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A family of global stabilizers for quasi-optimal
control of planar linear saturated systems

Fulvio Forni, Sergio Galeani and Luca Zaccarian

Abstract—We propose a family of nonlinear state feedback
global stabilizers for all planar linear systems which are globally
stabilizable by bounded inputs (namely, all non exponentially
unstable linear systems). This family is parametrized by a
nonlinear function whose selection can yield quasi time-optimal
responses, where the “quasi” is required to achieve local ex-
ponential stability of the closed-loop. The arising trajectories
are quasi time-optimal for arbitrarily large initial conditions;
so, we expect the very simple proposed nonlinear control law
to be very useful for embedded control applications with strong
computational constraints.

Index Terms—Saturation, time-optimal control, fuel-optimal
control, global stabilization, Lyapunov functions.

I. I NTRODUCTION

Planar systems with input saturation have been long studied
in the control literature. For experimental purposes, planar
models are often already sufficient to characterize the main
dynamic behavior of a wide family of plants, so that high
performance control laws arising from studies on planar sys-
tems might become very effective in several applications (see,
e.g., the case studies mentioned in [20] or the application in
[13]). In light of saturation, when designing controllers for
these systems quite often one seeks for solutions of the time-
optimal (or bang-bang) type, so that the control input authority
is fully exploited most of the time.

While there are several valuable studies on time-optimal
control of nonlinear planar systems (see e.g. [25], [3], [4]and
references therein), we focus here on linear saturated systems.
For this class of systems global asymptotic stabilization can
only be achieved if the plant is ANCBI (asymptotically null-
controllable with bounded inputs), i.e. if its poles are in the
closed left half plane [24], [21]. Linear ANCBI systems with
at least one imaginary pole can only be globallyasymptotically
(not exponentially) stabilized, and then performance is a key
issue when designing a global stabilizer, since one cannot
achieve a global exponential convergence rate. While a linear
saturated feedback cannot globally stabilize already a triple
integrator [11], [26], it can always stabilize a planar linear
system [9]. For additional recent results about control of
saturated planar systems see e.g. [19], [6], [12], [15], [20].

In this paper we propose a family of static nonlinear
controllers for ANCBI planar linear systems which are Lip-
schitz and extremely close to being time-optimal (or fuel-
optimal), thus yielding quasi optimal responses for all signal
ranges (which is typically hard to obtain with linear solutions)
while preserving the robustness properties of a Lipschitz
state-feedback. Though the idea of get a Lipschitz feedback
by locally modifying a discontinuous law is well known in
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the variable structure control literature (see e.g. [23]),the
approach in this paper is different (and complementary) in
many respects. Furthermore, since the arising control lawsare
constant in a very large portion of the state space, they seem
especially favourable from the point of view of requiring low
control attention (in the sense of [5]).

The paper is structured as follows: in Section II we in-
troduce a family of state feedback stabilizers parametrized
by a nonlinear function which needs to satisfy a simple
gradient condition. In Section III we discuss useful selections
of this parameter leading to quasi-optimal responses for certain
classes of systems. In Section V we provide several examples
illustrating the advantages of the proposed stabilizers. Finally,
Section VI contains the proof of the main theorem.

Notation. ∂xi
f denotes the partial derivative off(·) with

respect toxi. A function η(·) : R≥0 → R≥0 is in classK if
η(0) = 0 and it is strictly increasing;η(·) is in classK∞ if
η(·) ∈ K and lims→+∞ η(s) = +∞.

II. A FAMILY OF STATE FEEDBACK STABILIZERS

Consider the following linear planar saturated system:

ẋ1 = x2, ẋ2 = −a1x1 − a2x2 + satM (u), (1)

wheresatM (·) is the symmetric scalar saturation function with
saturation limits±M andu is the control input.1 We will make
the following assumption on (1) throughout this paper.

Assumption 1:The linear plant (1) is globally stabilizable
from u, namely (see, e.g., [24], [21])a1, a2 ≥ 0.

