Control of plankton dynamics and fish recruitment by climate variation: example of Corsica, a Mediterranean island

Anne GOFFART and Jean-Henri HECQ

University of Liège, Belgium

Data acquisition partly funded by:
Objectives

- To detect trends in changes in plankton communities of the coastal zone of a Mediterranean Island (Corsica, France) between 1979 and 2010

- To show how climate variations affect the plankton food chain and the human resources of the Island

Zoom on the winter - spring bloom
The Mediterranean Sea concerns Africa and Europe: oscillations between temperate and tropical climate.
The Corsica Island and the Bay of Calvi: our studied area

- Open bay and narrow shelf
- Oligotrophic characteristics
- Few anthropogenic pressures
- Sensitive to the impact of climate variation
- Important for tourism
Phyto- and zooplankton time-series from 1979

High sampling frequency during phyto- and zooplankton blooms (1-7 times per week)
Trends in environmental and plankton parameters
In unstratified water column (surface temperature < 13.5 °C), surface nutrient enrichment is strongly controlled by wind stress - annual example -
In unstratified water column (surface temperature < 13.5 °C), surface nutrient enrichment is strongly controlled by wind stress - time-series example -

Control of nutrient availability by wind stress

- **Period of cold water (< 13.5 °C)**
 - Si(OH)₄ 1997 - 2010
 - $y = 0.77 + 0.02x$ \(R^2 = 0.46 \)
 - NO₃ 1997 - 2010
 - $y = 0.26 + 0.02x$ \(R^2 = 0.57 \)

- Number of days with mean wind > 5 m s⁻¹
Phytoplankton biomass is controlled by wind forcing

Wind: January - February
Chl a: January - April
1979 - 2010

\[y = 0.07 \times e^{0.10x} \]

\[R^2 = 0.57 \]
Control of phytoplankton by wind stress

Phytoplankton biomass and composition are controlled by wind forcing and subsequent nutrient enrichment.

Bottom-up control of phytoplankton production
Trends for phytoplankton

- No continuous trends in changes in phytoplankton communities of the Bay of Calvi between 1979 and 2010 but an exceptional response of the system to climate variations (wind intensity) during the winter - spring period
In coastal systems, climate change impacts subsequently zooplankton, fishes and the entire pelagic food web.

Climate shifts will change not only the abundance and growth rates of species in coastal environments, but likely result in a shift in the type of species present, with poorly known consequences to the food web.
Control of mesozooplankton by phytoplankton availability AND interactions with higher trophic levels (e.g. jellyfishes)

Mean mesozooplankton biovolume ml m$^{-3}$
Mean Chl a µg l$^{-1}$

January - April
1986 - 2010

$y = 0.06 + 2.56x$ $R^2 = 0.38$
$y = -0.11 + 1.10x$ $R^2 = 0.75$

Bottom-up & top-down control
Shifts in plankton diversity

Strong wind regime

- High nutrients
- Diatoms
- Mesozooplankton (Copepods)
- Herbivorous food web
- High production
- Large fish recruitment

Low wind regime

- Low nutrients
- Small flagellates
- Microzooplankton (Protists)
- Microbial food web
- Low production
- Small fish recruitment
An example of climate induced shift in food web is the large increase in jellyfish populations observed worldwide in coastal ecosystems.

Increase in nutrients stimulates phytoplankton, which in turn stimulate other zooplankton such as copepods (the major food source of jellyfish).
Causality of Pelagia outbreaks in Calvi: food resources?

Abundance of *Pelagia noctiluca* (relative units, 1: absence, 4: outbreaks) and of mesozooplankton (biomass anomaly, mg FW m\(^{-3}\)) from 2003 to 2008 in the Bay of Calvi.
Climate change, overfishing and catches of the largest fish are responsible of the decrease of the size of the components of the marine food web with benefit for jellyfish ‘‘Pauly’’
Climate change alters the timing of natural cycles.
Recruitment of juvenile fish depends on the temperature and overall on the occurrence of specific plankton food.

During the first days of the life, the food change quickly.
Recruitment of juvenile fish depends on the temperature and overall on the occurrence of specific plankton food.

Changes of plankton natural cycles result in a mismatch between specific plankton prey and fish larvae with dramatic consequences for larval survival and adult recruitment.
Long-term changes in catches of pelagic fishes in the Mediterranean is correlated with the climate oscillations over the Northern hemisphere.
Decrease in abundance of cold-water species (e.g. *Sardinia pilchardus*) in the coldest areas
Increase in abundance of warm-water species in Corsican coastal area

- Thysanoteuthis rhombus
- Thalassoma pavo
Nutrient enrichment can generate harmful algal bloom (HAB) with toxic consequences for fisheries and aquaculture.

Many phytoplankton species can grow and reach high cell concentrations when nutrients (nitrogen and phosphorus) are added or when specific environmental conditions are observed.

HABs often have high concentrations of toxic compounds that can accumulate in or kill filter feeding organisms.
Strong wind carries sand from Sahara with an enrichment of surface water
Summary of climate impacts on coastal plankton

In the near future, changes in environmental variables such as wind intensity, nutrients, temperature, salinity and CO2 concentrations can be expected to:

- change not only the abundance and growth rates of plankton species in coastal environments, but likely result in a shift in the type of species present, with unestimated consequences to the food web;

- produce interactive effects resulting in perturbations that far exceed changes in one variable;

- increase the growth and accumulation of noxious species (such as harmful algae and jellyfish), with severe attendant socioeconomic and human health impacts;

- alter the timing of natural events, with significant impacts on coastal food webs;

- economically important species will be influenced directly by climate-induced changes in plankton.
Likely social and economic consequences

• Temperature and environmental (nutrient, salinity, CO2) changes will result in an altered plankton community, and that this change will likely degrade the socioeconomic “return” from the coastal area by decreasing yield of harvestable species and altering the human life styles dependent on those.

• It is also probable that HABs and jellyfish will increase in magnitude, duration and distribution, and that there will be a substantial, negative impact on the populations economy and tourism on coastal area.
Needs

- Continuous monitoring of selected physical, chemical and biological parameters in areas non affected by local anthropogenic pressure (reference areas)
- Interdisciplinary approach
Thank you for attention