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A family of global stabilizers for quasi-optimal the variable structure control literature (see e.g. [28jg

control of planar linear saturated systems approach in this paper is different (and complementary) in
many respects. Furthermore, since the arising control &ae's

Fulvio Forni, Sergio Galeani and Luca Zaccarian constant in a very large portion of the state space, they seem
especially favourable from the point of view of requiringvio

] . control attention (in the sense of [5]).
Abstract—We propose a family of nonlinear state feedback

- . . The paper is structured as follows: in Section Il we in-
global stabilizers for all planar linear systems which are globally d familv of feedback bili atri
stabilizable by bounded inputs (namely, all non exponentially troduce a family of state feedback stabilizers parametrize

unstable linear systems). This family is parametrized by a DBy a nonlinear function which needs to satisfy a simple
nonlinear function whose selection can yield quasi time-optimal gradient condition. In Section Il we discuss useful setet
responses, where the “quasi” is required to achieve local ex- of this parameter leading to quasi-optimal responses faice
ponential stability of the closed-loop. The arising trajectories classes of systems. In Section V we provide several examples
are quasi time-optimal for arbitrarily large initial conditions; ) . ' S

so, we expect the very simple proposed nonlinear control law |Ilustrat|ng the ad_vantages of the propos_ed stabilizerall,
to be very useful for embedded control applications with strong Section VI contains the proof of the main theorem.

computational constraints. Notation. 0., f denotes the partial derivative ¢f(-) with
Index Terms—Saturation, time-optimal control, fuel-optimal ~ '€SPect taz;. A function 77() :R>p — R is in classKC if
control, global stabilization, Lyapunov functions. n(0) = 0 and it is strictly increasingp(-) is in classKo if

n(-) € K andlim,_, 1 o n(s) = +o0.

I. INTRODUCTION
Il. A FAMILY OF STATE FEEDBACK STABILIZERS

Planar systems with input saturation have been long studie
in the control literature. For experimental purposes, @tan
models are often already sufficient to characterize the main &1 =Ty, 4o = —a1x; — apwy + saty(u), (1)
dynamic behavior of a wide family of plants, so that high
performance control laws arising from studies on planar sy§heresat M () is the symmetric scalar saturation function with
tems might become very effective in several applicatiors (s saturation limitstM andw is the control input. We will make
e.g., the case studies mentioned in [20] or the application the following assumption on (1) throughout this paper.

[13]). In light of saturation, when designing controllersr f ~ Assumption 1:The linear plant (1) is globally stabilizable
these systems quite often one seeks for solutions of the tinf®m u, namely (see, e.g., [24], [21}), az > 0.

optimal (or bang-bang) type, so that the control input atitpo ~ We will study in this paper the design of a (nonlinear in
is fully exploited most of the time. general) static state feedback stabilizer for (1) in thenfor

While there are several valuable studies on time-optimal w= —kB(z) @)
control of nonlinear planar systems (see e.g. [25], [3],d4dl ’
references therein), we focus here on linear saturatedragst wherek is a positive constant andl(-) is a suitable nonlinear
For this class of systems global asymptotic stabilizatian cfunction. This specific choice of feedback withfactored out
only be achieved if the plant is ANCBI (asymptotically nullis motivated by the special form of feedbacks considered in
controllable with bounded inputs), i.e. if its poles are re t this paper (see also the statement in the following Theorem 1
closed left half plane [24], [21]. Linear ANCBI systems with For the static controller (2), we will give several recipes
at least one imaginary pole can only be globaldymptotically in this paper, geared toward the achievement of almost time-
(not exponentially) stabilized, and then performance isw koptimal and (possibly) fuel-optimal responses. Moreoves,
issue when designing a global stabilizer, since one canmitl allow in several cases to enforce an arbitrary locakéin
achieve a global exponential convergence rate. While arlindgehavior on the tail of the closed-loop responses (namedy in
saturated feedback cannot globally stabilize already @etri suitable neighborhood of the origin). To this aim, it is ugef
integrator [11], [26], it can always stabilize a planar bne to formally define here the set of function¥-) which are
system [9]. For additional recent results about control guaranteed to induce desirable stability and convergerme p
saturated planar systems see e.g. [19], [6], [12], [15]].[20 erties on the closed-loop, as formally stated in the foliayvi

