
Model based, gain-scheduled anti-windup control for LPV systems

Fulvio Forni∗, Sergio Galeani∗

Abstract— In this paper we show that a recently proposed
technique for anti-windup control of exponentially unstable
plants can be easily extended to solve the corresponding robust
anti-windup problem for linear parameter varying systems, for
which the time varying parameters are measured online. For
this class of plants, it is shown that the proposed techniqueis
minimally conservative with respect to the size of the resulting
operating region: in particular, such a region is (up to an
arbitrarily small quantity) exactly the largest set on which
asymptotic stability can be guaranteed for the considered plant,
for the given saturation level and uncertainty characteristics.

I. I NTRODUCTION

Input saturation and plant uncertainty are two ubiquitous
phenomena that a control engineer has to face in any real
design problem. The presence of saturation nonlinearities
in otherwise linear closed loop systems can cause dramatic
performance losses known as “windup” effects; in order to
avoid such losses, several anti-windup compensation tech-
niques have been developed, starting with the pioneering,
heuristic solutions proposed in the 1950’s (e.g. [20]; see
also the surveys [19], [1]) until general results with formal
proofs of stability started appearing during the last decade
(seee.g. [28], [21], [10], [11] and references therein). On
the other hand, plant uncertainty motivated a huge amount of
research in the field of robust control, where, under different
assumptions about the uncertainty model (e.g. structured
or unstructured, fixed or time-varying unknown parameters
and so on), many different solutions have been proposed.
A difference that will be of interest in this paper is the
difference betweenrobustness-in-the-largeand robustness-
in-the-smallof a given property (e.g., asymptotic stability of
a closed loop system), where the property is said to be robust-
in-the-small if it holds for any sufficiently small uncertainty,
whereas it is said to be robust-in-the-large if it holds for any
uncertainty in ana priori assigned (and perhaps “large”)
set of uncertainties. Usually, when a stabilization problem
is solved in the nominal parameters, then robustness-in-the-
small can be obtained (almost) “for free” by invoking suitable
(possibly nonlinear) small gain theorems; this is not the case
when robustness-in-the-large is of interest.

Taking into account the above discussion, it is somewhat
remarkable that, as pointed out in [25], the problem of
designing anti-windup compensators devoted to the study
of robustness limitations specifically arising in anti-windup
control systems, or that guarantee robust-in-the-large stability
has not been systematically addressed in the literature.

In particular, even in the nominal parameters, the problem
of anti-windup compensation is known to be especially
challenging in the case on exponentially unstable plants, for
which (due to the presence of bounds on the input) the null
controllable region is bounded (see,e.g., [22]) and then in
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order to achieve stability the anti-windup compensator has
to take care that the state of the plant never leaves a suitable
subset of the null controllable region. Anti-windup designs
for exponentially unstable linear plants have been recently
suggested in a number of papers, including [9], [10], [13]
(where novel methods for the characterization of the stability
domains for saturated feedback systems were employed to
provide a systematic design anti-windup design tools), [26]
(where the results of [18] were extended to the case of a
narrowed sector bound, thus obtaining a locally stabilizing
anti-windup compensator), and [12], [11] (which extend the
coprime factor based anti-windup solution initially proposed
in [21]). For the case of Linear Parameter Varying (LPV)
systems (which can be used to embed an uncertain, possibly
nonlinear and time varying plant, and then to solve a robust-
in-the-large stabilization problem), some solutions havebeen
proposed: seee.g. [8], [27] and references therein.

In this paper, we address the anti-windup design for expo-
nentially unstable linear plants using anonlinearanti-windup
structure based on the architecture first introduced in [24]and
then further developed in [23], [5], [4] for exponentially un-
stable plants. In particular, we show that the constructiveanti-
windup solution proposed in [17] can be readily extended in
order to give a robust-in-the-large solution to the anti-windup
problem for exponentially unstable, uncertain linear plants.
The key advantage of the approach in [23] (preserved in [17],
and then in the solution proposed in the present paper, even
in the presence of uncertainties) is that unlike the previous
approaches in [10], [9], [12], [11], [26], the compensation
structure is only dependent on the plant dynamics, and then
the achievable operating region in the plant state space is
only dependent on the structural limitations of the saturated
uncertain plant; on the other hand, previously proposed
solutions (as the ones cited above) also depend on dynamics
of an a priori given unconstrained controller (which is part
of the anti-windup problem definition), so that, especially
when that controller is very aggressive, the corresponding
constructions may lead to very small operating regions. As
in [17], an important advantage of our technique as compared
to the existing ones is that we are able to guarantee bounded
responses to references of arbitrarily large size, becausethe
plant state is permanently monitored and kept within the null-
controllability region, thus preserving the overall stability
property; however, in order to achieve the largest possible
operating regions (not achievable by previously proposed
LPV approaches), the construction in [17] is modified here
by the use of polyhedral Lyapunov functions and related
tools, on which we heavily rely [7], [6]. Also, with respect to
previous work on anti-windup for LPV systems, no bounds
on the rate of variation of parameters are required.

