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ABSTRACT
Subdwarf B (sdB) stars show chemical peculiarities that cannot be explained by diffusion
theory alone. Both mass loss and turbulence have been invoked to slow down atomic diffusion
in order to match observed abundances. The fact that some sdB stars show pulsations give
upper limits on the amount of mass loss and turbulent mixing allowed. Consequently, non-
adiabatic asteroseismology has the potential to decide which process is responsible for the
abundance anomalies. We compute for the first time seismic properties of sdB models with
atomic diffusion included consistently during the stellar evolution. The diffusion equations
with radiative forces are solved for H, He, C, N, O, Ne, Mg, Fe and Ni. We examine the
effects of various mass-loss rates and mixed surface masses on the abundances and mode
stability. It is shown that the mass-loss rates needed to simulate the observed He abundances
(10−14 � Ṁ/M� yr−1 � 10−13) are not consistent with observed pulsations. We find that
for pulsations to be driven the rates should be Ṁ � 10−15 M� yr−1. On the other hand,
weak turbulent mixing of the outer 10−6 M� can explain the He abundance anomalies while
still allowing pulsations to be driven. The origin of the turbulence remains unknown but the
presence of pulsations gives tight constraints on the underlying turbulence model.

Key words: asteroseismology – diffusion – methods: numerical – stars: chemically peculiar
– stars: evolution – stars: mass-loss.

1 IN T RO D U C T I O N

Subdwarf B (sdB) stars are subluminous B-type stars that show
strong broad Balmer lines and weak or no He I absorption lines.
They are ubiquitous not only in our own Galaxy, where they are
found in all stellar populations, but also in old galaxies where they
are believed to cause the ultraviolet (UV) upturn (Brown et al. 1997).
Heber (1986) linked the sdB evolutionary stage to that of extreme
horizontal branch (EHB) stars which are core He burning stars with
an unusual thin H envelope (Menv < 0.02 M�). Such a star must
have formed either from a red giant that lost nearly its entire H
envelope or from a He white dwarf merger. Although the formation
channels are well studied (Han et al. 2002 and references therein),
they cannot explain all observed features such as binary period
distribution and slow rotation. A promising way to discriminate
between different formation channels is with asteroseismology (Hu
et al. 2008) but, before this can be achieved, the theoretical models
need improving. Currently, the uncertainties in the models are larger
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than the observational errors obtained with space missions such as
CoRoT and Kepler. This paper is part of our ongoing work (Hu et al.
2009, 2010) to improve the input physics used in seismic modelling
of sdB stars.

Interestingly, two subgroups of sdB stars are pulsating with vari-
able class names V361 Hya and V1093 Her. The discovery of short-
period (100–400 s) pulsations in V361 Hya stars by Kilkenny et al.
(1997) coincided with the prediction of unstable pressure(p)-mode
pulsations in sdB stars by Charpinet et al. (1996). The excitation
was attributed to the opacity mechanism enabled by Fe accumu-
lating diffusively in the stellar envelope (Charpinet et al. 1997). A
few years later, Green et al. (2003) discovered long-period pulsa-
tions (30–120 min) in the cooler V1093 Her stars. Fontaine et al.
(2003) showed that the same opacity mechanism could also excite
long-period gravity(g)-modes. However, they found too cool a the-
oretical blue edge of the g-mode’s instability strip compared with
observations. The problem can be partly solved by using Opac-
ity Project (OP) opacities (Badnell et al. 2005) instead of OPAL
opacities (Iglesias & Rogers 1996) and by assuming that Ni ac-
cumulates as well as Fe (Jeffery & Saio 2006). Furthermore, in-
clusion of H–He diffusion shifts the theoretical blue edge even
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closer to the observed value of 30 kK (Hu et al. 2009). It is evi-
dent that correct modelling of the V1093 Her instability strip awaits
seismic models with time-dependent diffusion such as we produce
here.

Also interesting is that sdB stars are chemically peculiar without
significant spectroscopic differences between variable and constant
stars (O’Toole & Heber 2006; Blanchette et al. 2008). Typically He
is deficient with number ratios 10−4 ≤ nHe/nH ≤ 0.1 and there is a
trend for He abundance to increase with Teff (Edelmann et al. 2003).
The Fe abundance is close to solar irrespective of stellar popula-
tion and Teff whereas other iron-group elements, such as Ni, can
be strongly enriched. Light metals (C, N, O, Ne, Mg) are usually
depleted, although there is some scatter between stars (Edelmann,
Heber & Napiwotzki 2006; Geier et al. 2010). The observed abun-
dance anomalies can be explained in part by atomic diffusion acting
in the radiative envelope. Atomic diffusion alone, however, would
cause all surface He to sink on a very short time-scale (about 104 yr)
compared to the EHB evolutionary time-scale (about 108 yr). Hence
there must be a competing process which is generally accepted to
be mass loss. Recently turbulence has been proposed to play this
role instead (Michaud, Richer & Richard 2011).

