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Abstract—In this paper we show that a recently proposed order to achieve stability the anti-windup compensator has
technique for anti-windup control of exponentially unstable  to take care that the state of the plant never leaves a saitabl
plants can be easily extended to solve the corresponding rast g\ ;pset of the null controllable region. Anti-windup design

anti-windup problem for linear parameter varying systems, for f iall ble Ii | h b |
which the time varying parameters are measured online. For 10F €xponentially unstable linear plants have been regent

this class of plants, it is shown that the proposed techniques ~ Suggested in a number of papers, including [9], [10], [13]
minimally conservative with respect to the size of the resting  (where novel methods for the characterization of the stabil

operating region: in particular, such a region is (up to an domains for saturated feedback systems were employed to
arb'”art"Bt’. STag.l.?”a”t'tg) exaCt'yt thcei f'ar?hESt set o C‘;"lh'cth provide a systematic design anti-windup design tools)] [26
asymptotic stability can be guaranteed for the considered lant,
for the given saturation level and uncertainty characterigics. (where the results of [18] were e)_(t_ended to the case (_)f a
narrowed sector bound, thus obtaining a locally stabijzin
[. INTRODUCTION anti-windup compensator), and [12], [11] (which extend the

Input saturation and plant uncertainty are two ubiquitousoprime factor based anti-windup solution initially pregad
phenomena that a control engineer has to face in any ré@l[21]). For the case of Linear Parameter Varying (LPV)
design problem. The presence of saturation nonlineariti&stems (which can be used to embed an uncertain, possibly
in otherwise linear closed loop systems can cause dramafienlinear and time varying plant, and then to solve a robust-
performance losses known as “windup” effects; in order té-the-large stabilization problem), some solutions hasen
avoid such losses, several anti-windup compensation tedproposed: see.qg.[8], [27] and references therein.
niques have been developed, starting with the pioneering, In this paper, we address the anti-windup design for expo-
heuristic solutions proposed in the 1950&.¢. [20]; see nentially unstable linear plants usinganlinearanti-windup
also the surveys [19], [1]) until general results with foimastructure based on the architecture first introduced in§24
proofs of stability started appearing during the last decadhen further developed in [23], [5], [4] for exponentially-u
(seee.g.[28], [21], [10], [11] and references therein). Onstable plants. In particular, we show that the construetive
the other hand, plant uncertainty motivated a huge amount windup solution proposed in [17] can be readily extended in
research in the field of robust control, where, under difiere order to give a robust-in-the-large solution to the antiip
assumptions about the uncertainty modelg( structured problem for exponentially unstable, uncertain linear an
or unstructured, fixed or time-varying unknown parameter§he key advantage of the approach in [23] (preserved in [17],
and so on), many different solutions have been propose@nd then in the solution proposed in the present paper, even
A difference that will be of interest in this paper is thein the presence of uncertainties) is that unlike the previou
difference betweernobustness-in-the-largand robustness- approaches in [10], [9], [12], [11], [26], the compensation
in-the-smallof a given propertyd.g, asymptotic stability of structure is only dependent on the plant dynamics, and then
a closed loop system), where the property is said to be robusie achievable operating region in the plant state space is
in-the-small if it holds for any sufficiently small uncemdy, only dependent on the structural limitations of the saadat
whereas it is said to be robust-in-the-large if it holds foya uncertain plant; on the other hand, previously proposed
uncertainty in ana priori assigned (and perhaps “large”) solutions (as the ones cited above) also depend on dynamics
set of uncertainties. Usually, when a stabilization proble of ana priori given unconstrained controller (which is part
is solved in the nominal parameters, then robustnessein-thof the anti-windup problem definition), so that, especially
small can be obtained (almost) “for free” by invoking suleb When that controller is very aggressive, the corresponding
(possibly nonlinear) small gain theorems; this is not theeca constructions may lead to very small operating regions. As
when robustness-in-the-large is of interest. in [17], an important advantage of our technique as compared

