 7 in {1,...,k} (see Lemma 2.42). Moreover,

for any k-ary dual MV-operator V of £, any (x1,...,z;) in A¥ and any u in D,,(A), we obtain
w(V(zy,..,z) = N @u(x1) V-V ().

vERyu
(see Propotision 2.40).

(4)

We now have to determine how the relations RZ" interact with the topology of D,,(A).

PROPOSITION 5.6. If A is an ./\/l./\/lVfl—algebm then for any k-ary dual MV-operator V of
L,
(1) for any clopen subsets Q1, ..., of X, the set R (1 x - -+ x Q) is a clopen subset
of X,
(2) the relation Rgn(m is a closed subspace of D,,(A)F+1,
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(3) R(rm) is a subset of 7%,

Proor. To obtain (1) and (2), we can prove by combining Lemma 5.4 and Lemma 2.38
that the topological structures (D, (A); {Rv, | i € I},7) and (D1(B(A)); {Rv,1 4, | 1 € I}, 7)
are isomorphic. So, the desired results are obtained thanks to corresponding results for the
STONE duality for boolean algebras with L-operators.

(3) The third statement is known (see Lemma 2.42). O

Recall that if R is a relation on boolean space X, then R is a closed relation if and only
if Ru is a closed subspace of X for any u in X.
It turns out that these properties characterize relations that are dual to dual MV-operators.

DEFINITION 5.7. If X is a structure of &,,, a subset R of X**1 is a k4 1-ary modal relation
on X if

(1) R is a closed subspace of X**1,

(2) for any clopen subsets €21, ..., of X, the set R~1(Q x - -+ x ;) is a clopen subset
of X,

(3) for any positive divisor m of n, the set R(r,,) is a subset of r¥ .

We denote by MX 5 the class of the topological structures
(X, {rm |mediv(n)},{Ra, |i€I};T)

such that (X, {ry, | m € div(n)},7) is an object of X, and Ra, is a k; + 1l-ary modal relation
on X for any ¢ in 1.

On the one hand, an MX%-structure X can be considered as an E,-valued L-frame with
a new topological layer. Let us temporally denote by §x the underlying t.,,-valued L-frame
of X. On the other hand, the structure X can aslo be viewed as a topological structure of A},
on which more structure (defined by the modal relations) has been added. Let us temporally
denote by X the &,,-reduct of X. We obviously obtain that the dual algebra E,(X) of X is
a subalgebra of the MV-reduct of the ¥.,-tight complex algebra (Fx)*™ of Fx. The following
result states that actually, the algebra E, (X) is more than that: it is also an L-subalgebra of

(Fx)™m.

ProposITION 5.8. If X is an MXﬁ—structure and if V; denotes the dual MV-operator
associated to RX in Definition 2.33 for any i in I, then the algebra (E,(X),{V;|i € I}) isa
subalgebra of (Fx ).

PROOF. We have to prove that the map V;(aq,...,ax) is a continuous map from X to
L, for any aq, ..., of E,(X). It appears clearly that
i

(Vilar, ..., o)) (=) = (Vi(ri(n),...,7i(ax)) ' (1)

i i
mn n n

for any 7 in {1,...,n} . Up to the homeomorphism of Lemma 5.4, we obtain that the element
Vi(ri(ay),...,7i(ag)) is just a member of the bidual of the boolean algebra with L£-operators

obtained by equig)ping B(A) with V |94 for any dual modality V of £. In this respect, the
later map is continuous. O
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Thus, for any X in MX%, the algebra (E,(X),{V; |i € I}) is an MMV~-algebra. The
following result gives a representation of MMVﬁ—algebra as an algebra of morphisms.

PrOPOSITION 5.9. If A is an MMVﬁ—algebm then the evaluation map es is an L-
isomorphism from A to (E,D,(A),{V;|i € I}).

