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Summary

Machine learning techniques, and in particular supervised learning methods,
are nowadays widely used in bioinformatics. Two prominent applications
that we target specifically in this thesis are biomarker discovery and regula-
tory network inference. These two problems are commonly addressed through
the use of feature ranking methods that order the input features of a super-
vised learning problem from the most to the less relevant for predicting the
output. This thesis presents, on the one hand, methodological contributions
around machine learning-based feature ranking techniques and on the other
hand, more applicative contributions on gene regulatory network inference.

Our methodological contributions focus on the problem of selecting truly
relevant features from machine learning-based feature rankings. Unlike the
p-values returned by univariate tests, relevance scores derived from machine
learning techniques to rank the features are usually not statistically inter-
pretable. This lack of interpretability makes the identification of the truly
relevant features among the top-ranked ones a very difficult task and hence
prevents the wide adoption of these methods by practitioners. Our first con-
tribution in this field concerns a procedure, based on permutation tests, that
estimates for each subset of top-ranked features the probability for that sub-
set to contain at least one irrelevant feature (called CER for “conditional
error rate”). As a second contribution, we performed a large-scale evaluation
of several, existing or novel, procedures, including our CER method, that all
replace the original relevance scores with measures that can be interpreted in
a statistical way. These procedures, which were assessed on several artificial
and real datasets, differ greatly in terms of computing times and the tradeoff
they achieve in terms of false positives and false negatives. Our experiments
also clearly highlight that using model performance as a criterion for feature
selection is often counter-productive.

The problem of gene regulatory network inference can be formulated as
several feature selection problems, each one aiming at discovering the regu-
lators of one target gene. Within this family of methods, we developed the
GENIES3 algorithm that exploits feature rankings derived from tree-based
ensemble methods to infer gene networks from steady-state gene expression
data. In a second step, we derived two extensions of GENIE3 that aim to
infer regulatory networks from other types of data. The first extension ex-
ploits expression data provided by time course experiments, while the second
extension is related to genetical genomics datasets, which contain expression
data together with information about genetic markers. GENIE3 was best
performer in the DREAM4 In Silico Multifactorial challenge in 2009 and
in the DREAMb Network Inference challenge in 2010, and its extensions
perform very well compared to other methods on several artificial datasets.






Résumé

L’apprentissage automatique supervisé est largement utilisé de nos jours en
bio-informatique. Deux problemes importants auxquels nous nous intéressons
dans cette these sont la découverte de biomarqueurs et I'inférence de réseaux
de régulation génétique. En général, ces deux problemes sont abordés via
I'utilisation de méthodes permettant de classer les variables d'un probleme
d’apprentissage supervisé, selon leur pertinence pour la prédiction de la sor-
tie. Cette these présente, d’une part, des contributions méthodologiques
s’articulant autour de techniques de classement de variables par apprentis-
sage automatique et, d’autre part, des contributions plus applicatives portant
sur I'inférence de réseaux de régulation génétique.

Plus précisément, nos contributions méthodologiques se focalisent sur
le probleme de sélection de variables pertinentes a partir de classements
obtenus par apprentissage automatique. Au contraire des p-values retournées
par les tests univariés, les scores de pertinence calculés par les méthodes
d’apprentissage automatique pour classer les variables ne sont généralement
pas interprétables d’un point de vue statistique. Ce manque d’interprétabilité
rend tres difficile identification des variables pertinentes parmi celles qui
sont les mieux classées et fait que ces méthodes ne sont pas largement
adoptées par les praticiens. Notre premiere contribution dans ce domaine
est le développement d'une procédure basée sur des tests de permutation,
estimant, pour chaque sous-ensemble de variables les mieux classées, la prob-
abilité que ce sous-ensemble contienne au moins une variable non pertinente
(appelée CER, pour “conditional error rate”). Comme deuxiéme contribu-
tion, nous avons réalisé une étude comparative de plusieurs procédures, in-
cluant notre méthode du CER, qui remplacent les scores de pertinence orig-
inaux par des mesures pouvant étre interprétées de facon statistique. Ces
procédures, qui ont été évaluées sur plusieurs jeux de données synthétiques
et réels, different grandement en termes de temps de calcul, ainsi qu’en termes
de faux positifs et faux négatifs qu’elles retournent. Nous expériences mon-
trent également qu’utiliser la performance du modele de prédiction comme
critere pour sélectionner les variables est souvent contre-productif.

Le probleme d’inférence de réseaux de régulation génétique peut étre for-
mulé comme plusieurs problemes de sélection de variables, le but de chacun
étant d’identifier les régulateurs d’un gene cible. Au sein de cette famille
de méthodes, nous avons developpé GENIE3, un algorithme exploitant des
classements des variables obtenus par apprentissage automatique pour inférer
des réseaux génétiques a partir de données d’expression “steady-state” de
genes. Dans un deuxieme temps, nous avons developpé deux extensions
de GENIE3 ayant pour but d’'inférer des réseaux de régulation a partir
d’autres types de données. La premiere extension exploite des données
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d’expression provenant de séries temporelles, tandis que la second exten-
sion exploite des bases de données génomiques et génétiques, contenant des
données d’expression ainsi que de I'information sur des marqueurs génétiques.
GENIES est arrivé en premiere position au challenge DREAM4 In Silico Mul-
tifactorial en 2009 et au challenge DREAMS Network Inference en 2010. Ses
extensions sont également compétitives comparées a d’autres méthodes sur
plusieurs réseaux artificiels.

viii



Acknowledgments

This dissertation would have never seen the light without the help and sup-
port of some people that I would like to thank deeply.

My first thanks go to Pierre Geurts, co-advisor of this thesis, for his great
guidance and his constant availability. He was present every time I felt lost
and needed to discuss. To me, he is an outstanding advisor.

I am grateful to Louis Wehenkel, advisor of this thesis, who gave me
the opportunity to work as a PhD student in his nice and very interesting
research group. I thank him for his wise advices and for the time he has
taken out of his busy schedule and devoted to this thesis.

I thank Alexandre Irrthum for his kind help on various works and for
being patient with me while answering to all my (stupid) questions about
biology.

I also thank Yvan Saeys for his nice collaboration on GENIE3 and for
providing me useful comments and advices on the evaluation of the feature
selection methods.

Thank you to Gustavo Stolovitzky, Daniel Marbach, James Costello, and
Robert Kiiffner for allowing me to include results of their experiments around
the DREAMS Network Inference challenge in this thesis.

I would like to express my sincere appreciation to the people who kindly
accepted to reread parts of this thesis: Fabien Heuze, Raphaél Marée, Olivier
Stern, and Benjamin Stevens.

The four years spent in the GIGA bioinformatics offices have been wonder-
ful, thanks to colleagues who created and maintained a very pleasant working
environment (not to mention the lunch times): Vincent Botta, Pierre-Yves
Gilson, Fabien Heuze, Florence Lemahieu, Gilles Louppe, Raphaél Marée,
Loic Rollus, Marie Schrynemackers, Yannick Schutz, Olivier Stern, and Ben-
jamin Stevens.

I gratefully acknowledge Alain Empain, Raphaél Marée, Giuseppe Saldi,
Olivier Stern, and the SEGI team for providing and maintaining computing
resources. A single computer would have taken 21268 days to run all the
jobs I submitted, and I would not have finished my PhD before 2069.

I am grateful to all the members of the jury for their interest in this thesis

X



and for taking time to read and evaluate this dissertation.

I thank all my family and friends for giving me their support and love,
without really knowing or understanding my research topics (but I agree that
this is entirely my fault).

Johan, thank you for accepting to share your life with a researcher and
for supporting me whatever the road that I choose to take.



I Background

1 Introduction

1.1 Regulation of gene expression . . .. ... ..
1.2 Microarrays . . . . . . .. .. ...
1.3 Feature selection . . .. ... ... ......
1.4 Network inference . . . . . . . . .. ... ...
1.5 Tree-based ensemble methods . . . . . . . ..
1.6 Contributions . . . . . . . . . ... ... ...

1.6.1 Publications . . . . . . ... ... ...
1.7 Thesisoutline . . . . . . ... ... ......

2 Machine learning background

2.1 Supervised learning . . . .. .. ...
2.2 Tree-based ensemble methods . . . .. .. ..
2.2.1 Classification and regression trees . . .
2.2.2  Ensemble methods . .. ... ... ..
2.2.3 Parameters . . ... ..........
2.2.4 Variable importance measures . . . . .
2.3 Support vector machines . . . . ... ... ..

2.3.1 Linear SVMs for binary classification

2.3.2 Linear SVMs for regression . . . . . . .
2.3.3 Parameters . . ... ..........
2.3.4 Variable importance measures . . . . .
2.4 Performance metrics . . . ... ... ... ..

II Feature selection

Contents

37

3 Exploiting tree-based variable importances for feature selec-

tion

x1

39



3.1 Introduction . . . . . . . . ... ...
3.2 About feature relevance . . . . ... ...
3.3 Feature selection from a ranking . . . . . . .. ... ... ...
3.4 False discovery rate . . . . . . . ...
3.4.1 Estimation by random permutations . . . . ... . ..
3.4.2 Experiments on artificial data . . . . . . ... ... ..
3.4.3 Discussion . . . . ..o
3.5 An alternative measure . . . . . .. ... ... ...
3.5.1 Estimation by random permutations . . .. ... ...
3.5.2 Experiments on artificial data . . . . . ... ... ...
3.5.3 Link with FWER-based univariate procedures . . . . .
3.6  Experiments on a real dataset . . . . . .. ... .. ... ...
3.7 Discussion . . . . ...

Evaluation and comparison
of feature selection methods
4.1 Introduction . . . . . . . .. ...
4.2  Feature selection methods . . . . . ... ... ... .. ...
4.2.1 Estimation of the generalization error of a model (err-
Aanderr-TRT) . . . . . ..o o oL
4.2.2 Multiple testing with random permutations
(pFDR, eFDR, and CER) . . ... ... .. ... ...
4.2.3 Empirical estimation of the null rank distribution (mr-
test) ..o
4.2.4 Introduction of random probes
(IProbe and mProbes) . . . . . .. ... ... ... ..
4.2.5 Computational complexity . . . . .. .. ... .. ...
4.3 Datasets and protocol . . . ... ... ... L.
4.3.1 Artificial datasets . . . . . .. ...
4.3.2 Microarray datasets . . . . . . .. ...
4.3.3 Performance metrics . . . . . .. .. ... ..
4.3.4 Compared ranking methods . . . . ... ... .. ...
44 Results. . . . .. .
4.4.1 Artificial datasets . . . . . .. ..o
4.4.2 Microarray datasets . . . . . ... ... ...,
4.5 Conclusion . . . . . . ...

Closure of Part II
5.1 Contributions . . . . . . . . . .
5.2  Future research directions . . . . . . . . . . . ... ... ...

xil



III Network inference

6 GENIE3: GEne Network Inference with Ensemble of trees
6.1 Background . . .. .. ... oo
6.2 GENIE3 . . . . .

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Network inference as a feature selection problem . . . .
Gene ranking with tree-based methods . . . . . .. ..
Regulatory link ranking . . . . ... ... .. ... ..
Computational complexity . . . . . .. ... ... ...
Software availability . . . . ... ... ... ...

6.3 The DREAM challenges . . . . ... ... ... .. ......

6.4 Results

6.4.1
6.4.2
6.4.3
6.4.4

The DREAM4 Multifactorial challenge . . . . . . . ..
The M®P E. coli dataset . . . ... ...........
The DREAMb Network Inference challenge . . . . . .
Feature selection . . . . ... ... ... ... .....

6.5 Discussion . . . . . . ..o

7 Results of the DREAMS5
Network Inference challenge
7.1 The DREAMS5 challenge . . . . . ... ... .. ... .....
7.2 Results of the challenge . . . . . .. ... ... ... .. ...

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5

Network inference methods . . . . . . . . . . ... ...
Performance of the network inference methods . . . . .
Clustering and motif analysis . . . . .. .. ... ...
Information content of different experiment types
Community networks . . . . . .. ... ... ... ...

7.3 Discussion . . . . . . ...

8 Extensions of GENIE3
8.1 Time series of gene expressions . . . . . . ... .. .. ....

8.1.1
8.1.2
8.1.3
8.1.4

Inference from time series data . . . . .. .. .. ...
Inference from time series and steady-state data . . . .
The DREAM challenges . . . . . ... ... ......
Results . . . . . . . .. .

8.2 Genetical genomics data . . . . .. ..o

8.2.1
8.2.2
8.2.3

Inference from genetical genomics data . . . . . . . ..
The DREAMS Systems Genetics challenge . . . . . . .
Results. . . . . .. ... ...

8.3 Discussion . . . . . ..

xiil

80

82
83

86
87
88
89
90
90
92
92
99
102
108
112



9 Closure of Part I1I 156

9.1 Discussion . . . . . . ..o 157
9.2 Extensions of GENIE3 . . . . . . . . .. . ... ... ... 160
IV  Appendices 162

A Evaluation and comparison
of feature selection methods - Supplementary information 164

A.1 Pseudo-codes . . . . . . . .. 165
ATl err-A. ... 165
Al12 pFDR . ... ... 166
A13 CER ... .. . . 166
Al14 eFDR . .. . . . . 167
A15 mr-test. . . . .. 167
A.1.6 1Probe . . . . . . . .. 168
A.1.7 mProbes . . . . ... 169
A.2 Supplementary figures . . . .. ... ... L. 170
B GENIE3: GEne Network Inference with Ensemble of trees -
Supplementary figures 182
C Extensions of GENIE3 - Supplementary figures 188

Xiv









Part 1

Background






Introduction

The work presented in this thesis is related to two well-known open problems
in the field of computational biology, namely feature selection and gene regu-
latory network inference. We tackled both problems using machine learning
algorithms, and more particularly tree-based ensemble methods. This chap-
ter is organized as follows. Section 1.1 first provides an introduction to the
regulation of gene expression. Section 1.2 is related to microarray gene ex-
pression data, which is the main type of data analyzed in the context of our
research. Sections 1.3 and 1.4 respectively introduce the problems of feature
selection and network inference, while Section 1.5 provides some motivations
for the choice of tree-based ensemble methods to deal with these problems.
Section 1.6 shortly describes the different contributions of this thesis. Finally,
Section 1.7 depicts the organization of this document.
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1.1 Regulation of gene expression

Proteins are the central biochemical compounds that allow living organisms
to develop and interact with their environment. Most proteins are produced
in the cell from stretches of DNA contained in chromosomes, that are called
protein-coding genes. Two steps are needed for each of these genes to produce
a protein. The first step is the transcription of the DNA of the gene into
a messenger RNA molecule (mnRNA), and the second step is the translation
of this mRNA into a protein. Note that in many species, a large number of
RNA molecules are actually non-coding, i.e. they are not translated into a
protein. Many non-coding molecules are nevertheless involved in biological
functions, e.g. the regulation of translation.

The expression of a gene indicates the process by which the informa-
tion contained in this gene is used to obtain a protein or a functional RNA
molecule. The differences that exist between cells in an organism are mostly
due to the action of diverse mechanisms of regulation across many stages,
some of them being able to increase or inhibit gene expression, depending
notably on external signals coming from the environment.

One of the main mechanisms of regulation of gene expression operates
at the level of transcription and is governed by the action of proteins called
transcription factors (Maston et al., 2006). To activate or inhibit the tran-
scription of a gene into a mRNA, transcription factors bind to specific sites
that are located in a particular region of the DNA called promoter. The
interaction of transcription factors with the promoter is illustrated in Fig-
ure 1.1.

Besides transcription factors, other types of regulators exist. In par-
ticular, microRNAs are small molecules of non-coding RNA that regulate
gene expression at the post-transcriptional level (Kloosterman and Plasterk,
2006). By binding to a mRNA, a microRNA can stimulate its degradation
or inhibit its translation into a protein.

Hundreds of transcription factors and microRNAs have been discovered in
the human genome so far. However the complete deciphering of the complex
system induced by the different mechanisms of regulation remains one of the
major challenges of systems biology.

1.2 Microarrays

Nowadays, a widely used technique to measure the expression levels of a
large number of genes simultaneously is microarray analysis. Microarrays
are DNA chips that allow to measure the quantity of mRNAs in a cell and
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Figure 1.1: Regulation of transcription by transcription factors. To regulate the
transcription of a gene into a mRNA, transcription factors bind to specific sites located in

the promoter region of the gene.

therefore to establish its gene expression profile.

Each spot of a microarray contains millions of copies of a probe, i.e. a
single stranded segment of DNA that is complementary to a known part
of a mRNA. mRNAs are extracted from the cell to be analyzed, tagged
with a fluorescent label, and spread over the array. Each mRNA sequence
binds (or hybridizes) to a corresponding probe. The array is then washed
to eliminate the unbound sequences and scanned with a laser. Each probe
that is hybridized generates a fluorescent signal and the intensity level of a
spot depends on the number of copies of the corresponding probe that are
hybridized. The expression level of a mRNA can therefore be determined by
measuring the fluorescence intensity of its spot. A bright spot indicates a
highly expressed mRNA while a dark spot indicates a lowly expressed mRNA.
Figure 1.2 shows an example of Affymetrix®! microarray.

Unfortunately, microarray analyses are expensive. For that reason, the
number of samples in expression datasets is usually much lower than the num-
ber of genes. Datasets typically contain tens to hundreds of samples while
up to several thousands of genes can be screened in one single experiment.

In our research, we analyzed microarray expression data for two tasks:
feature selection and network inference. These problems are introduced in

http://www.affymetrix.com/
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Figure 1.2: GeneChip® microarray from Affymetrix and its output. A mi-
croarray analysis results in a fluorescent image, where a bright spot indicates a highly
expressed mRNA and a dark spot indicates a lowly expressed mRNA. Images courtesy of
Affymetrix.

the two following sections.

1.3 Feature selection

Our research focuses on feature selection in the context of supervised learning.
We thus assume that we have at our disposal a dataset containing samples
annotated with an output value that can be discrete or continuous. A typical
example from biology is a gene expression dataset where samples come from
patients that are either healthy or affected by a particular disease.

Given a (typically very large) set of candidate variables?, we define feature
selection as the identification of the maximal subset of relevant variables, i.e.
variables that convey information about the output variable, either alone or
in combination with other relevant variables. The notion of relevance, which
may remain imprecise at this stage, is formalized in Section 3.2 of Chapter 3.

Feature selection can have several objectives (see e.g. the reviews of
Guyon and Elisseeff, 2003 and Saeys et al., 2007):

e To reduce the data in order to limit computational requirements and
increase the algorithmic speed;

2 Although in some works, raw “variables” are distinguished from “features” that are
constructed from the original variables, these two words are considered synonymous in
this thesis and hence are alternatively used without any distinction.



e To reduce the number of features in order to reduce the costs of future
collections of data;

e To build a predictive model of higher accuracy;
e To gain insights into the problem under study.

In this work, we mainly focus on the last objective, i.e. the understanding of
the problem. In the example of the expression dataset, the goal of the feature
selection task would be to discover all the genes whose expression is useful
to distinguish between healthy and affected patients and therefore that are
likely to be implied in the disease under study. In the field of biology, the
genes that are selected are called biomarkers and a set of biomarkers is said
to be a signature.

Feature selection algorithms are traditionally divided into three cate-
gories, according to the way they are combined with the predictive model:
filter methods, wrapper methods, and embedded methods (Guyon and Elis-
seeff, 2003).

Filter methods perform feature selection by looking at the intrinsic prop-
erties of the data. They are usually ranking methods, i.e. methods that
order the features using a relevance score. An example of filter method is the
statistical hypothesis testing, such as the t-test. Filter methods are simple,
fast, and scale easily to high-dimensional data. However, they do not inter-
act with any learning algorithm and therefore the selection of the features is
performed independently of the optimization of the predictive model.

Wrapper methods consist in training a predictive model to evaluate a
specific subset of features, by using a quality criterion which is usually the
performance of the model. The learning algorithm is used as a black box in
an iterative search procedure exploring the space of possible feature subsets.
Unlike filter approaches, wrapper methods have the advantage to interact
with the learning algorithm. They are also multivariate as they evaluate
groups of features. Their main drawback is their high computational cost.

Finally, embedded methods incorporate the selection of the features in
the learning of the predictive model. Tree-based methods are examples of
embedded methods and the predictive models that are learned by these algo-
rithms can be directly used to compute relevance measures for the variables.
Like wrapper methods, embedded methods have the advantages to be mul-
tivariate and to interact with the learning algorithm, while being typically
less computationally intensive.

Independently of the category of the feature selection method, when the
sole information available about the problem under consideration is limited
to a dataset containing a finite number of samples, it is not possible to exactly
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identify the maximal subset of relevant variables. Thus, any feature selection
algorithm is at risk of either missing some sought features (false negatives)
or of erroneously selecting some truly non desired ones (false positives), and
a choice among different possible sensitivity /specificity compromises has al-
ways to be made.

1.4 Network inference

Networks are commonly used in biological research to represent information.
Various kinds of networks exist. For example, metabolic networks represent
chemical reactions between metabolites as well as the enzyme proteins that
catalyze these reactions. Another example is the protein-protein interaction
network that connects all proteins that can physically interact.

In this thesis, network inference refers to the task of recovering gene reg-
ulatory networks. A regulatory network represents regulatory interactions
among genes that happen at the level of transcription, through transcription
factors. It often offers a simplified view of gene regulation, as it does not take
into account several key players such as microRNAs or other non-coding
regulatory elements. Also, regulatory interactions actually involve DNA
molecules, mRNAs, and proteins, and these different elements are merged
to obtain a simple network representing only genes. Therefore regulatory
networks are usually represented by graphs where each node corresponds to
a gene. In such graphs, an edge directed from one gene to another gene in-
dicates that the first gene codes for a transcription factor that regulates the
rate of transcription of the second gene. An example is shown in Figure 1.3.

Edges in regulatory networks can be directed or undirected. An undi-
rected edge connecting two genes indicates that there exists a transcrip-
tional regulatory interaction between these two genes, while a directed edge
means furthermore that the source gene regulates the expression of the tar-
get gene. Edges can also be signed. When a gene is connected to another
gene, a positive (resp. negative) sign indicates that the former is an acti-
vator (resp. repressor) of the latter. Our research focuses on directed and
unsigned networks. The targeted networks are thus graphs with p nodes,
where an edge directed from one gene ¢ to another gene j indicates that
gene ¢ (directly) regulates, either positively or negatively, the expression of
gene j (i,7=1,...,p).

The problem of the inference of regulatory networks has been studied for
many years in the literature and many algorithms already exist. De Smet
and Marchal (2010) proposed a categorization of these methods, shown in
Figure 1.4. First, they distinguish supervised from unsupervised methods.
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Figure 1.3: Example of a regulatory network. Regulatory interactions involv-
ing DNA molecules, mRNAs, and proteins are simplified to a simple network that only

represents genes. Figure modified from Hecker et al. (2009).

Supervised methods exploit prior partial knowledge of the network to guide
the network inference, while unsupervised methods do not assume any prior
knowledge. There are also integrative and non-integrative methods. Non-
integrative methods only use expression data for the inference. Given the
dynamic and combinatorial nature of genetic regulation, measurements of
different kinds can be obtained, including steady-state expression profiles
resulting from gene knockouts or time series measurements resulting from
random perturbations. On the other hand, integrative methods also use
other kinds of information besides expression data, e.g. counts of sequence
motifs that serve as binding sites for transcription factors. Finally, direct
methods consider only individual interactions while module-based methods
search for sets of genes that are regulated by the same transcription factors.
In regard to these categories, GENIE3, a network inference algorithm that
we developed, is a direct, unsupervised, and non-integrative method.



Module- Module inference |

‘ Siecthl based NI methods
| i Y
|
|
| Non-
: integrative
Superis |
T | ————— SN VUOON —_—
supervised l
SEREND :
_ |
de Hoonetal| |
...................... : R LR | NP ORI,
|
‘ Sabatti et al. ‘ | ‘ DISTILLER ‘ ‘ COALESCE ‘
|
: ‘ GPS ‘ ‘ cMonkey ‘
| %
Unsupervised CLR l Stochastic Clustering or
: LeMoNe biclustering
| Non-
Gat-Viks etal | | ‘ Inferelator ‘ integrative
|
|| Time-lagged
L : correlation y 4
Input | |
Output : &
j— — —
|
\ P @ @ @
/"4}%&' 6 b see
(1 | eo/ \J
- don/i\eod | @ @ )
|
I
|
|
|
|

Nature Reviews | Microbiology

Figure 1.4: Categorization of the network inference algorithms. In regard to
this categorization, our GENIE3 algorithm is a direct, unsupervised, and non-integrative
method. Figure taken from De Smet and Marchal (2010).

Many network inference algorithms work first by providing a ranking
of the potential regulatory links from the most to the less significant. A
practical network prediction is then obtained by setting a threshold on this
ranking. Our research focuses only on the first task and the question of the
choice of an optimal confidence threshold, although important, is left open.
A network inference algorithm is thus defined in this thesis as a procedure
that assigns weights w;; > 0, (4,5 = 1,...,p) to putative regulatory links
from any gene i to any gene j, with the aim of yielding larger values for
weights that correspond to actual regulatory interactions.
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1.5 Tree-based ensemble methods

Our different contributions to the tasks of feature selection and network in-
ference are based on rankings. These may be either rankings of variables (for
the feature selection task) or rankings of regulatory links (for the network
inference task). To compute these rankings, we chose to resort to variable
importance scores that are provided by supervised learning algorithms, and
more particularly by tree-based ensemble methods. Several reasons moti-
vated the choice of tree-based methods (see Geurts et al., 2009 for a review).
First, they are able to detect multivariate interacting effects between fea-
tures. They thus constitute an interesting alternative to standard univariate
statistical tests for the feature selection task, and are also appealing for the
inference of regulatory networks, as the regulation of the expression of one
gene is expected to be combinatorial, i.e. to involve several regulators. Tree-
based methods have also the advantage to be non-parametric. They thus
do not make any assumption about the nature of interactions between the
variables. As their computational complexity is typically at most linear in
the number of features, they can deal with high-dimensionality, a character-
istic usually encountered in gene expression datasets. They are also flexible
as they can handle both continuous and discrete variables. They are fast to
compute, highly scalable, and essentially parameter-free.

While the different algorithms developed in the context of this thesis
essentially rely on tree-based ensemble methods, we also performed, for the
sake of comparison, some experiments with another popular supervised learn-
ing algorithm, namely the linear support vector machine (SVM). Like tree-
based methods, SVMs are able to deal with high-dimensionality and in some
application domains, finely-tuned SVMs can yield higher levels of predic-
tion performance than tree-based ensemble methods (Ben-Hur et al., 2008;
Geurts et al., 2009). However, tuning the meta-parameters of SVMs requires
a lot of human intervention, which makes these methods not easy to use for
non-specialists.

Tree-based methods and linear SVMs are described in details in Chap-
ter 2.

1.6 Contributions

Univariate hypothesis testing is widely used to solve the feature selection
problem, especially in the context of “biomarker discovery” in bioinformat-
ics. A classic procedure consists in applying a statistical test, such as a t-test,
in order to compute a p-value for each variable of the considered problem and
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selecting the variables that have a p-value lower than a chosen threshold. Uni-
variate tests are simple and fast, but they can only identify variables that
provide a significant amount of information about the output variable in iso-
lation from the other inputs. As mentioned in the previous section, when one
seeks for multivariate interacting effects between features, one can nowadays
resort to relevance scores provided by machine learning techniques, such as
tree-based ensemble methods. However, unlike the p-values returned by uni-
variate tests, these relevance scores are usually not statistically interpretable.
This lack of interpretability prevents the wide adoption of these methods by
practitioners and also makes the identification of the truly relevant variables
among the top-ranked ones, i.e. the determination of a relevance threshold,
a very difficult task in practice. Hence two of the main contributions of the
present thesis focus on the task of replacing the variable relevance scores with
measures that can be interpreted in a statistical way and that help to de-
termine a relevance threshold, such as p-values, false discovery rates (FDRs)
or family wise error rates (FWERs). The first contribution, which is de-
scribed in Chapter 3, concerns a procedure, based on permutation tests, that
computes for each subset of top-ranked variables the conditional error rate
(CER), that estimates the probability for that subset to contain at least one
irrelevant feature (Huynh-Thu et al., 2008). Our experiments show that the
CER-based procedure allows reliable identifications of relevant features. We
also show that the direct extension of the classic approach based on permuta-
tion tests for estimating FDRs of univariate variable scoring procedures does
not extend very well to the case of importance measures derived from multi-
variate approaches. We performed a large-scale evaluation of the CER- and
FDR-based methods, including their comparison to other, existing and novel,
procedures that select relevant features from rankings derived from machine
learning techniques (Huynh-Thu et al., 2012). This large-scale evaluation
of different methods constitutes our second contribution within the field of
feature selection, and is presented in Chapter 4. All the evaluated methods,
which were assessed on several artificial and real datasets, help to determine
a relevance threshold, but they differ greatly in terms of computing times
and the tradeoff they achieve in terms of false positives and false negatives.
Our experiments also clearly highlight the fact that using model prediction
performance as a criterion for feature selection is often counter-productive.
Besides these two contributions to feature selection, this thesis also com-
prises contributions related to the application of feature selection/ranking
techniques to the problem of gene regulatory network inference. The prob-
lem of recovering the regulatory interactions occurring among p genes can
indeed be viewed as p feature selection problems, the goal of each being to
retrieve the regulators of one of the p genes. This framework is exploited in
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GENIE3, an algorithm that we developed for the inference of gene regulatory
networks from steady-state expression data (Huynh-Thu et al., 2010). In this
algorithm, the expression pattern of each gene (target gene) is predicted from
the expression patterns of all the other genes (input genes), using tree-based
ensemble methods. The importance of an input gene in the prediction of the
target gene expression pattern is then taken as an indication of a putative
regulatory link. The algorithm, which is presented in Chapter 6, is simple
and generic, making it adaptable to other types of data and interactions. We
hence developed two extensions of GENIE3, described in Chapter 8, that
aim to infer regulatory networks from other types of data besides steady-
state expression data. The first extension exploits expression data provided
by time course experiments. In this procedure, the weight of a regulatory
link directed from one gene to another gene in the predicted network is given
by the importance of the expression of the first gene at a time point ¢ for the
prediction of the expression of the second gene at time point ¢t + h, where
h > 0 denotes a given time horizon. The second extension of GENIE3 that
we performed is related to “genetical genomics” datasets, which contain ex-
pression data together with information about genetic markers. The idea of
this extension is to use the genetic markers as input variables, either alone or
together with the gene expression patterns of the input genes, when predict-
ing the expression of a target gene. We show that GENIE3 and its extensions
perform very well compared to other methods in the DREAM challenges.

1.6.1 Publications

e Publications related to our contributions to feature selection:

— V. A. Huynh-Thu, L. Wehenkel, and P. Geurts (2008) Exploit-
ing tree-based variable importances to selectively identify relevant
variables. JMLR: Workshop and Conference proceedings, 4:60-73.

— V. A. Huynh-Thu, Y. Saeys, L. Wehenkel, and P. Geurts (2012)
Statistical interpretation of machine learning-based feature impor-
tance scores for biomarker discovery. Bioinformatics, 28(13):1766-
1774.

e Publications related to one of our contributions to network inference
(GENIE3):

— V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts (2010)
Inferring regulatory networks from expression data using tree-
based methods. PLoS ONE, 5(9):e12776.
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— D. Marbach, J. C. Costello, R. Kiiffner, N. Vega, R. J. Prill,
D. M. Camacho, K. R. Allison, the DREAMS5 consortium (includ-
ing P. Geurts, V. A. Huynh-Thu, A. Irrthum, Y. Saeys, and L.
Wehenkel), M. Kellis, J. J. Collins, and G. Stolovitzky (2011) Wis-
dom of crowds for robust gene network inference. Nature Methods,
9:796-804.

e During the course of the PhD, we also worked, in collaboration with
biologists of the GIGA center at the University of Liege, on studies
involving joint analyses of microRNA and mRNA expression patterns.
One of these studies led to the following publication:

— N. Garbacki, E. Di Valentin, V. A. Huynh-Thu, P. Geurts, A. Ir-
rthum, C. Crahay, T. Arnould, C. Deroanne, J. Piette, D. Cataldo,
and A. Colige (2011) MicroRNAs profiling in murine models of
acute and chronic asthma: a relationship with mRNAs targets.

PLoS ONE, 6(1): e16509.

1.7 Thesis outline

This document is divided in four parts and is organized in the following way.
Part I is intended to give the reader some background on our work, Part II
is dedicated to the problem of feature selection, Part III is related to the
network inference task, and finally Part IV contains the appendices.

Part I: Background After the present introductory chapter, Chapter 2
closes the first part and provides precise descriptions of the main machine

learning algorithms that we used in our work, i.e. tree-based methods and
linear SVMs.

Part II: Feature selection This part covers Chapters 3 to 5. Chapter 3
concerns two statistical procedures based on permutation tests for selecting
relevant variables from a ranking derived from a tree-based ensemble method.
In Chapter 4, we perform a large-scale evaluation of these two procedures,
including their comparison to other, existing and novel, feature selection
methods. Chapter 5 concludes the part.