We remark that, although the anti-windup construction in
this paper is (up to a few additional technicalities) essentially
the one proposed in [17] (and, in particular, the formal
proof of our main result is not even reported, being a mere



repetition of the proof in [17]), the main value of this
contribution relies in showing the following facts:

1) the anti-windup solution of [24], [23] (in particular, as
implemented in [17]) can be easily extended to LPV
(possibly exponentially unstable) systems;

2) the necessary (but not sufficient, in general) condition
of unconstrained loop robust stability [25] (and the
independent work [15], [14]) is alsosufficientfor LPV
anti-windup, so that for this class of systems there is no
trade-off between performance and robust-in-the-large
stability in the sense of [16];

3) the key role of the knowledge of the time-varying
parameters in our anti-windup solution liesnot in its
use for robust stabilization,but in the possibility of
preserving a so-called “cascade structure” [24] inside
the anti-windup closed loop; this structure gives the
possibility to reduce the anti-windup problem to a
state feedback, constrained stabilization problem for
an uncertain LPV system whose dynamics is only
dependent on the plant (which can be solvedwithout
using the knowledge of the time-varying parameters)
thus making it possible to achieve the largest possible
basin of attraction subject to the intrinsic limitations
of the plant.

The paper is structured as follows: after introducing some
notation, in Section II the data of the problem are described;
in Section III the anti-windup problem of interest is formally
defined, explaining how and why the definition in [17] needs
to be extended; the anti-windup compensator design is de-
scribed in Section IV, and finally, we show the effectiveness
of the approach on a simulation example in Section V .
Notation Let R>0 (R≥0) be the set of positive (non negative)
reals. Givenw, v ∈ R

p, the inequalityw > v must be
understood componentwise,i.e. w > v meanswi > vi for
all i = 1, . . . , p (equivalently,w − v ∈ R

p
≥0).

The scalar saturation function of unitary level is indicated
as

σ(v) :=

{
sign(v), if |v| > 1;
v, if |v| ≤ 1;

where sign(·) is the sign function; the (vector, decentralized)
saturation function of unitary level is defined by saying that
its i-th component is a scalar saturation function of unitary
level.

A signal q(·) is in Lp if its Lp norm is bounded, where

‖q‖p :=






(
limt→∞

∫ t

0
‖q(τ )‖ dτ

)1/p

if p ∈ [1,∞),

supτ∈[0,+∞) ‖q(τ )‖ if p = ∞.

The class of piecewise continuous functions of time1 will
be denoted as̄C0.

A polyhedral subsetP ⊂ R
n is a set defined by the

relation P := {v ∈ R
n : Fv ≤ 1̄}, where 1̄ := [1 · · · 1]′

andF is a matrix of suitable dimensions. A functionΨ ∈
R

n → R≥0 is a gauge functionif
• ∀x ∈ R

n Ψ(x) ≥ 0 andΨ(0) = 0,
• ∀λ ∈ R≥0, ∀x ∈ R

n Ψ(λx) = λΨ(x),

1Throughout the paper, piecewise continuity of signals willbe assumed
for simplicity; this assumption can be relaxed by simply assuming that
the relevant signals are sufficiently regular to satisfy theusual sufficient
conditions for existence of solutions.

• ∀x, y ∈ R
n, Ψ(x+ y) ≤ Ψ(x) + Ψ(y).