The observed He abundances have been reproduced with mod-
els that include atomic diffusion and mass-loss rates of 10−14–
10−13 M� yr−1 (Fontaine & Chayer 1997; Unglaub & Bues 2001).
For higher rates the effects of diffusion become unnoticeable,
whereas for lower rates He would sink too quickly. Vink &
Cassisi (2002) presented a mass-loss recipe for (E)HB stars de-
rived from line-driven wind models. Their results give upper limits
for the mass-loss rates (Ṁ < 10−11 M� yr−1) and might apply to
the most luminous sdB stars that show anomalous Hα line profiles
(Heber et al. 2003; Vink 2004). However, for most sdBs no obser-
vational evidence of mass loss has been found so far. An indepen-
dent wind model by Unglaub (2008) showed that for weak winds,
Ṁ � 10−12 M� yr−1, the metals decouple from H and He and,
for rates below 10−16 M� yr−1, the winds become purely metallic.
Such selective winds could be responsible for some of the observed
metal abundance anomalies but they cannot explain the observed
He abundances.

Alternatively, Michaud et al. (2011) showed that turbulent mix-
ing of the outer 10−7 M� could also produce most of the observed
abundance anomalies. Unfortunately, their computational set-up re-
stricted their calculations to the first 32 Myr of the E(HB) and to
He abundances above X(He) ≈ 10−4. They do not give a physical
origin for the turbulence but simply mix the outer layer in order to
reproduce the solar Fe abundance observed in most sdB stars. In
their models Fe reaches solar abundance in the entire mixed region.
This could prevent the driving of pulsation modes.

Also mass loss works against the driving mechanism. According
to Chayer et al. (2004) and Fontaine et al. (2006) mass-loss rates
above Ṁ ≈ 6 × 10−15 M� yr−1 would gradually destroy the Fe
reservoir and an sdB pulsator becomes constant within 107 yr as
it evolves. Their results are based on a non-diffusive stellar model
assuming an initial Fe profile from an equilibrium between gravi-
tational settling and radiative levitation. The question is, however,
can Fe build up in the first place in the presence of stellar winds? If
so, should not diffusion take place at the same time that mass is lost
and help build up the Fe reservoir again? To answer these questions
we perform a consistent analysis where we compute the effects of
mass loss and atomic diffusion simultaneously. Furthermore, we
determine which process (mass loss or turbulence) is responsible
for retarding atomic diffusion in sdB stars by performing a pulsa-
tional stability analysis. Since non-adiabatic effects are responsible

for mode driving and damping, such a study is termed non-adiabatic
asteroseismology.

Beware that the term ‘atomic diffusion’ is not always used con-
sistently in the literature. For clarification, in this work we include
all physical processes that contribute to atomic diffusion. These
are gravitational settling, thermal diffusion, concentration diffusion
and radiative levitation. The corresponding abundance changes are
caused by pressure gradients, temperature gradients, concentration
gradients and radiative forces, respectively. Indeed, we treat atomic
diffusion in a multicomponent fluid (Burgers 1969), using diffusion
coefficients derived from a screened Coulomb potential (Paquette
et al. 1986). We account for partial ionization by using a mean
ion charge per element. We calculate radiative forces from first
principles using atomic data. Our approach gives a high accuracy
treatment of atomic diffusion because it is free of many common
assumptions, such as full ionization, simplified treatment of trace
elements and approximate radiative forces.

We explain our method in Section 2. In particular the compu-
tations of stellar evolution (Section 2.1), radiative accelerations
(Section 2.2) and atomic diffusion (Section 2.3) are described. In
Section 3, we present the results for typical sdB models. The ef-
fects of atomic diffusion (Section 3.1), mass loss (Section 3.2) and
turbulence (Section 3.3) on the abundances and mode stability are
evaluated. We summarize and discuss our main results in Section 4.
We also give a brief discussion of the possible physical origin for
turbulence.

2 C O M P U TAT I O NA L ME T H O D

This work presents seismic computations of stellar models with a
self-consistent treatment of atomic diffusion. The changes in the
chemical abundances are accounted for by continuously updating
the radiative accelerations and the Rosseland mean opacity, not only
during the stellar evolution but also in the pulsation calculations.
We describe here the computational tools and methods we use to
accomplish this.

2.1 The stellar evolution code

We compute stellar models with the stellar evolution code STARS

(Eggleton 1971). This code has been frequently updated (e.g. Pols
et al. 1995) and many derivatives are circulating. In our version the
necessary modifications have been made to construct stellar models
suitable for seismic studies with the non-adiabatic pulsation code
MAD written by Dupret (2001) (see Hu et al. 2008). Furthermore,
the implementation of gravitational settling, thermal diffusion and
concentration diffusion is described in Hu et al. (2010). In the
present work we add the process of radiative levitation. We follow
the abundance changes of H, He, C, N, O, Ne, Mg, Fe and Ni while
the remaining minor species are kept constant.

2.1.1 Input physics

We take nuclear reaction rates from Angulo et al. (1999), except
for the 14N(p, γ )15O rate for which we use the recommended value
by Herwig, Austin & Lattanzio (2006) and Formicola & LUNA
Collaboration (2002). Neutrino loss rates are according Itoh et al.
(1989, 1992). Convection is treated with a standard mixing-length
prescription (Böhm-Vitense 1958) with a mixing length to pressure
scaleheight ratio of l/Hp = 2.0. Convective mixing is treated as a
diffusive process in the framework of mixing length theory.
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The Rosseland mean opacity κR is computed in-line during the
evolution to account for composition changes consistently. For this
we use data and codes from the OP (Seaton et al. 1994; Badnell et al.
2005) which also allows computation of radiative accelerations grad

(see Section 2.2). This is in contrast to all previous work with the
STARS code that made use of interpolation in pre-built opacity tables.
For high temperatures outside the OP range (T > 108 K), we still use
OPAL tables (Iglesias & Rogers 1996) combined with conductive
opacities (Cassisi et al. 2007).