Taking into account the above discussion, it is somewh&® the existing ones is that we are able to guarantee bounded
remarkable that, as pointed out in [25], the problem ofesponses to references of arbitrarily large size, bectgse
designing anti-windup compensators devoted to the studdant state is permanently monitored and kept within thé nul
of robustness limitations specifically arising in anti-dipp ~ controllability region, thus preserving the overall stapi
control systems, or that guarantee robust-in-the-lamjgilgy ~ property; however, in order to achieve the largest possible
has not been systematically addressed in the literature. operating regions (not achievable by previously proposed

In particular, even in the nominal parameters, the probletaPV approaches), the construction in [17] is modified here
of anti-windup compensation is known to be especiallpy the use of polyhedral Lyapunov functions and related
challenging in the case on exponentially unstable plants, ftools, on which we heavily rely [7], [6]. Also, with respect t
which (due to the presence of bounds on the input) the nurevious work on anti-windup for LPV systems, no bounds
controllable region is bounded (seeg, [22]) and then in on the rate of variation of parameters are required.

We remark that, although the anti-windup construction in

Ve:s'?ti)f’afgfmeggome di To'r”fcijg”rggf;' Og:il.sggmiRo;e Plfgl‘;[ﬂfi%“rehi Uni- this paper is (up to a few additional technicalities) esséipt
gal eani | @i sp. uni roma2. it Research supported in part the one proposed in [17] (and, in particular, the formal

by ASI, ENEA-Euratom and MIUR under PRIN projects. proof of our main result is not even reported, being a mere



repetition of the proof in [17]), the main value of this e Vz,y € R", U(x+y) < U(z)+ U(y).
contribution relies in showing the following facts: Any compact and convex polyhedral sBt:= {z € R" :
1) the anti-windup solution of [24], [23] (in particular, as Fz < 1} is associated to the sublevel s¥{V, k] = {z €
implemented in [17]) can be easily extended to LPVR" : ¥(x) < k} for k = 1 of the gauge function?(z) =
(possibly exponentially unstable) systems; maxi<;<n(Fiz), whereF; denotes the—th row of matrix
2) the necessary (but not sufficient, in general) conditioi’; conversely, that any compact and convex&eatduces a
of unconstrained loop robust stability [25] (and thegauge functionV(z) = inf{y € R>o : z € uS}.
independent work [15], [14]) is alssufficientfor LPV
anti-windup, so that for this class of systems there is no Il. PROBLEM SETTING
trade-off between performance and robust-in-the-large Let Dy be a convex and compact polyhedron, afng :=
stability in the sense of [16]; {weRL,: Y  w; =1}; moreover, define the classes of
3) the key role of the knowledge of the time-varyingset bounded, piecewise continuous disturbafizes {d(-) €
parameters in our anti-windup solution liest in its C° : d(t) € Dy} and time-varying parametedd’ = {w(-) €
use for robust stabilizatiorhut in the possibility of C°: w(t) € Wy }.
preserving a so-called “cascade structure” [24] inside Consider the linear parameter varying (LPV) plant
the anti-windup closed loop; this structure gives the

possibility to reduce the anti-windup problem to a & = A(w)z + B(w)u + Ed, (1a)
state feedback, constrained stabilization problem for z=Ci(w)x + Di(w)u + Fid, (1b)
an uncertain LPV system whose dynamics is only y = Co(w)x + Da(w)u + Fad, (1c)

dependent on the plant (which can be solwathout

using the knowledge of the time-varying parametersj/heréz € R™ is the plant statey € R™ is the control input,
thus making it possible to achieve the largest possibié IS the plant output available for measurement arid the

basin of attraction subject to the intrinsic limitationsPerformance output; and each [natrix of the f?ﬂ’ﬁw_) in
of the plant. (1) is defined in terms of ity “vertex values”M;, i =