Any compact and convex polyhedral setP := {x ∈ R
n :

Fx ≤ 1̄} is associated to the sublevel setN̄ [Ψ, k] = {x ∈
R

n : Ψ(x) ≤ k} for k = 1 of the gauge functionΨ(x) =
max1≤i≤n(Fix), whereFi denotes thei−th row of matrix
F ; conversely, that any compact and convex setS induces a
gauge functionΨ(x) = inf{µ ∈ R≥0 : x ∈ µS}.

II. PROBLEM SETTING

Let D0 be a convex and compact polyhedron, andW0 :=
{w ∈ R

µ
≥0 :

∑µ
i=1 wi = 1}; moreover, define the classes of

set bounded, piecewise continuous disturbancesD = {d(·) ∈
C̄0 : d(t) ∈ D0} and time-varying parametersW = {w(·) ∈
C̄0 : w(t) ∈ W0}.

Consider the linear parameter varying (LPV) plant

ẋ = A(w)x+B(w)u+ Ed, (1a)

z = C1(w)x+D1(w)u+ F1d, (1b)

y = C2(w)x+D2(w)u+ F2d, (1c)

wherex ∈ R
n is the plant state,u ∈ R

m is the control input,
y is the plant output available for measurement andz is the
performance output; and each matrix of the formM(w) in
(1) is defined in terms of itsµ “vertex values”Mi, i =
1, . . . , µ, according to the relationM(w) =

∑µ
i=1 wi(t)Mi.

The signalw(·) is assumed to be available (measured).
An a priori given “unconstrained controller”

ẋc = Ac(w)xc +Bc(w)uc +Br(w)r, (2a)

yc = Cc(w)xc +Dc(w)uc +Dr(w)r. (2b)

is assumed to be available for plant (1); the name “un-
constrained controller” given to (2) is motivated by the
assumption that (2) is designed assuming the “unconstrained
interconnection”

u = yc, uc = y, (3)

and is such that the unconstrained closed-loop systemΣ̄U

given by (1), (2), (3) has a desirable response to external
signalsr, d; this implies that the following (minimal) as-
sumption is satisfied.

Assumption 1:Σ̄U is well-posed and asymptotically sta-
ble, ∀w ∈ W .

Remark 1:According to Assumption 1 (which is a nec-
essary condition for robust anti-windup compensation, as
pointed out in [25], [16]), the unconstrained controller (2)
guaranteesglobal robust asymptotic stabilityof the uncon-
strained closed-loop system. However, we remark that matrix
A(w) is not assumed to be Hurwitz (even for fixed values
of w), and actually the uncertain controlled system (1) is not
assumed to be asymptotically stable or time-invariant; this
is in contrast with most of the available literature on anti-
windup, where the controlled plant is either unstable (but
without “large” uncertainties) or affected by large uncertain-
ties (but asymptotically stable). ◦

When saturation is present at the plant input, the un-
constrained interconnection (3) is replaced by the following
saturated interconnection:

uc = y, u = σ(yc). (4)

The correspondingsaturated closed-loop system̂ΣS given by
(1), (2) and (4) typically exhibits undesirable behavior, since



the controller (2) is designed without taking into account the
saturation constraints; moreover, structural constraints (i.e.
the fact that for plants with exponentially unstable modes
and bounded input the null controllability region is bounded
in the exponentially unstable directions; see,e.g., [22]) imply
that the global stability properties in Assumption 1 will be
lost for Σ̂S if (1) is exponentially unstable.

In order to limit the adverse effects of saturation, and to
recover the unconstrained responses ofΣ̄U , an anti-windup
compensatorcan be designed; in general, this compensator
will be a dynamical system having a statexaw and two output
signalsv1 andv2, used to modify the saturated closed-loop
systemΣ̂S according to the relation

uc = y + v2, u = σ(yc + v1). (5)

The interconnection of (1), (2) and the anti-windup com-
pensator according to (5) will be denoted as the (satu-
rated) anti-windup closed-loop system̆ΣSAW . As already
anticipated, the goal of anti-windup compensation can be
qualitatively stated as preserving (i.e. not modifying) as
much as possible the response of the unconstrained closed-
loop Σ̄U , meanwhile neutralizing the destabilizing effects
of saturation (which, in the case of exponentially unstable
plants, include the possibility of leaving the null controllable
region); otherwise stated, it is desirable that 1) the response
from r, d to z of Σ̆SAW must be equal to the corresponding
response of̄ΣU (and this happens ifv1 = 0 andv2 = 0) as
long as no saturation occurs and the state of the plant remains
inside (a proper subset of) the null controllable region, and
2) Σ̆SAW must be stable.