2.1.2 Simultaneous solution

The STARS code distinguishes itself from other evolution codes by
its fully simultaneous, implicit and adaptive approach. In other
words, the equations of stellar structure, composition and mesh are
solved together, at each time-step and each iteration, and variables
are from the current time-step. Within the scheme of an adaptive
mesh, mass loss is simply included by adapting an outer boundary
condition. More importantly, we find that such an approach is free
from some of the notorious numerical instabilities that accompany
diffusion calculations. Such instabilities occur because atomic dif-
fusion, and in particular radiative levitation, can happen on a much
shorter time-scale than the evolution of the stellar structure, at least
in the outermost layers. In non-simultaneous approaches, where
the composition is solved separately from the structure, this can
be dealt with by allowing multiple composition time-steps within
one evolution time-step (see e.g. Turcotte et al. 1998). In addition,
evolution time-steps should remain short if diffusion velocities are
kept constant during a time-step. This requires lengthy calculations
because the radiative accelerations are computationally expensive
to evaluate.

In our calculations, the time-steps are short (102 yr) at the start of
the evolution but can grow to 105 yr, which is of the same order as
for models without diffusion. The time-step size is determined by
the change in variables from one time-step to the next. Normally,
the temperature and degeneracy have the largest influence but if
diffusion acts rapidly the abundance variations limit the time-step
size. One might wonder whether the results are sensitive to the time-
step size, particularly if mass loss is included. We checked, for one
simulation with mass loss, that the results do not change noticeably
if time-steps are kept below 103 yr.

Unfortunately, our numerical scheme requires some effort as
well. Like most variables, the radiative accelerations are calculated
implicitly; they are not kept constant during a time-step but can
change from one iteration to the next. In order to find the correct
stellar model, we need to know how a change in grad affects the
stellar structure. In other words, we need the derivatives of each
grad with respect to the variables that represent the stellar model.
STARS normally computes the derivatives numerically but this gives
instabilities in the case of grad, probably because of their irregu-
larity. Hence their derivatives (or at least some of them) must be
obtained analytically. This is done by the OP routines with some
modifications, see Section 2.2.

2.2 Radiative accelerations

We compute radiative accelerations grad and Rosseland mean opac-
ities κR using OP atomic data. The OP also provides a set of codes
called OPSERVER (Seaton 2005; Mendoza et al. 2007) which we have
rewritten to suit our specific needs. The most relevant modifications
are summarized here.

2.2.1 Radiative accelerations in stellar interiors

For Rosseland mean optical depths τR ≥ 1, the radiative acceleration
for element k can be expressed as follows:

grad,k = μκR

μkc

l

4πr2
γk, (1)

where μ is the mean atomic weight, μk is the atomic weight of
element k, c is the speed of light, κR is the Rosseland mean opacity,
l is the luminosity and r is the radius. The dimensionless parameter
γ k depends on the monochromatic opacity data by

γk =
∫

(σk(u)[1 − exp(−u)] − ak(u)) du∑
k fkσk(u)

,

where σ k is the cross-section for absorption or scattering of radiation
by element k, a(k) corrects for electron scattering and momentum
transfer to electrons and fk is the number fraction. Equation (1) is
equivalent to equation (6) of Seaton (2005) but makes use of the
luminosity rather than the effective temperature and stellar radius.
The latter two surface quantities are not known during the iterations
because the evolution code solves the stellar structure from the
centre to the surface.

2.2.2 Radiative accelerations for multiple elements

For each call OPSERVER allows the computation of grad for one
selected element in the mixture and for multiple mixtures with
varying abundances of k. Because we are interested in the diffusion
of nine elements it saves CPU time to compute grads for multiple
elements but only for one mixture in each call.

2.2.3 Mean ion charges

As mentioned before, elements are treated as if they have a mean
ion charge Z̄. It has been said by Michaud & Richer (2008) that a
disadvantage of the OP is that their data base does not contain mean
charges which are needed to determine the diffusion velocities. We
found, however, that Z̄ can easily be calculated from their data.
That should not be too surprising because the level populations of
the ionization states are also needed to compute grad.

2.2.4 Interpolation method

To obtain grad and κR for a specified temperature T and density
ρ (converted to electron density Ne) OPSERVER interpolates within
a tabulated mesh of (T , Ne) values. OPSERVER uses two different
interpolation schemes. The first is a refined bi-cubic spline interpo-
lation (Seaton 1993) within the entire (T , Ne) mesh. This scheme is
applicable for a single chemical mixture only. Secondly, when the
chemical abundances vary with stellar depth, a less refined bi-cubic
interpolation occurs within a two-dimensional array of (4, 4) points
around the specified (T , ρ) values. It should be clear that the sec-
ond scheme applies if we want to take into account the variation of
abundances owing to atomic diffusion. Unfortunately, this scheme
is too crude for pulsation studies for which it is required to have
smooth opacity derivatives:

κT = ∂ log κR

∂ log T
and κρ = ∂ log κR

∂ log ρ
.