The paper is structured as follows: after introducin soml’ ..., u, according to the relation (w) = 57, wi(t)M;.
notatiorq |Fr)1 Section Il the data of the' problem are degc:ibe he signaku(-) is assumed to be available (measured).
in Section Il the anti-windup problem of interest is forryal An a priori given “unconstrained controller
defined, explaining how and why the definition in [17] needs te = Ac(w)re + Be(w)ue + By(w)r, (2a)
to be extended; the anti-windup compensator design is de- —C D D 2b
scribed in Section 1V, and finally, we show the effectiveness Ye e(w)we + De(w)ue + Dr(w)r. (2b)
of the approach on a simulation example in Section V. is assumed to be available for plant (1); the name “un-
Notation Let R~ (R>¢) be the set of positive (non negative) constrained controller” given to (2) is motivated by the
reals. Givenw,v € RP, the inequalityw > v must be assumption that (2) is designed assuming the “unconsttaine
understood componentwisee. w > v meansw; > v; for  interconnection”

alli=1,...,p (equivalently,w — v € RY ). B B
The scalar saturation function of unitary level is indicate U="Yey Ue =1 )
as ) ) and is such that the unconstrained closed-loop sysiem
o(v) = { sign(v), if |o| > L given by (1), (2), (3) has a desirable response to external
Uy if o] <1 signalsr, d; this implies that the following (minimal) as-

mption is satisfied.
Assumption 1:Xy is well-posed and asymptotically sta-
le, Vw € W.
Remark 1:According to Assumption 1 (which is a nec-
essary condition for robust anti-windup compensation, as
pointed out in [25], [16]), the unconstrained controlle) (2

where sigi-) is the sign function; the (vector, decentralized)Su
saturation function of unitary level is defined by sayingtth
its i-th component is a scalar saturation function of unitar
level.

A signalg(-) is in £, if its £, norm is bounded, where

) ‘ /p guaranteeglobal robust asymptotic stabilitgf the uncon-
lqll, = (hmtﬂw Jo lla()ll dT) if p & [, 00), strained closed-loop system. However, we remark that matri
SUD, (0,400 [12(7)] if p=oo. A(w) is not assumed to be Hurwitz (even for fixed values
of w), and actually the uncertain controlled system (1) is not
The class of piecewise continuous functions of fiméll  assumed to be asymptotically stable or time-invarians thi
be denoted ag®. is in contrast with most of the available literature on anti-
A polyhedral subsefP C R" is a set defined by the windup, where the controlled plant is either unstable (but
relation ? := {v € R™ : Fv < 1}, wherel := [1---1]"  without “large” uncertainties) or affected by large uneart
and F' is a matrix of suitable dimensions. A functioh € ties (but asymptotically stable). o
R™ — R>( is agauge functionf When saturation is present at the plant input, the un-
o Vo € R™ U(z) >0 and ¥(0) = 0, constraine.d interconneption (3) is replaced by the foltayvi
o YA€ Rsg, Vo € R® U(\z) = \U(z), saturated interconnection

IThroughout the paper, piecewise continuity of signals il assumed e =Y, U= o(yc). (4)

for simplicity; this assumption can be relaxed by simplyuasisg that . S
the relevant signals are sufficiently regular to satisfy tiseal sufficient The correspondingaturated closed-loop systefy given by

conditions for existence of solutions. (1), (2) and (4) typically exhibits undesirable behavidncs



the controller (2) is designed without taking into accour@t  Definition 1: Given a setX and a signalw € W, let
saturation constraints; moreover, structural conssafe. RD(w, X) be theset of feasible external signals far and
the fact that for plants with exponentially unstable modes’, where the pair(r., d,) is a feasible external signal for
and bounded input the null controllability region is boudde w and X if the state response afy; to the external inputs
in the exponentially unstable directions; sea, [22]) imply  (r(¢),d(¢)) = (r.,ds), V¢ > 0, converges to a steady state
that the global stability properties in Assumption 1 will bevalue (z*, z%) with z* € X. o
lost for S g if (1) is exponentially unstable. Remark 2: Compared with the corresponding definition in
In order to limit the adverse effects of saturation, and t¢l7], three main differences can be noticed in Definition 1.
recover the unconstrained responsesef, ananti-windup  First, w is not assumed to be constant in Definition 1.
compensatorcan be designed; in general, this compensatd#ince no parameter variations were allowed in [1izg.(
will be a dynamical system having a statg, and two output w was a constant), by Assumption 1 the response of the
signalsy; andv,, used to modify the saturated closed-looginear and stable systet;; was always convergent; on the

systemX s according to the relation other hand, since in our case could be any signal inV,
there is noa priori guarantee that the state response of
Ue=y+v2, u=0(Ye+uv1). (5) 2y to constant(r,,d,) will converge, unlessv is constant

too. However, assuming a constant value woffor this

The interconnection of (1), (2) and the anti-windup com . ; ; o
pensator according to (5) will be denoted as the (Satlﬁc_eason is unnecessarily conservative (such conditionlis on