Part III: Network inference This part comprises 4 chapters. Chapter 6

focuses on GENIE3, an algorithm for the inference of gene regulatory net-
works from static steady-state expression data, that uses tree-based ensemble
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methods. Chapter 7 summarizes different results that were obtained in the
context of the network inference challenge of DREAMS5. Chapter 8 describes
extensions of the GENIE3 method to other types of data: expression data
provided by time series experiments and genetical genomics data. Finally,
Chapter 9 concludes the part.

Part IV: Appendices This part contains some supplementary informa-
tion related to our different contributions.
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Machine learning background

In the previous chapter, we motivated the use of machine learning algorithms,
especially tree-based ensemble methods, to deal with the problems of feature
selection and network inference. The present chapter provides a description
of these methods, which form the basis for the major contributions of this
thesis. Section 2.1 introduces notions of supervised learning, while Sections
2.2 and 2.3 are respectively dedicated to tree-based ensemble methods and
support vector machines. In particular, we show how these algorithms can
be used to derive importance measures for variables. Finally, Section 2.4
describes the main metrics that we used to evaluate the performances of
feature selection and network inference algorithms.

Contents
2.1 Supervised learning . . . . ... ... 0000 18
2.2 Tree-based ensemble methods . . ... ... ... 20
2.3 Support vector machines . . . . ... ... .... 26
2.4 Performance metrics . .. ... ... ... .. 34
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2.1 Supervised learning

Machine learning is a branch of artificial intelligence whose goal is to extract
knowledge from observed data. In particular, supervised learning is the ma-
chine learning task of inferring a model f : X — ) that predicts the value of
an output variable Y € ), given the values of m inputs (X1, Xs, ..., X,,) =
X € X. The model f is learned from N instances (also called samples) of
input-output pairs that are drawn from the (usually unknown) joint distri-
bution of the variables:

LS = {<Xk7yk)}]kvzl' (2.1)

The set of instances is called learning sample. Depending on whether the
output is discrete or continuous, the learning problem is a classification or a
regression problem respectively.

Let L : Y x Y — R be a loss function that, given an instance (x,y),
measures the difference between the value f(x) predicted by the model f
from the input x, and the observed value y of the target variable. For a
classification problem, a typical loss function is given by:

Ly, f(x)) = I(y# f(x)) (2.2)
_ 0, if f(X> =Y,
- { 1L f(x) £, (2:3)

while for a regression problem, a widely used loss function is the squared
error:

L(y, f(x)) = (y — f(x))*. (2.4)
The goal of supervised learning is to find, from a learning sample LS, a
model f that minimizes the generalization error, i.e. the expected value of

the loss function, taken over different instances randomly drawn from the
joint distribution of the input/output pairs:

Eyy [L(y, f(x))]. (2.5)

Supervised learning algorithms typically work by minimizing the training
error, which is the average prediction error of the model over the instances
of the learning sample:

3 Ll Fx0)). (2.6)
N

As the training error is calculated on the same samples that were used to
learn the predictive model, it typically underestimates the generalization
error, as shown in Figure 2.1. The training error typically decreases when
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Figure 2.1: Overfitting and underfitting. The blue (resp. red) curve plots, for
varying levels of complexity of the predictive model, the average value of the loss function
over the instances of the learning sample (resp. of an independent test sample). Overfitting
occurs when the model is too complex and underfitting occurs when the model is not
complex enough.

the complexity of the model is increased, i.e. when the model is allowed
to fit more closely the training data. If the complexity is too high, the
model may also fit the noise contained in the data and thus will have a poor
generalization performance. In this case, we say that the model overfits the
training data. On the other hand, if the model has a too low complexity,
it underfits the data and will also have a high generalization error. Hence
there is an optimal model complexity that leads to the minimal generalization
error.

An unbiased way of estimating the generalization error of a model is to
compute its prediction error on an independent set of instances. However,
such an independent set is usually not available. In this case, a widely used
technique to estimate the generalization error is k-fold cross-validation. In
this procedure, the instances of the learning sample are divided into k& (non-
overlapping) parts and k predictive models are learned. Each model is learned
using the instances of k—1 parts and tested on the instances of the remaining
part. The generalization error is then estimated by the average prediction
error over the k parts. The special case where k is set to the number N of
instances in the original learning sample is called the leave-one-out procedure.

For more details, the reader is invited to refer to the books of Hastie et al.
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Figure 2.2: Example of a regression tree. Each interior node of a tree is a test

on one input variable and each terminal node contains a predicted value for the output

variable.

(2001) and Bishop (2006). We describe below the two supervised learning
techniques used in this thesis: tree-based ensemble methods and support
vector machines.

2.2 Tree-based ensemble methods

2.2.1 Classification and regression trees

Classification and regression trees (Breiman et al., 1984) solve the supervised
learning problem by developing tree structured models. The basic idea of this
method is to recursively split the learning sample with binary tests based each
on one input variable, trying to reduce as much as possible the uncertainty
about the output variable in the resulting subsets of samples.

Figure 2.2 shows the structure of a tree. In this example, all variables are
continuous and the learning sample is split based on two input variables X
and Xs.

Finding the smallest tree that minimizes the training error in Equa-
tion (2.6) is known to be a NP-complete problem (Hyafil and Rivest, 1976).
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In practice, tree-based methods are thus based on greedy algorithms. A clas-
sification or regression tree is typically constructed top-down, starting from a
root node corresponding to the whole learning sample. At each interior node
N, the best input variable and the best test on this variable are chosen, i.e.
the variable and the test that most reduce the uncertainty about the output
variable in the resulting subsets of samples, by maximizing:

HS.Uy (S) — #8,.Uy (S,) — #S,.Uy(S;), (2.7)

where S denotes the set of samples that reach node N, S; (resp. Sy) denotes
its subset for which the test is true (resp. false), # denotes the cardinality of a
set of samples, and Uy (+) is the uncertainty about the output in a subsample.
The samples of S are then split into two subsamples following the optimal
test and the same procedure is applied on each of these subsamples. A
node becomes a terminal node if the uncertainty about the output variable,
over the samples reaching that node, is equal to zero. Each terminal node
contains a predicted value for the output, corresponding to the majority class
(for classification) or the mean value of the output (for regression) taken over
the samples that reach that node.

In the case of classification, the uncertainty Uy (-) about the output in a
subsample S can be measured by the entropy Hy (-) of the class frequencies,
e.g. the Shannon entropy:

c
Hy(S5) = — ZP(Q‘)- log, p(ci), (2.8)

i=1

where C'is the number of classes and p(¢;) denotes the proportion of samples
in S belonging to class ¢;. Alternatively to the Shannon entropy, the class
impurity can also be measured by the Gini index:

Hy(S)=1- Zp(ci)2. (2.9)

For a regression problem, we consider as measure of uncertainty the em-
pirical variance of the output variable Y in the subsample:

45
Vary(8) = e >~ )% (210)
#S

where ¢ is the mean value of Y in the subsample S.
However, a fully grown tree typically overfits the training data. Overfit-
ting can be avoided by performing a pruning of the tree, i.e. by removing
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some of its subtrees. Two types of pruning exist: pre-pruning and post-
pruning. In a pre-pruning procedure, a node becomes a terminal node instead
of a test node if it meets a given criterion, such as:

e The number of samples reaching the node is below a threshold Nyy;

e The uncertainty about the output variable, over the samples reaching
the node, is below a threshold Un;

e The optimal test is not statistically significant, according to some sta-
tistical test.

On the other side, the post-pruning procedure consists in fully developing a
first tree 77 from the learning sample and then computing a sequence of trees
{72, T3, ...} such that 7; is a pruned version of 7;_;. The prediction error of
each tree is then calculated on an independent set of samples and the tree
that leads to the lowest prediction error is selected (Breiman et al., 1984).
The main drawback of the post-pruning procedure is that an independent
set of samples is needed, while the main drawback of pre-pruning is that the
optimal value of the parameter related to the chosen stop-splitting criterion
(Nmin, Umin, the significance level) is dependent on the considered problem.
Besides pruning, ensemble methods constitute another way of avoiding
overfitting. These methods are described in the following section.

2.2.2 Ensemble methods

Single trees are usually very much improved by ensemble methods, which
aggregate the predictions of several trees, either by an average (for a regres-
sion problem) or by a majority vote (for a classification problem). The goal
of ensemble methods is to use diversified models to reduce the variance of a
learning algorithm. In the case of a tree, the variance comes mostly from the
choices, made at each split node, of the input variable and the cut-point used
for the test. The tree-based ensemble methods that we used in our work rely
on randomization to generate diversity among the different models. These
methods are Bagging (Breiman, 1996), Random Forests (Breiman, 2001),
and Extra-Trees (Geurts et al., 2006a).

Bagging In the Bagging (for “Bootstrap AGGregatING”) algorithm, each
tree of the ensemble is built from a bootstrap replica, i.e. a set of samples
obtained by N random samplings with replacement in the original learning
sample. The choices of the variable and of the cut-point at each test node
are thus implicitly randomized via the bootstrap sampling.
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Random Forests This method adds an extra level of randomization com-
pared to the Bagging. In a Random Forests ensemble, each tree is built from
a bootstrap sample of the original learning sample and at each test node, K
variables are selected at random (without replacement) among all candidate
attributes before determining the best split.

Extra-Trees In the Extra-Trees (for “EXTremely RAndomized Trees”)
method, each tree is built from the original learning sample but at each test
node, the best split is determined among K random splits, each determined
by randomly selecting one input variable (without replacement) and a cut-
point.

2.2.3 Parameters

Tree-based (ensemble) methods have several parameters whose values must
be defined by the user:

e The parameter related to the chosen stop-splitting criterion, such as
Npin, the minimal number of samples required for a node to become
a test node. Increasing the value of Ny, results in smaller trees and
hence models with a higher bias and a lower variance. Its optimal value
depends on the level of noise contained in the learning sample. The
noisier the data, the higher the optimal value of Ny;,. Usually, Ny, is
fixed to 1 for ensemble methods, so that each tree of the ensemble is
fully developed.

e K, the number of input variables that are randomly chosen at each node
of a tree. This parameter thus determines the level of randomization of
the trees. A smaller value of K results in more randomized trees. The
optimal value of K is problem-dependent, but empirical validations
performed by Geurts et al. (2006a) show that K = /m and K =
m, where m is the number of input variables, are near-optimal on
classification and regression problems respectively.

e T the number of trees in an ensemble. It can be shown that the
higher the number of trees, the lower the generalization error (Breiman,
2001). Therefore, the chosen value of T is a compromise between model
accuracy and computing times.
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2.2.4 Variable importance measures

One interesting characteristic of tree-based methods is the possibility to com-
pute from a tree an importance score for each input variable. This score
measures the relevance of a variable for the prediction of the output. Sev-
eral variable importance measures have been proposed in the literature for
tree-based methods. For a classification problem, we considered in our work
a measure that, at each test node N, computes the total reduction of the
class entropy due to the split (Breiman et al., 1984; Friedman, 2001):

[(N) = #S.Hy (S) — #S,.Hy (Sy) — #S;.Hy (Sy). (2.11)

In the case of regression, the importance measure that we used computes
the total reduction of the variance of the output at each test node N (Breiman
et al., 1984):

I(N) = #S.Vary (S) — #5S,.Vary (S¢) — #S;.Vary (Sy). (2.12)

For a single tree, the overall importance s; of one variable X; is then
computed by summing the I values of all tree nodes where this variable is
used to split:

i = Z](Nk)‘f(NkaXi)a (2.13)
P

where p is the number of test nodes in the tree and N, denotes the kth
test node. f(Ng, X;) is a function that is equal to one if X; is the variable
selected at node N and zero otherwise. The features that are not selected
at all thus obtain an importance value of zero and those that are selected
close to the root node of the tree typically obtain high scores. Attribute im-
portance measures can be easily extended to ensembles, simply by averaging
importance scores over all trees of the ensemble. The resulting importance
measure is then even more reliable because of the variance reduction effect
resulting from this averaging.

In the context of the Random Forests method, Breiman (2001) proposed
an alternative procedure to compute the importance of a variable. For each
tree that was learned, the procedure consists in computing the prediction
accuracy of the tree on the out-of-bag samples (i.e. the training instances
that were not present in the bootstrap sample used to build the tree), be-
fore and after randomly permuting the values of the corresponding variable
in these samples. The reduction of the tree accuracy that is obtained af-
ter the permutation is then computed, and the importance of the variable
is given by the average accuracy reduction over all the trees of the ensem-
ble. While this procedure has some advantages with respect to the entropy
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and variance reduction-based measures (Strobl et al., 2007), it gives in most
practical applications very similar results while being much more computa-
tionally demanding. Furthermore, it does not extend to methods that do not
consider bootstrap sampling, like the Extra-Trees.

A property of measure (2.11) is its additivity: the sum of entropy re-
ductions brought by the different splits of a classification tree T is equal to
the reduction of the class entropy provided by the tree, defined as the total
mutual information IJ brought by the tree about the classification variable
(Wehenkel, 1998):

p
> I(Ni) = N.Hy(LS') = N.Hy7(LS") = N.I, (2.14)
k=1

where LS’ is the learning sample from which 7 was built (i.e. the original
learning sample for the Extra-Trees method and a bootstrap sample for the
Bagging and Random Forests methods), N is the size of LS’ and Hy 1 (LS")
is the residual entropy of the tree in LS’, defined by:

q
Hy7(LS') = ZP<SI€‘LS,)HY(SI€)> (2.15)
k=1
where ¢ is the number of terminal nodes in 7 and Sy is the subset of LS’
that reaches the kth terminal node. Given the definition (2.13) of the variable
importance, we have the following equalities:

m p
> si=> I(Ny) =N.IJ. (2.16)
=1 k=1

In the case of unpruned trees (as they are normally in the case of Bagging,
Random Forests, and Extra-Trees), Hy|r(LS’) is usually very close to zero'
and hence the mutual information I3- is very close to the initial total entropy
of the classification variable in LS’. Therefore, we have:

> si~ N.Hy(LS'). (2.17)
i=1
Similarly, the importance measure used in the case of regression and based
on variance reduction (2.12) is such that the sum of importances of all vari-
ables is very close to the total initial variance of the output:

> s~ NVary(LS'). (2.18)

i=1

1Hy‘7—(LS’ ) is not strictly equal to zero because of the noise that may be contained
in the training data. It might indeed happen that some samples with exactly the same
values of input variables have different output values.
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The sum of the importances, for a single tree as well as for an ensemble
of trees, is therefore usually almost constant for a given output distribution
(and learning sample size).

2.3 Support vector machines

The support vector machine (SVM) is a supervised learning method from the
family of kernel-based algorithms (Boser et al., 1992). A kernel is a function
K (xg,xg) that measures the similarity between two samples x; and xy,
by associating a real number to this pair of samples. In our research, we
considered the kernel only in its simplest form, which is the linear kernel,
defined by the scalar product of the vectors representing the two samples:

K(Xk, Xk;’) = X;—Xk/. (219)

We call linear SVM the SVM based on the linear kernel. The rest of this
section describes this algorithm, first in the case of a classification problem,
then in the case of regression.

2.3.1 Linear SVMs for binary classification
Hard-margin SVM

Let us assume that the learning sample is given by

LS = {<Xk7yk>}llgv:17 (2.20)

where y;, € {—1,1} and x;, = (z},...,27)" € R™. We further assume that
LS is linearly separable in feature space, i.e. there exists a hyperplane that
correctly separates the samples of LS belonging to different classes, as shown
in Figure 2.3.

The goal of a linear SVM is to find a model in the form:

f(x)=w'x+b, (2.21)

where w = (wy,...,w,)" € R™ and b € R. The class of a new sample
characterized by an input x is then predicted according to the sign of f(x).
A condition related to the hyperplane f is that it must classify the samples

of LS without any error:
ykf(xk) > 0, Vk. (222)

As multiple hyperplanes satisfy this condition, the idea is to select the one
that will lead to the smallest generalization error. A good candidate is the
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Figure 2.3: Example of a linearly separable learning sample in two dimensions.
The plain line represents the hyperplane that separates the samples with the highest

margin. Points located on the dashed lines are the support vectors.

hyperplane that maximizes the so-called margin, i.e. the distance from the
hyperplane to the closest sample. Indeed it can be shown that the upper
bound of the generalization error is on the order of O(%), where ~ is the
margin (Shawe-Taylor and Cristianini, 2004). Furthermore, finding the hy-
perplane with the highest margin yields a convex optimization problem. In
Figure 2.3, the maximum margin hyperplane is represented by the plain line.

The margin is given by:

£l _ )
Twle ™ wll, (2.23)

7 = min
This leads to the following optimization problem:
max min =——————=. (2.24)

As rescaling w and b by some constant x does not change the value of the
margin, we can arbitrary set:

yr(w'xp, +b) =1, (2.25)
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for the samples x; that are the closest to the hyperplane. These samples
are called the support vectors and correspond to the points located on the
dashed lines in Figure 2.3. Therefore, all the samples satisfy the condition:

ye(W'xp, +b) > 1, VE. (2.26)

The optimization problem then only amounts to the minimization of
||w||2, or equivalently:

1
min = [w], (2.27)

subject to constraints (2.26). This constrained optimization problem can be
solved by forming the Lagrangian function:

N
1
L(w.b,a) = S|[wll3 = > on(yw(w i +b) = 1), (2.28)
k=1

where oy, > 0 are the Lagrange multipliers. This function has to be minimized
with respect to w and b, and maximized with respect to a. By setting to
zero the derivatives of L(w,b, &) with respect to w and b, we obtain the
following conditions:
{ W = chvzl akykxk7 (2 29)
2521 aryr = 0. .
Substituting the equalities (2.29) in the Lagrangian function yields the
dual maximization problem:

N N N
1
HIOZELX W(a) = Z o — 5 Z Z OéiOéjyl'ijiTXj, (230)
k=1 =1 j5=1
subject to conditions:
(6773 2 07
2.31
{ > ki = 0. (231)

Formulating the optimization problem in this dual representation brings some
advantages. The number of variables to optimize is now N, i.e. the number
of Lagrange multipliers ay, instead of m + 1. This is thus computationally
efficient for the datasets in which the number of samples is much lower than
the number of variables. Furthermore, the solution of the dual problem is
usually sparse, as a significant number of a4, are equal to zero.

The predictive model can be expressed in terms of the parameters ay by
using the equalities (2.29) in Equation (2.21), which gives:

N
f(x) = Z RYRXE X + b, (2.32)

k=1
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Therefore, only the samples x; of LS for which a;, # 0 are used in the
predictive model. It can be shown that these samples actually correspond to
the support vectors.

Soft-margin SVM

So far, we searched for a hyperplane that perfectly separates the samples
of different classes. However, the distribution of the classes may overlap in
practice. In this case, a perfect separation of the samples of LS can lead to
a poor generalization error, or simply does not exist.

A variant of the SVM was thus proposed, which allows some of the sam-
ples to be misclassified (Cortes and Vapnik, 1995). This variant introduces
a slack variable &, for each sample x; and the classification constraints of
Equation (2.26) are replaced by:

(W X, +b) > 1 — &, Vk, (2.33)

where & > 0. Samples for which & = 0 are correctly classified and located
at a distance from the hyperplane that is greater or equal to the margin.
Samples for which 0 < ¢ < 1 are correctly classified but are located at
a distance from the hyperplane that is lower than the margin. Samples for
which & = 1 are on the hyperplane. Samples for which £ > 1 are misclassified.
The goal of the soft-margin SVM is still to maximize the margin, but also
to softly penalize the samples that are on the wrong side of the hyperplane.
The optimization problem thus amounts to:

N
: 1 2
wp o6 gl 2.39)
subject to constraints (2.33), with & > 0. The constant C' > 0 is the
(inverse) regularization parameter that controls the trade-off between the
minimization of the slack variables and the maximization of the margin (see
Figure 2.4). When C' — oo, the optimization problem is equivalent to the
hard-margin problem (2.27).

Similarly to the hard-margin case, a dual representation of the problem
can be formulated. The maximization problem is actually identical:

N N N
1
max W (a) = Z = Z Z O YYX] X5, (2.35)
« k=1 i=1 j=1
but constraints on the parameters oy are different:
0< <C
{ S = (2.36)
Zk:1 aryr = 0.
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Figure 2.4: Effect of the soft-margin SVM parameter C' on the optimal hy-
perplane. A high value of C highly penalizes the classification errors on the instances of
the learning sample, while a low value of C' allows some instances to be misclassified and
increases the margin. In both plots, the plain line represents the optimal hyperplane and
the dashed lines are on the margin. Points that are located either on the margin or inside

the margin contribute to the predictive model.

We also have the same predictive model as in the hard-margin case:
N

f(x) = Z ryrXe X + b, (2.37)

k=1

Only samples for which oy # 0 contribute to the predictive model. Samples
for which o < C' lie on the margin, while samples for which oy, = C' lie inside
the margin and can be either correctly classified (¢ < 1) or misclassified

(€>1).

2.3.2 Linear SVMs for regression

In the case of regression, the learning sample is given by:

LS = {(xk, y) it (2.38)
where x; = (z},...,27")" € R™ and y; € R.
The goal of a linear SVM is to find a predictive model in the form:
f(x) =w'x+0b, (2.39)

that minimizes (Vapnik, 1995):
al 1
O E(f0w) ) + IR (2.40)
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where E, is an e-insensitive error function:

_ 10 if [f(x) =yl <e,
E(f(x) =) = { |f(x) —y| —€,  otherwise, (2:41)

with € > 0. Minimizing the first term in Equation (2.40) implies to find a
model f(x) such that all samples of LS lie inside an e-tube:

f(xi) — € <yp < f(xi) + € VE. (2.42)

Slack variables can be introduced, as for the soft-margin SVM for classi-
fication, except that now two slack variables & > 0 and &, > 0 are used for
each sample x;. Introducing the slack variables allows some of the samples
to lie outside the e-tube. Constraints (2.42) are replaced by:

ue < f(xx)+ e+ &, (2.43)
ue > f(x) —€e— &, (2.44)

and the optimization problem amounts to minimize:

N
O (6 +8) + 5wl (2.45)
k=1

subject to these constraints.
By exploiting a Lagrangian function, this problem can be rewritten into
the following dual problem:

N N
max W (a, @) = 5 ZZ(O% a;)(ay — a;)x; X;
e i=1 j=1
N N
- GZ(O% + ag) + Z(Oék — Qp)yr, (2.46)
k=1 k=1

where the Lagrange multipliers o > 0 and a; > 0 (corresponding respec-
tively to the slack variables &, and &) must satisfy the conditions:

0 S Q; S C’7
0<a,<C, (2.47)

Zgﬂ(ak —ag) =0.

The weight vector w is then given by:



Substituting equality (2.48) in Equation (2.39) leads to the following pre-
dictive model:

N
f(x) = Z(ak — Qp)xpx +b. (2.49)
k=1
The support vectors are the samples for which either ay # 0 or a # 0.
It can be shown that these samples correspond to those lying either on the
boundaries or outside the e-tube. All samples within the tube have both ay
and aj, equal to zero.

2.3.3 Parameters

The soft-margin SVM method comprises the parameter C' > 0 that controls
the trade-off between the regularization of the predictive model and the pre-
diction accuracy on the instances of the learning sample. The effect of the
value of C' is shown in Figure 2.4 in the case of classification. When C' is
large, prediction errors are highly penalized. When C'is decreased, the model
is more regularized (i.e. ||w||2 is decreased).

The SVM algorithm for regression has an additional parameter, which is
the tube size € used in the loss function. A too small value of € would result
in a high complexity of the model (the number of support vectors is large)
and an overfitting of the training data, while a too large value of ¢ would
result in underfitting. The optimal value of ¢ depends on the level of noise
in the learning sample.

2.3.4 Variable importance measures

The simplest procedure for measuring the importance of an input variable X;
with linear SVMs, which is the one that we used in our work, is to calculate
the absolute value of its corresponding weight w; in the predictive model:

f(x) = Z wir; + b. (2.50)

As indicated in the previous sections, the elements of the weight vector w
can be calculated by optimizing a Lagrangian function. For a classification
problem, the weight of the ¢th input variable, i = 1,...,m is given by:

N
w; = Zakykm};, (2.51)
k=1
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where «y is the Lagrange multiplier related to the kth instance of the learning
sample, and y; and z are respectively the values of the output and of the
1th input variable in that instance. For a regression problem, we have:

N

w; = Z(ak — )7, (2.52)

k=1

where oy, and @, are the Lagrange multipliers related to the kth sample.

The SVM method is sensitive to the way the input variables are scaled
(Ben-Hur et al., 2008). Therefore, the weight of a variable in a SVM model
depends in some manner on the range of values of this variable in the learning
sample. In order to avoid this dependency, we normalize the values of the
variables so that they are all comprised between -1 and +1 in the learning
sample, before applying the SVM method (Chang and Lin, 2011).

Alternative methods for ranking the variables using SVMs were proposed.
A well-known approach, SVM-RFE, is based on the Recursive Feature Elim-
ination (RFE) procedure (Guyon et al., 2002). SVM-RFE uses a backward
elimination strategy that iteratively removes the least relevant variables (Ko-
havi and John, 1997). A first SVM model is learned using all m input vari-
ables and these variables are ranked according to the absolute values of the
weights w;. The least important variable is then removed and a new SVM
model is learned from the remaining variables. This procedure is repeated
until all the variables are removed. The final ranking that is returned by
SVM-RFE consists in the inverse sequence of the eliminated variables, i.e.
the variable that is removed at the kth iteration is ranked at position m—k+1.
Note that other ranking methods using backward elimination like SVM-RFE
were proposed by Rakotomamonjy (2003).

Compared to the baseline method, which ranks the features according to
their individual relevance |w;|, SVM-RFE allows to obtain a feature subset
ranking. In such a ranking, the variables that are at the top of the list
are not necessarily individually relevant, but become relevant when they are
combined to each other. We however did not use the SVM-RFE procedure
in our work. Abeel et al. (2010) showed that this method returns variable
rankings that are clearly less stable than those returned by the baseline
method. Furthermore, SVM-RFE has a high computational cost: to rank m
variables, m SVM models have to be learned. Note that, in order to reduce
the computational times, the algorithm can be modified to remove more
than one variable at each iteration. However, this introduces an additional
parameter, which is the number of variables to remove.
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Table 2.1: Contingency table.

Actual

1 0

] 1| TP FP
Predicted ol TN TN

TP: Number of true positives, FP: Number of false positives, TN: Number of true

negatives, FN: Number of false negatives.

2.4 Performance metrics

The problems of feature selection and network inference can be seen as binary
classification problems. The goal of a feature selection algorithm is to state
whether a feature is relevant (1) or irrelevant (0), while a network inference
task amounts to deciding whether a regulatory link is present (1) or absent
(0) in the network. Feature selection and network inference algorithms can
thus be evaluated using standard performance metrics from machine learning
(assuming that the truth is known): precision, recall (also called true positive
rate or TPR), and false positive rate (FPR). Given the contingency table in
Table 2.1, these metrics are defined as follows:

sion = 10 (2.53)
precision = 5, :
TP
1 TP = — 2.54
recall (or TPR) TP PN (2.54)
FP
FPR = ———. 2.
R FP + TN (2:55)

The precision is thus the proportion of true positives among all predic-
tions, the recall is the percentage of truly positives that are retrieved, and
the false positive rate is the percentage of truly negatives that are considered
positives.

Many feature selection (resp. network inference) algorithms work first by
providing a ranking of the features (resp. regulatory links), from the most
confident to the less confident according to an importance score. A threshold
is then selected on this ranking to obtain a subset of features (resp. network).
To evaluate such a ranking independently of the choice of a specific threshold,
we can use both precision-recall (PR) and receiver operating characteristic
(ROC) curves (see Figure 2.5). The PR curve plots for varying thresholds
the precision versus the recall, whereas a ROC curve plots the true positive
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Figure 2.5: PR and ROC curves. A list of features (or regulatory links), ranked
according to their importance score, is represented on the left. Green elements are the
truly positives while red elements are the truly negatives. The ROC curve (middle) plots
for varying thresholds on the importance scores the true positive rate versus the false
positive rate. The PR curve (right) plots for varying thresholds the precision versus the
recall. A perfect ranking yields a PR curve and a ROC curve that both have an area under

the curve equal to one.

rate versus the false positive rate. A perfect ranking, i.e. a ranking where all
the positives are located at the top of the list, yields a PR curve and a ROC
curve that both have an area under the curve equal to one.

For problems where the number of negatives is much higher than the num-
ber of positives, which is typically the case of feature selection and network
inference problems, it is usually advised to use the PR curve rather than
the ROC curve to assess the performance of an algorithm (see e.g. Davis
and Goadrich, 2006). Indeed, a large change in the number of false positives
results in only a small change in the false positive rate used to compute the
ROC curve. On the other side, the PR curve does not take the number of
true negatives into account and thus enables a better visualization of the
performance at the top of the ranking, i.e. the part of the ranking in which
we are the most interested in.
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Part 11

Feature selection






Exploiting tree-based variable
importances for feature selection

This chapter introduces a statistical procedure, called CER, which is based
on permutation tests for extracting a subset of truly relevant variables from
importance rankings derived from tree-based multivariate methods. This
method is motivated with respect to a naive application of the permutation-
based procedure to estimate the FDR (called pFDR). Several experiments are
performed to illustrate the main features of both methods. A thorough eval-
uation of the CER and pFDR procedures, including their comparison with
several other methods, is performed in Chapter 4. After the introduction
of Section 3.1, Sections 3.2 and 3.3 respectively define the notion of feature
relevance and the problem of selecting relevant features from a ranking. Sec-
tion 3.4 studies the pFDR procedure on synthetics datasets, highlighting its
main properties when applied to tree-based variable importances. Section 3.5
describes the proposed alternative approach (CER), its permutation-based
estimation procedure, and the empirical results obtained with the same syn-
thetic datasets. Section 3.6 shows some results on a real biological dataset.
Finally, Section 3.7 concludes and gives a few directions for further research.
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3.1 Introduction

Univariate hypothesis testing is widely used in the context of biomarker dis-
covery in bioinformatics, where one seeks to identify variables (e.g. genes
or genetic polymorphisms) that truly provide information about some bio-
logical condition of interest (e.g. disease status or treatment response). A
classic procedure consists in applying a statistical test in order to compute
a p-value for each variable of the considered problem and selecting variables
that have a p-value lower than a chosen threshold. A disadvantage of uni-
variate tests is that they can only identify variables that provide a significant
amount of information about the output variable in isolation from the other
inputs. Nowadays, when one seeks for multivariate interacting effects, one
can resort to relevance scores provided by machine learning techniques such
as tree-based methods. However, unlike the p-values returned by univari-
ate tests, these relevance scores are usually not statistically interpretable.
This lack of interpretability prevents the wide adoption of these methods by
practitioners and also makes the identification of the truly relevant variables
among the top-ranked ones, i.e. the determination of a relevance threshold,
a very difficult task in practice.

One possible way of identifying relevant variables using tree-based vari-
able importance measures would be to mimic the procedures that are used
in the context of multiple hypothesis testing of univariate statistics (see Ge
et al., 2003 for a review). For example, one commonly used approach consists
in ranking the features according to a relevance score derived from a (uni-
variate) hypothesis test, and estimating, for each score threshold, the rate of

40



false positives (called the false discovery rate, or FDR) among the variables
that have a score greater than the threshold. In this context, the FDR is
usually estimated in a non-parametric way by assessing the average scores
derived when randomly permuting the output values of the dataset.

In this chapter, we present results of the assessment of this FDR estima-
tion approach when the relevance scores are derived from tree-based (mul-
tivariate) models. We show empirically that this simple procedure typically
overestimates the real FDR in an unpredictable way and thus can lead to
unreliable selections of relevant subsets. We explain this by the fact that,
contrary to the univariate case, the tree-based importance scores of different
variables are not independent of each other. We then propose a novel al-
ternative procedure for assessing the presence of irrelevant variables among
a subset of variables top-ranked by tree-based methods. For a given impor-
tance threshold, this procedure first assumes that all and only those variables
that have received an importance higher than the threshold are truly rele-
vant, and then estimates the probability that any of the other variables would
receive an importance higher than the given threshold. Experiments suggest
that the latter quantity (estimated by an appropriately adapted permutation
scheme) indeed allows to rather well identify an importance threshold below
which the risk of having at least one false positive rapidly increases. The
procedure may thus serve to identify the maximal subset of truly relevant
variables among those proposed by the importance scoring method, in a more
robust way than the FDR-based approach.

3.2 About feature relevance

Among the various definitions of the relevance of a variable that have been
proposed in the literature, we follow those provided by Kohavi and John
(1997), who claim that two degrees of relevance are required: weak and
strong.