In this paper we propose a family of static nonlineasssumption and theorem.
controllers for ANCBI planar linear systems which are Lip- Assumption 2:The function3(-) : R? — R in (2) is a
schitz and extremely close to being time-optimal (or fuelecally Lipschitz function satisfying3(0) = 0 and
optimal), thus yielding quasi optimal responses for alhalg 1) there exists)(-) € K such that
ranges (WhICh.IS typically hard to obtain Wlt.h linear sod)gis) . e if 21 >0 andzs > 0, then3(z) > n(|z|);
while preserving the robustness properties of a Lipschitz e if 21 <0 andzs <0, thenB(z) < —n(|z|):
state-feedback. Though the idea of get a Lipschitz feedback - S - '

> 0 a.e inR? and there exists an open sdt

ifying a discont i in 2 Ou.B(x)
by locally modifying a discontinuous law is well known in 2 e
y y ving such that0 € A and such thad,,3(x) > 0 a.e. inA.

dConsider the following linear planar saturated system:

Work supported in part by ENEA-Euratom and MIUR under PRINj@cts.

All the authors are with the Dipartimento di Informatica, Sist 1To keep the discussion simple, we will assume symmetric satagain
e Produzione, University of Rome, Tor Vergata, 00133 Romely ltathis paper, however it is possible to extend the results pegsented to the
f orni | gal eani | zack@li sp. uni roma2. it case with non-symmetric saturations.
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Remark 1:(Interpretations of Assumption 2) The intuitivethen the results in [28, Theorem 2] guarantee that 1) there
meaning of Assumption 2 is that the state feedback (2) shodxists a smooth converse Lyapunov function for the closed-
preserve the equilibrium at the origin (namely0) = 0) and loop system and, as a consequence, 2) the global asymptotic
that 3 is strictly positive on the first (respectively, strictlystability property is robust in the sense that the system can
negative on the third) closed quadrant take away the oridgilerate a suitable perturbation of the dynamics via inner
(tem 1). Finally, the constraint on the derivative gfwith (namely, measurement errors) and outer (namely, actuation
respect tox, at item 2 provides a sufficient condition toerrors) inflations (see, [28, Definition 8] for details). o
guarantee that thg does not induce new equilibria nor limit
cycles. The peculiar requirement on the get(namely that I11. DESIGN FOR QUASI TIMEOPTIMAL RESPONSES
it is open and its closure contains the origin) is motivated g,me well known facts (cfr [1, Ch. 6-7]) about time-optimal

by the fact that for any (arbitrarily small) neighborhoodtoé - ntro| of planar ANCBI linear systems are now recalled.
origin, we need the strict inequality to hold in a set of pwusit

measure, contained in that neighborhood (see the proof of _ imal feedback |
Theorem 1 for details). A Time-optimal feedback faws

Theorem 1:Given the plant (1), if the functio(-) in the ~ Time-optimal inputs (ensuring convergence of the state

control law (2) satisfies Assumption 2 akds such that to zero in minimum time) for linear plants with bounded
u u inputs are bang-bang (i.e. can only assume the maximum and
E>inf — = lim ——, (3) minimum allowed values) and can be expressed as a state
s>07(s)  s=toon(s) feedbacku(z) defined in terms of a suitable switching surface,
for the functions(-) in the same Assumption 2, then: described either afr : 1 + a(z2) = 0}, in which case
1) all trajectories of (1), (2) converge to the origin; u=—Msgn (z1 + a(zs)) (5)

2) moreover, if3(-) is differentiable at the origin and
81?15(0) > —ay, aﬂ?zﬂ(o) > —ag,

then the origin is a locally exponentially stable an
globally asymptotically stable equilibrium point.