S D sufficient; it is easy to figure out cases such thadoes
rated) anti-windup closed-loop systeBkw. As already e o convergey to agfixed value, and yet there is an
anticipated, the goal of anti-windup compensation can bgssociated constant equilibriufa:* ;1:*), of ¥y), and then
quallr'ianvely st_g’:ed has preservmg%e% not modifying) d aT only convergence of the state res’pocnséi@rf is :assumed
much as possible the response of the unconstrained closed- . ; o
loop Xy, meanwhile neutralizing the destabilizing effects§ erﬁggdéntre(:r?gz Eétw (’)f')), g;;(ea:sblii (Fféc]a)rn_?_lhisslgg;irlspﬁ_e
of saturation (which, in the case of exponentially unstable_,. "~ . . i S .

. P : ation is needed since very little restrictions are imposed
plants, include the possibility of leaving the null contable X S :
region); otherwise stated, it is desirable that 1) the raspo * by the fact thew € W; hence, considering simply
from r,d to z of ¥ g4 must be equal to the corresponding RD(X) := NyewRD(w, X)
response oby; (and this happens if; = 0 andv, = 0) as = {(ro,do) : (ro,do) € RD(w, X),Yw € W} =
long as no saturation occurs and the state of the plant remain ’ o T
inside (a proper subset of) the null controllable regiord an(i-€. the set of external signalg-, d) for which the state

2) Sgaw Must be stable. response oby; converges, for any € V) could be overly
restrictive, considering only thoge, d) which are admissible
III. ANTI-WINDUP PROBLEM DEFINITION for anyw € W; on the other hand, the somewhat “implicit”

In order to formally state the anti-windup problem of in-definition given above allows to recover as much as possible
terest in this paper, some preliminary definitions are néedeany (, d) that are admissible for the specifiq(-) affecting

Let X and Xt be two compact and convex subsets of théhe plant. .
null controllable region of (1) under the available boundedhird, bothr, and d, are simoultaneously accounted for
input, such thaBle > 0 for which (1 4+ &)X = X+ c R*. in the def|n|t|on of RD(w, X), so that th(_ere is a tradg-off
The proposed design of the anti-windup compensator (6) wiletween the size of, and the size ofl, in each feasible
guarantee that 1) the staieof (1) never leaves the region Pair (ro,ds). In [17], do = 0 could always be assumed
X*, and 2) the response (fromd to z, for 4, (0) = 0) W|thqut any loss of generality d.ue to the particular stroetu
of Ygaw Will be equal to the corresponding response oppn&dered fc_>r the plant d_yna_rmcs in [17]; on the other hand,
Sy as long as no saturation occurs and the state of (%nce no similar assumption is made in our paper about the
in £, remains insideX. Once again, it is remarked that Structure of the plant dynamics, the valuedgfconcurs_m__
introducing the setst and X+ is necessary in order to determining the steady state value of the state, thus figiti
achieve the requirements in the next definition (in particul the feasible values of.. _ _ o
X+ for stability andX’ for local preservation); the “distance”  For the next definition, given certain selectionsuef) €
¢ between the boundaries af and X'+ is needed in order to V. the external inputsr(-) and d(-) € D and initial
allow a region where the anti-windup compensator (6) cafonditionsz(0), z.(0) for the plant and the unconstrained
“prake” in order to avoid the state to leave X*. Notice controller states, we will denote by the responses aris-
also that, since the boundary of the null controllable regioind from the unconstrained closed-loop systéy (e.g.,
is an invariant set, in order to avoid to loose the ability to(*); @(-), 2(-) and so on), and by the responses aris-
quickly steer the state to points insideY, it is desirable to ing from the anti-windup closed-loop systebkw (€.g.,
guarantee some distance between the boundadyofand  Z(-), %(-), () and so on). The following problem will be
the boundary of the null controllable region (more on thigiddressed and solved in this paper.
“stickiness effect” can be found in [3, Remark 5]). Definition 2: Given a compact and convex s&t C R",