PROOF. As we already know that e4 is an isomorphism of MV-algebras, stating that e 4 is
an isomorphism of MMVﬁ—algebras is equivalent to stating that for any k-ary dual modality
V of £ and any (ay,...,a;) in A*

u(V(ar, ... ap) =\ ©ila) V-V orlar).
VERyuU

This is well known (see our remark following Definition 5.5) O
Here is the corresponding representation result for MX',-structures.

PROPOSITION 5.10. Assume that X is an MX;%—Structure. For any i in I, we denote by
Vi the dual MV-operator on E,(X) associated to R; and by Ry, the relation on DyE,(X)
associated to V;. Then, the relations R; and Ry, coincides up the canonical X,-morphism
€x-

PROOF. Assume that R is a k-ary relation of {R; | i € I'}. We have already proved that
if (u,v1,...,v;) belongs to R then (ex(u),ex(vi),...,ex(vk)) belongs to Ry, (see 2.65, and
there is no need of the topological layer fot this).

Assume now that (ex(u),ex(v1),...,ex(vk)) belongs to Ry,, i.e., assume that for any
at,...,0p in E (X)),

(Vilag, ... o)) (u) =1 = ai(vy) V- Vag(vg) = 1.

If (u,v1,...,v;) does not belong to R, then there is a clopen subset Q of X**1 such that

(2.1) (u,v1,...,0) € QC XL\ R,
Equivalently, there are elements «, 31, ..., G of B(E,(X)) such that
(2.2) (u,v1,...,0) € @ H(0) x -+ x B71(0) x B, 1(0) € XFH\ R.

We can thus conclude that Ru is a subset of X*\ (67(0) x --- x 3.1(0)) and so that
Vi(B1,---,Bk)(u) = 1. We deduce from (2.1) that there is a j in {1,...,k} such that
Bj(vj) = 1, which contradicts (2.2). O

3. Dualization of morphisms

The previous section provides a representation theorem the MMYV%-algebras. We now
introduce the right notion of morphism between M X, -structures in order to lift this repre-
sentation result at a categorical level.

To define the suitable notion of morphism between MX ﬁ—structures we proceed in a very
natural way. Such a morphism ¢ : X — Y is defined as a map that preserves both the X,-
reduct of X and its L,-valued L-frame reduct. These morphisms are good candidates for the
dualization of MMYV5.-homomorphisms since, roughly speaking, the first condition dualizes
the “modal-preserving” fragment of MMYV%-homomorphisms and the second one dualizes
their “MV-preserving fragment”.
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DEFINITION 5.11. If X and Y are two MX%-structures, a map ¢ : X — Y is an MX%-
morphism if
(1) the map ¢ is an X,,-morphism,
(2) the map ¢ is a bounded morphism between the underlying £-frames of X and Y.

PROPOSITION 5.12. If f : A — B is an MMVE-homomorphism between two MMVE-
algebras A and B, then Dy, (f) : Dyp(B) — Dy (A) is an MX ,-morphism.

PRrROOF. The proof is a combination of Proposition 5.2, Lemma 5.4 and Lemma 2.38. [J

PROPOSITION 5.13. If ¢ : X — Y is an MX ,-morphism between two MXE-structures X
and Y then E, () is an MMV -homomorphism.

PRrROOF. The proof is a straightforward consequence of the definitions. O

4. Duality between MMV% and MX~%

The previous representation results can be left at a categorical level.

DEFINITION 5.14. We denote by MXﬁ the category whose objects are the MXﬁ—structu—
res and whose morphisms are the MX fl—morphisms. As usual, if X and Y are two objects of
MXE we denote by MXE(X,Y) the set of the MX~-morphisms from X to Y.

THEOREM 5.15 (Duality for MMVE). Let us denote by DY : MMVE — MXE the
functor defined by

D(A) = (Dn(A),{R; | i € I}) for any object A of MMVE,
D:(f):D:(B) = D:(A) : u wuo f for any arrow f in MMV%(A,B),

if R; denotes the canonical k; + 1-ary modal relation associated to V; for any i in I.