Proof: See Section VI

Remark 2:(Considerations on Theorem 1) The following u = —Msgn (z1 + 55732|72]) , (7)
considerations can be made about Theorem 1:
e Lower bound on the gaih. Wheneven(-) € K., the lower
bound onk enforced by (3) is zero. Namely, in this case
can be scaled down to become arbitrarily small in any comp
neighborhood of the origin.
¢ Global exponential stabilitylf the plant (1) is exponentially
stable (i.e., bothu; anda, are strictly positive), then under
the conditions at item 2 of Theorem 1 (which in this case  u= —Msgn (22 + a(z1)), (8a)
reduce ta),, 5(0) > —a; because of item 2 of Assumption 2), , 5
global exponential stability of the closed-loop can be prov &(z1) = sgn (1) \/1 - (‘]{—;xl -2 LQ‘*’—;[:QJ - 1) , (8b)
by relying on the two global and local exponential bounds.
e Linear saturated feedbacRheorem 1 yields global asymp-Where|s] denotes the integer part s{i.e. the integef: which
totic (and local exponential) stability of the origin undierear S closest tos and such thath| < [s[), and in this case the
saturated state feedback of the fofifx) = ;21 +asxs, with  fUnctiona() in (6) is such thasa(s) > 0, Vs, i.e.a(:) lies in
a1 > 0 andas > 0 (which satisfies Assumption 2). This typethe closed first and third quadrant (see Fig. 1); notice hewev
of feedback has been studied in many papers (e.g., [10] dRat in this case the function(:) is neither monotonically
references therein, [27], [8], [9], [20], [22], [16]). increasing nor locally Lipschitz (the Lipschitz propertges
« Extension to the nonlinear casén extension of Theorem 1 N0t hold atzy = 0, 21 = 2h, h € Z). Also for general
holds under very mild assumptions of(zq,z») for the ANCBI planar system the switching curve lies in the closed
nonlinear system with bounded input first and third quadrant, and then the proposed approackdbas

on Theorem 1) can be applied.

or as{z : 3 + a(x1) = 0}, in which case
u=—Msgn (z2 + a(x1)). (6)

%or example, for a double integrator with control input
bounded betweer- M the optimal feedback is given by

and in this case the function(-) in (5) is locally Lipschitz,
strictly increasing and such thaty(s) > 0, Vs # 0, i.e. a(-)
lies strictly in the first and third quadrant (note that tmgplies
%%0) = 0 so that the equilibrium at the origin is preserved).
For a harmonic oscillatorf = w?, a; = 0) with control input
bounded betweer-M the optimal feedback is given by

&1 =m2, d2= f(z1,22) +sata(u). (4)
As pointed out in Remark 7, such extension can be usedBe Quasi time-optimal, locally linear Lipschitz feedback
design quasi time-optimal control laws for (4). o As pointed out before, the advantage of having a locally

Remark 3:(Robustness properties from Lipschitz continukipschitz (instead of a discontinuous, bang-bang) feeklbac
ity) Note that ensuring that the proposed controller is I@onsists in better robustness to noise and disturbances (se
cally Lipschitz guarantees useful robustness propertiehe Remark 3); moreover, in a neighborhood of the origin it is
nonlinear closed-loop. As a matter of fact, if the conditiondesirable to have a linear control law in order to have attleas
of item 2 of Theorem 1 are satisfied, so that GAS holdical exponential stability.
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Aﬁf? more general than the one in (9), where in addition to inteedu
zg = —a(z1) ) a linear behavior in a neighborhood of the origin, the gdnera
23 = —a (1) z2 = —sgn (m)min{Q %le\} time optimal switching curver; + a(z;) = 0 is modified as
w2 x2 + a-(x1) = 0, wherea. (z1) = sgn (z1) max {|a(z1)|, e},
42 44 46 M1 in order to exclude a neighborhood of each point where the

\/

-6 -4 ) é é / Lipschitz property is violated (see Fig. 1). The overalbam
formula for the harmonic oscillator is
uw=—k (xg + sgn (1) min{|@5(:c1)|, kZZ,?‘“ \371\}) , (11)

Fig. 1. Normalized time-optimal switching curve for the harmwascillator Wheree is a sufficiently small positive constant (in particular,

and its approximationsts = —a(z1) (black), zo = —ae (1) (red). = (O, %)) and a(z1) is given by (8b). It is easy to see
that, as was the case with (9), also (11) is quasi-optimal, in
the sense thatat,;(u) with « given by (11) and the time-

If the optimal feedback law has the form (5), and-) optimal feedback (8) coincide except on a stripe around the
is a strictly increasing Lipschitz function, then the fuoat cyrve 2, + a(z1) = 0 having width proportional td:~! in
B(z1,22) = x1+a(x2) satisfies Assumption 2 and then usinghe 7, direction; hence, by increasing the above feedback
this B(z1,22) in (2) yields a Lipschitz controller ensuringcan be made arbitrarily close to the optimal one (at the price
global convergence according to Theorem 1 (this is the case monotonically increasing the associated local Lipschit
for the time-optimal control of the double integrator, s& ( constants, as also commented above for the double integrato
and the subsequent comments). However, in a neighborhee@e). Comparing the feedback law (11) for the harmonic
of the origin, the above nonlinear selection @fx1,z2) can oscillator and the law (10) for the double integrator, it is
induce a highly oscillatory behavior; hence, it is advisatd  evident that the implementation of (11) is more complex than