We will study in this paper the design of a (nonlinear in
general) static state feedback stabilizer for (1) in the form:

u = −kβ(x), (2)

wherek is a positive constant andβ(·) is a suitable nonlinear
function. This specific choice of feedback withk factored out
is motivated by the special form of feedbacks considered in
this paper (see also the statement in the following Theorem 1).

For the static controller (2), we will give several recipes
in this paper, geared toward the achievement of almost time-
optimal and (possibly) fuel-optimal responses. Moreover,we
will allow in several cases to enforce an arbitrary local linear
behavior on the tail of the closed-loop responses (namely ina
suitable neighborhood of the origin). To this aim, it is useful
to formally define here the set of functionsβ(·) which are
guaranteed to induce desirable stability and convergence prop-
erties on the closed-loop, as formally stated in the following
assumption and theorem.

Assumption 2:The functionβ(·) : R
2 → R in (2) is a

locally Lipschitz function satisfyingβ(0) = 0 and

1) there existsη(·) ∈ K such that

• if x1 ≥ 0 andx2 ≥ 0, thenβ(x) ≥ η(|x|);
• if x1 ≤ 0 andx2 ≤ 0, thenβ(x) ≤ −η(|x|);

2) ∂x2
β(x) ≥ 0 a.e inR

2 and there exists an open setA
such that0 ∈ A and such that∂x2

β(x) > 0 a.e. inA.

1To keep the discussion simple, we will assume symmetric saturations in
this paper, however it is possible to extend the results herepresented to the
case with non-symmetric saturations.
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Remark 1: (Interpretations of Assumption 2) The intuitive
meaning of Assumption 2 is that the state feedback (2) should
preserve the equilibrium at the origin (namelyβ(0) = 0) and
that β is strictly positive on the first (respectively, strictly
negative on the third) closed quadrant take away the origin
(item 1). Finally, the constraint on the derivative ofβ with
respect tox2 at item 2 provides a sufficient condition to
guarantee that theβ does not induce new equilibria nor limit
cycles. The peculiar requirement on the setA (namely that
it is open and its closure contains the origin) is motivated
by the fact that for any (arbitrarily small) neighborhood ofthe
origin, we need the strict inequality to hold in a set of positive
measure, contained in that neighborhood (see the proof of
Theorem 1 for details). ◦

Theorem 1:Given the plant (1), if the functionβ(·) in the
control law (2) satisfies Assumption 2 andk is such that

k > inf
s>0

M

η(s)
= lim

s→+∞
M

η(s)
, (3)

for the functionη(·) in the same Assumption 2, then:

1) all trajectories of (1), (2) converge to the origin;
2) moreover, ifβ(·) is differentiable at the origin and

∂x1
β(0) > −a1, ∂x2

β(0) > −a2,

then the origin is a locally exponentially stable and
globally asymptotically stable equilibrium point.

Proof: See Section VI
Remark 2: (Considerations on Theorem 1) The following

considerations can be made about Theorem 1:
• Lower bound on the gaink. Wheneverη(·) ∈ K∞, the lower
bound onk enforced by (3) is zero. Namely, in this caseu

can be scaled down to become arbitrarily small in any compact
neighborhood of the origin.
• Global exponential stability. If the plant (1) is exponentially
stable (i.e., botha1 and a2 are strictly positive), then under
the conditions at item 2 of Theorem 1 (which in this case
reduce to∂x1

β(0) > −a1 because of item 2 of Assumption 2),
global exponential stability of the closed-loop can be proven
by relying on the two global and local exponential bounds.
• Linear saturated feedback. Theorem 1 yields global asymp-
totic (and local exponential) stability of the origin underlinear
saturated state feedback of the formβ(x) = α1x1+α2x2, with
α1 > 0 andα2 > 0 (which satisfies Assumption 2). This type
of feedback has been studied in many papers (e.g., [10] and
references therein, [27], [8], [9], [20], [22], [16]).
• Extension to the nonlinear case. An extension of Theorem 1
holds under very mild assumptions onf(x1, x2) for the
nonlinear system with bounded input