Formally, we assume that we have at our disposal a learning sample LS
of N instances of input-output pairs drawn from some unknown probability
distribution. There are m input variables denoted X;,i = 1,...,m. Let
X = (71,22,...,Z,) " be an instance of the vector of random variables X =
(X1, Xs,...,X,,) ", with probability P(X = x)!. Let V be a subset of X
and X~ the vector of all variables except X;. Y denotes the output variable.
An input feature X; is strongly relevant if it brings additional information
about Y conditionally to all the other input variables, i.e. if there exist some

!'Note that the following definitions are only applicable to discrete variables, but can
be extended to continuous variables by changing probabilities P(X = x) to P(X < x).
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values x;,y, and v; for which P(X; = z;, X = v;) > 0, such that:
PY =y|X; =2, X" =v;) # P(Y =y|X" =v;). (3.1)

A strongly relevant variable is thus always informative for characterizing the
output variable. By contrast, a feature X; is weakly relevant if it is not
strongly relevant and there exists a subset of features V that do not include
X; and such that X; brings additional information about Y conditionally to
V, ie. if there exist some values z;,y, and v; for which P(X; = z;, V; =
v;) > 0, such that:

A weakly relevant variable thus brings at most the same information about
Y as one or several other (strongly or weakly) relevant variable(s). Weakly
relevant variables are also said to be redundant. In this thesis, we consider
a feature relevant if it is strongly or weakly relevant. Hence, a feature is
irrelevant if it is independent of the output conditionally to any subset of
the other variables (including the empty subset).

3.3 Feature selection from a ranking

In this part of the thesis, we focus on the problem of selecting relevant fea-
tures from a ranking. We assume that we have a machine learning algorithm
A(LS) that computes from the learning sample LS a feature ranking, typi-
cally derived from an importance score s; for each input variable X;. These
scores are not supposed to be independent and no further assumption is made
about A. The goal is then to determine a value k such that the subset com-
posed of the k top-ranked variables contains the highest possible number of
truly relevant features.

When the sole information available about the problem under considera-
tion is limited to a training sample of input-ouput pairs, it is generally not
possible to exactly identify the maximal subset of relevant inputs. Thus, any
feature selection algorithm is at risk of either missing some sought features
(false negatives) or of erroneously selecting some truly non desired ones (false
positives). Among the different possible sensitivity/specificity compromises,
we aim at high specificity, i.e. at identifying subsets of relevant variables
that are top-ranked, while maintaining the rate of false positives as small
as possible. This type of compromise is typically sought in the context of
biomarker discovery where molecular variables are selected for further anal-
ysis and biological insight, while aiming at a very low false positive rate,
because of high costs of subsequent experiments (see e.g. Saeys et al., 2007).
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3.4 False discovery rate

We considered for the feature ranking algorithm A two machine learning
methods based on ensembles of trees, namely Random Forests and Extra-
Trees, which compute variable importances as sums of entropy reductions in
the form (2.11) for classification problems. For these two methods, we used
the default parameter setting, i.e. no pruning of the trees and the number
K of variables randomly selected at each node fixed at the square root of m.
We grew ensembles of T' = 100 trees, unless specified otherwise.

Without loss of generality, we further assume that the features are num-
bered according to their importance scores, i.e.

81> 89> ... > 5. (3.3)

For a given importance threshold s;, we consider that all variables whose
importance is greater than s; are relevant and our concern is to estimate the
expected rate of truly irrelevant features among these variables, the so-called
false discovery rate (FDR) (Storey and Tibshirani, 2003).

More formally, for a given importance threshold s;, the FDR is defined
as:

V(si)
FDR(s;) = F [R(SZ)] , (3.4)
where R(s;) is the number of variables considered relevant at threshold s;
and V(s;) is the number of these variables that are truly irrelevant. The
expectation is taken over different random learning samples drawn from the
joint distribution of the variables.

To select a subset of variables, one can then check the FDR for increasing
values of the threshold s; and choose the minimum value of s; such that
FDR(s;) < a, where « is typically small and reflects the risk one is ready to
accept in terms of false positives when selecting the variables.

3.4.1 Estimation by random permutations

To estimate this FDR, we adopted the same approximations as Listgarten
and Heckerman (2007). When the number of features is large, one can ap-
proximate the expectation of the ratio by the ratio of the expectations:

L[V EV(s)
FDR(s;) = B {R(Si)} ~ BIRGOT (3.5)

E[R(s;)] can be simply approximated by the observed R(s;), i.e. the num-
ber of variables with an importance greater or equal to s; in the original
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data. FE[V(s;)] is approximated by the expectation E[V(s;)|Hp| over the
null distribution H, stating that all variables are truly irrelevant. In other
words, E[V(s;)] is taken as the expected number of variables that get an
importance greater or equal to s; when none of them are truly relevant. We
simulate this null hypothesis by applying the same tree-based method that
was used to produce the original importances on datasets obtained from the
original data by randomly permuting the output values. This permutation
decorrelates the output variable from the inputs, making them all irrelevant,
but keeps the dependencies that exist between the features in the original
data. We call pFDR (for “permutation-based FDR”) the FDR estimated
using this permutation scheme.

The algorithm of Table 3.1 describes the procedure that we use to com-
pute the pFDRs for all observed importance value thresholds in a learning
sample. Note that we enforce the monotonicity of the pFDR values in step 3
of the algorithm, so that a variable can be selected only if all the variables
ranked above are also selected.

3.4.2 Experiments on artificial data
Artificial problems

To validate feature selection methods in a context where relevant variables
are perfectly known, we generated two artificial problems by adapting the
MATLAB®? code originally used to produce the Madelon dataset for the
NIPS 2003 feature selection challenge®. Both problems are binary classifica-
tion problems with continuous input variables. In each problem, each class
is composed of a number of Gaussian clusters that are placed at random on
the vertices of a hypercube in a p-dimensional space, where p is the number
of relevant variables.

e Dataset-3-20: This dataset is composed of 200 objects and 20 vari-
ables. The first three are really relevant, while the others are pure
Gaussian noise. The problem is such that the third variable is only
relevant in combination with the first two.

e Dataset-50-1000: The second (larger) dataset is composed of 2000
objects and 1000 variables. 50 variables are relevant, among which 6
have been directly used to define the output and 44 are linear combi-
nations of these 6 variables (these latter are thus redundant given the

2http://www.mathworks.com/
3http://www.clopinet.com/isabelle/Projects/NIPS2003/
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Table 3.1: Permutation algorithm for the computation of the pFDR.

Inputs: A learning sample LS, a ranking algorithm A, a significance

level a.

Compute variable importances from the original data:

{s1,...,8m} = A(LS),

where s; is the importance of variable X;. Assume, without loss of
generality, that the variables are numbered according to their

importance s;, i.e. $1 > 8o 2> ... > Sp,.

1. for p =1 to P (typically P = 1000):

(a) Generate LSP from LS by randomly permuting the output

values.

(b) Compute variable importance scores {s7,...
(c) Compute V" = #{k : sf > s;}, fori=1,...

2. Then at s;, the FDR is estimated by

3. Enforce monotonicity by setting:

pFDR] < pFDR,,

, 8P} = A(LSP).

, M.

pFDR} < max(pFDR;_,,pFDR,), fori=2,... ,m.

4. Select variables X; such that pFDR; < a.
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Figure 3.1: pFDR and observed FDR for increasing rank. Top on Dataset-3-20,
bottom on Dataset-50-1000, left with Extra-Trees, right with Random Forests (P = 1000,
T =100, K = /m).

first 6 ones). The remaining 950 irrelevant variables are pure Gaussian
noise.

Results

We applied the pFDR procedure on the two artificial problems described
above. Since we perfectly knew the relevant variables for these two prob-
lems, we were also able to compute the observed FDR for a given subset
of selected variables, i.e. the proportion of irrelevant variables among those
selected. Figure 3.1 plots, for the two artificial datasets and the two tree-
based methods, the pFDR calculated using the procedure of Table 3.1 and
the observed FDR, both as a function of the rank of the variables. There
is no important difference between Extra-Trees and Random Forests. In all
cases, the pFDR overestimates the observed FDR. On the small dataset, both
methods are able to find the three relevant variables (as illustrated by the
fact that the observed FDR is equal to 0 until rank 3). However, the curve
of the pFDR that already starts increasing for the third variable wrongly
suggests that this variable is a false positive. On the larger dataset, using a
typical threshold of 0.05 on the pFDR leads to the selection of 26 variables
with Extra-Trees and 25 variables with Random Forests (all relevant in both
cases), while the same threshold on the observed FDR would lead to 28 vari-
ables with Extra-Trees and 33 variables with Random Forests, with 5% of
irrelevant among them.
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3.4.3 Discussion

The overestimation of the FDR by the procedure of Table 3.1 can be ex-
plained, at least partially, by the fact that this procedure does not take into
account the dependence between the importance values for different vari-
ables?. Indeed, as explained in Section 2.2.4, the sum of importances is
roughly a constant for a given output distribution. In consequence, if a vari-
able brings a lot of information about the output variable, there is much less
left to be explained by the remaining variables, whether they are relevant or
not. Thus, if a relevant variable receives a high importance, it potentially
hides a less important but still relevant variable that may consequently re-
ceive an importance s; that is small or even similar to that of an irrelevant
variable in the permuted data. In this case, our estimation of E[V (s;)] from
random permutations will be positively biased and thus our estimate of the
FDR will be too conservative. This phenomenon is clearly apparent on the
small artificial dataset, where the relevant variable X3 gets an importance in
the original ranking that is lower than the average importance obtained by
the most important variable in the permuted data (see Figure 3.2).

Listgarten and Heckerman (2007) observed a similar effect when trying
to estimate the false discovery rate among the edges predicted by a Bayesian
network learning algorithm.

3.5 An alternative measure

In order to overcome this limitation of the FDR, we propose an alternative
measure to be associated with each importance threshold s; that takes into
account the importances of the variables that are ranked above X;. For
a given importance threshold s;, the procedure consists in computing the
following conditional probability, which we call the conditional error rate
(CER):

CER(s;) = P(knrilaxm S& > s |HE T HIE™), (3.6)
where H};i_l denotes the hypothesis that all variables above X; in the origi-
nal ranking are relevant, H”™ is the hypothesis that X; and all the variables
below X; are irrelevant, and S (k = 1,...,m) is the random variable de-
noting the importance of X under these two hypotheses. CER(s;) is thus
the probability that at least one irrelevant variable among m — i + 1 gets

4Note that we are not talking here about the statistical dependence of the features that
induces a dependence of their importances, however they are computed, but rather about
the dependence between the importances that results from their joint computation by a
multivariate approach.
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Figure 3.2: Variable importance as a function of the rank. Importance values
were obtained with Extra-Trees on Dataset-3-20, from the original and the permuted
data. In the latter case, importances were averaged over the P permutations (P = 1000,
T =100, K = \/m).

an importance greater or equal to s;, when these importances are computed
under the assumption that variables X, ..., X;_; are all relevant.

This value can be interpreted as a measure of evidence against the hy-
pothesis that all variables above the threshold s; are relevant: a CER(s;)
close to one means that it is very likely to observe an irrelevant variable with
an importance above s; while a CER(s;) close to zero means that it is very
unlikely that an irrelevant variable could reach the threshold s;. The limit
between relevant and irrelevant variables in the ranking can then be deter-
mined by looking for the minimal threshold s; such that CER(s;) < «, for
some small value of a.

Since the CER tries to detect at least one false positive above the thresh-
old, we expect it to evolve much more abruptly than the FDR and thus to
indicate more clearly the risk of selecting some irrelevant variables in the
ranking.

3.5.1 Estimation by random permutations

We propose to estimate the probabilities (3.6) by random permutations as
well. H}fi_l is approximated by keeping the values of the output and of
the first ¢ — 1 variables unchanged (which amounts to considering that vari-
ables X; to X;_ 1 are truly relevant), while hypothesis H}'_”” is simulated
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Figure 3.3: CER and pFDR for increasing rank. Top on Dataset-3-20, bottom
on Dataset-50-1000, left with Extra-Trees, right with Random Forests. The vertical line
indicates the rank beyond which the observed FDR is greater than zero and the position
where the observed CER switches from 0 to 1 (P = 1000, T = 100, K = y/m).

by randomly permuting the values of the variables X; to X,,, that have an
importance equal or smaller than s; in the original ranking. To adhere as
much as possible to the original joint distribution of the variables, they are
furthermore permuted jointly, i.e. using the same permutation vector. The
resulting procedure is described in Table 3.2.

Because the importances of the variables X; to X,, in the random per-
mutations are computed with the values of the variables X; to X;_; being
unchanged, these importances should not suffer from the same bias as in
the estimation of the FDR. We thus expect that the algorithm of Table 3.2
will produce unbiased estimates of the CER and thus be more adapted to
highlight the true frontier between relevant and irrelevant features than the
procedure of Table 3.1 based on the pFDR.

3.5.2 Experiments on artificial data

Figure 3.3 compares the CER as estimated by the procedure of Table 3.2 with
the pFDR as calculated by the procedure of Table 3.1, on the two datasets
described in Section 3.4.2 and with the two ensemble methods.

On the small dataset, the CER correctly starts increasing at the fourth
variable. It thus gives more chance than the pFDR to the third variable to
be selected.

On the larger dataset, the transition region between low and high CER
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Table 3.2: Permutation algorithm for the computation of the CER.

Inputs: A learning sample LS, a ranking algorithm A, a significance
level a.

Compute variable importances from the original data:
{s1,...,8m} = A(LS),

where s; is the importance of variable X;. Assume, without loss of
generality, that the variables are numbered according to their
importance s;, i.e. §1 > 89 > ... > Sy

1. fori=1tom:

(a) for p=1to P (typically P = 1000):
e Generate LSP from LS by keeping the values of the
output and of Xy,..., X; ; fixed, and permuting the
values of X, ..., X,, with the same permutation vector.

e Compute variable importance scores

{sh,... st} = A(LSP).
(b) Then at s;, the conditional probability (3.6) is estimated by:

#{p : max;_; .. 8} > s;}

E P—
CER; Iz

, fori=1,...,m.

2. Enforce monotonicity by setting:
CER] < CERy,

CER; < max(CER}_,,CER;), fori=2,...,m.

7

3. Select variables X; such that CER] < a.

30




is quite well centered at the point where irrelevant variables start appearing
in the ranking (indicated by the vertical line). Setting a small threshold
a = 0.05 on the CER and looking for the last variable X; in the ranking such
that CER(s;) < « leads to the selection of 22 variables with Extra-Trees and
21 variables with Random Forests. In both cases, all the selected variables
are truly relevant but the selection remains however quite conservative (with
Extra-Trees, the first 27 variables are relevant and with Random Forests, the
first 30). This is because the transition region between low and high CER is
quite large (especially for Random Forests).

3.5.3 Link with FWER-based univariate procedures

The CER has a nice interpretation when the importance scores are actually
derived from univariate statistics and a variable is, by definition, irrelevant
when it satisfies the null hypothesis Hy of the corresponding statistical test
(e.g. s; is the statistic ¢ associated with variable X;). Indeed, in this case,
importances s; are computed independently of each other and probability
(3.6) can thus be rewritten as follows:

P(max S > s|HP L HP™) = P(max Sf > sH™)

k=i,....m k=i,....,m

= P(k z‘aXme > si|H ™), (3.7)
where H}~™ is the hypothesis that all variables satisfy the null hypothe-
sis Hy. Expression (3.7) corresponds precisely to the definition of Westfall
and Young’s stepdown mazT adjusted p-values (Ge et al., 2003; Westfall and
Young, 1993). The direct application of the procedure of Table 3.2 in this
case thus produces estimates of these adjusted p-values by random permuta-
tions. Under some conditions about the distribution of the statistic, Westfall
and Young (1993) showed that selecting all variables such that their adjusted
p-values is lower than some threshold « guarantees that the family wise error
rate, or FWER (i.e. the probability to include at least one false positive
among the selected variables) is lower than a. In our context, however,
given the strong dependency between the importances that are computed by
tree-based methods, it is not clear whether this guarantee still applies.

3.6 Experiments on a real dataset

To highlight the behavior of both measures on a real problem, we ran exper-
iments on a biological dataset. The goal of the study of Callow et al. (2000)
was the identification of the genes with altered expression in the livers of
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Figure 3.4: CER and pFDR for increasing variable importance rank (Extra-
Trees). Top left with (K = /m,T = 100), top right with (K = v/m,T = 1000). Bottom
left with (K = m,T = 100), bottom right with (K = m,T = 1000). (P = 1000, in all

cases.)

knock-out mice compared to control mice. The dataset® contains 5548 gene
expression measurements for 16 mice divided into two classes: 8 wild-type
mice and 8 mice whose Apo Al gene was knocked out. This dataset was
also used by Ge et al. (2003) to compare several statistical procedures for
controlling multiple testing issues for univariate statistical tests.

Although the truly relevant variables were unknown, Callow et al. (2000)
identified eight variables that are differentially expressed using univariate
statistical tests and their relevance was experimentally confirmed. We expect
that multivariate approaches will at least highlight these eight variables and
we will thus check their presence in the rankings below. Note however that
this does not mean that only those eight variables are relevant. All additional
variables found by our multivariate procedures would certainly deserve to be
checked experimentally.

On this dataset, we applied the Extra-Trees algorithm with four different
settings of its parameters, i.e. the number K of variables that are randomly
selected at each node and the number T of trees in the ensemble: (K =
vm, T =100), (K = /m,T =1000), (K =m,T = 100), and (K =m,T =
1000). The pFDR and CER as a function of the ranking are plotted in
Figure 3.4 in all four cases.

Several conclusions can be drawn from these plots. First, using K = y/m
and 7" = 100 does not bring interesting results on this dataset. The method is

Shttp://www.stat.berkeley.edu/users/terry/zarray/Html/apodata.html
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unable to distinguish truly relevant variables from randomly permuted ones,
which translates into a high value of both the pFDR and the CER. Simply
increasing the number of ensemble terms already gives much better results
in terms of the number of variables that appear relevant. A threshold of 0.05
on the CER selects a subset of 7 variables and a threshold of 0.05 on the
pFDR gives 10 variables that actually contain the 8 variables identified by
Callow et al. (2000). Only 3 of them were present in the top 10 variables
with 7" = 100, confirming that the ranking is indeed improved by increasing
T'. Tt is interesting to note that, on the other hand, increasing 7" from 100 to
1000 does not affect the error rate on the prediction (which is equal to 25%
in both cases, as estimated by leave-one-out), meaning that here prediction
accuracy would not be a relevant criterion to assess the quality of the ranking.
The high improvement of the pFDR and CER values when 7T is increased is
here a consequence of the very high ratio between the number of variables
and the number of examples that makes the random trees, and thus the
corresponding rankings, highly unstable and thus requires to average a very
large number of trees for stabilization.

When K is increased to its maximum value (i.e. randomization is re-
duced), the CER is also very much improved, even with 7" = 100. It shows
an abrupt change between the 11th and the 12th variables, suggesting that
about 11 variables are relevant. As a confirmation, the 8 variables identified
by Callow et al. (2000) are again among these 11 ones. On the other hand,
the pFDR seems to be highly overestimated in this case. We explain this
by the fact that increasing K in Extra-Trees makes the model less random
and thus increases the importance of the top-ranked variables relatively to
the low-ranked ones, thus emphasizing the phenomenon highlighted in Sec-
tion 3.4.3 and responsible for the overestimation of the FDR.

3.7 Discussion

In this chapter, we proposed and evaluated two statistical procedures to
extract a subset of truly relevant variables from importance values obtained
from tree-based multivariate methods.

The first method is a direct adaptation of FDR estimation schemes based
on permutations used in the context of univariate statistics. Unfortunately,
we found that this procedure, because it does not take into account the
dependencies of the importance values derived from the tree-based methods,
often strongly overestimates the actual FDR and can thus potentially lead
to overly conservative selections of relevant subsets.

We therefore proposed a new statistic, called the conditional error rate
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(CER), that explicitly takes into account the dependencies between the im-
portance scores and thus leads to more robust feature selections. We also
proposed a permutation procedure to empirically estimate the CER values
with any given importance ranking scheme, and compared its performances
with the FDR-based scheme on both artificial and real datasets. Our experi-
ments suggest that the CER-based procedure leads to a more robust scheme
for the selection of relevant variables among large numbers of irrelevant ones.
They also suggest that for reliable identification of relevant features with
tree-based ensemble methods, one should use very large ensembles, much
larger than those needed for accurate prediction. This in turn highlights the
fact that prediction performance may not be an appropriate measure for the
identification of relevant features.

One drawback of the current CER estimation procedure is that it is very
computationally demanding: P x m models are needed for the estimation
of the CER for all possible importance thresholds, where m is the number
of variables and P is the number of random permutations. The computing
times can however be decreased, e.g. by stopping the procedure as soon as
the estimated probability is greater than some threshold, as we are typically
only interested in small values of the CER. In problems with a very high pro-
portion of irrelevant variables, this truncation will lead to a very significant
speed-up of the procedure.

It would be interesting to investigate better procedures to estimate the
FDR. Several improved permutation procedures have been proposed to better
estimate the FDR in the context of univariate tests. In Chapter 4, we consider
the extension of the approach proposed by Ge et al. (2008) to importance
measures derived from multivariate approaches.

Two related approaches to identify relevant features from a ranking were
proposed by Stoppiglia et al. (2003) and Tuv et al. (2006). The common
idea of both methods is to include random features in the learning sample
and then to exploit their rank among the original features to determine a
relevance threshold. Stoppiglia et al. (2003) suggested to introduce only one
such random feature and they applied this idea in the context of linear mod-
els where the distribution of the rank of the random feature can be computed
analytically. They also suggested in their conclusions that this distribution
could be computed empirically for any other ranking method. Along a similar
line, the approach of Tuv et al. (2006) introduces as many random features
as there are input variables in the original problem and generates these fea-
tures by permuting the values of the original variables. Relevant variables
are then defined as those variables that receive an importance significantly
greater than their permuted counterpart. In the procedure proposed by Tuv
et al. (2006), this idea is actually wrapped into a gradient boosting type
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algorithm that iteratively selects subsets of important variables but it could
be also applied in a single step as an alternative to our approach. A de-
tailed comparison of our method with these two approaches is performed in
Chapter 4.

Another important direction of investigation is of course the application
of our procedures in the context of other importance measures. In this chap-
ter, we focused on classification problems. However, our analysis should
carry over straightforwardly to regression measures based on variance re-
ductions, in the form (2.12). It would be interesting also to consider the
permutation-based importance measure proposed by Breiman (2001). In
Chapter 4, we carry out some experiments with variable importances de-
rived from the weights of linear SVM models.
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Evaluation and comparison
of feature selection methods

In this chapter, we present the results of the evaluation of several, existing
and novel, procedures that extract relevant features from rankings derived
from machine learning approaches, including the CER and pFDR methods
presented in the previous chapter. Like these latter, the evaluated proce-
dures work by replacing the variable relevance scores with measures that can
be interpreted in a statistical way, such as p-values, false discovery rates,
or family wise error rates, for which it is easy to determine a significance
level. These procedures, which were assessed on several artificial and real
datasets, differ greatly in terms of computing times and the tradeoff they
achieve in terms of false positives and false negatives. Our experiments also
clearly highlight that using model performance as a criterion for feature se-
lection is not a good practice in general. After the short introduction of
Section 4.1, Section 4.2 describes the feature selection methods that we eval-
uated. Section 4.3 describes the datasets that we used for our experiments,
the performance metrics, and the compared ranking methods. Section 4.4
presents the results of the evaluation and finally, Section 4.5 concludes the
chapter.
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4.1 Introduction

In this chapter, we perform a large-scale evaluation of the CER and pFDR
procedures, that are introduced in the previous chapter. We also compare
them to several, existing and novel, other procedures that extract relevant
features from a ranking returned by a multivariate algorithm. Like the CER
and the pFDR, these procedures replace the original relevance score with
a measure that can be interpreted in a statistical way and hence allow the
user to determine a significance threshold in a more informed way. Most of
these methods exploit a resampling procedure to estimate the false discovery
rate (FDR) or the family wise error rate (FWER) among the k top-ranked
features, for increasing values of k. Just like for standard univariate tests,
the user can then choose a threshold on this new measure depending on
the risk he/she is ready to take when deeming that all features above this
threshold are relevant. Experiments on several artificial and real datasets
show that most of these measures greatly help in the extraction of truly
relevant features from a ranking derived from a multivariate approach. We
also highlight that the common approach to this problem, i.e. selecting the
top k features minimizing some cross-validated error, is not a good practice
in general, as it typically leads to the selection of several irrelevant features.

4.2 Feature selection methods

We describe below several methods that have been developed for the selection
of relevant variables from a ranking. We adopt the same setting as in Chap-
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ter 3 and assume that we have an algorithm A(LS) that returns, from a learn-
ing sample LS, a relevance score s; for each input variable X;,i =1,...,m.
We further assume, without loss of generality, that the features are num-
bered according to their relevance score, i.e. s > s9 > -+ > 5,,. Most of
the presented methods then re-use A on a modified LS (obtained from a
subsampling, a permutation, etc.) to replace each original relevance score s;
with a statistically interpretable measure. The intuition behind each method

is given below and their detailed pseudo-code descriptions can be found in
Appendix A.1.

4.2.1 Estimation of the generalization error of a model
(err-A and err-TRT)

We include in our comparison, as a baseline method, the procedure based on
the computation of the generalization error of a predictive model (see Geurts
et al., 2005 for an example). This method consists in estimating the error
rate (resp. quadratic error) e; of a classification (resp. regression) model that
uses only the first ¢ variables of the ranking, Vi = 1, ..., m, and selecting the
k top-ranked variables such that:

k =arg min e;. (4.1)

i=1,....,m

The m predictive models can be learned using the algorithm A that was
used to compute the ranking of variables and the generalization error of one
model can be estimated using a cross-validation procedure (10-fold in all our
experiments). We call this method err-A to denote the fact that the same
algorithm A is used both to rank the features and to estimate the error
associated with each feature subset. A sharper threshold can be obtained by
estimating the generalization error with an algorithm that is not robust to
irrelevant variables, such as k-NN (Fukunaga and Hostetler, 1975) or totally
randomized trees (TRT, i.e. Extra-Trees with parameter K = 1, Geurts
et al., 2006a). Compared to a robust algorithm, we expect the error of such
a procedure to increase in a more abrupt way when irrelevant variables are
introduced in the predictive model and therefore to yield a smaller number
of selected variables. We used TRT in our experiments as this method is
computationally less expensive than k-NN and we call the resulting feature
selection method err-TRT.

One potential drawback of this approach is the fact that it is prone to
selection bias (Ambroise and McLachlan, 2002), as the same instances of LS
are used to rank the variables and to estimate the generalization error. This
results in a too optimistic estimation of the errors ¢;, and in particular of
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the minimal error min;e;, whose effect on the number of selected features
is difficult to appraise. One could get better error estimates by ranking the
features inside the cross-validation loop (Ambroise and McLachlan, 2002)
but this would leave open the question of the selection of the final feature
subset among the subsets generated within each fold.

4.2.2 Multiple testing with random permutations
(pFDR, eFDR, and CER)

Besides the pFDR and CER procedures of Chapter 3, we evaluated another
permutation-based approach, which was proposed by Ge et al. (2008) to
estimate the FDR in the context of univariate rankings. This approach makes

the assumption that the first ¢ — 1 variables are relevant and the FDR at
threshold s; is defined by:

V(si)

FDR(s;) = E [m

H}l{ﬁz?l’ }*)m:| ’ (42)

where V(s;) is the number of false positives, H; "~ denotes the hypothesis
that all variables ranked above X; are relevant, and H:™ is the hypothesis
that X; and all variables ranked below X; are irrelevant. V (s;) is estimated
in the following way. Let s} be the relevance score of Xy (Vk = 1,...,m),
calculated from a random permutation of the data that simulates H}:Fl
and Hi™ and let S(ry De the k-th largest member of {s7,...,sh }. V(s;) is
then computed as:

V(si) = k:l,r..I.l,?nX—i-i-l{k LSy = SisS(a) = Sitly - Sy = Sith—1}- (4.3)
The FDR estimated using Equations (4.2) and (4.3) is called eFDR. When
applying this approach to rankings derived from a multivariate approach,
we propose to use the same permutation scheme as in the CER approach,
that consists in approximating H};i_l by keeping the values of the output

variable and of the first ¢ — 1 variables unchanged, and H:”™ by randomly
and jointly permuting the values of X;, ..., X,,.

4.2.3 Empirical estimation of the null rank distribu-
tion (mr-test)

The mr-test (Zhang et al., 2006) estimates an empirical distribution of the
rank of an irrelevant feature, in order to derive a p-value p; to be associated
with each variable X;, defined as the probability for an irrelevant variable to
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be ranked above or at the same position as X;. To estimate the distribution
of the rank of an irrelevant variable, Zhang et al. (2006) proposed to proceed
as follows. P feature rankings are obtained by applying the algorithm A on
P resamplings of the original learning sample. The resampling procedure
proposed by the authors consists in choosing randomly half of the instances
of the original learning sample each time. Given a user-defined number £,
the k variables that have on average the largest ranks among all the variables
are considered putative irrelevant variables and the null rank distribution is
estimated from their £ x P ranks over the P rankings. The p-value p; is then
estimated as the proportion of these k£ x P ranks that are lower than the
average rank of X; over the P rankings.

As the p-values calculated using this procedure are raw p-values, the
so-called multiple testing problem occurs, where the higher the number of
variables in the considered problem, the higher the number of expected vari-
ables with a p-value lower than some threshold «a, even if these variables
are irrelevant. We therefore propose to apply a multiple testing correction
procedure and to select the variables based on the corrected p-values. In our
experiments, we used the Benjamini Hochberg correction (Benjamini and
Hochberg, 1995), which was shown to control the FDR in the context of
univariate statistical tests.

The main parameter of the mr-test procedure is the number k of pu-
tative irrelevant variables from which the empirical null rank distribution is
estimated. A small value of £ would result in overoptimistic selections of vari-
ables while a high value of k£ would be too conservative. In our experiments,
k was fixed to 3.

4.2.4 Introduction of random probes
(1Probe and mProbes)

Stoppiglia et al. (2003) suggested to introduce one random feature in order
to compute the probability p; for this random feature to be ranked above or
at the same position as X;. They applied this idea in the context of linear
models where each variable X; is ranked according to the squared cosine
of the angle between X; and the output variable, and where therefore the
distribution of the rank of the random feature can be computed analytically.
However, to be able to apply this approach with any ranking procedure, the
authors suggested in their conclusions to compute the null rank distribution
empirically by artificially introducing random probes. We therefore propose
the following procedure, that we call 1Probe. In each of P iterations, we
introduce in the original learning sample an additional variable X,,,q whose
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values are randomly sampled from A(0,1). We then estimate the p-value p;
by the rate of iterations where X, .,q is ranked above X;. As the p-values
calculated using this procedure are prone to the multiple testing problem,
we propose to correct them using the Benjamini Hochberg procedure, like
in the mr-test procedure. Note that the 1Probe method is parametric, since
the choice of the distribution of the random probe can have an impact on its
rank. The exact impact however depends on the ranking method used®.

Along a similar line, the ACE method (Tuv et al., 2009) introduces as
many random features as there are input variables in the original problem.
Each random feature is generated by permuting the values of one original
variable. The method then assumes that an original variable is irrelevant if
it has a relevance score not statistically higher than that of a random feature.
In the original approach, a t-test is applied to determine the significance of
each variable and the procedure is actually wrapped into a gradient boosting
type algorithm that iteratively selects subsets of important variables. We
propose to use a variant of ACE, that we call mProbes, where instead of
applying a t-test, we simply compute the proportion of simulations where
at least one random feature is ranked above X;. We also drop the gradient
boosting procedure and apply the approach in one single run. The value
associated with X; that is returned by mProbes thus estimates the FWER
when selecting X; and all the variables ranked above X;.

4.2.5 Computational complexity

Although computing time is not a real issue in most applications, Table 4.1
shows the computational complexity of each method. Except err-A and err-
TRT, all the methods have a common parameter P, which is the number of
iterations or permutations. The higher the value of P, the better the (Monte
Carlo) estimate of the FDR/FWER/p-value. P was fixed to 1000 in our
experiments.

Among all methods, the mr-test has the lowest complexity as A is run
on only half of the instances of the learning sample in each iteration. On the
other hand, the eFDR and CER have the highest complexities if one wants
to compute these measures for all m variables. However, as suggested in Sec-
tion 3.7, the computing times of these procedures can be reduced by stopping
them as soon as the eFDR/CER is greater than some significance level. It

IFor example, the distribution of the random probe has no impact on standard trees,
since the test selected at each node only depends on the ordering of the instances derived
from the variables, and not the absolute values of the variables. It has however an impact
on Extra-Trees, because of the randomization of the cut-point.
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Table 4.1: Computational complexity.

Method  Complexity

CER M x P x C4(N,m)

pFDR P x C4(N,m)

eFDR M x P x C4(N,m)

mr-test P x Cu(5,m)

1Probe P x C4(N,m+1)

mProbes P x C4(N,2m)

err-A CA<N,1)—I—CA<N,2)—|—.‘.+CA(N,m)
err-TRT  m x N x log N

P is the number of iterations, M is the number of variables for which one wants to
compute the eFDR/CER, C4(N,m) is the computational complexity of algorithm .4
when applied on a learning sample with N instances and m variables. For Random
Forests, Crr(N,m) = O(y/m.N.log N). For SVMs, Csy s lies between O(m.N?) and
O(m.N3).

is also worth mentioning that all the methods can be easily parallelized on a
computing grid.