introduce a local linear feedback inducing a critically ¢@u the implementation of (10); however, replacing (11) by
local response. The Lipschitz nonlinear control law and the

local linear one can be blended by chooSing(z;,z2) = u=—k (xz + sgn (1) min {C, kt,j‘“ |x1|}) , (12)
x1 + sgn (z2) max {|a(:c2)|, %|x2|}, so that (2) becomes:

(where for the harmonic oscillator a typical choice of the
o ) o parameters would bé > 2w and ¢ = M (2 — 1)) leads

u=-k (Il +sgn ($2)max{|a(x2)|’ ﬁ‘xﬂ}) - 0 to a much simpler law which also guarantees global attrac-

It is easy to see thatat,;(u) with u given by (9) and the tiveness of the origin (due to Th'e.olrem 1), and.better global
time-optimal feedback (5) coincide everywhere except fd;}erformange than any_lmear stabilizing law (_th|s is easégn

a stripe around the curve; + a(z2) = 0 having width by comparing the regions where the two kinds of feedbacks

2 in the x, direction; hence, by increasing, the above differ from the time-optimal feedback law). o
feedback can be made arbitrarily close to the optimal oneRemark 4:(Quasi-optimality, and performance-simplicity
(at the price of monotonically increasing the locally Lipgz trade-off) The above discussion has highlighted that tiee pr
constants around the switching region — indeed increaking?0sed approach leads tuasi-optimal control lawssince it
one becomes closer and closer to the discontinuous law).a#pws to recover the optimal control feedback onlkl apart

particular, for the case of the double integrator (9) becomefrom a small stripe around the curygx) = 0 whose width
is a decreasing function df, converging to a set of measure
u=—k (xl + x9 max {%, %}) ) (10) zero whenk goes to infinity.
- . . Another useful feature of the approach is that it allows
Wholly similar comments hold if the optimal feedl:)aClﬂ‘or a trade-off between optimality and simple implementation
lflw has the form (6), and the se!ecnqﬁ(_x 1’“) = T2 T | fact (again, cfr classic books as [1]), the exact switghin
a(z1) is made, provided that(-) is a Lipschitz function surfaces can be rather complex, and for ease of implementati

c.on'tamed n Ehe first and .th'rd q‘%‘?‘draf“ and such thF?tcan be desirable to choose a simpler curve as the set
liminf| o [@(s)] > 0 (this condition is weaker than

s . . X . where = 0; as long as the correspondi satisfies
requiring a(-) to be strictly increasing). Now, in order to Blr) g P i)

S -, . . L Assumption 2, the above approach yields global asymptotic
h|ghl!ght an gdfir:tlona:! polsfsm(ljeb oblftréuc;tlo?hanhd its sc_a‘_:ut and local exponential stability of the origin. )
consider again the optimal feedback (8) for the harmonid-osc Remark 5:(Robust convergence and nominal performance)

lator. Although the just stated condition an-) is weaker than It is perhaps useful to stress that the proposed approads lea

the one required before, it is clear that the functiqnr;) con- lobal . ilizationn th h
sidered in the time-optimal feedback law (8) for the harmomto robust global asymptotic stabilizatiorin the sense that,

. : A . as far as the considered system is in the form (1) (namely,
oscillator ‘;‘g’fs not respect thIS.COI.WdIl'Ion. n fa?([xl) IS Z€10 it has relative degree 2 from to z;, or, stated otherwise,
for z; = 25h, h € Z (henceliminf|, | |@(z1)| = 0)

. . . . . the first equation preserves the kinematic natire= x5, SO
and is not Lipschitz at the same points (see Fig. 1). HOWGV@ q P tye= 2

: A atz; can be interpreted as position ang as velocity), the
both problems can be overcome by a blending which is sligh oposed control law will still guarantee global asymtoti