ẋ1 = x2, ẋ2 = f(x1, x2) + satM (u). (4)

As pointed out in Remark 7, such extension can be used to
design quasi time-optimal control laws for (4). ◦

Remark 3: (Robustness properties from Lipschitz continu-
ity) Note that ensuring that the proposed controller is lo-
cally Lipschitz guarantees useful robustness properties on the
nonlinear closed-loop. As a matter of fact, if the conditions
of item 2 of Theorem 1 are satisfied, so that GAS holds,

then the results in [28, Theorem 2] guarantee that 1) there
exists a smooth converse Lyapunov function for the closed-
loop system and, as a consequence, 2) the global asymptotic
stability property is robust in the sense that the system can
tolerate a suitable perturbation of the dynamics via inner
(namely, measurement errors) and outer (namely, actuation
errors) inflations (see, [28, Definition 8] for details). ◦

III. D ESIGN FOR QUASI TIME-OPTIMAL RESPONSES

Some well known facts (cfr [1, Ch. 6-7]) about time-optimal
control of planar ANCBI linear systems are now recalled.

A. Time-optimal feedback laws

Time-optimal inputs (ensuring convergence of the state
to zero in minimum time) for linear plants with bounded
inputs are bang-bang (i.e. can only assume the maximum and
minimum allowed values) and can be expressed as a state
feedbacku(x) defined in terms of a suitable switching surface,
described either as{x : x1 + α(x2) = 0}, in which case

u = −Msgn (x1 + α(x2)) , (5)

or as{x : x2 + ᾱ(x1) = 0}, in which case

u = −Msgn (x2 + ᾱ(x1)) . (6)

For example, for a double integrator with control input
bounded between±M the optimal feedback is given by

u = −Msgn
(

x1 + 1
2M

x2|x2|
)

, (7)

and in this case the functionα(·) in (5) is locally Lipschitz,
strictly increasing and such thatsα(s) > 0, ∀s 6= 0, i.e. α(·)
lies strictly in the first and third quadrant (note that this implies
α(0) = 0 so that the equilibrium at the origin is preserved).
For a harmonic oscillator (a1 = ω2, a2 = 0) with control input
bounded between±M the optimal feedback is given by

u = −Msgn (x2 + ᾱ(x1)) , (8a)

ᾱ(x1) = M
ω

sgn (x1)

√

1 −
(

ω2

M
x1 − 2

⌊

ω2

2M
x1

⌋

− 1
)2

, (8b)

where⌊s⌋ denotes the integer part ofs (i.e. the integerh which
is closest tos and such that|h| ≤ |s|), and in this case the
function ᾱ(·) in (6) is such thatsᾱ(s) ≥ 0, ∀s, i.e. ᾱ(·) lies in
the closed first and third quadrant (see Fig. 1); notice however
that in this case the function̄α(·) is neither monotonically
increasing nor locally Lipschitz (the Lipschitz property does
not hold atx2 = 0, x1 = 2M

ω2 h, h ∈ Z). Also for general
ANCBI planar system the switching curve lies in the closed
first and third quadrant, and then the proposed approach (based
on Theorem 1) can be applied.

B. Quasi time-optimal, locally linear Lipschitz feedback

As pointed out before, the advantage of having a locally
Lipschitz (instead of a discontinuous, bang-bang) feedback
consists in better robustness to noise and disturbances (see
Remark 3); moreover, in a neighborhood of the origin it is
desirable to have a linear control law in order to have at least
local exponential stability.
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x2 = −ᾱ(x1)

x2 = −ᾱε(x1)

x2 = −sgn (x1)min

{

|ᾱε(x1)|, k
2
−4a1

4k
|x1|

}

x2 = −sgn (x1)min

{

ζ,
k
2
−4a1

4k
|x1|

}

Fig. 1. Normalized time-optimal switching curve for the harmonic oscillator
and its approximations:x2 = −ᾱ(x1) (black), x2 = −ᾱε(x1) (red).