Once the region¥ where the stater is supposed to theanti-windup problem forY' is to design an augmentation
evolve is defined, a set dfteady state) feasible externalto the controller (2) such that for any initial condition
signals (including both references and disturbances) can b&(0), z.(0) satisfyingz(0) € & and anyw(-) € W, r(-) and
defined, containing those pairs of constant references afft) € D, the corresponding responses of the unconstrained
disturbances leading to equilibria within the skt This is ~closed-loop systent; and of the anti-windup closed-loop
done in the following definition. system¥s 4w satisfy the following properties:



1) (local preservation) if o(a(t)) = u(t), z(t) € X, anti-windup compensator structure is used:

Yt > 0, thenZ(t) = z(t), ¥t > 0; _
2) (£, recovery) Y(ro,d,) € RD(w,X), if (r(-) — = A(w)Taw + B(w)[ye — o(ye + v1)], (6a)
To,d(-) —do) € L, then(z —2)(-) € L, ¥p € [1, 00); v1 = (T, T + Taw, Yo, W), (6b)
3) (restricted tracking) if l?m(j(t)’ z.(t)) = (z*,2%) vy = Co(w)Zaw + Da(w)[ye — o(ye + v1)], (6¢)
with z* € X then lim L (2(1),2e(1) = (F7,27) = and (2, & + Taw, Yo, w) is chosen in such a way to make
(z*, 7). Moreover Ifm ¢ X but lim d(t) = 0, X+ forward invariant and to stabilize the dynamics (6a),
then lim (#(t), £.(t)) = (£, %7) W|tﬁ+oo cx then the overall anti-windup closed loop system satisfies th
oo » e ' requirements in Definition 2.
o In order to specify how the functioa(z, z + T 4w, Ye, w)
The three requirements in Definition 2 are commentedan be designed, recall that the controlled plant is desdrib
upon in the following remark. by (1), where matricesl(w) and B(w) are defined in terms
Remark 3:The three items in Definition 2, are threeof their i “vertex values”4;, B;, i =1, ..., u, according to
desirable properties guaranteed by our construction. temthe relationA(w) = 77", wi(t)A;, B(w) = 370 wi(t) Bs;

(local preservation) guarantees that any trajectory gdéedr moreover, the disturbance acting on the plant is such that
by the unconstrained closed-loop system that never sat(t) € Dy, V¢ > 0, (whereD, is a convex and compact
rates and never violates the necessary constraint on thelyhedron), and the input to the plant is also bounded
operating regiont’ (therefore being safely reproducible onin the setid := {u € R? : |u;| < 1,i = 1,...,p}.
the saturated plant) will be preserved by the anti-winduphe proposed design procedure (based on the results in
compensation scheme. Item Z,( recovery) guarantees [7], [6] and corresponding, with some modifications, to the
that any unconstrained trajectory generated by a referenq@ocedure in [17]), is now described.
disturbance pair converging (in af), sense) to a feasible Procedure 1: anti-windup compensator design.
reference-disturbance pair will be asymptotically recede Step 1.Compute a polyhedral domain of attractioti™ :=
(in an £, sense). This property ensures that any uncod« € R™: Fz < 1} and define the associated gauge function
strained trajectory which converges to an admissible set pov)(z) := max;(F;z) and the sett := (1 + ¢)~!X* for a
will be recovered by the anti-windup compensation schemsmall e > 0.
even if saturation will impose to give up on some transienthis step can be easily accomplished by choosing a (suf-
performance features. Note that this item evaluatedbfer ficiently) small positive constant > 0 and parameters
oo imposes that the anti-windup closed-loop is BIBS stable\* € (0,1), ¢ > 0 such thatA = A* + ¢ < 1 and using
that is: any (arbitrarily large) selection of the referencethe algorithm in [6] on the system dath, B;,i =1,..., 4,
disturbance pair will lead to a bounded response. Finallpy andi{. Here, \ gives a level of guaranteed convergence
item 3 (restricted tracking) guarantees that any convgrgirspeed, and is a parameter which allows to trade-off accurate
unconstrained trajectory will correspond to a convergimigra approximation of the domain of attraction with the size
windup trajectory. All trajectories that converge in fatben of the matrix ' describingX™; a smallere gives a more
regions for the saturated plant will be projected on a reaccurate approximation, and a smalleguarantees a faster
stricted set-point such that the unstable part of the platés convergence (and, due to the bounds on the input, a smaller
remains inX. o regionXT).