2For simplicity, we omit the dependence @nof B(z1,x2); the role of Stab'_hzatlon' even if _the Values_ af >0, a2_2 0 are not the
such dependence is clear from (9). nominal values considered during the design stage; moreove
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guasi-optimality will be achieved if those parameters hi@re ¥
if they are very close to) their nominal values, and the fiomct I <=
B(z1,22) and the parametet have been chosen in order to o
recover the optimal feedback law. o
Remark 6:(Step reference tracking and regulation) When
at least one of the two eigenvalues of the plant (1) is zeeo (.
whenevera; = 0), the optimal feedback law for regulating oo e s R e s
the state to zero also provides the optimal feedback law for

position

8
6 . k=0.1
4t : L - -k=l
- - -k=10
2 —— k=100
— Time Optimal
0 T T

tracking the step referencet) = 7, vt > 0, provided that S
B(z1, ) is replaced by3(x, — 7, z2). In fact, via the change osf
of variablesz, = =1 —7, T2 = z2, the above tracking problem g | : P
is easily seen to be equivalent to the problem of regulating t ° ! -
zero the new statg;, 7. o B R
Remark 7: (Extension to nonlinear systems) As pointed out g — = w w w w w w
0 2 4 6 8 10 12 14 16 18 20

in [2], the time-optimal feedback laws for the nonlinearteys t
(4) are topologically equivalent to the time-optimal feadk
laws for the linear system (1), provided thAtz;,z2) € C3
and thatf(z;,0) = +1 implies 9,, f(z1,0) # 0. Using the
nonlinear extension of Theorem 1 (cfr Remark 2), the apiiroag - gyasi fuel-optimal, locally linear Lipschitz feedback
described in this section can be used to design quasi time-

. ; The key ideas are similar to those expressed in Sec-
optimal control laws for the nonlinear system (4) too. . . . . : L
P y @) tion IlI-B; for brevity, the discussion will be limited to ¢

IV. DESIGN FOR QUASI FUEEOPTIMAL RESPONSES case when the switching surfaces of interest can be expresse

Some well known facts about fuel-optimal control of plana®Si% : @1 + a(z2) = 0}, {z : @1 + &(z2) = 0} with a(s) and

ANCBI linear systems are now recalled (cfr [1, Ch. 6 and S]g(st) t"‘:jotﬁf‘”dd'y ir:jcrezisin% Lipsr::r;;;cztfunctions lying in the
irst and third quadrant and such tha

Fig. 2. M =1, quasi time-optimal strategy.

A. Fuel-optimal feedback laws sa(s) > sa(s) > 0, Vs 0;
When the objective is to minimize fuel consumption, op- = . . ]

timal solutions may not exist in relevant cases (there exiSiS is the case for the fuel optimal (with either bounded or

open regions in the state space such that given an initi@ st<€d response time) solution for the double integrator anfs

in such a region and any control input ensuring convergen@/ing one null eigenvalue and one negative eigenvalue.

to the origin from that state, it is possible to find a diffaren Defining the following functions:

control input achieving convergence with less fuel, thoirga a(s) == max{a(s),(s)}, a(s) :=min{a(s),a(s)},

longer time). In order to avoid such situations, it is neaegs

to bound the maximum allowed transfer time: so7¥(xo) §(7,5) := sgn (s) max {|W(5)|’ %|3|}»

is the transfer time for, under time-optimal control,

o fixed response timtiel-optimal inputs guarantee that, for

givenT > 0, the transfer frome, is achieved with minimum

and using the same blending approach already used in the first
%art of Section IlI-B, the proposed control law is

fuel expenditure in at mogt time units if 75, (z¢) < T (i.e. if —k (z1 +&(qy 22)), if 21+ &(&, m2) >0,
xo is “close” to the origin) or il (x¢) time units otherwise; u=1{ —k(z1 4+ &(q,x2)), if z14+E(G,x0) <0, (13)
e bounded response timeel-optimal inputs guarantee that, 0 otherwise

for a given~ > 1, the transfer fromz, is achieved with

minimum fuel expenditure in at mostZ,, (zo) time units.  thatisu = —kmin {z1 + {(&, 22), max {z1 + {(&, 22),0}}.
Similarly to time-optimal inputs, (fixed or bounded respens

time) fuel-optimal inputs for linear time invariant system V. EXAMPLES

are bang-off-bang (i.e. can only assume the maximum andDouble integratorConstant reference tracking for a double

minimum allowed values, plus the zero value), and can hﬁegrator plant with saturated input/{ = 1) is solved by the

expressed as a state feedback defined in terms of a syifasi-optimal control proposed is (10), blending the baagg

able switching surface; for example, for a double integréeedback with a stabilizing linear feedback (thus recagri