If the optimal feedback law has the form (5), andα(·)
is a strictly increasing Lipschitz function, then the function
β(x1, x2) = x1 +α(x2) satisfies Assumption 2 and then using
this β(x1, x2) in (2) yields a Lipschitz controller ensuring
global convergence according to Theorem 1 (this is the case
for the time-optimal control of the double integrator, see (7)
and the subsequent comments). However, in a neighborhood
of the origin, the above nonlinear selection ofβ(x1, x2) can
induce a highly oscillatory behavior; hence, it is advisable to
introduce a local linear feedback inducing a critically damped
local response. The Lipschitz nonlinear control law and the
local linear one can be blended by choosing2 β(x1, x2) =

x1 + sgn (x2) max
{

|α(x2)|, 2√
k
|x2|

}

, so that (2) becomes:

u = −k
(

x1 + sgn (x2) max
{

|α(x2)|, 2√
k
|x2|

})

. (9)

It is easy to see thatsatM (u) with u given by (9) and the
time-optimal feedback (5) coincide everywhere except for
a stripe around the curvex1 + α(x2) = 0 having width
2
k

in the x1 direction; hence, by increasingk, the above
feedback can be made arbitrarily close to the optimal one
(at the price of monotonically increasing the locally Lipschitz
constants around the switching region – indeed increasingk

one becomes closer and closer to the discontinuous law). In
particular, for the case of the double integrator (9) becomes

u = −k
(

x1 + x2 max
{

|x2|
2k

, 2√
k

})

. (10)

Wholly similar comments hold if the optimal feedback
law has the form (6), and the selectionβ(x1, x2) = x2 +
ᾱ(x1) is made, provided thatα(·) is a Lipschitz function
contained in the first and third quadrant and such that
lim inf |s|→+∞ |ᾱ(s)| > 0 (this condition is weaker than
requiring ᾱ(·) to be strictly increasing). Now, in order to
highlight an additional possible obstruction and its solution,
consider again the optimal feedback (8) for the harmonic oscil-
lator. Although the just stated condition on̄α(·) is weaker than
the one required before, it is clear that the functionᾱ(x1) con-
sidered in the time-optimal feedback law (8) for the harmonic
oscillator does not respect this condition: in fact,ᾱ(x1) is zero
for x1 = 2M

ω2 h, h ∈ Z (hencelim inf |x1|→+∞ |ᾱ(x1)| = 0)
and is not Lipschitz at the same points (see Fig. 1). However,
both problems can be overcome by a blending which is slightly

2For simplicity, we omit the dependence onk of β(x1, x2); the role of
such dependence is clear from (9).

more general than the one in (9), where in addition to introduce
a linear behavior in a neighborhood of the origin, the general
time optimal switching curvex2 + ᾱ(x1) = 0 is modified as
x2 + ᾱε(x1) = 0, whereᾱε(x1) = sgn (x1) max {|ᾱ(x1)|, ε},
in order to exclude a neighborhood of each point where the
Lipschitz property is violated (see Fig. 1). The overall arising
formula for the harmonic oscillator is

u = −k
(

x2 + sgn (x1) min
{

|ᾱε(x1)|, k2−4a1

4k
|x1|

})

, (11)

whereε is a sufficiently small positive constant (in particular,
ε ∈

(

0, M
ω

)

) and ᾱ(x1) is given by (8b). It is easy to see
that, as was the case with (9), also (11) is quasi-optimal, in
the sense thatsatM (u) with u given by (11) and the time-
optimal feedback (8) coincide except on a stripe around the
curve x2 + ᾱ(x1) = 0 having width proportional tok−1 in
the x2 direction; hence, by increasingk, the above feedback
can be made arbitrarily close to the optimal one (at the price
of monotonically increasing the associated local Lipschitz
constants, as also commented above for the double integrator
case). Comparing the feedback law (11) for the harmonic
oscillator and the law (10) for the double integrator, it is
evident that the implementation of (11) is more complex than
the implementation of (10); however, replacing (11) by

u = −k
(

x2 + sgn (x1) min
{

ζ, k2−4a1

4k
|x1|

})

, (12)

(where for the harmonic oscillator a typical choice of the
parameters would bek > 2ω and ζ = M

(

1
ω
− 1

k

)

) leads
to a much simpler law which also guarantees global attrac-
tiveness of the origin (due to Theorem 1), and better global
performance than any linear stabilizing law (this is easilyseen
by comparing the regions where the two kinds of feedbacks
differ from the time-optimal feedback law).