4.3 Datasets and protocol

We describe in this section the artificial and real datasets that we used for our
experiments, the performance metrics, and the compared ranking methods.

4.3.1 Artificial datasets

We generated two families of artificial problems to validate the feature selec-
tion methods in a context where relevant variables are perfectly known.

Linear. This is a linear two-class classification problem. All input variables
are continuous and their values are sampled from A(0,1). The output Y is

given by:
p
Y = sgn <Z wZXZ + E) y (44)

i=1
where € is a random noise with zero mean and the values of w; are uniformly
distributed random numbers between 0 and 1. Irrelevant variables, which

63



are pure Gaussian noise, are added to the p relevant variables.

Hypercube. As the artificial problems used in Chapter 3, this two-class
classification problem was generated by adapting the MATLAB® code orig-
inally used to produce the Madelon dataset. All input variables are continu-
ous and their values are sampled from N(0,1). Each class is composed of a
number of Gaussian clusters that are placed at random on the vertices of a
hypercube in a p-dimensional space, where p is the number of relevant vari-
ables. Unlike the previous problem, the decision boundary is thus potentially
non-linear. Irrelevant variables, which are pure Gaussian noise, are added to
these p variables.

4.3.2 Microarray datasets

We performed experiments on three real gene expression datasets. For each
dataset, the goal was to find a subset of genes that helps to discriminate
between two groups of patients.

e Prostate (Dhanasckaran et al., 2001). This dataset contains the ex-
pression levels of 4344 genes in 34 samples from patients with prostate
cancer and 19 samples from men without documented prostate pathol-

ogy.

e Leukemia (Golub et al., 1999). This dataset contains the expression
levels of 7129 genes in 47 samples from patients with acute lymphoblas-
tic leukemia (ALL) and 25 samples from patients with acute myeloid
leukemia (AML).

e Breast (Wang et al., 2005). This dataset contains the expression levels
of ~ 22000 transcripts in 286 samples from patients with lymph-node-
negative breast cancer, of whom 107 developed metastasis during the
five years follow up while 179 were relapse-free.

4.3.3 Performance metrics

Each method returns a subset of features that it considers relevant. In the
context of the artificial datasets where all relevant features are perfectly
known, we used the precision and the recall to evaluate such subset, and we
also compared these metrics to the following values:

® Dnae: the precision of a method (called rec-1) that would select the
first k variables of the ranking, where k is the smallest integer such that
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{X1, Xs,..., X} contains all the truly relevant variables (the recall is
equal to one);

® Tmaz: the recall of a method (called prec-1) that would select the first
k variables of the ranking, where k is the largest integer such that
{X1, Xy, ..., X} contains only truly relevant variables (the precision
is equal to one).

Finally, to evaluate a ranking of variables independently of the choice of a
specific threshold, we used the area under the precision-recall curve (AUPR).

4.3.4 Compared ranking methods

We validated the feature selection methods in the context of three popular
ranking algorithms; two representatives of multivariate techniques and one
standard univariate method:

e Importance measures derived from the Random Forests procedure and
based on sums of entropy reductions. The number K of randomly
selected variables at each node of a tree was fixed to its default value
/m and ensembles of 1000 trees were grown.

e Importance measures derived from a linear support vector machine.
The score s; of feature X; is simply taken as the absolute value of the
coefficient w; associated with the feature in the trained linear model.
For our experiments, we used the LIBSVM library (Chang and Lin,
2011), with the regularization parameter C' of the soft-margin SVM set
to 1 (default value). We normalized the data so that the values of each
variable were comprised between -1 and 1 in the learning sample before
applying the linear SVM.

e The absolute value of the ¢ statistics derived from a t-test.

4.4 Results

4.4.1 Artificial datasets

Comparison of the ranking methods

Figure 4.1 shows the AUPRs of the three ranking procedures (Random
Forests, linear SVM, and t¢-test) on linear and hypercube datasets, as well as
the AUPRs of a method that returns a random ranking for comparison. The
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Figure 4.1: AUPRs of each ranking method, for different numbers of irrelevant
features. Random is a method that randomly ranks the variables. Top on linear datasets,
bottom on hypercube datasets. The AUPR values were averaged over 50 datasets in each

case.

AUPR values were averaged over 50 randomly generated datasets in each
case.

The three ranking methods perform better than the random procedure.
The linear SVM yields the highest AUPRs on the linear datasets, although
the t-test performs equally well for a high number of irrelevant features. On
the (non-linear) hypercube datasets, the Random Forests procedure is the
best performer.

Notice that the mr-test, 1Probe, and mProbes procedures each compute
a statistical measure (p-value or FWER) associated with each variable Xj.
These three methods thus potentially modify the original variable ranking
by re-ordering the features according to the corresponding statistical mea-
sure. Nevertheless, the new rankings do not change much with respect to
the original ranking. The corresponding AUPRs hardly vary, as shown in
Figures A.1, A.2, and A.3 of Appendix A.2. On the other hand, the CER,
pFDR, and eFDR procedures each estimate a statistic that corresponds to
an importance score s; rather than to a variable in itself. Therefore, the vari-
ables can not be re-ordered according to this statistic, and the monotonicity
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of the estimated measures is enforced instead (see the pseudo-codes in Ap-
pendix A.1). The enforced monotonicity ensures that a variable X; can be
selected only if all the variables ranked above X; are also selected.

Interpretability of the curves

Figure 4.2(a) plots the curves of the different methods on a linear dataset
with 20 relevant features. The Random Forests method was used as rank-
ing procedure. At each rank ¢, we show the relevance score derived from
the Random Forests, as well as the observed FDR, i.e. the proportion of
truly irrelevant features among the ¢ top-ranked variables. Nearly identical
observed FDR curves are obtained when the variables are ranked using mr-
test, 1Probe, and mProbes (see Figure A.4). Therefore, only the observed
FDR related to the original ranking is plotted in Figure 4.2, for the sake of
clarity.

We can see that selecting the variables based solely on the original rel-
evance score is difficult as this score does not suggest any clear threshold
(dashed curve in the top of Figure 4.2(a)). On the other hand, almost all
studied methods successfully help to select variables. CER and mProbes
provide a good estimation of the FWER as the transition between low and
high CER/mProbes values is quite well centered at the point where irrele-
vant variables start appearing in the ranking (indicated by the observed FDR
which becomes greater than zero). The pFDR overestimates the real FDR, as
already observed in the results presented in Section 3.4 of Chapter 3, while
the eFDR is closer to it. CER, pFDR, mr-test, and mProbes tend to be
highly conservative, as their curves increase while the observed FDR is still
equal to zero. By contrast, the values returned by eFDR and 1Probe become
high only when larger subsets of top-ranked variables are considered. err-RF
and err-TRT both select a high number of false positives. The minimal error
rate of err-RF is obtained when the observed FDR is around 0.6, meaning
that 60% of the selected variables are false positives, while, as expected, err-
TRT selects fewer variables. Unlike the other methods, err-RF and err-TRT
do not clearly highlight a threshold on the ranking. The error rate does not
seem to be affected much by the introduction of irrelevant variables, resulting
in rather flat curves.

The different methods generate similar curves when applied on a hy-
percube dataset (Figure A.5) and when the linear SVM is used as ranking
procedure instead of the Random Forests (Figures A.6 and A.7).
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Figure 4.2: Curves of the different methods on a linear dataset. We used (a)
the Random Forests and (b) the t-test as ranking methods. score is the relevance score
derived from the Random Forests (a) or the absolute value of the statistic ¢ derived from
the t-test (b). obs. FDR is the observed FDR. The dashed blue (resp. plain red) vertical

line indicates the position of the lowest error rate for err-RF (resp. err-TRT).

Precision and recall of the methods

Figure 4.3 shows the precision and the recall of the methods on linear datasets,
for different numbers of irrelevant variables. The Random Forests algorithm
was used as ranking procedure and a significance level a = 0.05 was chosen
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Figure 4.3: Precision and recall on linear datasets, for different numbers of
irrelevant features. We used the Random Forests algorithm as ranking method and

a = 0.05. The precision and recall values were averaged over 50 datasets in each case.

(we used this significance level in all our experiments). The precision and
recall values were averaged over 50 datasets in each case.

When the number of irrelevant variables increases, the recall of each
method decreases. As already observed from the curves, CER, pFDR, mr-
test, and mProbes are rather conservative. The precision of these methods
remains always almost at its highest value and their recall never reaches the
recall 7,4, of the prec-1 method. On the other side, eFDR and 1Probe trade
some precision, which remains nevertheless high, for a recall that is higher
and close to 7r,4,. err-RF and err-TRT obtain the highest recall values but
also the lowest precision levels. Moreover these precision levels clearly de-
crease when the number of irrelevant variables increases. err-TRT tends to
select fewer variables than err-RF and has therefore a higher precision. Sim-
ilar results are observed on hypercube datasets (Figure A.8) and when SVM
is used as ranking procedure (Figures A.9 and A.10).

When we increase the number of instances in the learning samples, the
recall of all the methods increases, as well as the precision of err-RF/SVM
and err-TRT (see Figures 4.4, A.11, A.12, and A.13). We again observe three
families of methods: those having a high precision and a recall lower than
Tmaz (CER, pFDR, mr-test, and mProbes), those having a high precision and
a recall close to 7,4, (eEFDR and 1Probe), and those with a lower precision
and a recall higher than 7,4, (err-A and err-TRT).
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Figure 4.4: Precision and recall on linear datasets, for different numbers of
instances. We used the Random Forests algorithm as ranking method and a = 0.05.

The precision and recall values were averaged over 50 datasets in each case.
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Figure 4.5: Precision and recall on linear datasets. We used the t-test as ranking

method and a = 0.05. The precision and recall values were averaged over 50 datasets.

Univariate rankings

Figures 4.2(b) and 4.5 show respectively the score curves and precision /recall
values of each method, when the relevance score of a variable is the absolute
value of the statistic ¢ computed by a t-test. All the results are similar to
those obtained with a multivariate ranking method except for the pFDR
which, when used with a t-test, provides a much better estimation of the real
FDR (see Figure 4.2(b)) and has a recall equal to 7,4, while having a high
precision (see Figure 4.5) .
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4.4.2 Microarray datasets

In order to highlight the behavior of the different feature selection methods
on real problems where the number of variables is much higher than the
number of instances, we applied them on the three gene expression datasets
described in Section 4.3.2.

On each problem, the number of genes selected by one method depends
considerably on the chosen ranking procedure (see Table 4.2). For most
methods, using the linear SVM leads to selections of empty subsets of genes
while intermediate and large subsets are selected with the Random Forests
and the t-test respectively. Compared to the artificial problems, the largest
subsets are no longer obtained by err-A4 and err-TRT. These two methods
select relatively small numbers of genes because the error rate e; of a predic-
tive model that uses only the 7 top-ranked genes is typically equal to zero for
a low value of i (see Figure A.14 for the results with the linear SVM). This
can be explained by the low number of instances compared to the number of
genes and the fact that the error rate was estimated on instances that were
also used to compute the gene ranking (the so-called selection bias, Ambroise
and McLachlan, 2002). On the prostate and leukemia datasets, the largest
subsets of genes are obtained by pFDR, eFDR, and 1Probe (used with a
t-test). On the breast dataset, CER, pFDR, eFDR, mr-test, 1Probe, and
mProbes select empty subsets when they are used with the Random Forests
or the linear SVM, while with the t-test, they select subsets that are clearly
smaller than those obtained on the prostate and leukemia datasets. These
results can be explained by the fact that all these methods provide a cor-
rection for multiple testing and, as the breast dataset contains a very high
number of genes, the correction is so strong that very few of them appear
relevant.

Given a feature selection method and a ranking algorithm A, the number
of selected genes can also vary depending on the tuning of the parameters
of A. As an example, one parameter of Random Forests is the number 7' of
trees that are grown in an ensemble. Increasing 7" from 1000 to 10000 results
in larger subsets of selected genes for all the methods except err-RF and err-
TRT (see Table 4.3). We already observed this phenomenon for the pFDR
and the CER, on the Apo dataset in Section 3.6. Due to the very high ratio
between the number of variables and the number of samples, the random
trees, and thus the corresponding rankings, are highly unstable. Averaging
a very large number of trees results in a stabilization and an improvement of
the feature ranking, and thus the possibility to select more variables without
including any false positive. However, in spite of this improvement, err-RF
and err-TRT do not select more genes, meaning that the error rate would
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Table 4.2: Number of selected genes (o = 0.05).

Prostate Leukemia Breast
REF SVM t-test RF SVM t-test RF SVM t¢-test
CER 58 0 391 47 0 152 0 0 3
pFDR 73 0 1499 83 0 1139 0 0 155
eFDR 391 0 1608 340 O 1047 0 0 127
mr-test 18 0 563 8 5 150 0 0 0
1Probe 54 0 1608 61 7 981 0 4 543
mProbes 91 0 350 63 10 145 0 0 3
err-A 5 8 — 26 37 — 30 436 -
err-TRT 3 12 112 46 123 62 110 13 209

Table 4.3: Number of selected genes with Random Forests on the prostate
dataset (a = 0.05).

T CER pFDR eFDR mr-test 1Probe mProbes err-RF err-TRT
1000 58 73 391 18 54 91 5 3
10000 136 88 668 193 444 215 4 3

T is the number of grown trees in an ensemble.

not be a relevant criterion to assess the quality of subsets of variables.

Finally, to highlight the behavior of the methods on a problem where
none of the variables is truly relevant, we created a new dataset by randomly
permuting the output values in the prostate dataset. Table 4.4 shows that
the number of selected genes (averaged over 50 permuted datasets) is close to
zero for CER, pFDR, eFDR, mr-test, 1Probe, and mProbes, while err-A and
err-TRT both select a non negligible subset of false positives (they actually
select more features than on the original dataset).

4.5 Conclusion
In this chapter, we evaluated several procedures that aim to identify, from

a ranking, the maximal subset of variables that truly provide some informa-
tion about an output variable. These procedures assume that a (multivariate)
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Table 4.4: Average number of selected genes on permuted prostate datasets
(a0 =0.05).

CER pFDR eFDR mr-test 1Probe mProbes err-A err-TRT

REF  0.04 0.08 0.08 0 1.36 0.04  29.28 20.80
SVM 0.08 0.1 0.08 0 0.08 0 7772 24.92
t-test 0.16 3.46  2.70 0 6.34 0.14 - 44.74

ranking method A was first used to compute a relevance score for each vari-
able of the considered problem and then extract relevant features from this
ranking, by replacing the original relevance score with a measure that can be
interpreted in a statistical way. Depending of the procedure, this measure
is either the generalization error of a predictive model (err-A and err-TRT),
the false discovery rate (pFDR, eFDR), the family wise error rate (CER,
mProbes), or a p-value (mr-test, 1Probe).

Among the feature selection methods that we evaluated, err-A and err-
TRT are the only ones that do not require to choose a significance level a
priori. However on artificial problems, they always had the lowest precision
among all methods and, on the permuted prostate datasets, they selected
non negligible subsets of variables although none of them was truly relevant.
Prediction performance thus does not appear to be an appropriate measure
for the identification of relevant features.

The other methods all have a very high precision. One can distinguish
highly conservative methods that avoid the inclusion of any irrelevant feature
as much as possible (CER, pFDR, mr-test, and mProbes) and less stringent
methods that trade some precision for a higher recall (eFDR and 1Probe).
The choice between these two compromises clearly depends on the applica-
tion. Among the more conservative methods, mr-test has the disadvantage of
requiring the determination of an additional parameter k, which introduces
some dependency with respect to the problem and ranking method used (al-
though our default choice seems to be robust). The pFDR method is the
simplest one but was shown to overestimate the real FDR in case of depen-
dent scores. CER and mProbes reach a similar compromise. mProbes has a
computational advantage over the CER method while this latter has a nice
interpretation when the scores are derived from univariate scores. Among
the less conservative methods, 1Probe has a clear advantage over the eFDR
method in terms of computing times and is also conceptually much simpler.
However, the variables selected by this method depend on the chosen dis-
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tribution of the random probe, which makes it a parametric method. To
conclude, our advice would be to use mProbes or CER when a very stringent
method is needed, and eFDR otherwise.
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Closure of Part I1

This chapter summarizes our contributions to feature selection, as well as
the main conclusions that can be drawn from our empirical studies. We also
give some directions for future research.

Contents
5.1 Contributions . . . . . . . .. ... ... 0., 77
5.2 Future research directions ... ... ... .. .. 78
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5.1 Contributions

The work described in this part of the thesis was related to the problem of
selecting relevant features from a variable ranking returned by a machine
learning algorithm. This ranking is typically derived from a relevance score
computed for each variable. However, because this relevance score is usually
not statistically interpretable, choosing a threshold on this score, above which
the variables are deemed relevant, is not an easy task.

To select features from such ranking, we proposed a procedure that re-
places the variable relevance score with a statistical measure called the con-
ditional error rate (CER). This procedure is based on a permutation scheme
that specifically takes into account the fact that the relevance scores of the
different variables are dependent on each other. While there is still a need
to determine a threshold on the CER to select variables, the determination
of this threshold is easier because this measure can be interpreted in a sta-
tistical way. Furthermore, the threshold is not dependent anymore on the
considered problem and on the ranking method.

We performed a large-scale evaluation of the CER procedure and of other
methods that also replace the relevance scores derived from a machine learn-
ing algorithm with statistically interpretable measures. These methods are
either existing methods of the literature (pFDR, err-A, mr-test) or novel
methods inspired from existing ones (eFDR, 1Probe, mProbes). The pFDR
and eFDR procedures rely on permutations of the data, err-A computes the
generalization error of predictive models, the mr-test estimates the distribu-
tion of the rank of an irrelevant variable, and 1Probe and mProbes are based
on the introduction of one and several random features respectively.

All the methods, except the ones based on the generalization error (err-
A and err-TRT), have a very high precision when selecting variables from a
ranking. One can distinguish highly conservative methods (CER, pFDR, mr-
test, and mProbes) and less stringent methods that trade some precision for a
higher recall (eFDR and 1Probe). The choice between these two compromises
clearly depends on the application.

The methods that exploit the generalization error are the only ones that
do not require to choose a significance level a priori. They actually allow to
automatically select a threshold on a feature ranking. However our exper-
iments on artificial data showed that these methods usually select subsets
of features with a low precision. Prediction performance thus does not ap-
pear to be an appropriate measure for the identification of relevant features.
This is also supported by experiments in the second part of the thesis (see
Section 6.5).
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5.2 Future research directions

Our experiments on the microarray datasets highlighted that the number of
selected variables depends strongly on the precise values of the parameters
of the ranking algorithm. For example, increasing the number of trees of
the Random Forests method allows the different feature selection methods
to select more genes (Table 4.3). It would thus be of great interest to find
a way to automatically tune the parameters of the ranking algorithm. Re-
cently, a great interest has raised for the procedures that evaluate feature
selection methods by an analysis of their stability (see e.g. Abeel et al.,
2010). The rationale behind such stability analysis is that a good feature
selection technique should select (nearly) the same subsets of features when
small changes are made to the dataset. However, stability in itself is not a
sufficient criterion for evaluating a subset of features, since a stable subset
does not necessarily mean that all the features within this subset are relevant.
Hence stability must be analyzed together with another quality criterion such
as the predictive performance. An alternative to the stability analysis could
be provided by the number of variables that are returned by the feature se-
lection methods evaluated in this part of the thesis. Indeed, a higher number
of variables with a low FDR or FWER indicates that it is more unlikely that
an irrelevant variable reaches the top of the feature ranking, and hence that
the ranking is more stable. In the future, we thus plan to explore further the
use of the number of selected variables to tune the parameters of a ranking
algorithm, independently of any consideration about predictive performance.

In this part of the thesis, we focused on the problem of finding all the
relevant variables from a ranking. However, there exist some problems in
which all the variables are relevant. For example, in the context of gene
regulatory network inference, each gene of a network is actually regulated,
either directly or indirectly, by all the other genes. The goal is then rather
to identify its direct regulators. More generally, the problem consists in de-
termining a minimal subset of relevant variables, such that no other variable
conveys complementary information about the target conditionally to these
variables (the so-called Markov boundary, Pearl; 1988). The adaptation of
our procedures to solve this problem would be an interesting direction of
future research.

Finally, although our goal was not to compare the different ranking meth-
ods, we observed from our experiments that a quite different subset of selected
features could be obtained depending on the ranking method used. For ex-
ample, on the microarray datasets, more significant variables are found with
the t-test than with the Random Forests (Table 4.2). One could then wonder
about the intrinsic differences that exist between these two ranking proce-
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dures. Therefore, as future work, we would like to compare the rankings
derived from the different methods, and check in which cases machine learn-
ing algorithms really have an advantage over simpler univariate procedures.
Haury et al. (2011a) already proposed one such study, but they did not in-
clude the Random Forests in their evaluation.

79



Part 111

Network inference






GENIE3: GEne Network Inference
with Ensemble of trees

This chapter focuses on GENIE3, a new algorithm for the inference of
gene regulatory networks from static steady-state expression data. GENIES,
which is based on feature selection with tree-based ensemble methods, was
best performer in the DREAM4 and DREAMS5 challenges (Marbach et al.,
2012, 2010, 2009; Prill et al., 2010). The algorithm decomposes the predic-
tion of a regulatory network of p genes into p regression problems. In each
of the regression problems, the expression pattern of one of the genes (target
gene) is predicted from the expression pattern of all the other genes (input
genes), using tree-based methods. The importance of an input gene in the
prediction of the target gene expression pattern is taken as an indication of a
putative regulatory link. GENIE3 is simple and generic, making it adaptable
to other types of genomic data and interactions. The chapter is organized in
the following way. First, Section 6.1 consists in an overview of the currently
existing network inference methods. Section 6.2 describes the GENIE3 al-
gorithm. Section 6.3 presents the DREAM challenges. Section 6.4 shows
the results obtained with GENIE3 on these challenges as well as on the M3P
E. coli dataset. Finally Section 6.5 concludes the chapter and discusses some
ideas for further developments.
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6.1 Background

Genetic regulatory networks (GRNs) (Bolouri, 2008) are central to all bi-
ological organisms, and their deciphering is crucial to understand the de-
velopment, functioning, and pathology of these organisms. Once a remote
theoretical possibility, this deciphering is now made possible by advances in
genomics, most notably high-throughput profiling of gene expression patterns
with DNA microarrays. These advances have prompted the development of
a plethora of models of GRNs and algorithms to reverse-engineer them from
expression data (Bansal et al., 2007; Gardner and Faith, 2005; Lee and Tzou,
2009; Markowetz and Spang, 2007).

The simplest models of genetic regulatory networks are based on Boolean
logic. Because of their simplicity, these Boolean network models have pro-
vided high-level insights into the design principles and emerging properties
of GRNs (Kauffman, 1993). At the other end of the complexity spectrum
are physical models mimicking the biological mechanisms at play, including
promoter recognition, mRNA transcription, and protein translation. These
models, typically based on systems of ordinary or stochastic differential equa-
tions, can generate realistic behavior (Gardner et al., 2003). One of their
main drawbacks is that they have high-dimensional parameter spaces, and
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thus a large number of experimental data are needed for their identification.
Nevertheless, hybrid methods involving ordinary differential equations have
shown good performances on real-life genome-wide GRN inference (Bonneau
et al., 2006).

Models based on the statistical analysis of dependencies between expres-
sion patterns have an intermediate complexity, and have already been suc-
cessfully applied to the inference of large GRNs. Early models used corre-
lation coefficients between expression patterns of all pairs of genes to infer
“coexpression networks” (Eisen et al., 1998). However, correlation coeffi-
cients fail to capture more complex statistical dependencies (e.g. non-linear
ones) between expression patterns, and thus more general measures of depen-
dency based on mutual information (MI), have been proposed. The simplest
model based on this measure, the “relevance network”, computes MI between
all pairs of genes and infers the presence of a regulatory interaction when MI
is larger than a given threshold (Butte and Kohane, 2000). Various refine-
ments have been proposed to try to discriminate between direct and indirect
interactions in relevance networks. The CLR algorithm (Faith et al., 2007a)
modifies the MI score based on the empirical distribution of all MI scores.
The ARACNE algorithm (Margolin et al., 2006b) filters out indirect interac-
tions from triplets of genes with the Data Processing Inequality (Cover and
Thomas, 2006). Finally, MRNET (Meyer et al., 2007) uses an iterative fea-
ture selection method based on a maximum relevance/minimum redundancy
criterion.

Probabilistic graphical models have been widely used to model GRNs
(Friedman, 2004). With respect to correlation or mutual information-based
approaches, these methods are potentially able to model higher-order de-
pendencies between the expression patterns of genes. Among these methods,
Bayesian networks have been used since the advent of microarray technologies
for GRN modeling and inference (Friedman et al., 2000). A Bayesian net-
work represents conditional independencies between random variables with a
directed acyclic graph. Learning the structure of a Bayesian network is a non
trivial problem (Auvray and Wehenkel, 2002; Chickering et al., 2004), both
from a theoretical and computational point of view, and several sophisti-
cated heuristics have been proposed in the context of GRN inference (Auliac
et al., 2008; Yu et al., 2004). One limitation of Bayesian networks for GRN
inference is that these models do not allow the presence of cycles (feedback
loops). While this limitation is partially circumvented by dynamic Bayesian
networks (Perrin et al., 2003; Yu et al., 2004), these latter models can only
be learned from time series expression data. Another family of probabilistic
models that gained interest recently for GRN inference are Gaussian graph-
ical models. These methods assume that gene expression values are jointly

84



Gaussian distributed and represent conditional independencies between genes
by an undirected graph. The estimation of this graph for high-dimensional
data is difficult but several robust solutions have been proposed in the liter-
ature (Ambroise et al., 2009; Castelo and Roverato, 2009; Meinshausen and
Biithlmann, 2006; Schéfer and Strimmer, 2005). Although often very effec-
tive, the main limitations of these methods are of course the Gaussianity
assumption, which also implies linear dependencies between variables, and
the undirected nature of the inferred regulatory links (although some heuris-
tics have been proposed to direct them, Opgen-Rhein and Strimmer, 2007).

Within this context, we have developed a new GRN inference method
based on variable selection with ensembles of regression trees. This method
is called GENIE3 (for “GEne Network Inference with Ensemble of trees”) and
was best performer in the DREAM4 In Silico Multifactorial challenge in 2009
and in the DREAMS Network Inference challenge in 2010. Its main features
with respect to existing techniques are that it makes very few assumptions
about the nature of the relationships between the variables (which can thus be
non-linear) and can potentially capture high-order conditional dependencies
between expression patterns. It also produces a directed graph of regulatory
interactions and naturally allows the presence of feedback loops in the net-
work. At the same time, it remains intuitive, computationally tractable, and
easy to implement.

6.2 GENIE3

In this chapter, we focus on the unsupervised inference of gene regulatory
networks from steady-state expression data. These data are obtained either
from perturbation experiments or from observational experiments. A per-
turbation experiment consists in affecting the expression level of one or sev-
eral gene(s) of the network. Examples of perturbation experiments comprise
the knockout or overexpression of a gene, or the application of a drug. By
contrast, observational experiments consist in observing the system without
perturbing it. Observational data might correspond for example to expres-
sion profiles obtained from different patients or biological replicates. Such
data are easier and less expensive to obtain than perturbation data and are
thus more common in practice (Maathuis et al., 2010). However, they are
also less informative for the prediction of edge directionality (Maathuis et al.,
2010; Pournara and Wernisch, 2004; Werhli et al., 2006) and therefore make
the regulatory network inference task more challenging.

In Chapter 8, we describe how GENIE3 can be extended to other types
of data, in particular expression data provided by time series experiments
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and genetical genomics data.
In what follows, we define a (steady-state) learning sample from which to
infer the network as a sample of N measurements:

LS = {x1,X2,...,Xn}, (6.1)
where x, € RP. k= 1,..., N is the vector of expression values of all p genes
in the kth experiment:

xi, = (zh,23,...,2})7.

The goal of a network inference algorithm is to exploit the expression dataset
LS to assign weights w; ; > 0, (4,7 = 1,...,p) to putative regulatory links
from any gene ¢ to any gene j, with the aim of yielding larger values for
weights that correspond to actual regulatory interactions. We consider di-
rected and unsigned edges, which means that w; ; can take a different value
than w;;, and when gene ¢ is connected to gene j, the former can be either
an activator or a repressor of the latter. Note that in this thesis, we leave
open the problem of choosing a threshold on the weights, in order to obtain
a practical network, and focus on providing a ranking of the regulatory links.

To solve the network inference problem, the basic idea of our procedure
is to decompose the problem of recovering a network involving p genes into
p different subproblems, where each of these subproblems consists in iden-
tifying the regulators of one of the genes of the network. This idea has
been exploited in other methods, such as MRNET (Meyer et al., 2007) or
the Graphical Lasso (Meinshausen and Biithlmann, 2006). Using expression
data, the identification of the regulatory genes for a given target gene is de-
fined as determining the subset of genes whose expression directly influences
or is predictive of the expression of the target gene. Within the framework
of supervised learning, this problem is equivalent to a feature selection prob-
lem. In this context, our solution exploits the embedded feature ranking
mechanism of tree-based ensemble methods.

We first describe our procedure to solve the network inference problem
using feature selection techniques and then specialize it to the case of tree-
based ensemble methods.

6.2.1 Network inference as a feature selection problem

Our method makes the assumption that the expression of each gene in a given
condition is a function of the expression of the other genes in the network in
the same condition (plus some random noise). Denoting by X,;j the vector
containing the expression values in the kth experiment of all genes except
gene j:
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1 Jj=1 _j+1 P\T
x,) = (xp,...,% 2 ..., %))

)

we can write: ' '
vy, = fi(x") + e, VE, (6.2)

where ¢, is a random noise with zero mean (conditionally to X,;j ). We further
make the assumption that the function f; only exploits the expression in x
of the genes that are direct regulators of gene 7, i.e. genes that are directly
connected to gene 7 in the targeted network. Recovering the regulatory links
pointing to gene j thus amounts to finding those genes whose expression is
predictive of the expression of the target gene. In machine learning terminol-
ogy, this can be considered as a feature selection problem (in regression) for
which many solutions exist (see Section 1.3). We assume here the use of a
feature ranking technique that, instead of directly returning a feature subset,
yields a ranking of the features from the most relevant to the less relevant
for predicting the output.

The proposed network inference procedure is illustrated in Figure 6.1 and
works as follows:

e For j =1 to p:
— Generate the learning sample of input-output pairs for gene j:

LS ={(x,”,2]),k=1,...,N}. (6.3)

— Use a feature ranking technique on LS? to compute confidence
levels w; j, Vi # j, for all genes except gene j itself.

e Combine the p individual gene rankings to get a global ranking of all
regulatory links.

Note that depending on the interpretation of the weights w; ;, their com-
bination to get a global ranking of regulatory links is not trivial. We will
see in the context of tree-based methods that it requires to normalize each
expression vector appropriately.

6.2.2 Gene ranking with tree-based methods

The nature of the problem and the proposed solution put some constraints
on candidate feature selection techniques. The nature of the functions f; is
unknown but they are expected to involve the expression of several genes
(combinatorial regulation) and to be non-linear. The number of input fea-
tures in each of these problems is typically much greater than the number of
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Figure 6.1: GENIES3 procedure. For each gene j = 1,...,p, a learning sample LS’
is generated with expression levels of j as output values and expression levels of all other
genes as input values. A function f; is learned from LS7 and a local ranking of all genes
except j is computed. The p local rankings are then combined to get a global ranking of

all regulatory links.

observations. Computationally, since the identification of a network involving
p genes requires to rerun the algorithm p times, it is also of interest for this
algorithm to be fast and to require as few manual tuning as possible. Tree-
based ensemble methods, such as Random Forests or Extra-Trees, are good
candidates for that purpose. These methods do not make any assumption
about the nature of the target function, can potentially deal with interacting
features and non-linearity. They work well in the presence of a large number
of features, are fast to compute, scalable, and essentially parameter-free.

6.2.3 Regulatory link ranking

In the GENIE3 procedure, a predictive model f; in the form of an ensemble
of trees is learned from LS7, for each target gene j. Each tree-based model
yields a separate ranking of the genes as potential regulators of a target
gene j, derived from importance scores w;; computed as sums of variance
reductions in the form (2.12). As explained in Section 2.2.4, the sum of the
importance scores of all input variables for a tree is usually very close to the
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initial total variance of the output:

Z w; ; ~ N.Var;(LS"), (6.4)
i#]
where LS is the learning sample from which the tree was built (i.e. LS’
for the Extra-Trees method and a bootstrap sample for the Random Forests
method) and where Var;(LS") is the variance of the target gene j estimated
in the corresponding learning sample. As a consequence, if we trivially order
the regulatory links according to the weights wj; ;, this is likely to introduce a
positive bias for regulatory links towards the more highly variable genes. To
avoid this bias, we first normalize the gene expressions so that they all have
a unit variance in the training set, before applying the tree-based ensemble
methods: .
. xJ
x) — —, Yy, (6.5)
ol
where x7 € R¥ is the vector of expression levels of gene j in all N experiments
and o7 denotes its standard deviation. This normalization indeed implies that
the different weights inferred from different models predicting the different
gene expressions are comparable.