III. A NTI-WINDUP PROBLEM DEFINITION

In order to formally state the anti-windup problem of in-
terest in this paper, some preliminary definitions are needed.

Let X andX+ be two compact and convex subsets of the
null controllable region of (1) under the available bounded
input, such that∃ǫ > 0 for which (1 + ε)X = X+ ⊂ R

n.
The proposed design of the anti-windup compensator (6) will
guarantee that 1) the statex of (1) never leaves the region
X+, and 2) the response (fromr, d to z, for xaw(0) = 0)
of Σ̆SAW will be equal to the corresponding response of
Σ̄U as long as no saturation occurs and the state of (1)
in Σ̄U remains insideX . Once again, it is remarked that
introducing the setsX and X+ is necessary in order to
achieve the requirements in the next definition (in particular,
X+ for stability andX for local preservation); the “distance”
ǫ between the boundaries ofX andX+ is needed in order to
allow a region where the anti-windup compensator (6) can
“brake” in order to avoid the statex to leaveX+. Notice
also that, since the boundary of the null controllable region
is an invariant set, in order to avoid to loose the ability to
quickly steer the statex to points insideX , it is desirable to
guarantee some distance between the boundary ofX+ and
the boundary of the null controllable region (more on this
“stickiness effect” can be found in [3, Remark 5]).

Once the regionX where the statex is supposed to
evolve is defined, a set of(steady state) feasible external
signals(including both references and disturbances) can be
defined, containing those pairs of constant references and
disturbances leading to equilibria within the setX . This is
done in the following definition.

Definition 1: Given a setX and a signalw ∈ W , let
RD(w,X ) be theset of feasible external signals forw and
X , where the pair(r◦, d◦) is a feasible external signal for
w andX if the state response of̄ΣU to the external inputs
(r(t), d(t)) = (r◦, d◦), ∀t ≥ 0, converges to a steady state
value (x∗, x∗c) with x∗ ∈ X . ◦

Remark 2:Compared with the corresponding definition in
[17], three main differences can be noticed in Definition 1.
First, w is not assumed to be constant in Definition 1.
Since no parameter variations were allowed in [17] (i.e.
w was a constant), by Assumption 1 the response of the
linear and stable system̄ΣU was always convergent; on the
other hand, since in our casew could be any signal inW ,
there is noa priori guarantee that the state response of
Σ̄U to constant(r◦, d◦) will converge, unlessw is constant
too. However, assuming a constant value ofw for this
reason is unnecessarily conservative (such condition is only
sufficient; it is easy to figure out cases such thatw does
not even converge to a fixed value, and yet there is an
associated constant equilibrium(x∗, x∗c) of Σ̄U ), and then
only convergence of the state response ofΣ̄U is assumed.
Second, the setRD(w,X ) of feasible external signals de-
pends onw (and not only onX , as in [17]). This compli-
cation is needed since very little restrictions are imposedon
w by the fact thew ∈ W ; hence, considering simply

RD(X ) := ∩w∈WRD(w,X )

= {(r◦, d◦) : (r◦, d◦) ∈ RD(w,X ), ∀w ∈ W} =

(i.e. the set of external signals(r, d) for which the state
response of̄ΣU converges, for anyw ∈ W) could be overly
restrictive, considering only those(r, d) which are admissible
for anyw ∈ W ; on the other hand, the somewhat “implicit”
definition given above allows to recover as much as possible
any (r, d) that are admissible for the specificw(·) affecting
the plant.
Third, both r◦ and d◦ are simoultaneously accounted for
in the definition ofRD(w,X ), so that there is a trade-off
between the size ofr◦ and the size ofd◦ in each feasible
pair (r◦, d◦). In [17], d◦ = 0 could always be assumed
without any loss of generality due to the particular structure
considered for the plant dynamics in [17]; on the other hand,
since no similar assumption is made in our paper about the
structure of the plant dynamics, the value ofd◦ concurs in
determining the steady state value of the state, thus limiting
the feasible values ofr◦. ◦

For the next definition, given certain selections ofw(·) ∈
W , the external inputsr(·) and d(·) ∈ D and initial
conditionsx(0), xc(0) for the plant and the unconstrained
controller states, we will denote bȳ· the responses aris-
ing from the unconstrained closed-loop system̄ΣU (e.g.,
x̄(·), ū(·), z̄(·) and so on), and by̆· the responses aris-
ing from the anti-windup closed-loop system̆ΣSAW (e.g.,
x̆(·), ŭ(·), z̆(·) and so on). The following problem will be
addressed and solved in this paper.