Therefore, we use the general idea of the second scheme but re-
place the interpolation method by that developed by Dupret (2003)
for the purpose of non-adiabatic pulsation computations. This is
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Figure 1. The opacity derivatives κρ (left, y-axis) and κT (right, y-axis)
throughout the star as a function of temperature. OP1 and OP2 indicate
OPSERVER’s first and second interpolation scheme, respectively.

a local interpolation method by a polynomial of degree 3. It en-
sures continuity of κT and κρ and their derivatives. Note that, in
our scheme, interpolation is made within an array of dimension
(6, 6) rather than (4, 4). This increases CPU time, so we only use
the third interpolation scheme for the pulsation calculations. For
the evolution calculations OPSERVER’s second scheme suffices. To
demonstrate the differences between the three interpolation meth-
ods, we perform test runs on the same stellar model as used by
Seaton (2005). While κR (not shown) itself is not visibly affected
by the interpolation method, its derivatives (shown in Fig. 1) are.

2.2.5 Computation of derivatives

As explained in Section 2.1, analytical derivatives of each grad are
needed in order for the evolution code to converge towards the
correct stellar model. It improves the numerical stability to do this
for κR and Z̄i as well. The derivatives we compute are

∂ log grad,i

∂ log T
,
∂ log grad,i

∂ log ρ
,
∂ log grad,i

∂Xi

,

∂ log κR

∂ log T
,
∂ log κR

∂ log ρ
,
∂κR

∂Xi

, for i = 1, . . . , 9

∂Z̄i

∂ log T
and

∂Z̄i

∂ log ρ
.

The opacity derivatives are already output by OPSERVER (see Sec-
tion 2.2.4). The others we added. Strictly speaking, the derivatives
with respect to log ρ and log T are not analytic. They are however
obtained from the interpolation curve and so have an analytic form.

2.3 The diffusion equations

Having obtained the radiative accelerations grad, we put them in
Burgers’ diffusion equations (Burgers 1969),

dpi

dr
+ ρi(g − grad,i) − niZ̄ieE

=
N∑

j �=i

Kij (wj − wi) +
N∑

j �=i

Kij zij

mj ri − mirj

mi + mj

, (2)

including the heat flow equations,

5

2
nikB∇T = 5

2

N∑
j �=i

zij

mj

mi + mj

(wj − wi) − 2

5
Kiiz

′′
ii ri

−
N∑

j �=i

Kij

(mi + mj )2

(
3m2

i + m2
j z

′
ij + 0.8mimjz

′′
ij

)
ri

+
N∑

j �=i

Kijmimj

(mi + mj )2

(
3 + z′

ij − 0.8z′′
ij

)
rj . (3)

In addition, we have two constraints: current neutrality,∑
i

Z̄iniwi = 0, (4)

and local mass conservation,∑
i

miniwi = 0. (5)

In the above 2N + 2 equations the quantities pi, ρ i, ni, Z̄i and mi

are the partial pressure, mass density, number density, mean charge
and mass for species i, respectively. The total number of species
(including electrons) is N. The 2N + 2 unknown variables are the
N diffusion velocities wi, the N heat fluxes ri, the gravitational
acceleration g and the electric field E. The resistance coefficients
Kij, zij, z′

ij and z′′
ij are taken from Paquette et al. (1986). We solve

equations (2)–(5) with an adapted version of the routine by Thoul,
Bahcall & Loeb (1994). In Appendix A, we describe how we modify
Thoul et al.’s routine to include radiative forces and Paquette et al.’s
resistance coefficients. The output of the routine are the diffusion
velocities wi. These are then inserted as an advection term in the
diffusion equation governing the time evolution of abundance Xi:

∂Xi

∂t
+ Ri = 1

ρr2

∂

∂r

(
(D + DT)ρr2 ∂Xi

∂r

)
− 1

ρr2

∂

∂r
(ρr2Xiwi),

where Ri is the change owing to nuclear reactions, D is the combined
diffusion coefficient for convection, overshooting and semiconvec-
tion (Eggleton 1972) and DT is the diffusion coefficient for turbulent
mixing. We take DT from Michaud et al. (2011),

DT = C D(He)0

(
ρ0

ρ

)n

, (6)

where

D(He)0 =
[

3.3 × 10−15T 2.5

4ρ ln(1 + 1.125 × 10−16T 3ρ)

]
0

is an approximation to the He diffusion coefficient at a certain
reference depth. The subscript 0 indicates the reference depth in
terms of the outer mass coordinate 	M = M∗ − Mr. The assumed
DT is C times the He diffusion coefficient at 	M0 and varying as
ρ−n. Michaud et al. (2011) used a turbulence model with C = 104,
n = 4 and 	M0 = 10−7.5 M� but we shall vary these parameters to
examine the influence of the efficiency of turbulent mixing on the
model (see Section 3.3).

3 R ESULTS

We investigate the effects of atomic diffusion, mass loss and tur-
bulence in a typical sdB star with total mass M∗ = 0.46 M� and
envelope mass Menv = 3.5 × 10−4 M�. Menv is the amount of mass
above the core boundary and is defined at ZAEHB only, since the
H profile can change with time. At the core boundary X(H) starts to
increase from 0 to 0.7 at the surface. The initial H profile is fitted
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to the profile on the red giant branch (RGB) according to Hu et al.
(2009). The ZAEHB model has a Teff = 30 kK and log (g/cm s−2) =
5.8, and it has a metallicity at all depths of Z = 0.02 with metal
mixture of Grevesse & Noels (1993). Although sdB stars could have
a range of original metallicities, Michaud et al. (2011)’s diffusion
calculations showed that the surface abundances are poorly sensi-
tive to the initial metallicity. Thus we do not expect our results to
be much affected by the choice of initial abundances.