6.2.4 Computational complexity

The computational complexity of the Random Forests and Extra-Trees al-
gorithms is on the order of O(T K Nlog N), where T is the number of trees,
N is the learning sample size, and K is the number of randomly selected
genes at each node of a tree. GENIE3’s complexity is thus on the order of
O(pT KN log N) since it requires to build an ensemble of trees for each of
the p genes. The complexity of the whole procedure is thus log linear with
respect to the number of measurements and, at worst, quadratic with respect
to the number of genes (when K =p —1).

To give an idea of the computing times, with our MATLAB® imple-
mentation of GENIE3, it takes 6.5 minutes to infer the five networks of the
DREAM4 Multifactorial challenge and 24 hours to infer the E. coli network
of the DREAMS5 challenge (with known transcription factors), in both cases
with Random Forests and K = /nrp, where nyp is the number of poten-
tial regulators (see Section 6.4 for the details of these experiments). These
computing times were measured on a 16GB RAM, Intel 15420 2.50 GHz
computer.

Note that, if needed, the algorithm can be easily parallelized as the p
feature selection problems, as well as the different trees in an ensemble, are
independent of each other.
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6.2.5 Software availability

Our GENIE3 software is available from http://www.montefiore.ulg.ac.
be/~huynh-thu/software.html.

6.3 The DREAM challenges

The Dialogue for Reverse Engineering Assessments and Methods (DREAM)
initiative organizes an annual reverse engineering competition that comprises
several challenges’ (Marbach et al., 2012; Prill et al., 2010; Stolovitzky et al.,
2007, 2009). One of these challenges aims to evaluate the success of gene reg-
ulatory network inference algorithms on benchmarks of simulated and real
data, in a double-blind way. Figure 6.2 illustrates the double-blind assess-
ment procedure (using synthetic networks and data). For such a network
inference challenge, the DREAM organizers typically generate or collect sev-
eral gene expression datasets which are then provided to the participating
teams. The goal of the challenge is, for each dataset, to provide a prediction
of the underlying regulatory network, in the form of a list of all the poten-
tial (directed) regulatory links, ranked from the most to the less confident.
Knowing the true networks (called gold standards), the organizers propose
different statistics to evaluate a ranking of regulatory links corresponding to
a network:

e AUPR: The area under the precision-recall (PR) curve;

e AUROC: The area under the receiver operating characteristic (ROC)
curve;

e AUPR p-value: The probability that a given or larger AUPR is ob-
tained by a random ranking of the potential network edges;

e AUROC p-value: The probability that a given or larger AUROC is
obtained by a random ranking of the potential network edges.

Finally, to evaluate the performance of an algorithm on several networks, an
overall score is used:

overall score = —0.5log,(p1p2), (6.6)

where p; and p, are respectively the geometric means of AUPR p-values and
AUROC p-values computed over the different networks. Thus, the higher
the overall score, the better the performance of the algorithm.

"http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project, http:
//www.the-dream-project.org/
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Figure 6.2: Workflow of a network inference challenge of DREAM. A. Several
artificial gene regulatory networks are generated. B. Expression data are simulated from
the artificial networks and provided to the challenge participants. C. Participants, being
blind to the true networks, are asked to recover them from the provided data. D. and E.
The organizers of the challenge evaluate the predictions of each participant, being blind

to the inference algorithm that generated them. Figure taken from Marbach et al. (2010).

Note that the AUPR and AUROC p-values can be computed in different
ways, depending on how a random ranking is defined. For the DREAM3
and DREAM4 editions, the organizers calculated the AUPR and AUROC
scores for a large number of completely random orderings of the network
edges and fitted the resulting histograms using stretched exponentials to
obtain the null distributions (Stolovitzky et al., 2009). For the DREAMb5
challenge, the procedure for generating a random ranking was a bit different.
In this procedure, the edge at each position k in one “random” ranking is
randomly chosen among the edges that are ranked at the kth position in
the rankings submitted by the challenge participants (Marbach et al., 2012).
Therefore, a p-value calculated using the first described procedure indicates
the performance of a method compared to a random method, whereas a p-
value calculated using the second procedure indicates its relative performance
compared to the methods of the other challengers.
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6.4 Results

We report below three series of experiments: first on the DREAM4 In Sil-
ico Multifactorial challenge, then on the M3P Escherichia coli dataset, and
finally on the DREAMS Network Inference challenge.

6.4.1 The DREAMA4 Multifactorial challenge
Challenge

The network inference challenge of the DREAM4 edition concerned in silico
regulatory networks?. This challenge was divided into three sub-challenges,
called In Silico Size 10, In Silico Size 100, and In Silico Size 100 Multifac-
torial. We only report here our results on this last sub-challenge. Results
on the first two sub-challenges, which comprise time series experiments, are
presented in Chapter 8.

The goal of the In Silico Size 100 Multifactorial sub-challenge was to
infer five networks of p = 100 genes, each from multifactorial perturbation
data. Multifactorial data are defined as static steady-state expression profiles
resulting from slight perturbations of all genes simultaneously, and hence can
be seen as observational data.

All networks and data were generated with GeneNetWeaver® (GNW, ver-
sion 2.0) (Marbach et al., 2009; Schaffter et al., 2011). Network topologies
were obtained by extracting subnetworks from the transcriptional regulatory
networks of E. coli and S. cerevisiae. The subnetwork extraction method
was adapted to preferentially include parts of the network with cycles but
direct self-interactions were removed. The dynamics of the networks were
simulated using a detailed kinetic model of gene regulation. Noise was added
both in the dynamics of the networks and on the measurements of expression
data. Multifactorial perturbations were simulated by slightly increasing or
decreasing the basal activation of all genes of the network simultaneously by
different random amounts. In total, the number of expression conditions N
for each network was set to 100.

Predictions with GENIE3

We took part in the DREAM4 In Silico Multifactorial challenge. At the
time of submission, the gold standard networks were unknown and it was
thus impossible to choose the best one among several tree-based methods

Zhttp://wiki.c2b2.columbia.edu/dream/index.php/D4c2
3http://gnw.sourceforge.net/genenetweaver.html
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Table 6.1: AUPR and AUROC scores for the DREAM4 Multifactorial chal-
lenge.

Method NET1 NET2 NET3 NET4 NET5
AUPR  GENIE3-RF-sqrt  0.154  0.155 0.231  0.208 0.197
2nd best 0.108 0.147 0.185 0.161 0.111
AUROC GENIE3-RF-sqrt  0.745 0.733  0.775 0.791  0.798
2nd best 0.739 0.694 0.748 0.736  0.745

GENIE3-RF-sqrt: GENIE3 using Random Forests with K = y/p — 1 and 7' = 1000. 2nd
best: Second best performer in the DREAM4 Multifactorial challenge.

Table 6.2: AUPR and AUROC p-values for the DREAM4 Multifactorial
challenge.

Method NET1 NET2 NET3 NET4 NET5 Overall p-value
AUPR p-value GENIE3-RF-sqrt  3.3e-34  7.9e-54 1.8e-54  5.5e-47  4.6e-44 1.0e-46
2nd best 5.6e-23  9.7e-50 6.6e-43  1.5e-35 4.4e-23 7.4e-35
AUROC p-value GENIE3-RF-sqrt  3.3e-18 1.1e-28 9.7¢-34  6.7e-33  1.9e¢-34 1.4e-29
2nd best 1.7e-17  5.4e-21  4.9e-28 1.9e-23 1.1le-24 6.3e-23

GENIE3-RF-sqrt: GENIE3 using Random Forests with K = y/p — 1 and 7" = 1000. 2nd
best: Second best performer in the DREAM4 Multifactorial challenge.

at our disposal. We thus submitted the rankings obtained by our GENIE3
procedure using the Random Forests algorithm with the default parameter
K = /p—1 and growing T = 1000 trees".

Among twelve challengers, GENIE3 got the best performance with an
overall score of 37.428. As a comparison, the score of the first runner-up was
28.165.

Table 6.1 shows the AUPR and AUROC values of our predictions and
those of the first runner-up, and Table 6.2 shows their associated p-values,
indicating that our predictions are significantly better than random guessing.
On all networks, these scores are the highest among the twelve challengers.
Individual PR and ROC curves for each network are collected in Figure B.1
in Appendix B.

4We used this value of T in all the experiments presented in this chapter.
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Table 6.3: Overall scores of GENIE3 for the DREAM4 networks.

RF-sqrt RF-all ET-sqrt ET-all
Overall score 37.428 40.471 35.881 40.111

RF: Random Forests, ET: Extra-Trees, sqrt: K =+/p—1,all: K =p—1.

Comparison of tree-based methods

We have subsequently applied GENIE3 on these same datasets, using the
Extra-Trees algorithm, and also setting K to its maximum value (K = p—1).
Table 6.3 shows the overall scores obtained with the four different combina-
tions. The Random Forests and the Extra-Trees algorithms give comparable
results, and the predictions are improved when the parameter K is increased,
i.e. when the randomization is reduced. The overall best result is achieved
when we use Random Forests with X' = p—1, giving an overall score equal to
40.471. This result is slightly better than our initial submission to the chal-
lenge. Unless otherwise stated, all subsequent experiments on the DREAM4
datasets were carried out with this particular setting. Note that in this case,
the algorithm simply corresponds to the Bagging method applied on standard
regression trees.

Detailed analysis of the predictions

To have a more precise picture of the quality of the predictions obtained with
GENIE3, Figure 6.3 depicts the ranking of the true regulators for all genes
(genes are grouped according to their number of regulators), for the third
network which is predicted with the highest AUPR score by our method.
Similar plots for the other networks can be found in Figure B.2.

As observed in Figure 6.3, GENIES3 is able to retrieve the best regulator
for about two thirds of the genes that have only one regulator. For genes with
two regulators, the method retrieves one of the two regulators for about the
same proportion of genes but is less good at retrieving the second regulator
(only for one gene, the two regulators are at the top of the ranking). For
genes with three or more regulators, even one regulator seems to be difficult
to retrieve.

This suggests that the performance of GENIE3 at retrieving a regulator
of one gene degrades as the number of regulators of this gene increases, as
also observed by Marbach et al. (2010) from their analysis of the results of
the DREAM3 challenge. To further check this hypothesis, we plotted in
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Figure 6.3: Detailed results on DREAM4 NET3. Ranking of the true regulators
for all genes. Each row corresponds to a gene. Dots in each row represent the positions
in the Random Forests ranking of the regulators of this gene. Genes are ordered on the
y-axis according to their number of regulators in the gold standard network; those having
the same number of regulators are grouped inside a horizontal block (from no regulator
at the top to 6 regulators at the bottom). Inside each block, genes are ordered according
to the median rank of their regulators. The ranking of interactions was obtained using
Random Forests with K =p — 1 and T = 1000.

Figure 6.4 the median rank of the regulators of gene j, such that gene j is
regulated by an increasing number of genes. The rank is presented here as a
percentage, such that the first and last regulators of the ranking have a rank
equal to 100% and 0% respectively. This plot clearly shows that the quality
of the ranking monotonically decreases with the in-degree of the genes.

Undirected versus directed predictions

One interesting feature of GENIES is its potential ability to predict directed
networks, while methods based on mutual information or correlation are only
able to predict undirected networks.

To see to what extent the networks predicted by our method are asym-
metric, we show in Table 6.4 for each network the proportion of predicted
regulatory links for which the opposite link is not predicted. Notice that
these predictions were obtained from the Random Forests ranking, by fixing
a weight threshold such that the predicted network contains the same total
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Figure 6.4: Rank of regulators as a function of the in-degree of the target. The
in-degree of a target is its number of regulators. The dot corresponding to in-degree n is
the median rank of regulators that regulate a gene with in-degree n, over the five networks.
The rank is presented here as a percentage, such that the first and last regulators of each
ranking have a rank equal to 100% and 0% respectively. The rankings of interactions were
obtained using Random Forests with K =p — 1 and 7" = 1000.

Table 6.4: Asymmetry of predicted and gold standard networks.

NET1 NET2 NET3 NET4 NETH
GENIE3-RF-all 50% 58% 48% 48% 58%
Gold standard ~ 92% 94% 97% 96% 98%

The asymmetry of a network is measured by the proportion of regulatory links for which

the opposite link is not present in the network.

number of edges as the gold standard. This percentage is compared with the
same percentage computed for the gold standard. Our predicted networks
are clearly more symmetric than the corresponding gold standards but they
nevertheless contain a significant number of asymmetric predictions (52%
of the links on the average, to be compared with 0% for a fully symmetric
network).

Of course, the fact that GENIE3 predicts asymmetric networks does not
ensure that the prediction of these asymmetric links is really informative;
asymmetric predictions might precisely correspond to spurious predictions.
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Table 6.5: Error rates on edge directionality on the DREAM4 networks.

Recall 5% 25% 50% T75% 100%
# Links 10 51 104 158 196
Error rate 20% 28% 2% 2% 26%

The error rate is the proportion of edges ¢ — j in the gold standard network such that
there is no edge j — 4 and for which our method wrongly predicts w; ; < w; ;. Each
column corresponds to one value of the number of considered links of the gold standard,
averaged over the five networks. These error rates were obtained using Random Forests

with K = p—1 and T = 1000, and averaged over the five networks.

To check this, we swapped the weights w; ; and w;; for each pair of genes (7, j)
and assessed the new resulting rankings. The overall score dropped from
40.471 to 14.674, suggesting that GENIE3 tends to correctly assign the high-
est weight to the true direction, given an undirected regulatory link.

To further assess the ability of our method to predict link directions, we
computed the proportion of edges i — j in the gold standard network such
that there is no edge j — ¢ and for which our method wrongly predicts
w; ; < wj;. This can be considered as an error rate when our method is used
for directing the edges of a known undirected network. Table 6.5 shows the
average value of this error rate over the five networks, for increasing recall
values, corresponding to different numbers of considered edges of the gold
standard. Given that there are only two choices for a given link, a random
ranking of the directed interactions would yield an error rate close to 50%.
For all recall values, the error rate is significantly lower than 50%, suggesting
that our method is a plausible approach for directing an undirected network.
The error rate is smaller (20%) for the top-ranked interactions but it remains
quite good (27%) even when considering less confident predictions.

Comparison to commonly used methods

We compared GENIE3 to several commonly used methods, which are three
approaches based on the computation of mutual information (MI), namely
CLR (Faith et al., 2007a), ARACNE (Margolin et al., 2006b), and MRNET
(Meyer et al., 2007), as well as one approach based on graphical Gaussian
models (GGM) (Schifer and Strimmer, 2005). All these four methods can
only predict undirected networks. For these experiments, we used the original
MATLAB® implementation of CLR (Faith et al., 2007b) and the implemen-
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Table 6.6: Overall scores for the undirected networks of DREAMA4.

GENIE3-RF-all CLR ARACNE MRNET GGM
Overall score 36.736 35.838 32.632 34.124  26.846

Links ¢ — j and j — i were both assigned the same weights by CLR, ARACNE,
MRNET, and GGM, while the predictions of GENIE3 were rendered symmetric by

assigning to each pair (4, ) the maximum between w; ; and wj ;.

Table 6.7: Owverall scores for the directed networks of DREAMA4.

GENIE3-RF-all CLR ARACNE MRNET GGM
Overall score 40.471 31.57  28.488 30.435  23.705

Links i — j and j — were both assigned the same weights by CLR, ARACNE, MRNET,
and GGM, while GENIE3 was used unmodified.

tations of ARACNE and MRNET in the minet R® package (Meyer et al.,
2008, 2009). To compute mutual information, we used a B-spline smoothing
and discretization, as implemented in the CLR package, with the parame-
ter setting used by Faith et al. (2007a) (10 bins and third order B-splines).
For ARACNE, the tolerance parameter was optimized between 0 and 15%,
as advised by Margolin et al. (2006b). For GGM, we used the GeneNet R
package (Schéfer et al., 2009; Schéfer et al., 2006).

We carried two evaluations, the first one against the undirected gold
standard (Table 6.6) and the second one against the directed gold standard
(Table 6.7). In the first case, the predictions of GENIE3 were rendered
symmetric by assigning to each pair (7, j) the maximum between w; ; and w ;.
In the second case, links © — j and j — ¢ were both assigned the same weights
by the four undirected methods, while GENIE3 was used unmodified. In the
undirected case, GGM gives the lowest score while all MI-based methods are
equally good with only a slight advantage to our method. In the directed
case, GENIE3 is significantly better than the four other methods that are
constrained to predict undirected links.

Shttp://www.r-project.org/
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GENIE3 and support vector machines

The framework of GENIE3 is general and other feature ranking methods
can be used instead of tree-based methods to rank the putative regulators
of each target gene. We thus carried out some experiments with feature
rankings derived from linear models learned with support vector machines
(SVMs), using the LIBSVM library (Chang and Lin, 2011).

For each gene j = 1,...,p of a network, a linear SVM model f; is learned
to predict the expression of this gene, from the expression levels of the other
genes. The score of a regulatory link directed from one gene ¢ to gene j is
then given by the absolute value of the weight w;; of gene ¢ in the model
fj- To ensure that the weights are comparable across the p models, they are
normalized in the following way:

wigl
Zi;éj |wi gl

Figure 6.5 compares the performance of the SVMs to the Random Forests,
on the directed and undirected networks. The parameter e of the loss func-
tion in the SVM algorithm was fixed to its default value 0.1 and different
values of the (inverse) regularization parameter C' were tested. For the di-
rected networks, the highest overall score (equal to 27.070) is obtained with
C = 107, and for the undirected networks, the highest overall score (equal
to 27.797) is obtained with C' = 1073. These scores remain however much
lower than those obtained with the Random Forests. Linear SVMs are thus
not competitive with tree-based methods on the DREAM4 Multifactorial
challenge, but they would nevertheless have been ranked third among the
official participating teams (with C' = 107%).

6.4.2 The M?P E. coli dataset

In addition to the DREAM4 Multifactorial challenge, we carried out ex-
periments with our method on the inference of the regulatory network of
Escherichia coli, which is well-studied and hence is used by several authors
as a benchmark.

Dataset

The dataset of expression profiles was retrieved from the Many Microbe Mi-
croarrays (M3P) database (Faith et al., 2008) (version 4 build 6). It con-
tains 907 E. coli microarray expression profiles of 4297 genes collected from
the GEO (Barrett et al., 2011), ArrayExpress (Parkinson et al., 2009), and

99



T T T
[_directed networks
SVM C=1 [Jundirected networks

SVM C=10e-1 J

SVM C=10e-2 b

SVM C=10e-3 - g

SVM C=10e-4 ) g

SVM C=10e-5 L 4

RF-all ‘ 1

| |
0 5 10 15 20 25 30 35 40 45
Overall score

Figure 6.5: Overall scores of GENIE3 for the DREAM4 networks. SVM:
weights of edges are absolute values of the weights of linear SVM models (e = 0.1). RF-
all: weights of edges are derived from Random Forests models (K = p — 1,7 = 1000).

ASAP (Glasner et al., 2003) databases, as well as from individual investiga-
tors. The expression data were uniformly normalized using Robust Multichip
Averaging (RMA) (Bolstad et al., 2003). The resulting expression dataset is
thus a compendium collecting different microarray experiments carried out
in different laboratories. Note that some experiments are actually time se-
ries experiments. However, when applying a network inference procedure to
the M?P dataset, we considered each time point of a time series experiment
as a separate (static) experiment, without taking into account any temporal
aspect.

To validate the network predictions, we used 3433 experimentally con-
firmed regulatory interactions among 1471 genes that have been curated in
RegulonDB (version 6.4) (Gama-Castro et al., 2008). We considered the in-
teractions annotated with at least one “weak” or “strong” evidence according
to RegulonDB evidence classification.

Results

As a first experiment on the M3P E. coli dataset, we adopted the same eval-
uation protocol as Faith et al. (2007a) that assumed to have prior knowledge
about which genes of the gold standard (i.e. the experimentally confirmed
interactions curated in RegulonDB) are transcription factors. In the context
of our method, this makes each feature selection problem much easier as the
regulators have to be identified among a much smaller set of genes. This
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Figure 6.6: PR curves of GENIE3 for the M3P E. coli network. Only known
transcription factors were used as input genes. A. Comparison between the four different

settings of the tree procedure. B. Comparison to other approaches.

also makes undirected and directed methods almost equally applicable since
all links are automatically directed from transcription factors to genes. The
only edges whose direction is not enforced are the links connecting two tran-
scription factors. Figure 6.6(A) shows the precision-recall curves for the four
different settings of the tree-based procedure. Contrary to the DREAMA4
networks, setting K = /nrr, where nyp is the number of potential regu-
lators, improves the performance compared to K = nrp, RF-sqrt leading
to the best precision-recall curve. Figure 6.6(B) compares this method with
the four undirected methods, CLR, ARACNE, MRNET, and GGM, using
exactly the same protocol. The predictions obtained using GENIE3 with
Random Forests and K = /nrr outperform those obtained using ARACNE
and MRNET!, and give a precision-recall curve comparable to CLR and GGM
(although less good for small recall values). Figure B.3 in Appendix B shows
the ranking of the regulators of each gene, obtained with GENIE3-RF-sqrt.

As a second experiment, we simulated conditions similar to the DREAM4
challenge, where transcription factors were unknown, and tried to infer the
network using as input features in each step of our procedure all 1471 genes
except the target gene itself. For this experiment, precision never exceeded
6%, even for the smallest values of recall (see Figure 6.7). This indicates
that the predictions are extremely poor and only slightly better than random
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used as input genes. In both cases, the ranking of interactions was obtained using Random
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guessing.

With respect to the results obtained in the DREAM4 challenge, these
results are disappointing. The larger number of genes in this case does not
explain everything since it also comes with an increase of the number of ob-
servations. Actually in both cases, the number of observations is comparable
to the number of genes. However, since the E. coli dataset is a collection of
expression data compiled from experiments carried out in different laborato-
ries, there may be some redundancy among these experiments or some bias
in their selection. They are thus probably not as statistically useful as the
really randomized and i.i.d. perturbation data generated for the DREAM4
Multifactorial challenge. Other potential reasons for these poor results are
the fact that the gold standard network is not complete and also the discrep-
ancy that exists between the simulation model used to generate the DREAM4
data and the real regulation mechanism of E. col.

6.4.3 The DREAMS5 Network Inference challenge
Challenge

The DREAM4 multifactorial datasets and networks were somewhat unrealis-
tic: small number of genes in each network, expression datasets that were not
high-dimensional (the number of genes was equal to the number of samples
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in each dataset), i.i.d. perturbation data, etc. For the DREAMS5 edition,
the organizers thus aimed to generate a challenge closer to the reality. The
DREAMS5 Network Inference challenge® evaluated the algorithms on one ar-
tificial network as well as two real networks related to two micro-organisms,
which are FEscherichia coli and Saccharomyces cerevisiae. Note that the iden-
tities of the micro-organisms were unknown at the time of the challenge and
that gene names were anonymized.

Each dataset contained gene expression levels collected from different
types of experiments, including multifactorial perturbations, drug perturba-
tions, gene deletion and overexpression experiments, and time series (Mar-
bach et al., 2012). The E. coli and S. cerevisiae datasets were compiled from
the GEO database and were uniformly normalized using RMA”. The in silico
network and dataset were generated using GNW (version 3.0), in a way such
that the expression dataset contained the same set of experiments as the E.
coli compendium (i.e. same number and types of experiments).

To validate the predictions of the E. coli network, the DREAM organiz-
ers used the experimentally confirmed interactions that have been curated in
RegulonDB (version 6.8). They considered only the interactions annotated
with at least one “strong evidence” according to RegulonDB evidence clas-
sification. For S. cerevisiae, they used a gold standard network derived from
the analysis of ChIP binding data and evolutionary conserved transcription
factor binding motifs (Maclsaac et al., 2006). The network includes only
interactions that have both strong evidence of binding and conservation®.

Note that the challenge comprised a fourth dataset related to Staphy-
lococcus aureus. As there is currently no gold standard network for this
organism, algorithms were not evaluated on this dataset. Instead the pre-

Shttp://wiki.c2b2.columbia.edu/dream/index.php/D5c4

"A major part of the M®P E. coli compendium that we exploited in Section 6.4.2 is
actually common to the DREAMS F. coli dataset.

8The challenge organizers actually tested the predictions of each team against different
gold standard networks derived from Maclsaac et al. (2006) and obtained by varying
the thresholds on the binding and the conservation (Marbach et al., 2012). The gold
standard based on the most stringent thresholds (strong evidence for both binding and
conservation) is the one with which the inferred networks agree the most (i.e. high ratios
between the obtained AUPRs and the AUPR of a random method are observed), and
was hence retained as final gold standard. The organizers also tested two other gold
standard networks derived from Hu et al. (2007) and from the YEASTRACT database
(Abdulrehman et al., 2011). The first gold standard leads to AUPRs that are not better
than random predictions and the second gold standard leads to slightly higher AUPRs than
the network derived from MaclIsaac et al. (2006) and based on strong evidence. However,
the YEASTRACT network was finally discarded because the evidence of its interactions is
partially based on expression data. This gold standard network is therefore not completely
independent of the predictions.
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Table 6.8: Datasets and gold standards of the DREAMS5 Network Inference

challenge.

Dataset Gold standard
Chips Genes TFs | Edges In-degree Out-degree
In silico 805 1643 195 | 4012 3 23
S. aureus 160 2810 99 — — -
E. coli 805 4511 334 | 2066 2 15
S. cerevisiae | 536 5950 333 | 3940 2 35

dictions of all the participating teams were used by the DREAM organizers
to build a “community prediction” (see Chapter 7 for more details). This
community network is the first comprehensive regulatory network available
for this pathogen.

Table 6.8 shows the sizes of the different datasets, as well as the num-
ber of putative transcription factors (TFs) in each case. Indeed, as for the
M?3P E. coli dataset, we had prior knowledge of which genes were candidate
transcription factors for each network and only these transcription factors
were allowed as regulatory genes in the predictions. The table also indicates,
for each gold standard network, the number of edges, the average number of
TFs that regulate each gene (in-degree), and the average number of genes
regulated by each TF (out-degree).

Predictions with GENIE3

We took part in this challenge and submitted the rankings obtained by ap-
plying GENIE3 with the Random Forests and K = /nrp, which was found
to be the best performing combination on the M3P E. coli dataset. Among
29 challengers, our method was the best performer with an overall score (as
defined in Equation (6.6)) of 40.279. As a comparison, the score of the first
runner-up was 34.023.

Table 6.9 shows the AUPR and AUROC values of our predictions and
those of the first runner-up, and Table 6.10 shows their associated p-values®.
GENIES3 yields much more accurate predictions for the in silico network

9We recall that these p-values do not indicate the performance of a method compared
to a random method, but rather its relative performance compared to the other methods
of the challenge.
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Table 6.9: AUPR and AUROC scores for the DREAMS5 Network Inference

challenge.

Method In silico E. coli S. cerevisiae
AUPR  GENIE3-RF-sqrt  0.291 0.093 0.021

2nd best 0.245 0.119 0.022
AUROC GENIE3-RF-sqrt  0.815 0.617 0.518

2nd best 0.780 0.671 0.519

GENIE3-RF-sqrt: GENIE3 using Random Forests with K = /nprp and T' = 1000. 2nd
best: Second best performer.

Table 6.10: AUPR and AUROC p-values for the DREAMS5 Network Inference
challenge.

Method In silico FE. coli S. cerevisiae
AUPR p-value  GENIE3-RF-sqrt 1.6e-104 5.1e-20 1.6e-01

2nd best 8.2e-53 1.1e-39 2.2e-02
AUROC p-value GENIE3-RF-sqrt 3.1e-106 5.0e-11 1.1e-02

2nd best 1.3e-56  1.6e-53 1.8e-03

GENIE3-RF-sqrt: GENIE3 using Random Forests with K = /nrr and T = 1000. 2nd

best: Second best performer.

than for the real networks. Nevertheless, the p-values that we obtain for
E. coli indicate that our method performs significantly better than most of
the other methods used by the participants on this network. By contrast, our
predictions of the S. cerevisiae network are only slightly better than random
guessing (AUPR close to zero and AUROC close to 0.5). PR and ROC curves
for each network are plotted in Figure B.4.

A detailed comparison of the methods used by the different participating
teams for this challenge is provided in Chapter 7.

Comparison of tree-based methods

Table 6.11 shows for each network the AUPR scores obtained with the four
settings of the tree-based procedure. Comparable results are obtained with
Random Forests and Extra-Trees. However we observe a difference between
the results obtained for the in silico network and those obtained for the real

105



Table 6.11: AUPR scores of GENIE3 for the DREAMS5 Network Inference
challenge.

RF-sqrt RF-all ET-sqrt ET-all

In silico 0.291 0.381 0.258 0.354
E. coli 0.093 0.067 0.094 0.079
S. cerevisiae  0.021 0.020 0.020 0.020

RF: Random Forests, ET: Extra-Trees, sqrt: K = /nrp, all: K = npp.

networks. In the first case, the performance of GENIE3 is improved when K
is increased to its maximum value (K = nrg), while in the second case, the
best performance is obtained when K is set to \/nrp.

TF-TF edge directionality

As potential TFs are known for each network, all regulatory links are auto-
matically directed from these TFs to genes. However the directions of the
edges connecting two TFs still have to be predicted. To assess the ability of
GENIE3 to predict edge directionality, we computed the error rate on the
direction of the TF-TF links, i.e. the proportion of edges i — j connecting
two TF's in the gold standard network, such that there is no edge 7 — ¢ and
for which the method wrongly predicts w; ; < w;,;. Table 6.12 shows the error
rates obtained on the different networks, for different numbers of considered
TF-TF links. The error rates are quite acceptable on the in silico network
(16% for the top-ranked links and 32% when considering all the links), but
are higher on the real networks. When considering all the links, the error
rate is equal to 39% on the E. coli network and 57% for S. cerevisiae. These

latter results are much worse than what we obtained on the networks of the
DREAM4 Multifactorial challenge.

Comparison to commonly used methods

Figure 6.8 compares GENIE3-RF-sqrt to CLR, ARACNE, MRNET, and
GGM, and shows that GENIE3 compares very well to these methods on the
in silico and E. coli networks.

An interesting observation can be made with respect to the results of
GGM. Among all, this method returns the worse predictions on the in silico
network but is the best performer on the real networks. On the S. cerevisiae
network, GGM is even the only method that is able to recover some true
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Table 6.12: Error rates on TF-TF edge directionality on the DREAMS5 net-

works.

In silico E. coli S. cerevisiae

Recall # Links ER # Links ER # Links ER
10% 19 16% 2 50% 49 59%
25% 50 28% 22 45% 107 60%
50% 106 30% 55 33% 202 58%
5% 167 34% 97 3% 274 56%
100% 214 32% 121 39% 314 57%

The error rate (ER) is the proportion of edges i — j connecting two transcription factors
in the gold standard network, such that there is no edge 7 — ¢ and for which our method
wrongly predicts w; ; < wj,;. Each line corresponds to one value of the number of
considered TF-TF links of the gold standard. These error rates were obtained using
Random Forests with K = \/nrr and T' = 1000.

regulatory links. On the other hand, MRNET is competitive with respect to
the other methods on the in silico network, but gives poorer predictions for
the E. coli network. These results, together with those obtained with GE-
NIE3 when using different values of the parameter K of the trees, highlight
the fact that there still exist some discrepancies between the real networks
and datasets and their artificial counterparts, which deserve to be further
studied (see Chapter 9 for further discussion on that matter).

We also tried to learn the different networks while ignoring the knowledge
of the transcription factors and thus allowed any gene of a network to be a
regulatory gene. Results are shown in Figure 6.9. As for the M?P E. coli
dataset, predictions are much poorer for each network. However most meth-
ods are still able to recover some regulatory links for the in silico network
while they do not perform better than random guessing on the real networks.

GENIE3 and support vector machines

Finally we learned the different networks by using the GENIE3 framework
with linear SVMs instead of tree-based methods. The results are shown in
Figure 6.10, for different values of the parameter C'. On the in silico network,
the Random Forests method remains the best performer while higher scores
are obtained with the SVMs on the real networks. For E. coli, the predictions
obtained with SVMs and C' = 0.1 even outperform (in terms of AUPR)
the predictions obtained by the best official performer on this network. On
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Figure 6.8: PR curves for the DREAMS5 networks. Only known transcription
factors were used as input genes. Note the change of scale on the recall-axis for E. coli

and S. cerevisiae.

the S. cerevisiae network, the SVMs would have been ranked fifth with the
same value of the C' parameter, while GENIE3-RF-sqrt is ranked at the 9th
position. Note that, like for the parameter K of the tree-based methods, the
optimal value of C' is problem-dependent.