Remark 4: (Quasi-optimality, and performance-simplicity
trade-off) The above discussion has highlighted that the pro-
posed approach leads toquasi-optimal control laws, since it
allows to recover the optimal control feedback on allR

2 apart
from a small stripe around the curveβ(x) = 0 whose width
is a decreasing function ofk, converging to a set of measure
zero whenk goes to infinity.

Another useful feature of the approach is that it allows
for a trade-off between optimality and simple implementation.
In fact (again, cfr classic books as [1]), the exact switching
surfaces can be rather complex, and for ease of implementation
it can be desirable to choose a simpler curve as the set
whereβ(x) = 0; as long as the correspondingβ(x) satisfies
Assumption 2, the above approach yields global asymptotic
and local exponential stability of the origin. ◦

Remark 5: (Robust convergence and nominal performance)
It is perhaps useful to stress that the proposed approach leads
to robust global asymptotic stabilization, in the sense that,
as far as the considered system is in the form (1) (namely,
it has relative degree 2 fromu to x1, or, stated otherwise,
the first equation preserves the kinematic natureẋ1 = x2, so
that x1 can be interpreted as position andx2 as velocity), the
proposed control law will still guarantee global asymptotic
stabilization, even if the values ofa1 ≥ 0, a2 ≥ 0 are not the
nominal values considered during the design stage; moreover,
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quasi-optimality will be achieved if those parameters have(or
if they are very close to) their nominal values, and the function
β(x1, x2) and the parameterk have been chosen in order to
recover the optimal feedback law. ◦

Remark 6: (Step reference tracking and regulation) When
at least one of the two eigenvalues of the plant (1) is zero (i.e.
whenevera1 = 0), the optimal feedback law for regulating
the state to zero also provides the optimal feedback law for
tracking the step referencer(t) = r̄, ∀t ≥ 0, provided that
β(x1, x2) is replaced byβ(x1− r̄, x2). In fact, via the change
of variablesx̄1 = x1− r̄, x̄2 = x2, the above tracking problem
is easily seen to be equivalent to the problem of regulating to
zero the new statēx1, x̄2. ◦

Remark 7: (Extension to nonlinear systems) As pointed out
in [2], the time-optimal feedback laws for the nonlinear system
(4) are topologically equivalent to the time-optimal feedback
laws for the linear system (1), provided thatf(x1, x2) ∈ C3

and thatf(x1, 0) = ±1 implies ∂x1
f(x1, 0) 6= 0. Using the

nonlinear extension of Theorem 1 (cfr Remark 2), the approach
described in this section can be used to design quasi time-
optimal control laws for the nonlinear system (4) too. ◦

IV. D ESIGN FOR QUASI FUEL-OPTIMAL RESPONSES

Some well known facts about fuel-optimal control of planar
ANCBI linear systems are now recalled (cfr [1, Ch. 6 and 8]).

A. Fuel-optimal feedback laws

When the objective is to minimize fuel consumption, op-
timal solutions may not exist in relevant cases (there exist
open regions in the state space such that given an initial state
in such a region and any control input ensuring convergence
to the origin from that state, it is possible to find a different
control input achieving convergence with less fuel, thoughin a
longer time). In order to avoid such situations, it is necessary
to bound the maximum allowed transfer time: so, ifTm(x0)
is the transfer time forx0 under time-optimal control,
• fixed response timefuel-optimal inputs guarantee that, for a
given T̄ > 0, the transfer fromx0 is achieved with minimum
fuel expenditure in at most̄T time units ifTm(x0) ≤ T̄ (i.e. if
x0 is “close” to the origin) or inTm(x0) time units otherwise;
• bounded response timefuel-optimal inputs guarantee that,
for a given γ > 1, the transfer fromx0 is achieved with
minimum fuel expenditure in at mostγTm(x0) time units.