Remark 4:Note that the main challenge in finding a solu-Step 2. Compute a control lawp(z) making X+ forward
tion that guarantees the anti-windup property of Definition invariant
resides in the fact that the null controllability region bkt As shown in [6], this step can be accomplished in two phases:
plant is bounded in the exponentially unstable directionfirst, the control value on the vertices af is determined;
(see, e.g., [22]). Therefore, special care by way of noalinethen, a Lipschitz continuous extension of the control law is
functions needs to be taken to keep such “unstable padesigned for the whol&’* domain.
of the state (called:,, in [17]) within the null controllable The first phase is done by finding, for each verteaf X',
region at all times, otherwise stability couldn’'t be gudesd. a control valueu, such that
For this reason in [17] it was assumed that could be ) = p
exactly measured, and] that no disturbance could affect ig[(I+TAj)U +rBju] <AL—0, Vjedl,....u}
dynamics, in order to prove general results on the arisinghere vectow has components; = max,(F;Ed).
closed-loop. We remark that here we allow the disturbance Hence, the control law at vertex is used to define the
to act on all the state, and assume that the whole statedsntinuous control law for all: € X
measured; the reason for this will be clarified in the follogyi « for all statex exists a con&’;, such thatr € C},, where
Remark 6. However, as in [17], it is worth to remark thateven  the vertices ofC), are X" = [ xgh) gl
if exact measurement of are not available, regional result

: . \ _ : -
can be obtained, at the price of a reduction of the region and the control values associated ate") =

(in order to introduce an additional “safety boundary”)o [ gy e Uy ]
o the control can be defined as a comblnatlon of the values
IV. ANTI-WINDUP CONSTRUCTION at vertex, thenp(z) = U [ X (W]~1

The key observation in this paper is that if, as usually i ';le_zp :’; Define tt)he pseudci_—trr?cglgg So?_tr_ol lad(z, 7, u)
the case in gain scheduled LPV control, the plant is desgribe IS Step can be accomplished by defining
by (1) and the signalv(-) is measured, the plant dynamics (o 7) e Fi(x — )
can beexactly copied; hence, as in [24], if the following © (%) = max — “Fz

(z - 3)

U(x,z)’

Z(x,T) =T+



and the pseudo-tracking control law as (7), the null controllable region of the plant is unreskitin
the z, part of the state, so that only measurements,pére
O(z,7,0) = ¢(2(z, 7)) V(z, ) + (1 = ¥(z,7))u. needeg by the anti-windup contrgller in order to ﬁreserve
As shown in [7], whenA(w) = A and B(w) = B boundedness of trajectories. However, when time-varying
are constant matrices and the p&it,u) corresponds to Parameters are present, and unless specific structueal (
an equilibrium (namely,Az + Ba = 0), the control law hon generic) assumptions hold about the dependence of the
®(z,z,u) ensures asymptotic stability af with domain of ~System’s state space description on the unknown parameters
attraction.X’; here,(z, %) do not, in general, satisfy such anthe null controllable region “moves” as the parameters vary

assumption, hence the name of pseudo-tracking control lawith time, and then it is not possible to measure only the
Step 4.Define the anti-windup control law(z, 2/, ., w)  unstable part’z, of the state, and then the whole state must