6.4.4 Feature selection

In this work, we mainly focus on exploiting expression data in order to pro-
vide a ranking of the putative regulatory interactions. In some applications
however, one would like to retrieve a practical predicted network rather than
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Figure 6.9: PR curves for the DREAMS5 networks. All the genes were used as

input genes. Note the change of scale on the recall-axis for F. coli and S. cerevisiae.

a ranking. For that purpose, one solution would be to apply a feature selec-
tion technique, such as one of those presented in Chapter 4, to each of the p
rankings of putative regulatory genes, in order to select the top-ranked input
genes as regulators of the corresponding target gene. We tried this procedure
on the DREAM4 datasets, with each feature selection method evaluated in
Chapter 4, using a significance level a = 0.05.

Figure 6.11 shows the average precision and recall of the resulting pre-
dicted networks, when the weight w; ; of a regulatory link is respectively the
importance of gene ¢ in a Random Forests model (learned with K = p — 1)
predicting the expression of gene j, the weight of gene ¢ in a linear SVM model
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(learned with C' and e fixed to their default value, 1 and 0.1 respectively)
predicting the expression of gene j, and the absolute value of the Spearman’s
rank correlation between the expression pattern of gene ¢ and the expression
pattern of gene j. We also show for comparison the precision and recall of
two other methods, rec-1 and prec-1. Given a ranking of candidate regu-
latory genes corresponding to a target gene, rec-1 is a method that selects
the subset of k top-ranked genes, where k is the smallest integer such that
the subset contains all the true regulators of the target gene. On the other
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Figure 6.11: DREAMA4 networks. Precision and recall of the resulting predicted
networks, when different feature selection methods are applied to the rankings of putative
regulatory genes (with o = 0.05). The precision and recall values were averaged over the

five networks.

side, prec-1 selects the subset of k£ top-ranked genes, where k is the largest
integer such that the subset contains only true regulators. As in Chapter 4,
we observe that the err-RF/SVM and err-TRT procedures have the highest
recall values and the lowest precision levels. However the precision levels of
all the methods are now much lower than those obtained on the datasets of
Chapter 4. None of them is higher than 50%, meaning that more than half
of the regulatory links predicted by each method are actually false positives.
This result can be explained (at least partially) by the indirect effects that all
the genes have on each other. Even if there is no direct regulatory link from
gene 7 to gene j in the gold standard network, the expression of gene 7 can
still be predictive of the expression of gene 7, through one or several other
genes (e.g. gene i regulates some gene k which in turn regulates gene j).
In conclusion, each gene of the network is indirectly regulated by (almost)
all the other genes, but most of these indirect regulatory links are consid-
ered false positives in our evaluation because they are not part of the gold
standard.

To check if the different methods would select regulatory links ¢ — j
such that the expression of gene 7 is really irrelevant for the prediction of
the expression of gene j, we generated five datasets that each contain 100
samples and 200 genes. In each dataset, the expression values of the first 100
genes are the original expression values contained in one of the DREAMA4
datasets while the expression values of the 100 remaining genes are uniformly
distributed random numbers between 0 and 1. Then a selected regulatory
link from gene 7 to any target gene is considered a true positive if i < 100 and
a false positive if 7 > 100. Results are shown in Figure 6.12, where indeed we
can observe that all the methods except err-RF/SVM and err-TRT hardly
select a noise gene as regulator (the precision is almost equal to one).
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This experiment clearly highlights the fact that the different feature se-
lection methods presented in Chapter 4 are designed to identify the maximal
subset of relevant variables, i.e. all variables that get to their position in
the ranking because they convey at least some information about the output
and not merely by chance. In the context of network inference, we would
need a method to determine a minimal subset of variables that convey all
information about an output (and thus make all other variables conditionally
irrelevant) to avoid the inclusion of indirect effects. An optimal treatment of
this problem would probably require to adopt a more global approach of the
problem, exploiting jointly all the individual rankings of all target genes.

6.5 Discussion

We developed GENIE3, a procedure that aims to recover a gene regulatory
network from steady-state expression data. This procedure decomposes the
problem of inferring a network of size p into p different feature selection
problems, the goal of each being to identify the regulators of one of the genes
of the network. Among different feature selection methods, we chose to use
tree-based ensemble methods. These methods do not make any assumption
about the nature of gene regulation and can potentially deal with combina-
torial regulations and non-linearity. They work well in the presence of a large
number of genes, are fast to compute and scalable.

GENIE3 got the best overall performances in the DREAM4 In Silico
Multifactorial challenge and in the DREAMDS Network Inference challenge.
The method is competitive with existing algorithms to decipher the genetic
regulatory network of Escherichia coli assuming that transcription factors
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are known (whether using the M3P or the DREAMS5 expression dataset).
When no prior knowledge is available about transcription factors, our results
on the E. coli network were however not better than random guessing.

Several discrepancies between artificial and real networks were observed.
When applying GENITE3 on the DREAM4 Multifactorial datasets and on the
DREAMS in silico dataset, improved predictions were obtained by increas-
ing the main parameter K of the tree-based methods, i.e. the number of
randomly selected attributes at each node of one tree, to its maximum value
(K = nrp), while on the E. coli dataset, the best rankings of interactions
were obtained by using K = /npp. Also, some methods that performed
better than others on the in silico network of DREAMS5 performed worse on
the real networks, and vice versa. The reasons of these differences between
artificial and real networks deserve to be further analysed.

In our research, we focus on providing a ranking of the regulatory inter-
actions. In some applications however, one would like to retrieve a practical
predicted network rather than a ranking. For that purpose, we tried to ap-
ply the feature selection techniques presented in Chapter 4 to each “local”
ranking of putative regulatory genes obtained from the DREAM4 datasets,
in order to select the top-ranked genes as regulators of the corresponding
target gene. However, the resulting networks had an average precision that
was lower than 50%. We attribute this low precision to the fact that each
gene of a network is actually indirectly regulated by almost all the other
genes of the network, but most of these indirect links are considered false
positives because they are not part of the gold standard. We therefore need
to adapt the different feature selection procedures in order to select, for each
target gene, a minimal subset of non-redundant genes as regulators. Another
direction of research would be to extend these techniques to help determining
a threshold on the “global” ranking of the regulatory links, by assessing the
significance of the top-ranked interactions.

The GENIE3 algorithm, which returns rankings of regulatory links, can
be improved along several directions. As tree-based ensemble methods, we
used the Random Forests and the Extra-Trees algorithms, that both gave
comparable results. However, the performances of these methods depend to
some extent on their main parameter K. It would thus be of interest to
find a way to automatically tune this parameter. A first solution could be
to select the value of the parameter that leads to the best performance for
the prediction of the expression values, i.e. that minimizes the mean square
error (MSE) estimated by cross-validation:

MSE = % “(z} — f;(x.7))”. (6.8)

=1 k=1
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Unfortunately, this solution did not work on the M3P E. coli dataset, where
using K = npp led to a lower mean square error but a less good precision-
recall curve.

There is also a potential room for improvement on the way variable im-
portance scores are normalized. One apparent drawback of the measure we
proposed is that it does not take into account the quality of the trees in gen-
eralization. Indeed since our trees are fully grown, importance weights satisfy
Equation (6.4) which, given our normalization, attributes equal weights to all
tree models irrespective of their quality when used to predict the expression
values of the target gene. We tried to correct for this bias by normalizing
the variable importance scores by the effective variance reduction brought by
the model as estimated by cross-validation but it actually deteriorated the
performances. The question of the optimal normalization remains thus open
at this stage.

Notice that the two last results meet one of the conclusions of the Part 11
of this thesis, stating that using prediction accuracy as a criterion for assess-
ing the quality of a ranking and selecting relevant features is often counter-
productive.

Our experiments on the DREAM4 and DREAMS5 datasets show that
GENIES is able to predict to some extent the direction of the edges, even
though it only exploits steady-state measurements. However, the reason why
we are able to predict directionality is not clear. Predicting causality from
static data alone is commonly admitted to be a difficult problem, although
being possible in some situations (Bontempi and Meyer, 2010). As a matter of
fact, we will see in Chapter 8 that either using time series data or combining
steady-state expression data with genetic data allows to significantly improve
the predictions made on the direction of the regulatory links.

Bayesian networks are methods that also potentially allow to predict edge
directionality, and a comparison with this family of methods is performed
in Chapter 7, using the DREAMS5 challenge. Note that with respect to our
approach, Bayesian networks do not allow for the presence of (directed) cycles
in the predicted network, which could be a limiting factor for networks such
as those in DREAM4 that contain cycles by construction.

Several procedures using regression trees have already been proposed to
solve the regulatory network inference problem. Most of these procedures
exploit other kinds of data in addition to expression data, e.g. counts of
regulatory motifs that serve as binding sites for transcription factors (Phuong
et al., 2004; Ruan and Zhang, 2006), or ChIP-based binding data (Xiao and
Segal, 2009). The closest work to ours is the procedure developed by Segal
et al. (2005), that recovers module networks from expression data, so that the
genes in each module share the same regulators in the network and the same
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conditional probability distribution, represented by a (single) regression tree.

Finally, although we exploited tree-based ensemble methods, our frame-
work is general, and other feature selection techniques could have been used
as well. Actually, several existing methods for network inference can be
interpreted as special instances of this framework. In particular, mutual in-
formation, as used in Relevance Networks (Butte and Kohane, 2000) or CLR
(Faith et al., 2007a), is a common dependency measure exploited in filter-kind
approaches for feature selection (Saeys et al., 2007). MRNET (Meyer et al.,
2007) also considers each gene in turn as the target output and exploits the
maximum relevance/minimum redundancy feature selection method to rank
its candidate regulators. Like Relevance Networks and CLR, this method
reduces all the information contained in the expression data to mutual infor-
mation between all pairs of genes, while our approach is by nature multivari-
ate. Meinshausen and Biithlmann (2006) showed that finding the zero entries
in the inverse covariance matrix of a multivariate Gaussian distribution can
be solved by applying the LASSO embedded feature selection mechanism
using each gene in turn as the target output, which links Gaussian graphical
models with our approach. While the latter assumes that the functions f;
in Equation (6.2) are linear, our approach can be seen as a relaxation of
this assumption by exploiting a non-parametric supervised learning method.
Note however that preliminary experiments with feature rankings derived
from linear SVM models showed that using non-linear models does not seem
to be an advantage for the inference of the E. coli and S. cerevisiae networks.
On the other hand, the tree-based methods yielded better performances on
the artificial problems, which are non-linear by construction.
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Results of the DREAMS
Network Inference challenge

This chapter summarizes the results presented in the publication of Marbach
et al. (2012), in which the organizers of the DREAM challenges assessed
the performances of the methods used by the teams that participated in the
DREAMS5 Network Inference challenge. They then presented a simple pro-
cedure to derive community-based networks, that combines the predictions
of all the methods of the DREAM community, and that has a more robust
performance than most of the individual methods across the different net-
works. They also performed a machine learning-based analysis that shows
that the knockout and overexpression of a transcription factor are experi-
ments that are highly informative for the prediction of the target genes of
that transcription factor. Section 7.1 briefly recalls the framework of the
DREAMS5 Network Inference challenge, Section 7.2 presents its main results,
and Section 7.3 concludes the chapter.

We are part of the authors of this publication, as members of the DREAMS
consortium. While we have critically read and approved the manuscript, all
experiments have been performed by the DREAM organizers. Therefore, this
chapter should not be considered as a contribution of this thesis, but we nev-
ertheless introduce it here as it sheds new light on the GENIES method.

Contents
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7.2 Results of the challenge . . . . ... ........ 118
7.3 Discussion . . . . .. ... oo 126
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This chapter is a summary of the following publication:

Marbach, D., Costello, J. C., Kiiffner, R., Vega, N., Prill, R. J., Camacho,
D. M., Allison, K. R., the DREAM5 Consortium (including Geurts, P.,
Huynh-Thu, V. A., Irrthum, A., Saeys, Y., and Wehenkel, L.), Kellis, M.,
Collins, J. J., and Stolovitzky, G. (2011) Wisdom of crowds for robust gene
network inference. Nature Methods 9:796-804.

7.1 The DREAMS5 challenge

In this publication, the organizers of the DREAM challenges presented the
results of the DREAMS Network Inference challenge, whose goal was the in-
ference of the transcriptional regulatory networks of a prokaryotic organism
(Escherichia coli), an eukaryotic organism (Saccharomyces cerevisiae), and a
human pathogen (Staphylococcus aureus), as well as an in silico network. The
framework of the challenge is illustrated in Figure 7.1. To infer each network,
participants had at their disposal a compendium containing gene expression
levels collected in hundreds of different conditions, including environmental
perturbations, drug perturbations, gene deletion and overexpression experi-
ments, and time series. The FE. coli, S. cerevisiae, and S. aureus compendia
were compiled from the Gene Expression Omnibus (GEO) database (Bar-
rett et al., 2011), while the in silico network and dataset were generated
using GeneNetWeaver (Marbach et al., 2009; Schaffter et al., 2011), in a way
such that the expression dataset contained the same set of experiments as
the E. coli compendium. In addition to expression data, a list of candidate
transcription factors (TFs) was provided for each compendium, as well as a
number of descriptive features for each microarray experiment. The names
of all the genes and TFs were anonymized. The goal of the challenge was to
provide predictions for each network, in the form of a list of directed regula-
tory links between TFs and target genes, ranked from the most confident to
the less confident. The gold standards used by the organizers to evaluate the
submitted predictions consisted in sets of experimentally verified interactions
for E. coli and S. cerevisiae, and the known in silico network. Algorithms
were not evaluated on the inference of the S. aureus network, as there is
currently no gold standard for that organism. More details concerning the
challenge are provided in Section 6.4.3 of Chapter 6.

The results of the challenge are presented in the next section. Besides the
assessment of 35 network inference methods, the organizers also presented
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Figure 7.1: The DREAMS5 Network Inference challenge. 1. The goal of the
challenge was to infer one artificial gene regulatory network, as well as the networks of
E. coli, S. cerevisiae, and S. aureus. 2. To infer each network, the participants had at
their disposal a compendium of gene expression profiles collected in various experimental
conditions and in which the names of the genes and transcription factors were anonymized.
3. 29 teams participated in the challenge. In addition, the challenge organizers applied
6 “off-the-shelf” inference methods. 4. They also integrated the predictions of all the
teams to build community networks. 5. The predictions returned by each method were
evaluated by comparing them to the true in silico network and to experimentally confirmed
interactions for E. coli and S. cerevisiae. Methods were not evaluated on the inference
of the S. aureus network, as few verified interactions currently exist for this organism.
Figure taken from Marbach et al. (2012).

an integration scheme to derive community-based networks and showed that
this community-based procedure produces more robust predictions than most
of the individual algorithms. They also validated experimentally several de
novo community predictions for F. coli and made available the community-
based S. aureus network, which is the first comprehensive regulatory network
for this organism.

7.2 Results of the challenge

7.2.1 Network inference methods

In total, 29 teams participated in the challenge. In addition, the organizers
applied six commonly used “off-the-shelf” inference methods. The 35 meth-
ods are listed in Tables 7.1 and 7.2, and are divided into six categories, based
on the descriptions of the methods provided by the participants: (Linear)
Regression, Mutual information (MI), Correlation, Bayesian networks, Other
(containing methods that do not belong to any of the previous categories),
and Meta (containing methods that combine several different approaches).
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Table 7.1: Categorization of the network inference methods (Part 1/2).

Synopsis

(1) Lasso; (2) the regularization parameter is chosen so that 5 TFs are selected per TG in
each bootstrap sample.

Haury et al. (2011b)

(1) Steady state and time series data are combined by group lasso; (2) bootstrapping.

Yuan and Lin (2006)

Combination of lasso (TESLA toolbox) and Bayesian piecewise linear regression models
learned from RJMCMC simulations.

Leébre et al. (2010)

(1) Lasso; (2) bootstrapping.

Meinshausen and

Bithlmann (2010)

(1) Lasso; (2) area under the stability selection curve.

Meinshausen and

Bithlmann (2010)

Application of the Lasso toolbox GENLAB using standard parameters.

van Someren et al.
(2006)

Lasso, regression models are combined by the maximum regularization parameter value
selecting a given edge for the first time.

Meinshausen and

Biithlmann (2010)

Linear regression determines the contribution of a TF to the expression of the TG.

CLR: for a given TFx — TGy edge, an MI re-scoring scheme reflects TGy and TFx in the
distribution of all TGs and all TFs respectively.

D’Haeseleer et al.
(1999)F

Faith et al. (2007a)

MI is computed from discretized expression values.

Butte and Kohane

(2000)*

ARACNE: Augments MI by a kernel estimator to avoid discretization and by the data | Margolin et al

processing inequality to distinguish interaction direction. (2006a)f

Topology is estimated by MI. The direction of edges is determined by Markov-blanket | Mani and Cooper

(HITON-PC)/Bayesian local causal discovery (BLCD). (2004)

Topology is estimated by MI and Pearson’s correlation. The direction of edges is deter- | Mani and Cooper

mined by HITON-PC/BLCD. (2004)

CORRELATION: Interactions are ranked based on variants of correlation.

Absolute value of Pearson’s correlation coefficient. Butte and Kohane
(2000)

Signed value of Pearson’s correlation coefficient. Butte and Kohane
(2000)*

Signed value of Spearman’s correlation coefficient. Butte and Kohane
(2000)*

BAYESIAN NETWORKS optimize posterior probabilities by different heuristic searches.

Simulated annealing (catnet R package), aggregation of three runs. Balov and Salzman
(2011)

Simulated annealing (catnet R package). Balov and Salzman
(2011)

Max-Min Parent and Children algorithm (MMPC), bootstrapped datasets. Tsamardinos et al.
(2003)

Markov blanket algorithm (HITON-PC), bootstrapped datasets.

Aliferis et al. (2010)

Markov boundary induction algorithm (TIE*), bootstrapped datasets.

Statnikov and Alif-
eris (2010)

Models TF KO/OE data and time series by dynamic Bayesian networks (Infer. NET tool-
box).

Minka et al. (2010)

Within each category, methods are ordered according to their overall performance.

TOff-the-shelf algorithm applied by challenge organizers. TF: transcription factor, TG:
target gene, TF KO/OE data: measurements where TFs have been deleted or

overexpressed. Table modified from Marbach et al. (2012).

119



Table 7.2: Categorization of the network inference methods (Part 2/2).

ID | Synopsis
OTHER APPROACHES: Network inference by heterogeneous and novel methods.
1 GENIE3: A Random Forest is trained to predict TG expression. Putative TFs are selected | Huynh-Thu et al.
as tree nodes if they consistently reduce the variance of the TG. (2010)
2 TF-TG co-dependencies are detected by the non-linear correlation coefficient n? (two-way | Kiiffner et al. (2011)
ANOVA). TF KO/OE data receive increased weights.
3 TFs are selected maximizing the conditional entropy for a given TG. TGs are represented | Karlebach and
as Boolean vectors with probabilities, avoiding discretization. Shamir (2011)
4 Putative TFs are preselected from TF KO/OE data or by Pearson’s correlation. TFs are | Yeung et al. (2005)
then tested by iterative Bayesian Model Averaging (BMA).
5 A Gaussian noise model was used to estimate if the expression of a TG changes significantly | Yip et al. (2010)
in TF KO/OE measurements.
6 After scaling, TGs are clustered by Pearson’s correlation. A neural network was trained | Sirbu et al. (2011)
(genetic algorithm) and parametrized (back-propagation).
7 Data were discretized by Gaussian mixture models and clustering (Ckmeans); Detects | Song et al. (2009)
interactions by generalized logical network model (x2 test).
8 The x? test was applied to evaluate the probability of a simultaneous shift in TF and TG | Song et al. (2009)
expression in TF KO/OE experiments.
META PREDICTORS combine (1) several approaches by calculating (2) aggregate scores.
1 (1) Calculates z-scores for TG in TF KO data, applies time-lagged CLR for time series, | Greenfield et al
and linear ODE models constrained by Lasso; (2) resampling. (2010)
2 (1) Pearson’s correlation, mutual information, and CLR; (2) rank average. Qiu et al. (2009)
3 (1) Calculates TG responses in TF KO data, applies full-order partial correlation and TF- | Pinna et al. (2011a)
TG co-deviation analysis; (2) weighted average with weights trained on simulated data
4 (1) CLR filtered by negative Pearson’s correlation, least angle regression (LARS) of time | Watkinson et al
series, and TF KO/OE data; (2) combination by z-scores. (2009)
5 (1) Pearson’s correlation, differential expression (limma, Gauss tail), and time series anal- | Conesa et al. (2006)

ysis (maSigPro); (2) Naive Bayes.

Within each category, methods are ordered according to their overall performance.

tOff-the-shelf algorithm applied by challenge organizers. TF: transcription factor, TG:
target gene, TF KO/OE data: measurements where TFs have been deleted or

overexpressed. Table modified from Marbach et al. (2012).
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Within each category, methods are ranked according to their overall per-
formance. Note that our GENIE3 method is the first method in the Other
category.

7.2.2 Performance of the network inference methods

As described in Section 6.3 of Chapter 6, the predictions of a network re-
turned by a method were assessed using precision-recall (PR) and receiver
operating characteristic (ROC) curves, and the performance across several
networks was summarized with an overall score defined in Equation (6.6).
Figure 7.2(a) shows the overall score of each method, as well as their per-
formance on each individual network (using the area under the PR curve, or
AUPR).

Most of the methods have a performance that greatly varies across the
different networks. For example the Regression 2 method has the highest
AUPR on the in silico network but is among the worst performers on the
E. coli network. On the other hand, the Meta 4 method yields better predic-
tions than most methods for the F. coli network, but performs less good on
the artificial one. Two methods have clearly the best overall performances.
These methods are GENIE3 (Other 1) and an algorithm based on two-way
ANOVA (Other 2) (Kiiffner et al., 2011). Interestingly, the six off-the-shelf
methods that are commonly used are outperformed by several other meth-
ods. A great variation can also be observed among the performances of the
methods that are in a same category, leading to the conclusion that the good
performance of a method is more due to the details of its implementation
and parameter tuning rather than the general methodology. However, all
the methods of the Bayesian networks and Correlation categories tend to
have the lowest overall scores among all the methods.

The inference methods of all categories yield much better predictions for
the in silico and E. coli networks than for the S. cerevisiae network, for which
the different AUPRs that are obtained are comparable to the AUPR of ran-
dom predictions. At least two reasons can explain the poor results obtained
on this network. First, the S. cerevisiae gold standard was constructed based
mostly on ChIP experiments. These experiments check the physical binding
of a TF to the promoter region of a target gene, but can not state if this
binding has an effect on the regulation. The S. cerevisiae gold standard thus
contains many false positives. The second reason is that S. cerevisiae is an
eukaryote organism, in which the genetic regulation is far more complex than
in prokaryote organisms such as E. coli. For example, regulation may happen
at the post-transcriptional level, which results in a decreased correlation be-
tween the mRNA expression levels of a TF and those of its target genes, and

121



a z
" =
60 386 8 _s
T 24l 2% 8§ < 3
=g S © J4 ® & £
o o c = w «© © ©
5 oo H ¥ 0 w O W w
N A A A A A
0 g3 % NN N
40 ® < J|x| B B|B|B
. 33 W LW
o O= BB C C C ¢
» g 20 1@
£3 4@
0 2@
. 15 = ®
9 -
510t 5| ®
o ®
o
ui S 5 =@
< @
o 0 £@
8" @ ®
2 10f 4@
e S ®
= O | =]
Q5 5 —_—
¢ | 5@
*n 12345678 12345 123 123456 12345678 12345 2E g.
Regression M Corr. Bayesian Other Meta §§ o :
(<]
b 2 Je
0.8 Inference methods S sl@
© Regression O Other ' ®
C1 - regression @ Mutual |pformat|on O Meta § ®
e © Correlation —
PPNOON © Bayesian networks ©)
= 04 | % o ®
) e D~
< (@adp - @
a8 @ @ . P @
g % © | ,@’\ ||
X \
2o . (@ ®
- ) o
g . ® w‘ ] Prediction bias |& @
= . CA4-other \(g y (% edge rank) |© F':
5 C2 - Bayesian 4 215 B @ [ ]
= @ C3 - MI/ correlation Increased 3@ e
0.4Ff p N 4 ) @ =
. X confidence ® 2
1 \ Q
@ Nobias | {0 ® £
, y ® b
08 N @ ] . Decreased ) 5
-0.8 -0.4 0 0.4 0.8 confidence s
2nd principal component =15 —

Figure 7.2: Evaluation of the network inference methods. a. This figure shows
the overall performance of the 35 inference methods across networks (overall score) as well
as their performance on each individual network (AUPR). The methods are categorized
and numbered according to Tables 7.1 and 7.2. The rightmost bar shows the performance
of random predictions. The red bar shows the performance of the integrated community
network. GENIE3 is the Other 1 method. b. Clustering of the methods using principal
component analysis. c. Biases of the methods for predicting different types of interactions.
A motif colored in red (resp. blue) indicates that the corresponding method tends to
predict more (resp. less) reliably the interactions that are part of that motif. Figures
taken from Marbach et al. (2012).
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therefore a decreased performance of the methods that only exploit mRNA
expression data to infer regulatory networks (Hu et al., 2007; Michoel et al.,
2009).

7.2.3 Clustering and motif analysis

The predictions returned by the different inference methods were analyzed
by principal component analysis (PCA). For this purpose, the authors con-
structed a prediction matriz, in which each row corresponds to an inference
method and each column corresponds to an interaction!, and the element
(,7) of the matrix indicates the rank of the jth interaction according the
the ith method. The dimensionality of this matrix was then reduced by
PCA. The second and third principal components? show four clusters of
methods, corresponding largely to the categories of Tables 7.1 and 7.2 (see
Figure 7.2(b)). Therefore, even if the methods of a same category show
different performances, they tend to predict similar interactions.

The challenge organizers also performed a motif analysis, whose goal is to
evaluate if the methods tend to systematically predict less or more reliably
specific types of interactions. They considered six interaction types, each
being part of a motif type and illustrated in Figure 7.2(c). For each infer-
ence method, they computed the average rank r,, of all the edges of the gold
standard that are part of a given motif m, as well as the average rank r;, of
the edges that are not part of the motif. The prediction bias is then given
by 7 —Tm. A positive (resp. negative) bias indicates that the method tends
to rank higher (resp. lower) the interactions that are part of the motif m.
We can see that GENIE3 shows the same biases as the MI- and correlation-
based methods, although these biases are relatively weak compared to those
of some other methods. Our method predicts less reliably the cascade mo-
tifs, i.e. it tends to rank high the (false) indirect links, but it yields more
confident predictions for the edges that are part of a feed-forward loop. As
on the networks of the DREAM4 Multifactorial challenge (see Section 6.4.1),
GENIES3 has more difficulties to recover the regulators of the genes having a
high in-degree, as well as the regulators having a high out-degree.

7.2.4 Information content of different experiment types

For all datasets, a description of each microarray experiment was provided to
the challenge participants, together with the expression data. Experiments

!The prediction matrix comprises the interactions related to the four datasets.
2The first principal component actually correlates with the mean AUPR and is thus
less characteristic of the intrinsic properties of the methods.
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comprised time series, drug perturbations, gene knockout and overexpres-
sion experiments, as well as combinations of them. To see how informative
each type of experiment is for the inference of a network, the DREAM orga-
nizers used the following supervised learning-based procedure, inspired from
Mordelet and Vert (2008). For each TF, they generated the following dataset:

LSTF:{(thi)ai: 17"'7p}7 (71)

where p is the number of genes (not including the TF) in the original com-
pendium, x; € R is the vector containing the expression levels of the ith
gene in all NV experiments, and y; is a binary variable stating if the ith gene
is a target or not of the TF. The targets and non-targets of the TF were
defined by the gold standard network. A predictive model, classifying the
targets and the non-targets of the TF, was then learned from LS7p, using
either a decision tree or a linear SVM, and the importance, or weight, of
each microarray experiment in the predictive model was computed. A high
weight thus indicates that the corresponding experiment is highly informa-
tive for the prediction of the targets of the TF. Individual weights were then
averaged across the experiments of a particular type and across the TFs.
These average weights are shown in Figure 7.3, in which we clearly see that
the knockout and overexpression of a TF are highly informative for the in-
ference of the regulatory links involving that TF. Note that the S. cerevisiae
compendium comprised only three knockout experiments, all for the same
TF. Results are therefore not reliable for this organism.

Actually, several network inference methods used for the challenge explic-
itly exploit the information about the manipulation of a TF to identify its tar-
get genes. Compared to the methods that consider knockout/overexpression
experiments at the same level as the other types of experiments, these meth-
ods obtain more confident predictions for the interactions involving the ma-
nipulated TFs, and predict more accurately the direction of the edges con-
necting two transcription factors (see Figure 7.2(c)). Note that they are also
able to predict more reliably the edges such that the regulator has a high
out-degree or such that the target gene has a high in-degree, but this is partly
due to the fact that the knockout experiments were preferentially performed
for the TF's that regulate a high number of genes.

7.2.5 Community networks

The authors also presented a procedure to construct community networks,
that combines the predictions of all the participating teams. The procedure
simply consists in ranking the regulatory links according to their average rank
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Figure 7.3: Information content of the different experiment types. A fea-
ture selection method was used to measure the weight of each type of experiment in the
prediction of the interactions. The experiments were divided into 8 types: time series,
drug perturbation, gene knockout or overexpression (KO/OE), and combinations thereof.
The 8th bar in each plot corresponds to the importance of TF KO/OE experiments for
predicting the targets of that TF. Figure taken from Marbach et al. (2012).

across all the methods. The rank r; of an interaction [ in the community
prediction is thus given by:

K
rr = ZT];a (72)

k=1

where K is the number of inference methods (K = 29 3) and ¥ is the rank
of interaction I according to the kth method.

As shown in Figure 7.2(a), the community-based procedure has a robust
performance across the three networks, having an overall score greater than
all 35 individual methods. It obtains the highest AUPR score for the in silico
network and ranks respectively at the third and 6th positions for the E. coli
and S. cerevisiae networks. Therefore, the authors argued that, as none of
the individual network inference methods is the best performer for each of
the three networks, it is difficult to choose the most appropriate method to
infer an unknown network and one should rather resort to community-based
procedures. Note however that the two best performing individual proce-
dures, i.e. GENIE3 (Other 1) and the ANOVA-based procedure (Other 2),

have also a robust performance across the networks and remain competitive

3The 6 off-the-shelf methods were not considered to build the community predictions.
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with the community-based procedure.

Figure 7.4(a) and (b) show respectively the E. coli and S. aureus com-
munity networks. Both networks were obtained by using a threshold on the
corresponding rankings, in order to obtain networks with 1688 regulatory
links. This number of edges was chosen because it corresponds to a precision
of 50% for E. coli. Both networks have a modular structure. A module is a
group of TFs and genes that are more densely connected among each other
than to other genes that are not part of the group. The authors identified
the different modules for each network and checked if they were significantly
enriched for Gene Ontology (GO) terms (The Gene Ontology Consortium,
2000). They found that modules were strongly enriched for specific biological
processes, with only few processes being enriched in more than one module.
For example, a module of the S. aureus network is enriched for GO terms
related to pathogenesis.

Novel regulatory links can be found in the E. coli community network,
i.e. interactions that are not curated in the RegulonDB database. The
authors selected 53 of these interactions, involving five different TFs (see
Figure 7.4(c)). These interactions were experimentally tested and 23 of them
were determined as true positives, corresponding to a precision of ~ 40%.
Note that this precision varies strongly across the different TFs. For example,
all the selected novel target genes of rhaR were experimentally determined
as false positives, suggesting that the precision of the interactions predicted
by a network inference method can vary strongly across individual TFs.

7.3 Discussion

Marbach et al. (2012) provided a unique assessment of 35 network inference
methods, that cover a wide range of different, existing and novel, approaches.
The methods were evaluated in the context of the DREAMS Network Infer-
ence challenge, whose goal was to recover an in silico network, as well as the
E. coli and S. cerevisiae regulatory networks.

The evaluated methods typically yield much better predictions for the
in silico and E. coli networks than for the S. cerevisiae network. The poor
results on the S. cerevisiae network can be partly explained by the rather
unreliable gold standard that was used to assess the performances of the
methods, as well as by the higher complexity of the genetic regulation mecha-
nisms of the eukaryotes. To infer the regulatory network of such an organism,
one should therefore use other types of data besides expression data, such as
DNA sequences of the promoters of the genes. In Chapter 8, we show that
the performance of our GENIE3 procedure can be improved by exploiting
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Community networks. a. E. coli community network. b. S. aureus
community network. Both networks were obtained using a cutoff of 1688 edges on the
rankings of regulatory links obtained with the community-based procedure. This number
of edges was chosen because it corresponds to a precision of 50% for E. coli. Colored
modules are enriched for particular GO terms. c. 53 novel E. coli interactions were

experimentally tested, among which 23 were determined as true positives. Figure taken



information about genetic markers in addition to expression data.