Starting at the ZAEHB we compute the stellar evolution until
the end of core He burning under different assumptions for mass
loss and turbulent mixing. Thereafter, we compute non-adiabatic
oscillations of the sdB models. We restrict ourselves to modes
of spherical degree 
 ≤ 2, because higher 
 values are geomet-
rically disfavoured for observation. We search for eigenfrequencies
in the range of 0.1 ≤ ω ≤ 20 where ω is the dimensionless angular
eigenfrequency, ω = 2πf τdyn, f is the frequency and τ dyn is the
dynamical time-scale.

3.1 Atomic diffusion, no mass loss/turbulence

In Fig. 2 we show radiative accelerations for C, N, O, Ne, Mg, Fe
and Ni in the ZAEHB model. H and He are not shown because
their grad are so low that they lie outside the range of the plot. Be-
cause gravitational settling and radiative levitation are the dominant
diffusion processes, gravity is also plotted for comparison.

Fig. 2 tells us that Fe and Ni are levitated, whereas the other
elements sink sooner or later. This is confirmed in Fig. 3 which il-
lustrates the time evolution of the interior abundances from ZAEHB
to 108 yr. Notice that Ni accumulates to mass fractions comparable
to (or even higher than) Fe in the outer layer, while it starts out with
a much smaller mass fraction. This implies that Ni is (at least) as
important for mode driving as Fe. Notice also the development of an
iron-group convection zone within 104 yr around 	M = 10−10 M�.
The abundance profiles in this region are flattened and do not have
a detailed shape as predicted by equilibrium diffusion theory.

In the upper panels of Fig. 4 we show the computed pulsation
periods as a function of stellar age (bottom axis) and Teff (top axis).

Figure 2. Radiative accelerations in the stellar envelope as a function of
mass coordinate (bottom axis) and temperature (top axis). Gravitational
acceleration is represented by the solid line. This model is at the ZAEHB
with Teff = 30 000 K and log (g/cm s−2) = 5.8 at the surface.

We also plot the ranges of observed periodicities. We see that this
particular simulation represents a hybrid pulsator, showing both
unstable p- and g-modes. The total period range of unstable modes
matches the observed range (100 s–2 h) well. In the transition region
between the p- and g-modes (400 s–30 min) the agreement is not as
good, but unconfirmed low-amplitude peaks have been observed in
that region (Baran et al. 2011 and references therein).

It is important to realize that the low-degree (
 = 1, 2) g-modes
would not be driven at such high Teff ≈ 29 kK without Ni diffusion.
We find that Ni plays an even bigger role in mode driving than first
suggested by Jeffery & Saio (2006). In their models only 
 > 2
modes, which are unlikely to be observed, are driven at such high
Teffs. This is because Ni accumulates more than Fe in the driving
region which was not realized before without diffusion calculations.
We shall present a detailed investigation of the sdB instability strips
elsewhere (Hu et al., in preparation).

The lower panel shows the time evolution of the surface abun-
dances. The problem of the He abundance is clearly illustrated
because nHe/nH decreases to below 10−4 within 104 yr, or 0.01 per
cent of the EHB lifetime, whereas the average observed value is
around 10−2 (see e.g. Edelmann et al. 2003). The other surface
abundances are qualitatively in agreement with observations. C, N,
O and Fe are within the observed ranges given by Geier et al. (2010).
Ne and Mg are almost completely depleted in our models but this
could be consistent with measurements that give only upper limits.
Ni is 1.5 dex above solar. This is on the high side but still in agree-
ment with observations that go up to 1–2 dex above solar (O’Toole
& Heber 2006). For the remainder of this work, we shall discuss
only the abundances of He, Fe and Ni, since only these are relevant
for our argumentation for constraining the mass loss and turbulent
mixing.

3.2 Atomic diffusion and mass loss

The fact that we observe sdB pulsations puts an upper limit on the
mass-loss rates, at least for the pulsators. After all, Fig. 4 shows that
it takes over 104 yr before enough iron-group elements have accu-
mulated to drive pulsations. The accumulation at this age goes down
to 	M ≈ 10−10 M� in our models (see Fig. 3). So if this outer mass
is removed within 104 yr, or equivalently Ṁ � 10−14 M� yr−1, then
there is no chance for the metals to build up.

To verify this estimate we perform simulations with Ṁ = 10−15,
5 × 10−15, 10−14 and 10−13 M� yr−1. We assume that the mass
loss is constant and chemical homogeneous. The possibilities of a
variable and selective mass loss are discussed later. We found that
numerical instabilities occur for models that develop an iron-group
convection zone and experience mass loss at the same time (see
also Charbonneau 1993). This happens for Ṁ = 10−15 M� yr−1 in
our models. To reduce instabilities we assume, only in this case,
overshooting of the iron-group convection zone to the atmosphere.
The extra mixing occurs only in the outer 10−11 M� and has a
negligible effect. Still, this simulation is terminated after 107 yr
because of poor convergence and hence long computing time.