Similarly to time-optimal inputs, (fixed or bounded response
time) fuel-optimal inputs for linear time invariant systems
are bang-off-bang (i.e. can only assume the maximum and
minimum allowed values, plus the zero value), and can be
expressed as a state feedback defined in terms of a suit-
able switching surface; for example, for a double integra-
tor with control input bounded between±M the switch-
ing surfaces in the bounded response time case are given
by

{

x : x1 + 1
2M

x2|x2| = 0
}

and
{

x : x1 +
mγ

M
x2|x2| = 0

}

,
wheremγ = γ

2γ−2
√

γ(γ−1)−1
− 1

2 [1, Sec. 8.7, eq. (8-213)]

and the optimal feedback is given by

u =











−sgn
(

x1 +
mγ

M
x2|x2|

)

, if x1(x1 +
mγ

M
x2|x2|) ≥ 0,

−sgn
(

x1 + 1
2M

x2|x2|
)

, if x1(x1 + 1
2M

x2|x2|) ≤ 0,

0, otherwise.
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Fig. 2. M = 1, quasi time-optimal strategy.

B. Quasi fuel-optimal, locally linear Lipschitz feedback

The key ideas are similar to those expressed in Sec-
tion III-B; for brevity, the discussion will be limited to the
case when the switching surfaces of interest can be expressed
as{x : x1 + α(x2) = 0}, {x : x1 + α̃(x2) = 0} with α(s) and
α̃(s) two strictly increasing Lipschitz functions lying in the
first and third quadrant and such that

sα̃(s) ≥ sα(s) > 0, ∀s 6= 0;

this is the case for the fuel optimal (with either bounded or
fixed response time) solution for the double integrator or plants
having one null eigenvalue and one negative eigenvalue.

Defining the following functions:

α̂(s) := max{α̃(s), α(s)}, α̌(s) := min{α̃(s), α(s)},
ξ(γ, s) := sgn (s) max

{

|γ(s)|, 2√
k
|s|

}

,

and using the same blending approach already used in the first
part of Section III-B, the proposed control law is

u =











−k (x1 + ξ(α̌, x2)) , if x1 + ξ(α̌, x2) ≥ 0,

−k (x1 + ξ(α̂, x2)) , if x1 + ξ(α̂, x2) ≤ 0,

0, otherwise,

(13)

that isu = −k min {x1 + ξ(α̌, x2),max {x1 + ξ(α̂, x2), 0}}.

V. EXAMPLES

Double integrator.Constant reference tracking for a double
integrator plant with saturated input (M = 1) is solved by the
quasi-optimal control proposed is (10), blending the bang-bang
feedback with a stabilizing linear feedback (thus recovering
the time-optimal behavior for large error signals and avoiding
problems near the equilibrium due to noise and disturbances).
Simulations results are shown in fig. 2 for different values
of k. Note that increasingk implies a better recovery of the
optimal response and the use of a more aggressive, critically
damped (due to the constant2√

k
inside themax) linear control

law. Theorem 1 guarantees global asymptotic stability for any
parameter variation that preserves the kinematic relationẋ1 =
x2 (see Remark 5).
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Fig. 3. M = 1, γ = 2, quasi fuel-optimal strategy.

Similarly, fig. 3 shows the responses for different values of
k in the quasi fuel-optimal control law given by (13). With
mγ ≈ 11.66 (i.e. γ = 2) the fuel-optimal response converges
in a time no longer than twice the minimum time.

Harmonic oscillator. The quasi time-optimal control law
(11), (8b) is globally stabilizing for the systeṁx1 = x2,
ẋ2 = −ω2x1 − sat(u). For small ε and largek, the time-
optimal response is almost recovered, as shown in Fig. 4.