tor with control input bounded betweettM the switch- the time-optimal behavior for large error signals and awmjd

ing surfaces in the bounded response time case are giy@Bblems near the equilibrium due to noise and disturbances

by { : 21 + 53;@2|w2| =0} and {z : 21 + GFa2|z2| =0}, Simulations results are shown in fig. 2 for different values

wherem, = W — 3 [1, Sec. 8.7, eq. (8-213)] of k. Note that increasing implies a better recovery of the
and the optimal feedback is given by optimal response and the use of a more aggressive, chticall

m ) m damped (due to the const inside themax) linear control

—sgn (o1 + GFasleal) i @i(en + Fraelza]) 20 0 Theorem 1 guarantees global asymptotic stability for a

u= —sgn (z1 + gppaelea]), i x1(21 + gypefra|) <O, parameter variation that preserves the kinematic relatios
0, otherwise zo (see Remark 5).
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T T
- = k=1
- - —k=10
— k=100
—— Time Optimal ||

k=0.1
- = k=l
- - —k=10
— k=100
Fuel Optimal
T T

position
position

0 2 4 6 8 10 12 14 16 18 20

1
1)
control

Fig. 3. M =1, v = 2, quasi fuel-optimal strategy. Fig. 4. M =1, w = 2, quasi time-optimal strategy.

Similarly, fig. 3 shows the responses for different values & characterized by the fact that any outside W and in
k in the quasi fuel-optimal control law given by (13). Withthe (closed) first and third quadrant will lead to (by (15))
m., =~ 11.66 (i.e. v = 2) the fuel-optimal response convergeskg(x)| > M, namely will cause the plant inputto saturate.
in a time no longer than twice the minimum time. Consider now the maximum &f(-) in YW and atz,, hamely
Harmonic oscillator. The quasi time-optimal control law 7(zg) := max{V(z) : « € WU {z(}}, and letZ be the set:
(11), (8b) is globally stabilizing for the system, = =z, _
iy = —w?r; — sat(u). For smalle and largek, the time- I(wo) = Az : V(z) <v(wo)} DW.
optimal response is almost recovered, as shown in Fig. 4. 7 s compact by radial unboundednesd/f). By definition of
Z(zp) and item 1 of Assumption 2, the inputis saturated for
VI. PROOF OFTHEOREM1 all z € {x : z122 > 0} (the closed first and third quadrants)

The main steps of the proof are the following. We firsftersection withZ(xz)¢ (the closed complement Gf(z))-
show in Section VI-A that, for each initial conditions there Then the following reasonings prove thet < 0 for all
exists a compact forward invariant s&tz,) containing the € Z(z0), i.e. Z(xo) is a forward invariant set where the
origin where the trajectory is confined. Then we show iHajectory is confined (becausg € Z(xo) by definition):
Section VI-B that the origin is the only equilibrium point® (2nd and 4th quadrants) if z,2, < 0, thenk/(z) could
in the setZ(zo). Then, to complete the proof of item 1, inbe any value, therefore we only know that (¢at(x)) €
Section VI-C we show that there doesn't exist any periodic-; M]. Based on this, (14) yields:
orbit in the setZ(z,) so that, by [14, Theorem 18.1, pagel) if z1 > 0, 5 < 0, thenV' < —zy(salkf(z)) — M) =
66] (following a Bendixson-like approach), all trajectsi —|%2/[salk5(z)) — M| <0 (both terms are negative);
necessarily converge to the origin. Finally, in Sectiontvl- 2) if #1 < 0, 23 > 0, thenV' < —ay(salkf(z)) + M) =
we prove item 2 of the theorem. —|zo|[satkpB(x)) + M| < 0 (both terms are positive);

3) if 1 = 0, then, by definition ofZ(xg), safkl(x)) €
. . . —M,M} for all x € Z(zg)c N {x1 = 0}. Moreover, also
A. Existence of the forward invariant s&fx) éy item i of Assumptior(l 2? s@té(w)) _ L if 25 > 0 and

Consider the locally Lipschitz Lyapunov functiol = satkg(xz)) = —M if 23 < 0. HenceV’ < 0 since
a1 % + %2 + M|xz1]. Its generalized gradient [7] in; =0is .
the setVVy(zs) = {[(1 —2a)M 5], a €[0,1]}, and its Vﬁa@[%ﬁ]fz[(l — 2a) M —sat(kB(z))] < |z2| M +|z2|(—M).

generalized derivative along the system dynamics is _
e (1st and 3rd quadrants)if z1zo > 0 andz € Z(xg)¢ N

V € —ayrs — wa(sat(kB(w)) — MSgn (1)), (14)  {z; = 0}, once again sék3(z)) = Msgn (z2) by definition
of Z(x) and by item 1 of Assumption 2. Then (14) yields
V < —aqo(salkfB(z)) — M) = 0.

where the set valued functiddgn (-) is such thaSgn (z,) =
sgn (x1) if 21 # 0, andSgn (x1) = [—1,+1] if z; = 0.