Definition 2: Given a compact and convex setX ⊂ R
n,

the anti-windup problem forX is to design an augmentation
to the controller (2) such that for any initial condition
x(0), xc(0) satisfyingx(0) ∈ X and anyw(·) ∈ W , r(·) and
d(·) ∈ D, the corresponding responses of the unconstrained
closed-loop system̄ΣU and of the anti-windup closed-loop
systemΣ̆SAW satisfy the following properties:



1) (local preservation) if σ(ū(t)) = ū(t), x̄(t) ∈ X ,
∀t ≥ 0, then z̆(t) = z̄(t), ∀t ≥ 0;

2) (Lp recovery) ∀(r◦, d◦) ∈ RD(w,X ), if (r(·) −
r◦, d(·)− d◦) ∈ Lp then(z̆− z̄)(·) ∈ Lp, ∀p ∈ [1,∞];

3) (restricted tracking) if lim
t→+∞

(x̄(t), x̄c(t)) = (x̄∗, x̄∗c)

with x̄∗ ∈ X then lim
t→+∞

(x̆(t), x̆c(t)) = (x̆∗, x̆∗c) =

(x̄∗, x̄∗c). Moreover, if x̄∗ /∈ X but lim
t→+∞

d(t) = 0,

then lim
t→+∞

(x̆(t), x̆c(t)) = (x̆∗, x̆∗c) with x̆∗ ∈ X .

◦
The three requirements in Definition 2 are commented

upon in the following remark.
Remark 3:The three items in Definition 2, are three

desirable properties guaranteed by our construction. Item1
(local preservation) guarantees that any trajectory generated
by the unconstrained closed-loop system that never satu-
rates and never violates the necessary constraint on the
operating regionX (therefore being safely reproducible on
the saturated plant) will be preserved by the anti-windup
compensation scheme. Item 2 (Lp recovery) guarantees
that any unconstrained trajectory generated by a reference-
disturbance pair converging (in anLp sense) to a feasible
reference-disturbance pair will be asymptotically recovered
(in an Lp sense). This property ensures that any uncon-
strained trajectory which converges to an admissible set point
will be recovered by the anti-windup compensation scheme,
even if saturation will impose to give up on some transient
performance features. Note that this item evaluated forp =
∞ imposes that the anti-windup closed-loop is BIBS stable,
that is: any (arbitrarily large) selection of the reference-
disturbance pair will lead to a bounded response. Finally,
item 3 (restricted tracking) guarantees that any converging
unconstrained trajectory will correspond to a converging anti-
windup trajectory. All trajectories that converge in forbidden
regions for the saturated plant will be projected on a re-
stricted set-point such that the unstable part of the plant state
remains inX . ◦

Remark 4:Note that the main challenge in finding a solu-
tion that guarantees the anti-windup property of Definition2
resides in the fact that the null controllability region of the
plant is bounded in the exponentially unstable directions
(see, e.g., [22]). Therefore, special care by way of nonlinear
functions needs to be taken to keep such “unstable part”
of the state (calledxu in [17]) within the null controllable
region at all times, otherwise stability couldn’t be guaranteed.
For this reason in [17] it was assumed thatxu could be
exactly measured, and that no disturbance could affect its
dynamics, in order to prove general results on the arising
closed-loop. We remark that here we allow the disturbance
to act on all the state, and assume that the whole state is
measured; the reason for this will be clarified in the following
Remark 6. However, as in [17], it is worth to remark that even
if exact measurement ofx are not available, regional result
can be obtained, at the price of a reduction of the regionX
(in order to introduce an additional “safety boundary”).◦

IV. A NTI-WINDUP CONSTRUCTION

The key observation in this paper is that if, as usually is
the case in gain scheduled LPV control, the plant is described
by (1) and the signalw(·) is measured, the plant dynamics
can beexactly copied; hence, as in [24], if the following

anti-windup compensator structure is used:

ẋaw = A(w)xaw +B(w)[yc − σ(yc + v1)], (6a)

v1 = α(x, x+ xaw, yc, w), (6b)

v2 = C2(w)xaw +D2(w)[yc − σ(yc + v1)], (6c)

andα(x, x + xaw, yc, w) is chosen in such a way to make
X+ forward invariant and to stabilize the dynamics (6a),
then the overall anti-windup closed loop system satisfies the
requirements in Definition 2.