Most of the evaluated inference methods do not have a robust performance
across the different networks of the DREAMS5 challenge. Some methods
that perform better than others on the in silico network return less good
predictions for E. coli, and vice versa. The authors therefore suggested to
use a community-based procedure to infer unknown networks, rather than to
choose an individual method that would have an uncertain performance. The
presented procedure consists in ranking the regulatory links corresponding to
a network, according to their average rank across the different methods of the
DREAM community. They showed that the community-based predictions
are quite robust across the networks of the DREAMS5 challenge and yield an
overall score that is higher than all individual methods. Several regulatory
links of the E. coli community network were experimentally verified and the
S. aureus community network is the first comprehensive regulatory network
available for this pathogen.

An interesting analysis was also performed to evaluate the importance of
the different types of experimental conditions for the inference of the net-
works. The analysis showed that the knockout and the overexpression of a
transcription factor are particularly informative for the retrieval of the regu-
latory links involving this transcription factor. As future work, we therefore
would like to extend our GENIE3 procedure such that it can explicitly take
into account the information brought by the knockout or overexpression of
a gene (some experiments in this direction are performed in Section 8.1.4 of
Chapter 8). For example, this information could be used in a pre-processing
step, in order to measure the effect of the manipulation of a TF on the ex-
pression of each gene. Then, when learning the tree-based model predicting
the expression of a particular target gene, we would remove from the input
variables the TFs whose manipulation does not affect the expression of that
target gene.
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Extensions of GENIES3

In Chapter 6, we introduced GENIE3, an algorithm that exploits static
steady-state expression data to infer gene regulatory networks. In the present
chapter, we describe extensions of the GENIE3 procedure that aim to recover
regulatory networks from time series data and from genetical genomics data.
We show that using another type of data in addition to steady-state expres-
sion data can improve significantly the network predictions. In particular,
time series data and genotyping data allow to predict more accurately the
direction of the edges of the targeted networks. Section 8.1 describes two
procedures that integrate steady-state data and time series data. One of
these two procedures is competitive with other algorithms on the DREAM3
and DREAM4 network inference challenges. In Section 8.2, we propose sev-
eral methods to infer networks from genetical genomics data and show that
one of these methods outperforms the official best performing algorithm of
the DREAMS5 Systems Genetics challenge. Finally, Section 8.3 concludes the
chapter.
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8.1 Time series of gene expressions

Expression data can be divided in two main categories: steady-state data
and time series data. The first type of data is obtained by applying a pertur-
bation to the system under study and measuring the gene expression levels
once the system has reached a steady state. By contrast, the second type
of data is obtained by measuring the gene expression levels at several time
points following the perturbation. Because of their high cost, time series
data are less common than static steady-state data, but they provide a more
complete picture of the system under study (Bar-Joseph, 2004). In particu-
lar, they contain much more information about causal effects (De Smet and
Marchal, 2010). Therefore many methods exploiting time series expression
data have been developed in order to infer gene regulatory networks, e.g.
methods based on time-lagged correlation analysis (Schmitt Jr et al., 2004),
dynamic Bayesian networks (Yu et al., 2004), and ordinary differential equa-
tions (Bonneau et al., 2006).

In this section, we present a modified version of the GENIE3 procedure
that exploits time series data to infer regulatory networks. Compared to the
original procedure, a tree-based regression model is still learned to predict the
expression of each target gene j from the expression levels of the candidate
regulatory genes, but the expression of the target gene in the corresponding
learning sample LS’ is shifted by h time points, where h denotes a given
time horizon, with respect to the expression values of the input genes. Given
the expression levels of the input genes at some time point ¢, the learned
tree-based model thus predicts the expression of the target gene at time
point t + h. We also present two extensions of this procedure that allow to
combine steady-state data and time series data.

8.1.1 Inference from time series data

In what follows, we suppose that we have at our disposal expression data
provided by a time series experiment, i.e. an ensemble of gene expression
levels measured at T' time points following a perturbation of the system:

LSy ={z1,2,... 27}, (8.1)

where z;, € RP,t = 1,...,T is a vector containing the expression values of p
genes at the tth time point:

Z; = (Ztlaztzw"azf)T' (82)

We further assume that the time intervals between two measurements are
equal.
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To infer a regulatory network from such data, we propose an extension of
our GENIE3 procedure, called GENIE3-time. In this procedure, we make
the assumption that the expression of each gene of the network at a time
point t + h, where h > 0 denotes a given time horizon, is a function of the
expression of the other genes of the network at time point ¢. Denoting by z, I
the vector containing the expression values at time point ¢ of all the genes
except gene j, we thus assume that we can write:

Aon=9)(z7) + e,V (8.3)

where ¢, is a random noise. As in the original GENIE3 procedure, we further
assume that g? only exploits the expression in z77 of the genes that directly
regulate gene j in the underlying network. To learn the function g;?, we apply
a tree-based ensemble method to the following learning sample:

LSy, ={(z 2) 6 =1,....,T = h}. (8.4)

In this learning sample, the vector of expression values of the target gene j is
thus shifted by h time points with respect to the vectors of the input genes.
Tree-based importance scores wffj (Vi # j), in the form of sums of variance
reductions (2.12), are then computed from the model gg? for all input genes.

If M time course experiments are available, i.e. we have at our disposal
M datasets LSt obtained from M different perturbations of the network,
we follow the same procedure by learning g;-’ from the concatenation of the
learning samples:

LS%,h = {LS%JL,D LS%,h,% ce LS%,h,M}7 (8.5)

where LS%’h’k is the learning sample in the form (8.4), generated from the
kth time course experiment. Note that we assume that the time intervals
separating two expression measurements are the same in the M experiments.

As in the original GENIE3 procedure, the output vector ij,h of each

learning sample LS%h is normalized so that the expression of the target
gene 7 has a unit variance in the learning sample, in order to avoid a positive
bias for the regulatory links towards the more highly variable genes:
J
: Z7 ),
Z"},h < —, (86)

J
O h

where a% , 1s the standard deviation of zjf,h.
As it will be shown in Section 8.1.4, quite different predictions wffj can

be obtained depending on the value of the time horizon h. Choosing an
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appropriate value for h can be a difficult task and to avoid to make this
choice, we propose to learn each weight wffj with all possible values of h
(iie. h=1,...,T7 —1), and use the average of the different weights as final
prediction. The weight of the edge directed from gene i to gene j in the

predicted network is thus given by:
=
_ h
A ;wm" (8.7)

8.1.2 Inference from time series and steady-state data

Now we assume that, besides a time series expression dataset LS, we also
have at our disposal the expression levels of the genes in N steady-state
conditions:

LSS - {X17X27"‘)XN}7 (88)

where x, € RP. kK =1,..., N is a vector containing the expression values at
steady-state of the p genes in the kth experiment:

X = (w},7%,...,25) . (8.9)

We propose two procedures to infer a gene regulatory network that exploit
the two types of data. In the first procedure, called GENIE3-mean, two
separate models are respectively learned from steady-state data and from
time series data, while in the second procedure, called GENIE3-comb, a
unique model is learned from both datasets.

In the GENIE3-mean procedure, we assume that the observed steady-
state and time series expression levels of each gene j = 1,..., p are explained
by two respective models f; and gé?. As in the original GENIE3 method, we
assume that the steady-state expression of gene j in a condition depends in
some manner on the steady-state expression levels of the other genes in the
same condition: ' .

x, = fi(x7) + ex, Vk, (8.10)

while the expression of this gene at time point ¢+ h following a perturbation
of the network depends in another manner on the expression levels of the
other genes at time point ¢:

2 = gi(z7) + e, Vit (8.11)

Two different rankings of regulatory links are thus respectively learned from
steady-state and time series data. The first ranking is obtained by applying
to LSs the original GENIE3 approach while the second ranking is obtained
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by applying GENIE3-time to LSy. The two rankings are then aggregated
by a weighted averaging of the different pairs of scores corresponding to the
same regulatory link. The edge directed from gene i to gene j will thus have
the following final score:

gw?. + ppavk
wy; = 2 Ty (8.12)
fs + pr
where wfj is the importance of gene 7 in f;, wg ; 1s its importance in gj.l

(averaged over all possible values of h), and pg and pr are the weights given
to steady-state data and time series data respectively.

The second proposed procedure, GENIE3-comb, assumes that both steady-
state data and time series data can be explained by a unique model f]h:

j h(w—i
xk - fJ (Xk: ) + €k7Vk7

‘ —j 8.13
{ Zon = Mz 7) + €, Vi (8.13)

This amounts to considering steady-state data as time series expression mea-
surements that do not change over time. The function fjh is learned by ap-
plying a tree-based ensemble method to the learning sample obtained by
concatenating the two types of data:

Lsgh ={{(x?2l) k=1,...., N} {(z7,2],,),t=1,...,T — h}}, (8.14)

in which we respectively normalize the output vectors x/ and z7., of the
steady-state and time series datasets in the following way:
x) — %I j Z]T,h - Z%“,h
T e S
Orh

x)

(8.15)

oJ

where %/ and Z‘;’h are respectively the means of x/ and zgp’h, and o7 and O'%h
denote their respective standard deviations. This normalization ensures that
the expression values of gene j coming from the two datasets are comparable
and that the output vector of LSé,h has a unit variance.

8.1.3 The DREAM challenges

We evaluated the proposed procedures on the synthetic datasets of the DREAM3
and DREAM4 network inference challenges, which are both described below.
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DREAMS3 In Silico Network challenge

The goal of the DREAMS3 In Silico Network challenge' was to recover artifi-
cial networks from simulated steady-state and time series data. There were
three sub-challenges called In Silico Size 10, In Silico Size 50, and In Silico
Size 100. The goal of each of the three sub-challenges was to recover five
networks of 10, 50, and 100 genes respectively. In each case, the provided
steady-state data contained the expression levels of the genes for the wild-
type (unperturbed network) and the systematic knockout and knockdown of
each gene. The knockout of a gene was simulated by setting its transcription
rate to zero, while its knockdown was simulated by reducing its transcription
rate by half. To generate the time series data, 4, 23, and 46 perturbations
experiments were simulated for the networks of size 10, 50, and 100 respec-
tively. Each experiment consisted in applying a multifactorial perturbation
to the network, simulated by changing the initial expression levels of all the
genes. Gene expression levels were provided at 21 time points (with equal
time intervals) following each perturbation. As an illustration, Figure 8.1
(top) shows the expression profiles of the genes of a network of size 10 in
a time course experiment. All data were generated using GeneNetWeaver
(version 1.0) (Marbach et al., 2009; Schaffter et al., 2011).

DREAMA4 In Silico Network challenge

The DREAM4 In Silico Network challenge contained two sub-challenges in-
volving time series data, called In Silico Size 10 and In Silico Size 100*. The
goal of each of the two sub-challenges was to recover five artificial networks
of 10 and 100 genes respectively. In each case, the provided steady-state
data contained the expression levels of the genes for the wild-type and the
systematic knockout and knockdown of each gene (simulated in the same
way as for the DREAMS challenge). For the In Silico Size 10 sub-challenge,
additional steady-state data were available in the form of expression levels
obtained after the application of multifactorial perturbations. To generate
the time series data, 5 and 10 perturbation experiments were simulated for
the networks of size 10 and 100 respectively. Contrary to the experiments
of DREAMS, each time series experiment of DREAM4 consisted in strongly
increasing or decreasing the initial expression of about one third of the genes,
thereby simulating a physical or chemical perturbation rather than a mul-
tifactorial perturbation. Gene expression data were provided for 21 time
points (with equal time intervals) in each case. Figure 8.1 (bottom) shows

Thttp://wiki.c2b2.columbia.edu/dream/index.php/D3c4
2http://wiki.c2b2.columbia.edu/dream/index.php/D4c2
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Figure 8.1: Gene expression profiles. Each panel shows the expression levels of the
genes of a network, at each time point of a time course experiment. Each curve corresponds
to a gene. Top: First network of size 10 of the DREAM3 challenge. Bottom: First network
of size 10 of the DREAM4 challenge.

the expression profiles of the genes of a network of size 10 in a time course
experiment. All data were generated using GeneNetWeaver (version 2.0).
Note that each simulated time course experiment consisted in applying a
perturbation to the network at time ¢ = 0 and removing this perturbation
after 10 time points, making the system return to its original state. In our
different experiments with GENIE3, we considered the application and the
removal of the perturbation as two separate sub-experiments. We therefore
divided the data to obtain 10 (resp. 20) time course experiments for the
networks of size 10 (resp. 100), each one containing 11 time points (the
11th time point of each original experiment being the last point of the first
sub-experiment and also the first point of the second sub-experiment).
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8.1.4 Results

Performance of the methods

For each sub-challenge of DREAM3 and DREAM4, we applied the following
procedures:

e GENIE3, applied to the dataset obtained by merely concatenating
steady-state and time series data. We thus consider each time point of
a time course experiment a separate static condition;

GENIE3, applied to the steady-state data;

GENIE3-time, applied to the time series data;

GENIE3-mean, exploiting both types of data;
e GENIE3-comb, exploiting both types of data.

All the predictions were obtained using the Random Forests method with
its main parameter K fixed to p — 1, where p is the number of genes, and
growing 1" = 1000 trees. For the GENIE3-mean method, we used as default
values the following values for the weights us and pr:

Ng Nr

__ s oA 8.16
Ne+ Ny P77 Ng+ Ny (8.16)

Hs

where Ng and Np are the sizes of the steady-state and time series datasets
respectively. These values give more weight to the larger dataset.

Figure 8.2 compares, in terms of AUPR scores, the performances of the
different procedures. The corresponding PR curves can be found in Fig-
ures C.1 and C.2. In each sub-challenge, the highest AUPR scores are ob-
tained with GENIE3-mean and GENIE3-comb. As discussed by Yip et al.
(2010), steady-state data and time series data probably contain different and
complementary information about the underlying networks, giving an advan-
tage to the procedures that integrate both types of data. However, applying
the original GENIE3 procedure to the concatenation of both datasets, such
that each time point of a time course experiment is simply considered a sep-
arate static condition, results in relatively poor predictions. In some cases,
these predictions are even worse than those obtained when only steady-state
data are used, stressing the importance of taking into account a time hori-
zon h > (0 when exploiting time series data. GENIE3-comb obtains a higher
score than GENIE3-mean in each sub-challenge. Learning a single model
from steady-state and time series data, rather than two separate models,
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Figure 8.2: AUPR scores for the DREAM3 and DREAM4 networks. For each
sub-challenge, the AUPR, values are those obtained when applying respectively GENIE3
to the concatenation of steady-state and time series data, GENIE3 to the steady-state
data, GENIE3-time, GENIE3-mean (with ug and pr fixed to their default values), and
GENIE3-comb. The AUPR values of each method were averaged over the five networks

of each sub-challenge.

thus seems to capture in a more efficient way the complementary informa-
tion that they contain, and therefore results in a significant improvement of
the network predictions.

Influence of the weights of GENIE3-mean

Figure 8.3 shows the AUPR scores obtained by GENIE3-mean, for different
values of the weights g and pp, which correspond respectively to the steady-
state data and the time series data. The performance of the method typically
does not change much when varying the values of the weights. We can
nevertheless observe slightly better performances for larger values of pr. This
result can be explained by the fact that in all the sub-challenges except the
DREAM4 In Silico Size 100 sub-challenge, the time series datasets contain
much more samples than the steady-state datasets. Our default values of pg
and p7 seem to be a good choice, as they correspond to the (nearly) optimal
values. However, regardless of the values that are chosen for the weights,
GENIE3-comb typically yields better performances.
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Figure 8.3: AUPR scores of GENIE3-mean and GENIE3-comb. The AUPRs of
GENIE3-mean are shown for different values of the weights pg and pp, which correspond
respectively to the steady-state and the time series data. For each sub-challenge, an
asterisk indicates the bar corresponding to the default values. The AUPR values of each

method were averaged over the five networks of each sub-challenge.

Influence of the time horizon

In our different procedures, we propose to compute the weights wﬁj of the
regulatory links with all possible values of the time horizon h, and use their
average values as final predictions. This allows to avoid to choose a value
for this parameter, which can be a difficult task. Figure 8.4 shows, for five
networks, the AUPR values obtained with GENIE3-comb, for different values
of h, as well as the AUPR resulting from the average weights (horizontal
dashed line). Similar plots for the other networks are shown in Figures C.3
and C.4. We can see that quite different results can be obtained depending on
the value of the time horizon and that averaging the weights over all possible
values of h results in performances that are comparable and sometimes even
better than those obtained by the best performing values of h. Note that
using a higher value for h tends to result in a lower AUPR because the
number of samples in the resulting learning sample is lower and most of the
information contained in the time series dataset is hence not used.

Direction of the edges

It is commonly admitted that, compared to steady-state data, time series
data are more informative for the prediction of the direction of the edges

139



DREAMS3 Size 10

5 10
h

DREAM4 Size 10

15

20

DREAMS3 Size 50

DREAMA4 Size 100

DREAMS3 Size 100

Figure 8.4: AUPR scores of GENIE3-comb. Each plot is related to one of the five
networks of one sub-challenge and shows the AUPRs obtained with GENIE3-comb, for
different values of the time horizon h, as well as the AUPR obtained when the weights of

the regulatory links are averaged over all possible values of h (horizontal dashed line).

of the targeted network. We indeed observe this result when inferring the
different networks of the DREAM3 and DREAM4 challenges. Figure 8.5
indicates the average error rate on the edge directionality of each GENIE3
method, computed as the proportion of edges ¢ — 7 in the gold standard
network such that there is no edge 5 — ¢ and for which the method wrongly
predicts w;; < w;;. We can see that the highest error rate is typically
obtained when time series data are not exploited, i.e. when GENIE3 is
applied to steady-state data only, and that using time series data allows to
predict more accurately the direction of the edges. The lowest error rates on
edge directionality are typically obtained with GENIE3-comb, which yields
an average error rate equal to 29%.

Comparison with the best performers

Table 8.1 compares, for each sub-challenge, the mean AUPR score of GENIE3-
comb with the one of the best performer in this sub-challenge. The table
also shows the rank of GENIE3-comb among the official participating teams
(according to the overall score). GENIE3-comb is ranked among the top-
performing algorithms in all the sub-challenges. However, the AUPR scores
indicate that our method remains significantly outperformed by the differ-

140



100

T T
I GENIES3 on all data

90| I GENIES on steady-state data -
[ GENIE3-time
80 ___1GENIE3-mean i
[ JGENIE3-comb

701 .

60—

Error rate(%)

DREAMS Size 10 DREAMS3 Size 50 DREAMS Size 100 DREAM4 Size 10 DREAM4 Size 100

Figure 8.5: Error rates on edge directionality on the DREAM3 and DREAM4
networks. For each sub-challenge, the error rates are those obtained when applying
respectively GENIE3 to the concatenation of steady-state and time series data, GENIE3
to the steady-state data, GENIE3-time, GENIE3-mean (with pg and pr fixed to their
default values), and GENIE3-comb. The error rate is the proportion of edges ¢ — j in the
gold standard network such that there is no edge 7 — ¢ and for which the method wrongly
predicts w; ; < w; ;. The error rates of each method were averaged over the five networks

of each sub-challenge.

ent best performing algorithms. These algorithms include a procedure that
learns noise models and differential equation models from knockout data and
time series data respectively (Yip et al., 2010, best performing team of the
three DREAMS3 sub-challenges), a procedure based on Petri Nets with Fuzzy
Logic (Kiiffner et al., 2010, best performing team of the DREAM4 In Silico
Size 10 sub-challenge), and two procedures based on z-scores measuring the
change in gene expression levels when a particular gene is deleted (Greenfield
et al., 2010; Pinna et al., 2010, best performing teams of the DREAM4 In Sil-
ico Size 100 sub-challenge). Three of these four methods make an intensive
use of the steady-state expression data resulting from the systematic knock-
out of each gene of the network, highlighting, as some results presented in
Chapter 7, the importance of this type of data for the inference of regulatory
networks.

To check if our GENIE3-comb procedure could be improved by an appro-
priate use of the knockout data, we combined it with the inference method
of Greenfield et al. (2010). In this latter procedure, the weight of the edge
directed from gene ¢ to gene j is given by the following median corrected
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Table 8.1: Comparison with the best performers.

Rank GENIE3-comb Best

DREAMS3 Size 10 3rd 0.383 0.698
DREAM3 Size 50 3rd 0.298 0.589
DREAMS Size 100 2nd 0.297 0.579
DREAM4 Size 10 4th 0.541 0.809
DREAM4 Size 100  3rd 0.326 0.373

Rank: rank of GENIE3-comb among the official challengers, according to the overall
score. GENIE3-comb: Mean AUPR obtained with GENIE3-comb. Best: Mean AUPR
obtained by the best performer in the sub-challenge. The AUPR scores of each method

were averaged over the five networks of each sub-challenge.

z-score (MCZ):
j j
wiy = ko — Tt (8.17)
gj

xfko is the expression of gene 7 when the gene i is deleted. vat is the expected
wild-type expression of gene j, computed as its median expression over the
following conditions: the wild-type, the knockout experiments, and the initial
time points of all time series experiments. o; is the standard deviation of
gene j over these same conditions. To combine MCZ with GENIE3-comb,
we simply take the products of the scores of the two methods. The weight
of the edge 7 — 7 is given by:

_ ., MCZ

Wi =w; ;" X wSENIES (8.18)

2,7 )

where the weights obtained by the two methods are rescaled in order to be
comprised between 0 and 1. The final weight w; ; will thus have a high value
if the edge ¢ — 7 is ranked in the top of the list by both methods.

As shown in Figure 8.6, the predictions of the networks are indeed im-
proved when the two methods are combined. Actually, this procedure based
on the combination would have been ranked first in all the sub-challenges,
except the DREAM4 In Silico Size 10, where it would have been ranked
third.
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Figure 8.6: AUPR scores for the DREAM3 and DREAM4 networks. For each
sub-challenge, the AUPR values are those obtained when applying respectively GENIE3-
comb, MCZ, and the combination of these two methods. The AUPR values of each method

were averaged over the five networks of each sub-challenge.

8.2 (Genetical genomics data

The goal of genetical genomics is to exploit the natural variations that exist
between the DNA sequences of related individuals and that can represent
the randomized and multifactorial perturbations necessary to recover gene
regulatory networks (Jansen, 2003; Jansen and Nap, 2001). In such a study,
two strains that are widely separated in terms of genetic background are
crossed (Figure 8.7(a)) and their children are self-crossed during several gen-
erations in order to produce a recombinant inbred line (RIL) segregating
population (Figure 8.7(b)). The genomes of the individuals of this popula-
tion comprise random segments of the genomes of the two original parents
and genetic differences can therefore be detected between them, represent-
ing multifactorial genetic perturbations. Each individual is then analyzed by
microarray expression profiling (Figure 8.7(c)), as well as by genetic marker
analysis (Figure 8.7(d)). The goal of this second analysis is to identify which
variations occur at specific locations, defined by the genetic markers, in the
genome of an individual. Note that the individuals of a RIL population are
such that each genetic marker can have two possible states only?.

Multiple methods have been developed to infer gene regulatory networks
from genetical genomics data. Several methods infer causal regulatory rela-

3This is due to the fact that each individual of a RIL population is homozygous.
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Figure 8.7: Genetical genomics. Two genetically diverse strains are crossed and
their children are self-crossed during multiple generations, thereby producing a segregating
population, i.e. a population of individuals in which genetic differences can be detected.
Each individual in this population is then analyzed by microarray expression profiling and

genetic marker analysis. Figure taken from Jansen and Nap (2001).

tionships among pairs of genes, including procedures that rely on statistical
tests to identify causal links (Chen et al., 2007) and approaches based on
the fitting of causal models (Kulp and Jagalur, 2006; Schadt et al., 2005).
Other methods are based on the analysis of the correlation between expres-
sion profiles of genes located in a particular genomic region and expression
profiles of genes that are potentially affected by the markers located in this
region (Bing and Hoeschele, 2005). Methods that study the regulatory rela-
tionships at a systems-level include approaches based on Bayesian networks
(Li et al., 2005; Vandel et al., 2010; Zhu et al., 2004), structural equation
models (Li et al., 2006; Liu et al., 2008), and the orientation of the edges of
an undirected network using genetic markers as causal anchors (Aten et al.,
2008; Chaibub Neto et al., 2008).

In what follows, we assume that each gene whose (steady-state) expression
is profiled is analyzed for one single (functional) genetic marker, located
either in the promoter region of the gene or in its coding region. In these
conditions, genetic markers can have mainly two effects on gene expression,
which are both illustrated in Figure 8.8. When a marker is located in the
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Figure 8.8: Effects of genetic markers on gene expression. In this example, gene
1 regulates gene 2 and gene 3 regulates gene 4. M; represents the marker of gene 7 and F;
represents the expression of gene 4, i € {1,2,3,4}. M; is in the promoter region of gene 1
and affects the expression of gene 1, which in turn affects the expression of gene 2. M3 is
in the coding region of gene 3 and does not affect the expression of gene 3, but affects the

expression of the genes targeted by gene 3.

promoter region of a gene, it has a cis-effect on its expression, by affecting
the rate of transcription of the gene. In such a case, there is a correlation
between the state of the marker (M;) and the expression of the gene (Ej).
Furthermore if this gene regulates another gene, the expression of its target
gene (Fy) is also affected by the state of the marker. On the other side,
when a marker is located in the coding region of a gene, it does not affect
the expression of this gene, but rather the properties (e.g. the structure) of
the protein that is produced by the gene, and hence the expression of each
gene regulated by this protein. In this case, we say that the marker (M3)
has a trans-effect on the expression of the target genes (E,). We can thus
assume that there is always a correlation between the state of the marker
of a regulatory gene and the expression of the genes that it regulates, either
by cis-effect or by trans-effect. It is therefore of great interest to exploit
information about genetic markers for the inference of regulatory networks.
In the following section, we describe how the GENIE3 procedure can be
modified to incorporate genetic markers.

8.2.1 Inference from genetical genomics data

We assume that we have at our disposal a dataset containing the steady-state
expression levels of p genes measured in N individuals, as well as the state
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of one genetic marker for each of these genes in the same N individuals:

LS ={(e;,my), (e, my),..., (ex, my)}, (8.19)

where e, € R? and my, € {0,1}7,k =1,..., N are respectively the vectors of
expression levels and marker states of the p genes in the kth individual:

e, = (er,ex,....el)T,
8.20
{ my, = (mg,m3,...,mb)". (8.20)

We propose two extensions of GENIE3 integrating genetic data and ex-
pression data for the inference of gene regulatory networks. Both procedures
are based on the computation of tree-based regression models predicting the
expression of each gene j = 1,...,p of the network. The first procedure,
called GENIE3-gen-1, learns a single model from both types of data, while
the second procedure, called GENIE3-gen-2, learns two separate models,
one based on the genetic markers and the other one based on the expression
data.

The GENIE3-gen-1 procedure assumes that a unique model f; explains
the expression of a gene 7 in a given individual, knowing the expression levels
and the states of the genetic markers of the different genes of the network:

el = file,?, my) + e, Yk, (8.21)

where e,:j is the vector containing the expression levels of all the genes except
gene j in the kth individual and €, is a random noise. Notice that my
contains the state of the marker of gene j. Indeed, it often happens that
a genetic marker contributes to the expression of the gene in which it is
located (cis-acting polymorphism). Including the marker of gene j in the
input variables thus avoids to wrongly attribute to another regulator the
part of the expression of gene j that is actually explained by the marker. To
learn f;, we apply a tree-based ensemble method to the following learning
sample, in which the output feature is the expression of gene j and marker
states are added to expression levels as input features.

L‘Sg,m = {((elzj7mk)7ei)ak =1,... >N} (822)

Tree-based importance scores wg (i # j) and w},7 = 1,...,p, corresponding
respectively to the expression and the genetic marker of gene ¢ can then be
computed from the model f;, in the form of sums of variance reductions
(2.12).

In the second proposed procedure, GENIE3-gen-2, we assume that two

different models f7 and f;" can both explain the expression of a gene j in a
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given individual, either from the expression levels of the other genes, or from
the states of the genetic markers:

e = fi(ep?) + ex, Vk,
. 8.23
{ e, = [ (my) + €, Vk. (8.23)

The functions f; and f]" are respectively learned from two learning samples.
In both learning samples, the output variable is the expression of gene j. In
the first learning sample, input features are gene expression levels:

LS! = {(e;”,el), k= 1,...,N}, (8.24)

while in the second learning sample, input features are the states of the
genetic markers:

LS) = {(my,e]),k=1,...,N}. (8.25)

The tree-based importance score wyf; of the expression of an input gene i
is then computed from f7, while the tree-based importance score w;"; of its
genetic marker is computed from f;".

In both procedures, we thus obtain, for each input gene i, two separate
importance scores wy ; and w;’;, corresponding respectively to the expression
and the marker of gene i. To aggregate these two scores, we again propose
two procedures. In the first procedure, the final weight of the edge directed

from gene i to gene j is the sum of the importance scores:
Wi ;= Wi ; +wi;. (8.26)

The edge will thus have a high weight if either the marker or the expression
of gene 17 is predictive of the expression of gene j. In the second aggregation
procedure, we consider the product of the importance scores:

w;j = Wy ; X W (8.27)

The edge directed from gene 7 to gene j will thus have a high weight if the
marker and the expression of gene ¢ are both predictive of the expression of
gene j.

8.2.2 The DREAMS5 Systems Genetics challenge

We applied the proposed procedures to the synthetic datasets of the DREAMS5
Systems Genetics challenge which is described below.
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Challenge

Besides the Network Inference challenge, the DREAMS edition comprised
another challenge, called the Systems Genetics challenge. This challenge
concerned the inference of in silico regulatory networks from genetical ge-
nomics data*. It was divided into three sub-challenges. The goal of each
sub-challenge was to infer five networks from populations of 100, 300, and
999 individuals respectively. Each of the 15 networks contained 1000 genes
and for each individual, expression levels of these genes were provided, as well
as the state of one genetic marker for each gene. All data were generated
using SysGenSIM® (Pinna et al., 2011D).

8.2.3 Results

Performance of the methods

Figure 8.9 shows the AUPR scores obtained by the different GENIE3 proce-
dures, all applied using the Random Forests method with its main parameter
K fixed to the number of input variables and growing 7" = 1000 trees. The
related PR curves are plotted in Figure C.5. As expected, the performance
of each method improves when the number of individuals for which data are
available increases. The scores also indicate that genetic markers are much
more informative than expression data for the inference of the networks. For
all the datasets, only exploiting genetic data (“GENIE3 on markers”) already
results in significantly more accurate predictions than learning from expres-
sion data alone. The performance can nevertheless be highly improved when
both types of data are integrated, indicating that expression data can still
bring some complementary information besides genetic data.

Given an aggregation procedure (either sum or product of the importance
scores), better performances are obtained when two separate models are re-
spectively learned from the two types of data (GENIE3-gen-2), instead of
one single model (GENIE3-gen-1). The less good performance of GENIE3-
gen-1 can be explained by the fact that when the inputs comprise continuous
and discrete variables (with a low number of categories), the Random Forests
method has a positive bias for the continuous variables when selecting a vari-
able at a test node (Strobl et al., 2007). Indeed, since a continuous variable
provides more possible cut-points than a variable with a low number of cat-
egories, it has more chance to provide the highest variance reduction on the
local node, and hence to be selected for the test, even if it is actually less

4http://wiki.c2b2.columbia.edu/dream/index.php/D5c3
Shttp://sysgensim.sourceforge.net/
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Figure 8.9: AUPR scores for the DREAMS5 Systems Genetics challenge.
GENIE3 on expression: original GENIE3 procedure applied to expression data. GENIE3
on markers: weight of edge ¢ — j is the weight w;"; computed from f/" as defined in
Equation (8.23). Sum: weight of edge ¢ — j is the sum of the importance wy ; of the
expression of gene ¢ and the importance w;”; of the marker of gene i. Prod: weight of edge

i — j is the product of the importance w; j of the expression of gene ¢ and the importance
i
five networks of each sub-challenge.

wl™ of the marker of gene i. The AUPR values of each method were averaged over the

or equally informative globally. Therefore, in GENIE3-gen-1, which learns a
joint model from the gene expression values (continuous variables) and from
the states of the genetic markers (discrete variables), the importance wy ; of
the expression of each gene i tends to be higher than the importance w;’; of
its marker, as shown in Figure 8.10. This bias is not encountered in GENTE3-
gen-2, which learns two models, each one from a set of variables that are of
the same type.

For both procedures GENIE3-gen-1 and GENIE3-gen-2, higher scores are
obtained when the importance scores w;; and w;"; are aggregated by taking
their product rather than their sum, i.e. when we consider that both the
genetic marker and the expression of a regulating gene are important for the
prediction of the expression of a target gene. This conservative aggregation
procedure allows to give a lower weight to a lot of false edges, in particular by
predicting more accurately the direction of the regulatory links. For example,
if a gene (G; regulates a gene (G5, with the inverse being not true, it may
happen that the expression of (G5 is still predictive of the expression of G,
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Figure 8.10: Importance of expressions and markers. This figure shows, for
each network, the average weight wf ; obtained from the expression profiles, as well as the
average weight w;"; obtained from the markers, both computed over the edges i — j that
are part of the gold standard network. The weights wf ; and w]"; are those obtained with
GENIE3-gen-1 (left part of the figure) and GENIE3-gen-2 (right part of the figure).

but the genetic marker of Gy will not be informative. Therefore, while the
sum of the weights related to the false edge Go — 1 can be relatively high
with respect to the sum of the weights related to the true edge G; — Go,
their product tends to be close to zero (Figure 8.11).