In the upper panels of Fig. 5 we show the effect of these mass-
loss rates on the stability of the pulsation modes. We find that, as
expected, for Ṁ ≥ 10−14 M� yr−1 pulsations cannot be driven. For
Ṁ = 5 × 10−15 M� yr−1 pulsations are driven only during the first
105 yr of evolution. This time-scale is 100 times smaller than that
found by Fontaine et al. (2006) for a comparable mass-loss rate.
It is too short compared to the evolutionary time-scale of 108 yr to
explain the fraction of sdBs that are variable (about 10 per cent) as
suggested by Fontaine et al. (2006). The difference is caused by their
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Figure 3. Interior abundance profiles at different stellar ages. The horizontal dashed lines give initial abundances at ZAEHB, and the solid curves are at EHB
ages log (t/yr) = 4, 5, 6, 7 and 8 as indicated in the legend. Note that in the case of hydrogen we plot 10 log X(H) for visibility. These simulations are with
neither mass loss nor turbulence.

assumption that an equilibrium between gravitational settling and
radiative levitation can be reached before the onset of mass loss.
Furthermore, they did not include diffusion during the evolution
while mass is lost. In our models, however, diffusion operates at
the same time as mass loss and both processes start at the ZAHB.
We find that, under these circumstances, the rates should be Ṁ ≤
10−15 M� yr−1 if pulsations are to be driven for a significant amount
of time.

Remember that, if mass loss were to explain the observed
He abundances, then the rates should be in the range 10−14 �
Ṁ/M� yr−1 � 10−13 (Fontaine & Chayer 1997; Unglaub & Bues
2001). This can also be seen in Fig. 5 (lower panels) where the sur-
face abundances of He, Fe and Ni are plotted. Our results show that
these mass-loss rates are not consistent with the observed pulsations
in sdB stars. One could argue that the constant sdBs are experienc-
ing mass loss while the pulsators are not (or much less). However,
then there should be a negative correlation between the He abun-
dance and the presence of pulsations. This has not been observed
despite many efforts (e.g. O’Toole & Heber 2006; Blanchette et al.
2008).

Another possibility is a variable mass loss during stellar evolu-
tion. When the mass-loss rate is low, diffusion can build up enough
Fe and Ni to drive pulsations. When the rate increases, the Fe and
Ni reservoir is emptied and the star becomes constant. We use the

mass-loss recipe by Vink & Cassisi (2002) to estimate how much the
mass-loss rate could vary. Applying their equation (5) to our mod-
els, we find that the rate increases gradually from Ṁ ≈ 4 × 10−13

to 2 × 10−12 M� yr−1 during the sdB lifetime. Although the rates
themselves could be overestimated due to an underestimation of
the terminal velocity (Unglaub 2008), the dependence on the stellar
parameters (Teff , L∗, M∗, Z∗) should hold (Vink, de Koter & Lamers
2000). Thus we expect the increase in the mass-loss rate, which
is mostly due to the increasing luminosity as the star evolves,1 to
remain approximately valid. This factor of 5 over the sdB lifetime
is not sufficient to obtain the rates needed to keep He from settling
(Ṁ > 10−14 M� yr−1) if starting with a rate low enough to drive
pulsations (Ṁ ≤ 10−15 M� yr−1). Hence we find it unlikely that
mass loss is the dominant process for slowing down atomic diffu-
sion in sdB stars, although a more sophisticated understanding of
mass loss is required to draw any definite conclusions.

1 The dependence of Ṁ on Z∗ has a small negative effect during the evolution
because the metallicity decreases as the lighter metals sink. Although one
might expect that the mass-loss rate increases with [Fe/H], one should not
forget that the relative role of Fe, compared to lighter elements, diminishes
for weaker winds (Vink, de Koter & Lamers 2001). A detailed study that
evaluates the contribution of different metals to the mass loss is needed but
beyond the scope of this work.
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Figure 4. An evolutionary sequence of a model with neither mass loss nor
turbulence. Top panel: time evolution of pulsation periods. Red dots indicate
unstable pulsation modes while green crosses are stable modes. The shaded
areas are the period ranges for the observed p- (lower) and g-modes (upper).
Bottom panel: time evolution of surface abundances. The top x-axis displays
the Teff corresponding to the stellar age on the bottom x-axis.

Fig. 5 also shows that, in the presence of mass loss, the sur-
face abundances are poor indicators of whether a star is pulsat-
ing. For example, during the first 106 yr of the simulation with
Ṁ = 10−14 M� yr−1, both Fe and Ni reach overabundances above
1 dex while no modes are excited. This is because, although the
surface is enriched, Fe and Ni are actually depleted in the driv-
ing region.2 In Fig. 6 we plot the time evolution of the interior
abundances of Fe and Ni. Basically what happens is that, as the
outermost layers of the star are removed, the regions underneath
become exposed. Thus as time progresses and more mass is peeled
away, the surface abundances are determined by processes that oc-
curred deeper in the star. After 105 yr the surface is enriched in Fe
and Ni because the region where accumulation took place earlier
(	M ≈ Ṁ	t = 10−9 M�) is now exposed. However, the driv-
ing region at this time corresponds to a region that was previously
deeper inside the star and from which Fe and Ni have been trans-
ported away. After 107 yr so much mass is stripped away that the
depleted regions are now at the surface, causing underabundances
of Fe and Ni. The actual situation is more complicated because
diffusion operates at the same time as mass is lost and the diffusion
velocities change as the star evolves.

2 The driving is caused by the iron-group opacity bump at log (T/K) ≈ 5.3.
This corresponds to 	M0 ≈ 10−10 M� in our stellar models.