In order to specify how the functionα(x, x+ xaw, yc, w)
can be designed, recall that the controlled plant is described
by (1), where matricesA(w) andB(w) are defined in terms
of their µ “vertex values”Ai, Bi, i = 1, . . . , µ, according to
the relationA(w) =

∑µ
i=1 wi(t)Ai, B(w) =

∑µ
i=1 wi(t)Bi;

moreover, the disturbance acting on the plant is such that
d(t) ∈ D0, ∀t ≥ 0, (whereD0 is a convex and compact
polyhedron), and the inputu to the plant is also bounded
in the setU := {u ∈ R

p : |ui| ≤ 1, i = 1, . . . , p}.
The proposed design procedure (based on the results in
[7], [6] and corresponding, with some modifications, to the
procedure in [17]), is now described.
Procedure 1: anti-windup compensator design.
Step 1.Compute a polyhedral domain of attractionX+ :=
{x ∈ R

n : Fx ≤ 1̄} and define the associated gauge function
ψ(x) := maxi(Fix) and the setX := (1 + ε)−1X+ for a
small ε > 0.
This step can be easily accomplished by choosing a (suf-
ficiently) small positive constantτ > 0 and parameters
λ∗ ∈ (0, 1), ǫ > 0 such thatλ = λ∗ + ǫ < 1 and using
the algorithm in [6] on the system dataAi, Bi, i = 1, . . . , µ,
D0 andU . Here,λ gives a level of guaranteed convergence
speed, andǫ is a parameter which allows to trade-off accurate
approximation of the domain of attraction with the size
of the matrixF describingX+; a smallerǫ gives a more
accurate approximation, and a smallerλ guarantees a faster
convergence (and, due to the bounds on the input, a smaller
regionX+).
Step 2. Compute a control lawφ(x) makingX+ forward
invariant
As shown in [6], this step can be accomplished in two phases:
first, the control value on the vertices ofX+ is determined;
then, a Lipschitz continuous extension of the control law is
designed for the wholeX+ domain.
The first phase is done by finding, for each vertexv of X+,
a control valueuv such that

F [(I + τAj)v + τBjuv] < λ1̄ − δ, ∀j ∈ {1, . . . , µ},

where vectorδ has componentsδi = maxd(FiEd).
Hence, the control law at vertex is used to define the

continuous control law for allx ∈ X+:
• for all statex exists a coneCh such thatx ∈ Ch, where

the vertices ofCh are X(h) =
[
x

(h)
1 . . . x

(h)
n

]

and the control values associated areU (h) =
[ ux

(h)
1

. . . u
x
(h)
n

]
• the control can be defined as a combination of the values

at vertex, thenφ(x) = U (h)[X(h)]−1x .
Step 3.Define the pseudo-tracking control lawΦ(x, x̄, ū)
This step can be accomplished by defining

Ψ(x, x̄) := max
i

Fi(x− x̄)

1 − Fix̄
, x̃(x, x̄) := x̄+

(x− x̄)

Ψ(x, x̄)
,



and the pseudo-tracking control law as

Φ(x, x̄, ū) := φ(x̃(x, x̄))Ψ(x, x̄) + (1 − Ψ(x, x̄))ū.