VI. PROOF OFTHEOREM 1

The main steps of the proof are the following. We first
show in Section VI-A that, for each initial conditions there
exists a compact forward invariant setI(x0) containing the
origin where the trajectory is confined. Then we show in
Section VI-B that the origin is the only equilibrium point
in the setI(x0). Then, to complete the proof of item 1, in
Section VI-C we show that there doesn’t exist any periodic
orbit in the setI(x0) so that, by [14, Theorem 18.1, page
66] (following a Bendixson-like approach), all trajectories
necessarily converge to the origin. Finally, in Section VI-D
we prove item 2 of the theorem.

A. Existence of the forward invariant setI(x0)

Consider the locally Lipschitz Lyapunov functionV =

a1
x2

1

2 +
x2

2

2 + M |x1|. Its generalized gradient [7] inx1 = 0 is
the set∇V0(x2) =

{[

(1 − 2α)M x2

]

, α ∈ [0, 1]
}

, and its
generalized derivative along the system dynamics is

V̇ ∈ −a2x
2
2 − x2(sat(kβ(x)) − MSgn (x1)), (14)

where the set valued functionSgn (·) is such thatSgn (x1) =
sgn (x1) if x1 6= 0, andSgn (x1) = [−1,+1] if x1 = 0.

Sincek satisfies (3), then∃s̄ > 0 : k = M
η(s̄) > inf

s>0

M
η(s) .

Therefore, by item 1 of Assumption 2 and sinceη(·) ∈ K,

|kβ(x)| ≥
∣

∣

∣

M
η(s̄) η(|x|)

∣

∣

∣
≥ M, ∀|x| ≥ s̄, x1x2 ≥ 0. (15)

Therefore, the following bounded set

W := {x : |x| ≤ s̄} ∩ {x : x1x2 > 0} ⊂ {x : |x| ≤ s̄}
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Fig. 4. M = 1, ω = 2, quasi time-optimal strategy.

is characterized by the fact that anyx outsideW and in
the (closed) first and third quadrant will lead to (by (15))
|kβ(x)| ≥ M , namely will cause the plant inputu to saturate.

Consider now the maximum ofV (·) in W and atx0, namely
v(x0) := max{V (x) : x ∈ W ∪ {x0}}, and letI be the set:

I(x0) := {x : V (x) ≤ v(x0)} ⊃ W.

I is compact by radial unboundedness ofV (·). By definition of
I(x0) and item 1 of Assumption 2, the inputu is saturated for
all x ∈ {x : x1x2 ≥ 0} (the closed first and third quadrants)
intersection withI(x0)c (the closed complement ofI(x0)).

Then the following reasonings prove thatV̇ ≤ 0 for all
x ∈ I(x0)c, i.e. I(x0) is a forward invariant set where the
trajectory is confined (becausex0 ∈ I(x0) by definition):
• (2nd and 4th quadrants) if x1x2 ≤ 0, thenkβ(x) could
be any value, therefore we only know that sat(kβ(x)) ∈
[−M,M ]. Based on this, (14) yields:
1) if x1 > 0, x2 ≤ 0, then V̇ ≤ −x2(sat(kβ(x)) − M) =
−|x2||sat(kβ(x)) − M | ≤ 0 (both terms are negative);
2) if x1 < 0, x2 ≥ 0, then V̇ ≤ −x2(sat(kβ(x)) + M) =
−|x2||sat(kβ(x)) + M | ≤ 0 (both terms are positive);
3) if x1 = 0, then, by definition ofI(x0), sat(kβ(x)) ∈
{−M,M} for all x ∈ I(x0)c ∩ {x1 = 0}. Moreover, also
by item 1 of Assumption 2, sat(kβ(x)) = M if x2 > 0 and
sat(kβ(x)) = −M if x2 < 0. HenceV̇ ≤ 0 since

V̇≤ max
α∈[0,1]

x2[(1 − 2α)M−sat(kβ(x))]≤|x2|M+|x2|(−M).