Direction of the edges

Figure 8.12 shows the error rates on the direction of the edges. Compared
to exploiting expression data alone, using information about genetic markers
greatly helps for the prediction of the direction of the edges. As mentioned
in the previous paragraph, lower error rates are indeed obtained when the
importance scores wy; and w;’; are aggregated by their product instead of
their sum.

Comparison with the best performers

Figure 8.13 compares, in terms of AUPR scores, GENIE3-gen-2 to the four
methods that were used by the official best performing team of the DREAMS5
Systems Genetics challenge (Team SaAB: M. Vignes, J. Vandel, N. Ramadan,
D. Allouche, C. Cierco, S. de Givry, B. Mangin, T. Schiex, from INRA
Toulouse, France)®. These methods are respectively based on Dantzig re-
gression (Candes and Tao, 2007), LASSO regression (Tibshirani, 1996), static

6These results were provided by Jimmy Vandel, during his visit in our department in
February, 2011.
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Figure 8.11: Weights of the regulatory links returned by GENIE3-gen-2.
This figure shows, for each network, the average weight w; ; returned by GENIE3-gen-2,
computed over the edges ¢ — j that are part of the gold standard and such that there is no
edge j — i (true edges), and over the inverse edges j — i (false edges). Top: weight of edge

m
2

of the marker of gene i. Bottom: weight of edge i — j is the product of the importance

i — j is the sum of the importance wy ; of the expression of gene i and the importance w

wy ; of the expression of gene i and the importance w}"; of the marker of gene 1.

Bayesian network learning (Friedman et al., 2000), and a meta-analysis using
Fisher’s inverse x? test (Fisher, 1925) to combine the predictions obtained by
the first three methods. The AUPR scores indicate that our procedure signif-
icantly outperforms these four methods in each of the three sub-challenges.

Influence of the network density

Besides the study of the effect of the dataset size (number of individuals)
on the predictions returned by inference methods, the DREAMS5 Systems
Genetics challenge was also designed to study the effect of the connectivity
of a network on the predictions. Each sub-challenge thus included networks
with various numbers of edges. Figure 8.14 shows the effect of the network
density on the predictions returned by GENIE3-gen-2 and the methods of the
best performer. Clearly, in each sub-challenge, the ability of all the methods
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Figure 8.12:  Error rates on edge directionality on the networks of the
DREAMS5 Systems Genetics challenge. GENIE3 on expression: original GENIE3
procedure applied to expression data. GENIE3 on markers: weight of edge ¢ — j is the
weight w;"; computed from f;" as defined in Equation (8.23). Sum: weight of edge i — j
is the sum of the importance wy ; of the expression of gene i and the importance w;”; of

2,
the marker of gene . Prod: weight of edge ¢ — j is the product of the importance wfj of
the expression of gene ¢ and the importance w;"; of the marker of gene i. The error rate
is the proportion of edges ¢ — j in the gold standard network such that there is no edge
j — ¢ and for which the method wrongly predicts w;; < w;;. The error rates of each

method were averaged over the five networks of each sub-challenge.

at recovering a network tends to decrease as the number of edges in the
network increases and regulatory interactions become more complex.

We can also observe an effect of the network density on the results pre-
sented in Figure 8.10 and 8.11. In these figures, the networks within each
sub-challenge are numbered according to the density (network 1 has the low-
est number of edges and network 5 has the highest number of edges). When
the number of edges increases and the regulation of a gene becomes “more
combinatorial”, the importance values of the regulators of a target gene de-
crease, since the information related to the expression of the target gene is
shared between more regulators.
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Figure 8.13: AUPR scores for the DREAMS5 Systems Genetics challenge. The
AUPR values are those obtained by GENIE3-gen-2 (with the product of the different pairs
of importance scores related to the same regulatory link), as well as by the methods used by
the official best performing team of the challenge, comprising LASSO regression, Dantzig
regression, Bayesian networks, and a combination of these three methods (Meta). The

AUPR values of each method were averaged over the five networks of each sub-challenge.
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Figure 8.14: Influence of the network density. The AUPR values are those obtained
by GENIE3-gen-2 (with the product of the different pairs of importance scores related to
the same regulatory link), as well as by the methods used by the official best perform-
ing team of the challenge, comprising LASSO regression, Dantzig regression, Bayesian

networks, and a combination of these three methods (Meta).
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8.3 Discussion

In this chapter, we proposed different extensions of the GENIE3 method
in order to infer gene regulatory networks from time series data and from
genetical genomics data. All these extensions are based on the same core
procedure, which consists in decomposing the problem of inferring a regula-
tory network of p genes into p different feature selection problems, the goal of
each being to retrieve the regulators of one of the genes of the network. Each
feature selection problem is then solved by applying a tree-based ensemble
method.

We proposed two procedures that integrate steady-state data and time
series data for the inference of gene regulatory networks. The best per-
forming of these two procedures considers steady-state data as time series
measurements that do not fluctuate over time, and learns for each gene of
the network a tree-based model predicting the expression of this gene at
a time ¢ + h, where h denotes a given time horizon, knowing the expres-
sion levels of the other genes at time t. The importance of the expression
of a candidate input gene at time t for the prediction of the expression of
the target gene at time t 4 h is taken as weight for the edge directed from
the input gene to the target gene in the predicted network. Compared to
the original GENIE3 procedure, this extension allows to predict much more
accurately the directionality of the edges of the network. On the different
DREAM3 and DREAM4 sub-challenges, the procedure is competitive with
the top performing methods but still remains significantly outperformed by
the best performing algorithm of each sub-challenge. We could improve our
method by combining it with the procedure of one of the best performers,
that exploits more appropriately the steady-state expression data resulting
from gene knockouts. However, this latter procedure requires a complete
dataset comprising the systematic knockout of each gene of the targeted
network, which may be unrealistic.

Among the different procedures that we proposed to infer regulatory net-
works from genetical genomics data, the best performing one consists in
learning, for each gene of the network, two tree-based models predicting the
expression of that gene: one from the expression levels of the other genes,
and the other one from the states of the genetic markers of the genes. Then,
the weight that is given to the edge directed from one input gene to the tar-
get gene in the predicted network is the product of the importances of the
expression of the input gene and of its genetic marker for the prediction of
the expression of the target gene. Results obtained on the artificial networks
of the DREAMS5 Systems Genetics challenge showed that genetic markers
bring much more information about the regulatory networks than expression
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data and are thus highly helpful for their recovering. Also, our inference
procedure actually outperforms the official best performing algorithm of the
challenge.

The DREAM challenges allowed us to make a first evaluation of the
performances of our different procedures on time series and genetic data.
However, these challenges are solely based on networks and data that are
artificial. As future works, we thus would like to apply our methods on real
datasets. In a first time, we could restrict ourselves to organisms for which
there exists a proper gold standard regulatory network, such as E. coli and
S. cerevisiae, in order to be able to evaluate the predictions returned by
our methods. For time series data, we could for example use the FE. coli
and S. cerevisiae compendia of the DREAMS Network Inference challenge,
that both contain expression data obtained from different time course ex-
periments. In these compendia, the time intervals between two expression
measurements are usually different from one time course experiment to an-
other, and we thus have to find a way to deal with these different intervals
in our procedures. We tried to interpolate the gene expression values of the
DREAMSb) E. coli dataset in order to get equal time intervals, but the re-
sulting predictions (obtained using GENIE3-comb) were not better than our
initial submission to the challenge (i.e. the predictions obtained using the
original GENIE3 procedure). Concerning genetical genomics data, datasets
related to various organisms are publicly available, such as the S. cerevisiae
dataset of Brem and Kruglyak (2005). However, in our different procedures,
we assume that each gene whose expression is measured in N individuals is
also analyzed for one single genetic marker in each of these N individuals.
Unfortunately, this situation is usually not encountered in real datasets. We
will thus have to modify our methods in order to deal with missing data, and
also to establish a procedure to aggregate the importance scores of different
genetic markers related to the same gene.
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Closure of Part III

This chapter provides a discussion on our contributions to gene network
inference and on results obtained from our empirical experiments. We finally
give some directions of future research on extensions of the GENITE3 method.

Contents
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9.1 Discussion

While the second part of this thesis focused on the identification of rele-
vant variables from a feature ranking, this third part was dedicated to the
application of feature selection/ranking techniques to the problem of gene
regulatory network inference. The problem of inferring a network of p genes
can indeed be viewed as p feature selection problems, the goal of each being
to retrieve the regulators of one of the genes of the network.

We exploited this framework in GENIE3, a procedure that aims to re-
cover a gene regulatory network from steady-state expression data. GENIE3
got the best overall performances in the DREAM4 In Silico Multifactorial
challenge and in the DREAMS5 Network Inference challenge, and is compet-
itive with existing algorithms to decipher the genetic regulatory network of
Escherichia coli. We also extended the GENIE3 method to the inference
of networks from time series data and from genetical genomics data respec-
tively, and showed that these extensions are competitive with the official best
performing algorithms in different DREAM challenges.

The framework of GENIE3 and its extensions are all based on the ranking
of the putative regulatory genes for each gene of the network. Among differ-
ent feature ranking methods, we chose to use tree-based ensemble methods.
Several reasons can explain the success of these methods in the inference of
gene regulatory networks.

First, a gene is expected to be jointly regulated by several regulators.
Therefore, tree-based methods, that are potentially able to detect multivari-
ate interacting effects between variables, have an advantage over methods
that consider pairwise interactions only, such as the methods based on the
computation of correlation or mutual information.

A second reason for the success of tree-based methods is that these meth-
ods can deal with high-dimensional datasets. By contrast, several complex
methods, such as Bayesian networks or methods based on systems of ordi-
nary or stochastic differential equations, can yield very good performances
on small networks, but fail at recovering larger networks because of compu-
tational issues or because they need much more experimental data.

Tree-based methods are also non-parametric and hence do not make any
strong assumption about the nature of the regulation, which can thus be non-
linear. However, it is not clear yet that using non-linear models constitutes a
real advantage, at least for the inference of the E. coli and S. cerevisiae net-
works. We indeed obtained better performances on these networks by using
linear SVMs instead of tree-based methods (Figure 6.10). Note also that the
third overall best performing algorithm of the DREAMb Network Inference
challenge is based on the same framework as GENIE3, but uses a LASSO
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regression approach to generate each gene ranking (Marbach et al., 2012).
Unlike the SVMs, the LASSO performed less good than the Random Forests
on the E. coli network, indicating that predictions can be very different de-
pending on the linear method used. Nevertheless, Random Forests perform
better than linear methods on artificial problems, which are non-linear by
construction.

Our experiments on the networks of the DREAM4 In Silico Multifacto-
rial challenge showed that GENIE3 is able to predict to some extent the
direction of the edges of these networks, even though it only exploits steady-
state expression measurements (Table 6.5). This is commonly admitted to
be a difficult problem and we are not yet in a position to explain why our
method is able to predict directionality to some extent. In addition, higher
error rates on edge directionality are obtained on the other networks of the
DREAM4 challenge, as well as on those of the DREAMS3 challenge, when
only steady-state data are exploited (see Figure 8.5), and on the networks
of the DREAMS Systems Genetics challenge when only expression data are
exploited (see Figure 8.12). One could therefore question the ability of GE-
NIE3 to predict edge directionality from steady-state data alone. On the
other hand, exploiting additional data such as time series data or information
about genetic markers clearly allows to predict more accurately the direction
of the edges.

We could observe from our different experiments some discrepancies be-
tween the results obtained on artificial data and those obtained on real data.
For example, in the DREAMS Network Inference challenge, improved pre-
dictions of the artificial network were obtained with GENIE3 by increas-
ing the parameter K of the Random Forests to its maximum value, while
for the E. coli network, the best ranking of interactions was obtained with
K = \/nrF, where nyp is the number of candidate regulators. The challenge
organizers generated the artificial expression dataset so that it contains the
same set of experiments as the E. coli compendium. The differences in the
predictions are thus not due to differences in the sizes of the datasets or the
types of experiments that they each contain.

A potential difference could reside in the fact that the gold standard
network of E. coli is not complete and hence contains false negative edges.
To check this hypothesis, we removed some of the interactions of the artificial
gold standard network of DREAMS5 (Figure 9.1(A)). For both values of the
parameter K (\/nrr and nyp), the performance of GENIE3 degrades as we
remove more interactions. However, setting K' = npp results in a better
performance in all cases, suggesting that the presence of false negatives in
the F. coli gold standard network is not a cause of the differences observed
on this network.
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Figure 9.1: Effects of the false negatives in the gold standard and of the noise
in the dataset. These PR curves evaluate the performance of GENIE3 at recovering
the artificial network of the DREAMS Network Inference challenge. A. Interactions of
the gold standard were randomly removed. The percentage indicated in the legend is
the proportion of edges of the gold standard that were removed. B. Noise was added to
the expression dataset. In each case, the predictions were obtained using GENIE3 with
Random Forests, either with K = /n7r (RF) or with K = nyp (Bagging), where nyp is

the number of putative regulators.

Another reason could be the discrepancy that exists between the simula-
tion model used to generate the artificial data and the real regulation mech-
anism of FE. coli. To simulate expression data, GeneNetWeaver (Marbach
et al., 2009; Schaffter et al., 2011) models the rates of change of mRNA and
protein concentrations, and adds noise both in the dynamics of the networks
and on the measurement of expression data. It does not take into account
additional layers of regulation, such as the one formed by non-coding regula-
tory RNA molecules. As the real regulation mechanism of E. coli is probably
more complex than the one simulated by GeneNetWeaver, the F. coli expres-
sion data appear more “noisy” than the artificial data. We thus checked how
the performance of GENIE3 varies when adding further noise to the artifi-
cial data, in the form of a Gaussian noise ~ N(0,0.5) (Figure 9.1(B)). As
expected, the predictions are worse when noise is added, for both values of
the parameter K of the tree-based method. We can however observe that
the performances obtained with K = ,/nrr and with K = nyp become
equivalent, a result that is close to what we obtain on the real networks.
This could be explained by the fact that using K = ,/nrp results in pre-
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dictive models that overfit less the data than those obtained with K = nyp
and that are therefore more robust to the noise. Note that this might also
explain why linear methods perform better than tree-based methods on the
real datasets. Their linearity is compensated by a greater robustness to noise
and overfitting.

9.2 Extensions of GENIE3

According to Figure 1.4, which proposes a categorization of the network
inference methods, the original GENIE3 procedure is a method which is
direct (it considers individual interactions only), unsupervised (it does not
assume prior knowledge about the targeted network), and non-integrative (it
exploits expression data only).

The different extensions of GENIE3 to genetical genomics data that we
proposed are also direct and unsupervised, but they are integrative as they
combine expression data and information about genetic markers to infer a
network. GENIE3 could be extended to many other types of data that would
bring complementary information about the targeted regulatory networks,
such as information about transcription factor binding sites, or physical in-
teractions between proteins. In particular, we would like to exploit data re-
lated to microRNAs. These small non-coding RNA molecules are key players
in the regulation of gene expression and exploiting them for the inference of
regulatory networks would certainly be of great interest. Nowadays, there
is an increasing number of publicly available datasets containing microRNA
and mRNA expression levels measured in the same conditions. Exploiting
these datasets would potentially help to predict more accurately the regula-
tory links between the genes, as an additional layer of regulation would be
taken into account (see e.g. Bonnet et al., 2010).

It would also be interesting to extend GENIE3 to other categories pre-
sented in Figure 1.4. Instead of a direct algorithm, we could consider a
module-based procedure that infers a regulatory network while searching for
modules, i.e. groups of genes that are regulated by the same transcription
factors. To identify a module, we could for example exploit multiple-output
trees (Blockeel et al., 1998; Geurts et al., 2006b), which would learn models
predicting the expression values of several target genes simultaneously, i.e.
those that belong to a given module. Note that we carried out some prelim-
inary experiments in this direction during the course of our thesis, but we
were not able to outperform the original GENIE3 method.

We could also modify GENIE3 in order to have a method that infers
networks in a supervised way, i.e. by exploiting prior partial knowledge
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about the targeted networks. We could for example follow the same idea
as SIRENE (Mordelet and Vert, 2008). This method consists in learning,
for each transcription factor, a SVM model predicting if a gene is regulated
or not by this transcription factor, using the expression profile of the gene.
Each model is built from a learning sample containing genes that are known
to be regulated (or not) by the corresponding transcription factor, and in
which each input variable is the gene expression in a given condition. The
rationale behind this framework is that if two genes are regulated by the same
transcription factor, they should have similar expression profiles. However,
by considering only one transcription factor at a time, SIRENE does not
take into account the fact that the regulation of a gene can be combinatorial.
For example, two genes can be regulated by a same transcription factor,
but have different expression profiles because one of the two genes is also
regulated by another transcription factor. Therefore, instead of learning a
model for each transcription factor, we can learn a single multiple-output
model (e.g. multiple-output trees) in which each output corresponds to a
transcription factor. This model would predict the links between a gene and
all the transcription factors simultaneously.

Another interesting direction of future research would be to extend GE-
NIE3 to the differential networking problem, where the goal is to identify the
subparts of the regulatory network that change between healthy and disease-
affected tissues (de la Fuente, 2010). We could simply start by inferring two
networks using GENIE3, one from the healthy samples and one from the
disease samples, and identifying the regulatory links whose weights vary the
most between the two networks.

Finally, an obvious goal would be to be able to infer the human regu-
latory network (Belcastro et al., 2011). However, the direct application of
GENIE3 to the human genome would raise some computational issues, due
to the very high number of genes. A solution could be to apply a procedure
that filters the candidate input genes, before learning each tree-based model
predicting the expression of a target gene. We could for example use the
expression data resulting from gene knockout experiments, and remove from
the input variables the transcription factors whose deletion does not affect
the expression of the target gene.
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A.1 Pseudo-codes

We assume that we have a learning sample LS of N instances of input-output
pairs drawn from some unknown probability distribution. LS contains m
input variables denoted X;,2 = 1,...,m. We also assume that we have an
algorithm A(LS) that outputs from the learning sample a feature ranking,
derived from a relevance score s; for each input variable X;. We assume,
without loss of generality, that the features are numbered according to their

relevance score, i.e.
S 2 S9 > ... >3

juiy - m-

Al1.1 err-A
Inputs: LS, A.

1. Fori=1,....m:

(a) Generate LS; from LS by including only variables X;,j =1,...,1.
(b) Learn a predictive model M; = A(LS;).

(c) Estimate the generalization error e; of model M; using ten-fold
cross-validation.

2. Determine the minimum value of k such that:

e, = min e;.
i=1,....m

3. Select variables X;, 1 =1,... k.
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A.1.2 pFDR
Inputs: LS, A, .
1. Forp=1,..., P:

(a) Generate LS? from LS by randomly permuting the output values.
(b) Compute variable relevance scores {s/, ..., st } = A(LSP).
(c) Compute V' = #{k: s} > s;}, fori=1,...,m.

2. Then at s;, the FDR is estimated by:

3. Enforce monotonicity by setting:
pFDRY + pFDR,,
pFDR] < max(pFDR]_,,pFDR,), fori=2,... ,m.

4. Select variables X; such that pFDR; < a.

A.1.3 CER
Inputs: LS, A, a.
1. Fori=1,....m:

(a) Forp=1,...,P:

e Generate LS? from LS by keeping the output values and the
values of X7, ..., X;_1 fixed, and by randomly and jointly per-
muting the values of X, ... X,,.

e Compute variable importance scores {s, ..., s? } = A(LSP).
(b) Then at s;, the FWER is estimated by :

1
CER; = I #{p: UL sh > s}

2. Enforce monotonicity by setting:
CER] < CERy,
CER} < max(CER]_,,CERy), fori=2,...,m.

3. Select variables X; such that CER} < a.
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A.1.4 eFDR
Inputs: LS, A, .

1. Fori=1,...,m:

(a) Forp=1,...,P:

e Generate LS? from LS by keeping the output values and the
values of X7, ..., X;_; fixed, and by randomly and jointly per-
muting the values of X;,..., X,,.

e Compute variable relevance scores {s/,...,s2.} = A(LSP).
Let s}y be the j-th largest member of {sf,..., s} }.

e Define V! as the unique integer k such that:
S(1) = Sis- -+ Sy 2 Sivkh—1, and s(y ) < Sit

(b) Then at s;, the FDR is estimated by:

P

FDR 12 v
e ;= — —.
P—~=Vli+ti-1

p=1
2. Enforce monotonicity by setting:
eFDR] < eFDR;,
eFDR] < max(eFDR;_;,eFDR;), for i =2,...,m.

3. Select variables X; such that eFDR; < a.

A.1.5 mr-test
Inputs: LS, A, k, «.

1. Forp=1,...,P:

(a) Generate LS? by randomly sampling (without replacement) half
of the instances of LS.
(b) Compute variable relevance scores {s{,..., st} = A(LSP).

(c) Rank the variables according to their score 7. Let r7 be the rank
of variable X; in the pth ranking.

167



2. Compute the mean rank of each variable over the P rankings:
1 F
T = ]—DZTf, fori=1,...,m.

p=1
3. Identify the k variables with the highest mean ranks ;.

4. Let r¢),j = 1,...,k - P, be the ranks of these k variables in the P
rankings. Then at s;, compute the following p-value:

1
pi:ﬁ~#{j:r(j)§ﬂ-}, fori=1,...,m.

5. Correct the p-values with the Benjamini Hochberg procedure.

6. Select variables X; such that p; < a.

A.1.6 1Probe
Inputs: LS, A, a.

1. Forp=1,...,P:

(a) Create a random feature X,,,qs by randomly sampling its values
from a normal distribution A(0,1).

(b) Add this random feature to the original learning sample:
LS? = LS U X,ana-

(c) Compute variable relevance scores {sf,..., st st 1 = A(LSP).

2. Then at s;, compute the following p-value:

1
pi = iR #{p: Sfand 2 Sf}-

3. Correct the p-values with the Benjamini Hochberg procedure.

4. Select variables X; such that p; < .
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A.1.7 mProbes
Inputs: LS, A, .

1. Forp=1,...,P:

(a) Create variable X? by randomly permuting the values of X; in

LS, fori=1,...,m.

(b) Create a new learning sample LS = LS U {X7?, ...

(¢) Compute variable relevance scores {v1, ..., vy, 07, . ..

2. Then at s;, the FWER is estimated by:

1
. . P~ .
FWER; 7 #{p.kirllax vy > vt

..... m

3. Select variables X; such that FWER,; < «a.
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A.2 Supplementary figures

Linear datasets (20 relevant feat., 500 instances)
1 ‘

N
] II H H |
<
0 Il Il Il
10 irr. feat. 100 irr. feat. 1000 irr. feat.
Hypercube datasets (5 relevant feat., 500 instances)
1 T T T
I RF original
I RF mr—test
E 1 RF 1Probe
2 05r II H H [ 1RFmProbes|]
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10 irr. feat. 100 irr. feat. 1000 irr. feat.

Figure A.1: AUPR scores. These AUPRs are those obtained when the variables are
ranked according respectively to the importance score derived from Random Forests, the
p-value derived from mr-test, the p-value derived from 1Probe, and the FWER derived
from mProbes (the three last methods being used with Random Forests). Top on linear
datasets, bottom on hypercube datasets, for different numbers of irrelevant features. The

AUPR values were averaged over 50 datasets in each case.
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Linear datasets (20 relevant feat., 500 instances)
1 ;

N
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<
O Il Il Il
10 irr. feat. 100 irr. feat. 1000 irr. feat.
Hypercube datasets (5 relevant feat., 500 instances)
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I SVM original
I SVM mr—test
o 1 SVM 1Probe
= 051 H H [ 1SVM mProbes ||
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10 irr. feat. 100 irr. feat. 1000 irr. feat.

Figure A.2: AUPR scores. These AUPRs are those obtained when the variables are
ranked according respectively to the importance score derived from a linear SVM, the p-
value derived from mr-test, the p-value derived from 1Probe, and the FWER derived from
mProbes (the three last methods being used with a linear SVM). Top on linear datasets,
bottom on hypercube datasets, for different numbers of irrelevant features. The AUPR

values were averaged over 50 datasets in each case.
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Linear datasets (20 relevant feat., 500 instances)
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Hypercube datasets (5 relevant feat., 500 instances)
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I t-test mr—test
£ | [ t-test 1Probe ||
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. | “ | 1N

10 irr. feat. 100 irr. feat. 1000 irr. feat.

Figure A.3: AUPR scores. These AUPRs are those obtained when the variables are
ranked according respectively to the statistic ¢ computed by a t-test, the p-value derived
from mr-test, the p-value derived from 1Probe, and the FWER derived from mProbes
(the three last methods being used with a t-test). Top on linear datasets, bottom on
hypercube datasets, for different numbers of irrelevant features. The AUPR values were
averaged over 50 datasets in each case.
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Linear (20 relevant feat., 100 irrelevant feat., 500 instances) / RF

——original ranking
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——ranking mProbes
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Rank

Figure A.4: Curves of the observed FDR on a linear dataset. These curves
correspond to the original ranking obtained using Random Forests and the rankings ob-

tained using mr-test, 1Probe, and mProbes respectively (all three methods being used
with Random Forests).
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Hypercube (5 relevant feat., 100 irrelevant feat., 500 instances) / RF
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Figure A.5: Curves of the different methods on a hypercube dataset. We
used the Random Forests as ranking method. score is the relevance score derived from
the Random Forests. obs. FDR is the observed FDR. The red vertical line indicates the
position of the lowest error rate for err-TRT. (The lowest error rate for err-RF is obtained
at rank 13.)
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Linear (20 relevant feat., 100 irrelevant feat., 500 instances) / SVM
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Figure A.6: Curves of the different methods on a linear dataset. We used the
linear SVM as ranking method. score is the relevance score derived from the SVM. obs.
FDR is the observed FDR. The dashed blue (resp. plain red) vertical line indicates the
position of the lowest error rate for err-SVM (resp. err-TRT).
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Hypercube (5 relevant feat., 100 irrelevant feat., 500 instances) / SVM
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Figure A.7: Curves of the different methods on a hypercube dataset. We used
the linear SVM as ranking method. score is the relevance score derived from the SVM.
obs. FDR is the observed FDR. The red vertical line indicates the position of the lowest
error rate for err-TRT. (The lowest error rate for err-SVM is obtained at rank 37.)
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Hypercube dataset, 5 relevant feat., 500 instances / RF
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Figure A.8: Precision and recall on hypercube datasets, for different numbers
of irrelevant features. We used the Random Forests algorithm as ranking method and

a = 0.05. The precision and recall values were averaged over 50 datasets in each case.
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Figure A.9: Precision and recall on linear datasets, for different numbers of
irrelevant features. We used the linear SVM as ranking method and a = 0.05. The

precision and recall values were averaged over 50 datasets in each case.
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Hypercube dataset, 5 relevant feat., 500 instances / SVM
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Figure A.10: Precision and recall on hypercube datasets, for different numbers

of irrelevant features. We used the linear SVM as ranking method and a = 0.05. The

precision and recall values were averaged over 50 datasets in each case.
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Figure A.11: Precision and recall on hypercube datasets, for different numbers

of instances. We used the Random Forests algorithm as ranking method and « = 0.05.

The precision and recall values were averaged over 50 datasets in each case.
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Linear dataset, 20 relevant feat., 100 irrelevant feat. / SVM
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Figure A.12: Precision and recall on linear datasets, for different numbers of

instances. We used the linear SVM as ranking method and o = 0.05. The precision and

recall values were averaged over 50 datasets in each case.
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Figure A.13: Precision and recall on hypercube datasets, for different numbers
of instances. We used the linear SVM as ranking method and « = 0.05. The precision

and recall values were averaged over 50 datasets in each case.
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Figure A.14: Curves of err-SVM and err-TRT, on the microarray datasets.

‘We used

the linear SVM as ranking method.
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Figure B.1: PR and ROC curves of GENIE3 for each network of the DREAM4
Multifactorial challenge. Left: PR curves. Right: ROC curves. Prec: Precision. FPR:
False Positive Rate. TPR: True Positive Rate. The rankings of interactions were obtained
using Random Forests with K = /p — 1, where p is the number of genes, and growing
T = 1000 trees.
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Figure B.2:

Each row in a figure corresponds to a gene.

Ranking of the true regulators of each gene on DREAM4 net-
works. Dots in each row represent the
positions in the Random Forests ranking of the regulators of this gene. Genes are ordered
on the y-axis according to their number of regulators in the gold standard network; those
having the same number of regulators are grouped inside a horizontal block. Inside each
block, genes are ordered according to the median rank of their regulators. The rankings of
interactions were obtained using Random Forests with K = p — 1, where p is the number

of genes, and growing T' = 1000 trees.
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Figure B.3: Ranking of the true regulators of each gene on the E. coli network.
Each row in a figure corresponds to a gene. Dots in each row represent the positions in the
Random Forests ranking of the regulators of this gene. Genes are ordered on the y-axis
according to their number of regulators in the gold standard network; those having the
same number of regulators are grouped inside a horizontal block. Inside each block, genes
are ordered according to the median rank of their regulators. The ranking of interactions
was obtained using Random Forests with K = \/nrr, where nyp is the number of known
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transcription factors, and growing 7" = 1000 trees.
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Figure B.4: PR and ROC curves of GENIES3 for each network of the DREAM5
Network Inference challenge. Left: PR curves. Right: ROC curves. FPR: False
Positive Rate. TPR: True Positive Rate. The rankings of interactions were obtained using

Random Forests with K = \/nrpr, where nrp is the number of potential transcription
factors, and growing 7" = 1000 trees.
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Figure C.1: PR curves for the networks of the DREAMS3 In Silico Network
challenge. On each plot, the x-axis is the recall and the y-axis is the precision. The
PR curves are those obtained when applying respectively GENIE3 to the concatenation
of steady-state and time series data, GENIE3 to the steady-state data, GENIE3-time,
GENIE3-mean (with pug and pr fixed to their default values), and GENIE3-comb. The
rankings of interactions were obtained using Random Forests with K = p — 1, where p is

the number of genes, and growing 7" = 1000 trees.

189



DREAM4 Size10 Net1 DREAM4 Size100 Net1
1

0.5

DREAM4 Size100 Net3

0.5 0.5

0 0.5 1 0 0.5 1
DREAM4 Size10 Net4 DREAM4 Size100 Net4

0.5

0 0.5 1
DREAM4 Size10 Net5

0.5

0 0.5 1 00 0.5 1
GENIE3 on all data

GENIE3 on steady-state

GENIE3-time

——— GENIE3-mean

GENIE3-comb

Figure C.2: PR curves for the networks of the DREAM4 In Silico Network
challenge. On each plot, the x-axis is the recall and the y-axis is the precision. The
PR curves are those obtained when applying respectively GENIE3 to the concatenation
of steady-state and time series data, GENIE3 to the steady-state data, GENIE3-time,
GENIE3-mean (with pg and ur fixed to their default values), and GENIE3-comb. The
rankings of interactions were obtained using Random Forests with K = p — 1, where p is

the number of genes, and growing 7' = 1000 trees.
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Figure C.3: AUPRs of GENIE3-comb for the DREAMS3 networks. Each plot is
related to one network and shows the AUPRs obtained with GENIE3-comb, for different
values of the time horizon h, as well as the AUPR obtained when the weights of the
regulatory links are averaged over all possible values of h (horizontal dashed line). On
each plot, the x-axis is the time horizon h and the y-axis is the AUPR. The rankings of
interactions were obtained using Random Forests with K = p — 1, where p is the number
of genes, and growing T' = 1000 trees.
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Figure C.4: AUPRs of GENIE3-comb for the DREAM4 networks. Each plot is
related to one network and shows the AUPRs obtained with GENIE3-comb, for different
values of the time horizon h, as well as the AUPR obtained when the weights of the
regulatory links are averaged over all possible values of h (horizontal dashed line). On
each plot, the x-axis is the time horizon h and the y-axis is the AUPR. The rankings of
interactions were obtained using Random Forests with K = p — 1, where p is the number

of genes, and growing T' = 1000 trees.
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Figure C.5: PR curves for the networks of the DREAMS5 Systems Genetics
challenge. On each plot, the x-axis is the recall and the y-axis is the precision. GENIE3
on expression: original GENIE3 procedure applied to expression data. GENIE3 on mark-
ers: weight of edge i — j is the weight w]"; computed from f;" as defined in Equation
(8.23). Sum: weight of edge i — j is the sum of the importance wf ; of the expression of
gene ¢ and the importance w;"; of the marker of gene i. Prod: weight of edge ¢ — j is the
product of the importance wy ; of the expression of gene ¢ and the importance w;"; of the
marker of gene i. The rankings of interactions were obtained using Random Forests with

K fixed to the number of input variables, and growing 7' = 1000 trees.
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