As shown in [7], whenA(w) = A and B(w) = B
are constant matrices and the pair(x̄, ū) corresponds to
an equilibrium (namely,Ax̄ + Bū = 0), the control law
Φ(x, x̄, ū) ensures asymptotic stability of̄x with domain of
attractionX ; here,(x̄, ū) do not, in general, satisfy such an
assumption, hence the name of pseudo-tracking control law.
Step 4.Define the anti-windup control lawα(x, xM , yc, w)
This step can be accomplished by defining

α(x, xM , yc, w) := −yc + Φ(x, π(xM), πu(yc, w))

where

π(xM ) :=

{
xM if xM ∈ X

xM

ψ(xM )(1 + ǫ)
if xM /∈ X

πu(yc, w) :=

{
yc if yc ∈ U andxM ∈ X
−B(w)♯A(w)p(xM) otherwise

andB(w)♯ := (B(w)′B(w))−1B(w)′.
The effectiveness of the above procedure is stated in the

following theorem, whose proof is omitted since it coincides
with the proof in [17] (up to some minor technical modifica-
tions due to the use of polyhedral Lyapunov functions, and a
slightly simpler definition of the functions appearing in Step
4).

Theorem 1:Under Assumption 1, the anti-windup com-
pensator designed according to Procedure 1 solves the prob-
lem in Definition 2.

Remark 5:The LPV system (1) can be used to “hide” a
nonlinear, uncertain and time varying system under a “linear”
structure, provided that the linearizations of the considered
system in the operating region of interest are all contained
in the convex hull of the vertex valuesAi, Bi, . . . defining
the matricesA(w), B(w), . . . (possible drift terms due to the
fact that not all the states inside the considered operating
region are equilibria can be modeled by absorbing them in
the “disturbance”d).
In this regard, it is relevant to remark that such procedure
is obviously conservative (since, for example, in the original
nonlinear system some “parameter variations” of the LPV
system will not be possible; a similar remark applies with
respect to the fact that no bound on the rate of variation of
w(·) is imposed in our analysis); however, it is important
to understand thatthe proposed result is tight for the LPV
system(1), since (up to an arbitrarily small constantε) the
largest possible domain of attraction under the given bounds
on the control input, the disturbances and the uncertainties
is obtained by the construction in Procedure 1 by virtue of
the algorithms in [6]. ◦

Remark 6: In [17] (following [23]) a partition of the state
of the plant asx := [x′s x

′
u]′ was considered, and the plant

dynamics was consistently partitioned as
[
ẋs

ẋu

]
=

[
As A12

0 Au

] [
xs

xu

]
+

[
Bs

Bu

]
u+

[
Bds

0

]
d, (7)

whereAs is Hurwitz. For the complete motivation of such a
choice, the reader is referred to [23]; what is important to no-
tice here is that an useful consequence of such an assumption
(exploited in [23], [3], [17]) is that sinceAs is Hurwitz in

(7), the null controllable region of the plant is unrestricted in
thexs part of the state, so that only measurements ofxu are
needed by the anti-windup controller in order to preserve
boundedness of trajectories. However, when time-varying
parameters are present, and unless specific structural (i.e.
non generic) assumptions hold about the dependence of the
system’s state space description on the unknown parameters,
the null controllable region “moves” as the parameters vary
with time, and then it is not possible to measure only the
“unstable part”xu of the state, and then the whole state must
be measured; this was shown by an example in [2], where the
same aircraft model used in [3] was studied, in the presence
of parameter variations. For this reason, the whole statex is
assumed to be measurable in this paper. ◦

V. SIMULATION EXAMPLES

In this section, the example in [17] Consider the plant
described by matrices

A(ω1) = ω1

[
1.8 −1
−0.2 0.8

]
+ (1 − ω1)

[
2.2 −1
0.2 1.2

]

B(ω2) = ω2

[
9.8
−6.8

]
+ (1 − ω2)

[
10.2
−7.2

]

with C1 = [ 1 1 ], C2 =

[
1 0
0 1

]
, E = D1 = D2 = 0.

The proposed design procedure has been applied with
λ∗ = 0.982, ǫ = 0.012, andA0, B0 corresponding to the
parameter values(ω1, ω2) = (0.5, 0.5).

The unconstrained controller, ensuring robust asymptotic
stability in the absence of saturation, has been obtained by

using the LQR technique withR = 1 andQ =

[
1 0
0 1

]
.

The reported figures show the performance output and
control input for the unconstrained closed loop system (Σ̄U ),
for the saturated closed loop system (Σ̂S), and for the
saturated anti-windup system (Σ̆SAW ). In the three up-
per subplots of each figure, the nominal parameter values
(ω1, ω2 = 0.5, 0.5) are considered, and the letterssn denote
the response to a small reference,fn denote the response
to a feasible reference close to the largest feasible reference
rMAX andun denote the response to an unfeasible reference.
In the last subplot (identified by the lettersfw), a time-
varying parameter signalw(·) is considered, coupled with
a large feasible reference close torMAX .