• (1st and 3rd quadrants) if x1x2 > 0 and x ∈ I(x0)c ∩
{x1 = 0}, once again sat(kβ(x)) = Msgn (x2) by definition
of I(x0) and by item 1 of Assumption 2. Then (14) yields
V̇ ≤ −x2(sat(kβ(x)) − M) = 0.

B. Uniqueness of the equilibrium point

Since ẋ1 = x2 any equilibrium has to be onx2 = 0. By
item 1 of Assumption 2 sat(kβ(x)) = 0 on thex1 axis if and
only if x1 = 0, and has the same sign asx1 otherwise. Hence
on {x2 = 0}, ẋ2 = −a1x1 − sat(kβ(x)) 6= 0 if x1 6= 0. This
proves thatx = 0 is the only equilibrium point.
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C. Proof of convergence using Bendixson’s criterion

Since the only equilibrium point is the origin, any trajectory
not converging to that point must converge to a periodic orbit
contained inI(x0). Moreover, any such hypothetical periodic
orbit must surround the origin because:
• no such orbit can happen in a single quadrant, since the
periodicity of the orbit contradicts the property that in each
quadrantẋ1 = x2 is monotone;
• the trajectory phase is decreasing on the coordinate axes,
since writing the dynamics in polar coordinates [17,§10.5]
|x|2φ̇ = x2

2−x1(−a1x1−a2x2−sat(kβ(x))), implying φ̇ > 0
on x1 = 0 and onx2 = 0 (by the property ofβ(·) on x2 = 0).

Now, reasoning like in the proof of Bendixson criterion
(see, e.g., [17, Lemma 2.2]), suppose by contradiction that
there exists a periodic orbitγ including the origin and let
S be the region surrounded byγ. Then, denoting the right
hand side of the closed-loop system asf1(x) := x2, f2(x) :=
−a1x1 − a2x2 − satM (kβ(x)), it must necessarily hold that
∫

γ
f2(x)dx1 − f1(x)dx2 = 0, i.e. by Green’s theorem,

∫ ∫

S

(∂x1
f1 + ∂x2

f2) dx1dx2 = 0. (16)

However, this cannot happen since, as shown below, item 2 of
Assumption 2 implies that any such integral is strictly negative.

To bound the integrand in (16), note thatsat(·) and β(·)
are locally Lipschitz, hence almost everywhere it holds that:

∂x1
f1 =0, ∂x2

f2 =

{

−a2, if |kβ(x)| ≥ M,

−a2 − k∂x2
β(x), if |kβ(x)| < M,

therefore, for almost allx, ∂x1
f1 + ∂x2

f2 ≤ −a2 ≤ 0. More-
over, since the intersection ofS with the setA (introduced
in item 2 of Assumption 2) has a positive measure, then
∂x1

f1+∂x2
f2 ≤ 0 and item 2 of Assumption 2, togethera2 ≥

0 (by Assumption 1) imply
∫ ∫

S
(∂x1

f1 + ∂x2
f2) dx1dx2 < 0,

which contradicts (16). Therefore, no periodic orbitγ exists.
Since no periodic trajectory exists inI(x0) and the origin
is the only equilibrium point, by [14, Theorem 18.1, page
66] (following a Bendixson-like approach), the trajectory
necessarily converges to the origin.

D. Proof of item 2 of the theorem

The two conditions at item 2 correspond to requiring strict
positiveness of the coefficients of the characteristic polynomial
of the linearized system around the origin. Therefore it is
straightforward to conclude local exponential stability (LES)
of the origin from those conditions. This, together with the
global convergence property proven above is sufficient (see,
e.g., [29] or [18, pp. 68-72]) to prove global asymptotic and
local exponential stability (GAS+LES).

VII. C ONCLUSIONS

In this paper we have proposed a general approach to the
global stabilization of ANCBI linear planar systems subject
to input saturation. Our approach allows to achieve almost
time (and/or fuel) optimal robust stabilization with a locally
Lipschitz state feedback law. Simulation results illustrate the
effectiveness of the proposed strategy.
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