3.3 Atomic diffusion and turbulent mixing

If mass loss is not responsible for retarding atomic diffusion then
perhaps turbulence is. Michaud et al. (2011) showed that their tur-
bulence model (equation 6) with C = 104, n = 4 and 	M0 =
10−7.5 M�3 can explain most observed abundance anomalies in
field and globular cluster sdBs. In their models Fe is near solar
throughout the entire mixed region, including the driving region.
This raises doubt as to whether pulsations can be excited. As they
conclude themselves, their work has yet to be tested with aster-
oseismology. For this purpose, we run simulations with 	M0 =
10−8.5, 10−7.5 and 10−6.5 M�, corresponding to efficient mixing of
the outer 	M ≈ 10−8, 10−7 and 10−6 M�, respectively. The other
parameters are kept at C = 104 and n = 4.

In Figs 7(a)–(c) we show the effect of these three turbulence
models on the stability of the pulsation modes. We see that mixing
the outer mass of 	M ≈ 10−8 M� allows some modes to be driven.
Although Fe stays near solar, Ni can still accumulate and facilitate
mode excitation. However, the He surface abundance still drops
too quickly to explain the observations. Mixing more mass (	M ≈
10−7 M�) slows down He settling further but it also prevents the
accumulation of both Fe and Ni and hence mode excitation. Inter-
estingly, if mixing occurs down to 	M ≈ 10−6 M� a few pulsation
modes can be excited after 8 × 107 yr. This can be understood from
Fig. 3 where we see a second, very small accumulation of Fe and
Ni appearing around 	M ≈ 10−6 M� at late stellar ages. However,
the number of unstable modes is very small and cannot explain the
many (dozens) frequencies observed in sdB stars.

It would at first sight seem that turbulence cannot be reconciled
with mode excitation either. However, this can be solved by adjust-
ing the efficiency of turbulence because the amount of mixing can
vary with atomic species. After all, the diffusion velocities of Fe
and Ni are much larger than for He, so a weak amount of turbulence
could retard He settling while having only a small effect on Fe and
Ni levitation. This possibility is investigated by varying the parame-
ters C, n and 	M0 in equation (6). Indeed, we find for C = 100, n =
1 and 	M0 = 10−8.2 M� that He settles from 0.1 to 10−4 during
the sdB lifetime while Fe and Ni can accumulate enough to excite
pulsations (see Fig. 7d). Efficient mixing only occurs in the outer
	M ≈ 10−9 M�, but weak mixing occurs up to 	M ≈ 10−6 M�.
This can be seen by the flattening of the abundance profiles plotted
in Fig. 8. Of course, it cannot be guaranteed that the consistency
between abundance predictions and observations found by Michaud
et al. (2011) can be recovered. However, their turbulence model was
fine-tuned to keep the Fe abundance near solar, and this remains true
in our model.

In Table 1 we summarize our results in terms of the fraction of its
lifetime the sdB star has (i) He surface abundances in the typically
observed range of 10−4–0.1, (ii) unstable pulsation modes or (iii)
both. We see that, of all the scenarios we examined, only the sdB
models with mixing in the outer 10−6 M� spend a significant time
fulfilling both conditions.

4 SUMMARY AND DI SCUSSI ON

We have constructed sdB evolutionary and seismic models with
atomic diffusion, including the often-neglected radiative forces.
Our aim is to discriminate between mass loss and turbulence in
sdB stars using non-adiabatic asteroseismology. We performed a

3 This results in the outer 	M ≈ 10−7 M� of the star being completely
mixed. The mixed mass varies slightly with atomic species.
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Figure 5. Models with mass loss. Upper panels show pulsations as a function of time for mass-loss rates (a) 10−15, (b) 5 × 10−15, (c) 10−14 and (d)
10−13 M� yr−1. The red dots are unstable modes while the green crosses are stable. Lower panels show surface abundances of He, Fe and Ni corresponding
to these mass-loss rates. The kink in the surface abundances for Ṁ = 10−15 M� yr−1 at 104 yr is caused by the overshoot of the iron-group convection zone
assumed in this particular simulation.

Figure 6. Interior abundance profiles of Fe and Ni at different stellar ages
for the simulation with Ṁ = 10−14 M� yr−1. Lines are as in Fig. 3.

stability analysis on stellar models with various mass-loss rates and
turbulence models. We found that the mass-loss rates required to
match the observed He abundances are not consistent with observed
pulsations. However, weak turbulent mixing of the outer 10−6 M�
can also explain the He abundances while still allowing pulsation
modes to be driven. The presence of unstable modes is very sensitive
to the turbulence model. This could explain why some sdBs are
pulsating while others, with similar Teff and log g, are constant.

Although our results favour turbulence over mass loss, we should
remain cautious because the turbulence is not yet supported by a
physical model. Possibly, thermohaline mixing in the presence of
a mean molecular weight μ inversion could play a role (Théado
et al. 2009). However, a detailed investigation including the ef-
fect of radiative accelerations on the μ-inversion instability is still

Figure 7. Models with turbulent mixing. Upper panels show pulsations as a function of time for turbulence models (a) 	M0 = 10−8.5 M�, C = 104, n = 4
(b) 	M0 = 10−7.5 M�, C = 104, n = 4, (c) 	M0 = 10−6.5 M�, C = 104, n = 4 and (d) 	M0 = 10−8.2 M�, C = 102, n = 1. Lower panels show surface
abundances of He, Fe and Ni corresponding to these turbulence models. Symbols and lines are as in Fig. 5.
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Figure 8. Interior abundance profiles of Fe and Ni at different stellar ages
for the simulation with 	M0 = 10−8.2 M�, C = 102, n = 1. Lines are as in
Fig. 3.