In each case, it can be notice that the state of the saturated
closed loop system leaves the null controllable region and
then its output diverges, whereas the forward invariance
of the setX+ guaranteed by our anti-windup compensator
preserves the anti-windup closed loop from diverging. More-
over, whenever the reference is feasible (casessnandfn), the
output of the anti-windup closed loop converges to the output
of the unconstrained closed loop; when the reference is not
feasible (caseun), the output of the anti-windup closed loop
still converges, and reaches a value close to the output of the
unconstrained closed loop (but such that the statex remains
inside the setX ).

Finally, notice also from casefw that, as specified in the
anti-windup problem definition, that the output of the anti-
windup closed loop is close to tracking the output of the
unconstrained closed loop system during the first seconds
(i.e. while the parameter signalw(·) keeps varying), and then
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(a) Performance output signal. Comparison among the closedloop response
for small reference, large feasible reference, unfeasiblereference and large
feasible reference with perturbations
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(b) Control signal. Comparison among the closed loop response for small
reference, large feasible reference, unfeasible reference and large feasible
reference with perturbations

(whenw(·) stops varying), the output of the unconstrained
closed loop system eventually converges to a constant value
and is reached by the output of the anti-windup closed loop.
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straints. PhD thesis, Università di Roma “Tor Vergata”, June 2002.

[15] S. Galeani and A.R. Teel. On performance and robustnessissues in
the anti-windup problem. InProc. 43rd IEEE Conf. on Decision&
Control, 2004.

[16] S. Galeani and A.R. Teel. On a performance-robustness trade-off
intrinsic to the natural anti-windup problem.Automatica, 42(11):1849–
1861, November 2006.

[17] S. Galeani, A.R. Teel, and L. Zaccarian. Constructive nonlinear anti-
windup design for exponentially unstable linear plants.Systems and
Control Letters, 56:357–365, 2007.

[18] G. Grimm, J. Hatfield, I. Postlethwaite, A.R. Teel, M.C.Turner,
and L. Zaccarian. Antiwindup for stable linear systems withinput
saturation: an LMI-based synthesis.IEEE Trans. Aut. Cont. (A),
48(9):1509–1525, September 2003.

[19] R. Hanus. Antiwindup and bumpless transfer: a survey. In Proceedings
of the 12th IMACS World Congress, volume 2, pages 59–65, Paris,
France, July 1988.

[20] J.C. Lozier. A steady-state approach to the theory of saturable servo
systems.IRE Transactions on Automatic Control, 1:19–39, May 1956.

[21] S. Miyamoto and G. Vinnicombe. Robust control of plantswith
saturation nonlinearity based on coprime factor representation. In36th
CDC, pages 2838–2840, Kobe, Japan, December 1996.

[22] E.D. Sontag. An algebraic approach to bounded controllability of
linear systems.Int. Journal of Control, 39(1):181–188, 1984.

[23] A.R. Teel. Anti-windup for exponentially unstable linear systems.Int.
J. Robust and Nonlinear Control, 9:701–716, 1999.

[24] A.R. Teel and N. Kapoor. TheL2 anti-windup problem: Its definition
and solution. InProc. 4th ECC, Brussels, Belgium, July 1997.

[25] M. C. Turner, G. Herrmann, and I. Postlethwaite. Accounting for
uncertainty in anti-windup synthesis. InProc. American Control Conf.,
pages 5292–5297, Boston (MA), USA, 2004.

[26] F. Wu and B. Lu. Anti-windup control design for exponentially
unstable LTI systems with actuator saturation.Systems and Control
Letters, 52(3-4):304–322, 2004.

[27] F. Wu, X.H. Yang, A.K. Packard, and G. Becker. Anti-windup
controller design using linear parameter-varying controlmethods.
International Journal of Control, 73:1104–1114, 2000.

[28] A. Zheng, M. V. Kothare, and M. Morari. Anti-windup design for
internal model control.Int. J. of Control, 60(5):1015–1024, 1994.