Since k satisfies (3), theds > 0 : k = % > ng%
Therefore, by item 1 of Assumption 2 and singe) € , ~ B- Uniqueness of the equilibrium point

Sincet; = x5 any equilibrium has to be om, = 0. By

|k6(2)| = ’%WID‘ > M, V|z[>5 229> 0. (15) jtem 1 of Assumption 2 s&3(z)) = 0 on thez, axis if and
only if 1 = 0, and has the same sign as otherwise. Hence
on {.132 = O}, Ty = —ai1x1 — Sa(]{iﬂ(.fl‘)) 7é 0 if 1 75 0. This
We={z : |z| <s}n{x : z122 >0} C{z : |z| < §} proves thatz = 0 is the only equilibrium point.
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C. Proof of convergence using Bendixson’s criterion

Since the only equilibrium point is the origin, any trajegto
not converging to that point must converge to a periodictorbi
contained inZ(xo). Moreover, any such hypothetical periodic

orbit must surround the origin because:

e no such orbit can happen in a single quadrasince the
periodicity of the orbit contradicts the property that incka

guadranti; = x5 iS monotone;

o the trajectory phase is decreasing on the coordinate axe#

since writing the dynamics in polar coordinates [£70.5]
|z|2¢ = 23 —21(—a121 —azsre —salkB(x))), implying ¢ > 0
onz; = 0 and onxzy = 0 (by the property of3(-) onz = 0).

Now, reasoning like in the proof of Bendixson criterion
(see, e.g.,, [17, Lemma 2.2]), suppose by contradiction th&]
there exists a periodic orbi including the origin and let
S be the region surrounded by. Then, denoting the right (g

hand side of the closed-loop systemjagx) := zo, fo(z) :=

—a1x1 — asxa — satyr (kB(x)), it must necessarily hold that

fv fo(z)dzy — fi(x)dzy = 0, i.e. by Green's theorem,

/‘/S (8xlf1 + axzfg) dxldxg = 0 (16)

Assumption 2 implies that any such integral is strictly riega
To bound the integrand in (16), note thatt(-) and 5(-)

are locally Lipschitz, hence almost everywhere it holdg:tha

_ | —as, if [kGB(x)| > M,
Oa1 1=0, f’IQf?‘{ s — kO, B(x), it ()| < M,

therefore, for almost alt, 0., f1 + 0z, f2 < —as < 0. More-

over, since the intersection &f with the setA (introduced
in item 2 of Assumption 2) has a positive measure, theiy

Oz, f1+ 0., f2 < 0 and item 2 of Assumption 2, togethes >
0 (by Assumption 1) imply[* [ (0z, f1 + Ou, f2) dz1dzs <0,
which contradicts (16). Therefore, no periodic orhiexists.

Since no periodic trajectory exists ib(zo) and the origin
is the only equilibrium point, by [14, Theorem 18.1, pag 0
66] (following a Bendixson-like approach), the trajectory

necessarily converges to the origin.

D. Proof of item 2 of the theorem

The two conditions at item 2 correspond to requiring strict

positiveness of the coefficients of the characteristic poiygial

of the linearized system around the origin. Therefore it is

straightforward to conclude local exponential stabilibEG)

of the origin from those conditions. This, together with the
global convergence property proven above is sufficient, (sé%‘r’
e.g., [29] or [18, pp. 68-72]) to prove global asymptotic and

local exponential stability (GAS+LES).

VIl. CONCLUSIONS

In this paper we have proposed a general approach to the
global stabilization of ANCBI linear planar systems subjeg2s]
to input saturation. Our approach allows to achieve almost
time (and/or fuel) optimal robust stabilization with a ldga [»q

Lipschitz state feedback law. Simulation results illustrthe
effectiveness of the proposed strategy.
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