This step can be accomplished by defining be measured,; this was shown by an example in [2], where the
same aircraft model used in [3] was studied, in the presence
(T, T0, Yo, w) = —Ye + Q(x, T(T0r), T (Yer w)) of parameter variations. For this reason, the whole stdge
where assumed to be measurable in this paper. o
M if )y €X V. SIMULATION EXAMPLES
m(zm) = { M e d X In this section, the example in [17] Consider the plant
P(zum)(1+e) described by matrices
Ye if yCeL{andxMeX
7w (Yo, w) := : 1.8 -1 22 -1
( ) { —B(w)! A(w)p(zr) otherwise Alwy) = w [ 092 08 ] + (1 —wy) { 09 19 ]
and B(w)* := (B(w)'B(w)) ™' B(w)'. 9.8 10.2
The effectiveness of the above procedure is stated in th&(w2) w2 [ 6.8 } + (1 —w2) { R ]
following theorem, whose proof is omitted since it coincde
with the proof in [17] (up to some minor technical modifica- 10

tions due to the use of polyhedral Lyapunov functions, andWthCr=[1 1] Co=| 4 | |, E=D1=D;=0.
slightly simpler definition of the functions appearing irefst The proposed design procedure has been applied with
4). A* = 0.982, ¢ = 0.012, and Ay, By corresponding to the
Theorem 1:Under Assumption 1, the anti-windup com-parameter valueguv;,ws) = (0.5,0.5).
pensator designed according to Procedure 1 solves the probThe unconstrained controller, ensuring robust asymptotic
lem in Definition 2. stability in the absence of saturation, has been obtained by
Remark 5:The LPV system (1) can be used to “hide” a . . . 10
nonlinear, uncertain and time varying system under a “finea USin9 the LQR technique witik =1 and@ = | ,  |.
structure, provided that the linearizations of the conside  The reported figures show the performance output and
system in the operating region of interest are all containesbntrol input for the unconstrained closed loop syst&m)(
in the convex hull of the vertex \_/alueé.?, B;, ...defining for the saturated closed loop systerﬁsa, and for the
the matricesA(w), B(w), ... (possible drift terms due to the saturated anti-windup systent{4w). In the three up-
fact that not all the states inside the considered operatilmr Spr'OtS of each ﬁgure, the nominal parameter values
region_ are equilibria can be modeled by absorbing them @, ws = 0.5,0.5) are considered, and the lettens denote
the “disturbance’d). the response to a small referende,denote the response
In this regard, it is relevant to remark that such procedurg a feasible reference close to the largest feasible mefere
is obviously conservative (since, for example, in the oRdi -, , - andun denote the response to an unfeasible reference.
nonlinear system some “parameter variations” of the LPVh the last subplot (identified by the lettefa), a time-
system will not be possible; a similar remark applies With/arying parameter S|gnab() is considered, Coup|ed with
respect to the fact that no bound on the rate of variation gf large feasible reference closertg 4 x.
w(+) is imposed in our analysis); however, it is important |n each case, it can be notice that the state of the saturated
to understand thathe proposed result is tight for the LPV closed loop system leaves the null controllable region and
system(1), since (up to an arbitrarily small constaftthe then its output diverges, whereas the forward invariance
largest possible domain of attraction under the given bsungf the setX’+ guaranteed by our anti-windup compensator
on the control input, the disturbances and the UnCertaintigreserves the anti_Windup closed |00p from di\/erging_ More
is obtained by the construction in Procedure 1 by virtue ddver, whenever the reference is feasible (casemdfn), the
the algorithms in [6]. _ N o output of the anti-windup closed loop converges to the dutpu
Remark 6:1n [17] (following [23]) a partition of the state of the unconstrained closed loop; when the reference is not
of the plant asv := [z, 27|’ was considered, and the plantfeasible (casen), the output of the anti-windup closed loop
dynamics was consistently partitioned as still converges, and reaches a value close to the outputof th
. unconstrained closed loop (but such that the statemains
Lf] = [% i”} Lf] + [gﬂ u+ [Bgﬂ d, (7) inside the seft).

“ R " Finally, notice also from casfwv that, as specified in the
where A, is Hurwitz. For the complete motivation of such aanti-windup problem definition, that the output of the anti-
choice, the reader is referred to [23]; what is importantde n windup closed loop is close to tracking the output of the
tice here is that an useful consequence of such an assumptiortonstrained closed loop system during the first seconds
(exploited in [23], [3], [17]) is that sinced, is Hurwitz in  (i.e.while the parameter signal(-) keeps varying), and then
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(whenw(-) stops varying), the output of the unconstrainedt3] J.M. Gomes da Silva Jr and S. Tarbouriech. Anti-windugsigh

closed loop system eventually converges to a constant value
and is reached by the output of the anti-windup closed loop.
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