Let us also denote by E} : MXS — /\/l/\/lVﬁ the functor defined by

EX(X) = (En(X),{V; | i € I}) for any object X of MXE
EX(v):EXN(Y) = ENX):a— ao for any arrow ¢ in MXﬁ(X,Y),

if Vi denotes the canonical k;-ary dual MV-operator associated to R; for any i in I.
Then, the functors D} and E} define a categorical duality between MMV} and MX,.

PRrROOF. The easy details are left to the reader. O

First note that, by setting n = 1, one easily can easily realize that this duality is equivalent
to the well known duality for boolean algebras with L-operators. Hence, the duality is not a
natural duality (in the sense of [11]).

We already know that if V and V’ are two k-ary dual MV-operators on an MV ,-algebra A
such that V |gq»= \% los(ayx then V and V' are equal. Nevertheless, we have not been able
yet to provide a criterion that specifies the dual operators on B(A) that can be extended to a
dual MV-operator on A. We can now obtain such a criterion a a consequence of Theorem 5.15.
Indeed, the dual of an operator of boolean algebra V' on %B(A) is a closed and continuous
relation R’ on the STONE dual of B(A) (the underlying topological space of D,,(A)) which in
turns is or is not a modal relation on D, (A).
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PROPOSITION 5.16. Assume that V' is a k-ary dual operator of boolean algebra on the
algebra B(A) of idempotent elements of an MV-algebra A. There is a k-ary dual MV-operator
V on A such that V Los(a)r= V' if and only if the dual k + 1-ary relation R’ associated to
V' on D, (B(A)) is (up to the canonical homeomorphism of Lemma 5.4) a k + 1-ary modal
relation on D, (A).

Next, we prove that this duality provides us with a relational semantic which is complete
with respect to any ¥L,-valued modal L-logic.

DEFINITION 5.17. Assume that X is an MX%-structure. A waluation on X is a map
Val : X x Prop — L, such that Val(-,p) belongs to X, (X,L,) for any propositional variable
p of Prop.

Valuations are extended to formulas in the well known way and models based on MX%-
structures are defined in the natural way: such a model M is given by an MXﬁ—Structure X
together with a valuation on X.

Thus, if X is an MX 5—structure7 a valuation Val on X is a valuation on its underlying
L,-valued L-frame such that Val(-,p) : X — L, is a continuous map for any propositional
variable p of Prop.

PROPOSITION 5.18. Assume that ©U{¢} is a subset of Formz. The formula ¢ is a theorem
of K, + © if and only if ¢ is valid in any MXfl—structure in which the formulas of © are
valid.

PrOOF. The formula ¢ is a theorem of K,, + © if and only if the equation associated to ¢
is valid in the variety of the K,, + ©-algebras, or equivalently if ¢ is valid in any model based
on the dual of a K,, + ©-algebra. O

Eventually, since the duality defined by D} and E; maps embeddings to onto morphisms
and conversely, it is easy to realize that the lattice of congruences of an MMV ,-algebra
A i isomorphic to the order dual of the lattice of closed generated substructures of D*A.
But, since there is only one way to consider a closed hereditary subset of the underlying
topological space of D*(A) as a generated closed substructure of D*(A), the lattice of closed
generated substructures of D*(A) is isomorphic to the lattice of the closed hereditary subsets
of D1(®B(A)). This line of argument is actually a proof of Proposition 3.17 that was announced
in the third chapter.

5. Coproducts in MX~

Coproducts of dual structures are classical constructions that one computes when one
wants to obtain new members of the dual category. For example, the job has been done in
[35] for the dual categories of boolean algebras with operators and has been considered in
[47] for the members of X,,. The problems in these constructions arise mainly from topology:
when one computes non finite coproducts, one has to pay attention to preserve compacity and
to conserve closed relations in order to stay in the category. The idea is to base the coproducts
of the structures (X;);es on the STONE-CECH compactification of the topological sum of the
topological spaces X; (j € J).
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In fact, we can carefully merge the results of [35] and [47] to obtain the construction of
the coproducts in MX,,. The crucial point is to take care that the condition of R-saturation
of the sets ry, is still satisfied in the compactification.