missing. Furthermore, the possibility of overshooting beyond the
surface convection zones of sdB stars should be examined with
convection models that are more realistic than mixing-length the-
ory. Such studies for A stars show that overshoot can cause the re-
gions between surface convection zones to completely mix (Kupka
& Montgomery 2002; Freytag & Steffen 2004). Our models based
on the mixing-length theory develop a relatively broad iron-group
convection zone on a very short time-scale. Another candidate for
causing turbulent mixing could be rotation. Although sdB stars typ-
ically have slow surface rotation (v sin i < 10 km s−1), they might
hide a rapidly rotating core, a relic from their previous evolution
(Kawaler & Hostler 2005). The differential rotation could cause
shear turbulence but this has never been examined in sdB stars as
far as we know. We intend to study the influence of these additional
mixing processes in a forthcoming paper.

In this study we used observed He abundances to constrain mass-
loss rates and turbulent mixing. Metals are not trustworthy in this
respect because of the possibility of weak metallic winds (Ṁ �
10−16 M� yr−1) in sdB stars as suggested by Unglaub (2008). Such
low mass-loss rates could still act to change the atmospheric metal
abundances without interfering with mode driving. This complicates
or even prevents the discrimination between variable and constant
sdBs on the basis of atmospheric abundances, in agreement with
hitherto unsuccessful attempts (O’Toole et al. 2004; O’Toole &
Heber 2006; Blanchette et al. 2008).

It is noteworthy that Ni is as important for mode driving as Fe.
Indeed, the diffusive equilibrium abundances in the driving region
are comparable despite Ni’s lower initial abundance. Thus Ni plays
an even more important role than previous studies of Jeffery & Saio
(2006) and Hu et al. (2009) indicated because there it was assumed

that Ni was enhanced by the same factor as Fe. Our models show
excitation of low-degree (
 = 1, 2) g-modes at relatively high Teff

(29 000 K), so it is likely that the blue-edge problem can be resolved.
A detailed study of the instability strips is underway (Hu et al., in
preparation).
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A P P E N D I X A : SO LV I N G T H E BU R G E R S ’ E QUAT I O N S

With the approach of Thoul et al. (1994), the Burgers’ equations without radiative forces, together with the constraints of current neutrality
and mass conservation, can be expressed as a matrix equation:

p

K0

⎛
⎜⎝αi

d ln p

dr
+ νi

d ln T

dr
+

S∑
j=1
j �=e

γij

d ln Cj

dr

⎞
⎟⎠ =

2S+2∑
j=1

	ijWj .

Most quantities are defined as by Thoul et al. (1994) except for the coefficients γ ij and 	ij which we define as

γij = Ci

C

(
δij − Cj

C

)
for i = 1, . . . , S.

Our γ ij now takes into account the He concentration gradient which was unnecessarily eliminated by Thoul et al. (1994). The coefficients 	ij

are modified to make use of Paquette et al. (1986)’s resistance coefficients (Kij, zij, z′
ij and z′′

ij) derived from a screened Coulomb potential. For
i = 1, . . . , S we have

	ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∑
k �=i

κik for j = i,

κij for j = 1, . . . , S ∧ j �= i,∑
k �=i

zikκikxik for j = i + S,

−zi,j−Sκi,j−Syi,j−S for j = S + 1, . . . , 2S ∧ j �= i + S.

For i = S + 1, . . . , 2S,

	ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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∑
k �=j

2.5zi−S,kκi−S,kxi−S,k for j = i − S,

−2.5zi−S,j κi−S,j xi−S,j for j = 1, . . . , S ∧ j �= i − S,∑
k �=i

[
κi−S,kyi−S,k

(
0.8z′′

i−S,kxi−S,k + Yi−S,k

) − 0.4z′′
i−S,i−Sκi−S,i−S

]
for j = i,

(
3 + z′

i−S,j−S − 0.8z′′
i−S,j−S

)
κi−S,j−Syi−S,j−Sxi−S,j−S for j = S + 1, . . . , 2S ∧ j �= i,

with κ ij = Kij/K0, xij = mj/(mi + mj), yij = mi/(mi + mi) and Yij = 3yij + z′
ijxijmj/mi. Note that the approximations of Thoul et al. (1994) are

retrieved with zij = 0.6, z′
ij = 1.3 and z′′

ij = 0.4 as estimated from a pure Coulomb potential.
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The above modifications were already made by Hu et al. (2010) but not explicitly described then. In this work we adapted Thoul et al.
(1994)’s routine to include radiative forces. After some algebra we find that equations (2)–(5) can be written as the matrix equation:

p

K0

⎛
⎜⎝−αimigrad,i

kBT
+ αi

d ln p

dr
+ νi

d ln T

dr
+

S∑
j=1
j �=e

γij

d ln Cj

dr

⎞
⎟⎠ =

2S+2∑
j=1

	ijWj . (A1)

The terms on the left-hand side represent the contributions to the diffusion velocity by radiative levitation, gravitational settling, thermal
diffusion and concentration diffusion. The matrix equation is solved by LU decomposition for each of these terms separately and the solutions
are combined to give to the total diffusion velocity. In principle, we could also add the terms on the left-hand side of equation (A1) beforehand
and solve the matrix equation in one step. However, it can be insightful to quantify the different contributions to the diffusion velocities.
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