Let us recall the construction of the STONE-CECH compactification of a completely regular
topological space X. We denote by C(X) the set of the continuous maps from X to [0, 1].
Then, the evaluation map e : X — [0,1]¢X) defined by (e(z)); = f() is a continuous map
and is a homeomorphism from X to e(X). If (X) denotes the closure of e(X) in [0,1]¢X)
then (e, 3(X)) is the STONE-CECH compactification of X. We set the notation Y aside to
denote the closure in 5(X) of a subset Y of 5(X) and we identify X and e(X) in S(X).
Finally, note that the coproduct of the boolean spaces X; (j € J) in the category of boolean
spaces with continuous maps is given by the STONE-CECH compactification of the topological
sum of the X;. The set X; can always be considered as being pairwise disjoint (otherwise we
can replace X; by {(z,j) | x € X;} for all j € J with the obvious topology).

Note that the clopen subsets of 3(X) are exactly the Q where  is a clopen subset of X
and that B(X)\ F = (X \ F)~ for every closed subspace F of X.

We provide the proofs of the following two lemmas even if they are part of folkore and can
be found in [35], since the cited paper is not easily accessible.

LeMMA 5.19. If X is a topological space whose set of clopen subsets is a base of the topology
and if R is a closed k+ 1-ary relation on X, then R™1(K) is a closed subspace of X for every
compact subspace K of X*.

Proor. The proof is obtained thanks to a standard compacity argument. O

LEMMA 5.20. Assume that J is a non empty set, that (X;);es is a family of boolean spaces
and that (X) is the STONE-CECH compactification of the topological sum X of the X;.
(1) If F and F' are two disjoint closed subspaces of X, then F and F' are disjoint in
B(X). o
(2) If F and F' are two closed subspaces of X, then (FNF')~ = FNF' in 5(X).
(3) If R is a closed k + 1-ary relation on X and if R denotes its closure in 3(X) then
R7YQy x - x Q) = (R7YQq x -+~ x Q))~ for every clopen subsets Qy,--- , Qi of
X.

PRrROOF. (1) Let us denote by €; a clopen subset of X; such that X; N F' C ; and
X;NF = forall j € Jand by Q the open set [J{Q; | j € J}. Thus, F C Q and
FrC(X\ Q)™ =X\ Qsince Q; is a zero-set in X; for all j € J.

(2) We prove the non trivial inclusion: let x be an element of F'NE” and €2 a clopen subset
of X such that x € Q. We prove that (2N F)N (QNF’) # 0. Otherwise, it follows by (1)
that (QNF)N (2N F’) = 0. But, since QN F is a closed subspace of X,

r€QNFC(QNF) =(QnF),
and we obtain similarly that z € (2N F')~.
(3) The inclusion (R71(Qq x -+ x )~ € R71(Q x -+ x Q) follows directly from
Lemma 5.19. For the other inclusion, let z be an element of R™'(Qq x --- x Q) and U be a

clopen neighborhood of z in 3(X) (i.e., U is a clopen subset of X). Then, there are z1 € ),
.., T}, € Q such that (x,z1,...,2;) belongs to R. Hence, the set U x Qq x --- x { is a
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neighborhood of (z,z1,...,z) in (X) and there is an 2’ in U, there are some 2} in Q, ...,
z) in Qf such that

(2,2, 2h) € (U xQp x-- x Q)N R.
We eventually find that R=1(Qq x --- x Q) N U is not empty. O

The idea to use STONE-CECH compactification to compute coproducts in X, can be traced
back to [47]. We extend this construction to the category MX,,.

PROPOSITION 5.21. If J is an non emply set and
X; = (X;, {rad | m € div(n)}, {R) | i€ I})

s an MXﬁ—Structure for any j in J (we consider that the X;s are pairwise disjoint), then the
structure

(BX), {(rX)" :m e div(n)},{R; | i € I}, 7)
where

e X is the topological sum of the X; (j € J),
o (3(X) is the STONE-CECH compactification of X and X is identified with e(X) in
BX),
o X is the the subspace U{rfnfj | j € J} for every m € div(n)
o R; is the relation U{R;»Xj | j e J} foranyiin I,
18 the coproduct in ./\/lé’(ﬁ of the X; where j € J.

Proor. We first have to prove that the proposed structure is an object of MX,,. First,
it is clear that its underlying topological space is a boolean space. The identities

Trﬁn(X) n Tﬂ(X) B(X)

m' = Tged(mm’)
where m and m’ are two divisors of n are obtained as a consequence of item (2) of Lemma
5.20.
We now prove that R is a modal relation on 8(X) if R is a k + l-ary relation of the
language. First of all, the third item of Lemma 5.20 implies that R~1(Q x - - x Q) is clopen
subset for every clopen subsets 1, ..., Q of 3(X). To prove that

R(rJX)) C pfO,

we proceed ad absurdum. Assume that (z,21,...,7;) € Rwithx € 2 but 7, € ﬂ(X)\rgl(X)
for an [ in {1,...,k}. Let us consider a clopen subset Q of X such that

y € QC B\,
Then, thanks to item (3) of Lemma 5.20, we obtain that « belongs to R(_Z)I(Q) = R(_l)1 (©). We
thus can find a t € 7X N RN (Q)” =X N R™Y(Q). Finally, it means that there is a z € Q and
21y ey Zl—1, 2141, - - -5 2k 10 X such that

(tazlv s Rl—15R5 B4y - - '7Zk> € R7

which is a contradiction since 2 C X \ r,),g. We so have proved that the subspaces mﬁnX satisfy

the condition of R-saturation of Definition 5.7, and have finished to prove that the proposed
structure belongs to MXZ.
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Now, let us prove that we have computed the coproduct of the X;. We denote by o; :
X; — X the inclusion map of X; into B(X) for every ¢ € I. These maps are obviously
MXE-morphisms (use the fact that R(u) = R(u) for every u € X).

Then, suppose that f; : X; — Y is an MAX%~-morphism which is valued in an MX%-
structure Y for every ¢ € I. Since 3(X) is the coproduct of the topological spaces X;, there is
a unique continuous map f : G(X) — Y such that f oo; = f; for every i € I. We prove that

F(rm)™) S 7
for every divisor m of n. First, assume that y € Y \ r} and denote by Q a clopen subset of
Y such that y € Q and QN 7)Y = (. Tt follows that f~'(y) € f~4(Q) € B(X) \ r;x. Thus,
f~Hy) € B(X)\ (rX)” which proves that f is an Xj,-morphism.
Finally, we prove that f is a bounded morphism, i.e., that

F(R(w) = RY (f(u))
for every w in G(X). The inclusion from left to right is easily obtained. We proceed with the
other inclusion. Assume that z € RY (f(u)). It suffices to show that every clopen neighborhood
V of z meets f(R(u)) since the latter is closed. Let Q be any clopen subset of X such that
contains u. It then follows that

RY(f(Q)) = RY((f(2)7) € (RY(F(@)) = (FRY()” = F((RQ)) = F(R(Q)).
Hence, since x € RY (f(u)) C f(R(Q)), the intersection R~*(f~1(V)) N Q is not empty. We
obtain that u belongs to R™1(f~1(V)) since this subspace is closed in 3(X). It means that V/
contains an element of f(R(u)) and so that z € (f(R(u)))™ = f(R(u)). O
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