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Introduction

Two of the most fundamental questions in the field of neurosciences are how information is
represented in different brain structures, and how this information evolves over time. Various tools,
such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET), have been
developed over the last few decades to record brain activity and investigate these questions. In
particular, functional MRI (fMRI) tracks changes of the Blood Oxygenation Level-Dependent (BOLD)
signal, which is a good indicator of brain activity (Ogawa, Lee, Kay, & Tank, 1990), with a spatial
resolution of a few cubic millimeters and a typical temporal resolution in the order of 1 or 2 seconds.

Until recently, the methods used to analyze such data focused on characterizing the individual
relationship between a cognitive or perceptual state and each image voxel, i.e. following a massively
univariate statistical approach. A well-known univariate technique is Statistical Parametric Mapping
(SPM) (Friston, Ashburner, Kiebel, Nichols, & Penny, 2007). SPM relies on the General Linear Model
(Holmes, Poline, & Friston, 1997) to detect which voxels show a statistically significant response to
the (combination of) experimental conditions of interest. However, there are limitations on what can
be learned about the representation of information by examining voxels in a univariate fashion. For
instance, spatially distributed sets of voxels considered as non-significant by a SPM analysis of one
experimental condition might still carry information about the presence or absence of that
condition. Furthermore, classic voxel-based analytic techniques are also mainly designed to perform
group-wise comparisons and would therefore be unsuitable to evaluate the state of the disease of
each individual.

On the other hand, Multi-Voxel Pattern Analyses (MVPA, see (Norman, Polyn, Detre, & Haxby, 2008),
(Friston, et al., 2008) and (Haynes & Rees, 2006) for a review) allow an increased sensitivity to detect
the presence of a particular mental representation. These multivariate methods, also known as brain
decoding or mind reading, attempt to link a particular cognitive, behavioral, perceptual or medical
state to specific patterns of voxels’ activity. Application of these methods made it possible to decode
the category of a seen object ( (Spiridon & Kanwisher, 2002), (Cox & Savoy, 2003) and (Shinkareva,
Mason, Malave, Wang, Mitchell, & Just, 2008)) or the orientation of a stripped pattern seen by the
subject ( (Kamitani & Tong, 2005) and (Haynes & Rees, 2005)) from the brain activation of the
imaged subject. Advances in pattern-classification algorithms also allowed the decoding of less-
controlled conditions such as memory retrieval tasks ( (Polyn, Natu, Cohen, & Norman, 2005) and
(Chadwick, Hassabis, Weiskopf, & Maguire, 2010)). Advanced mathematical tools are still under



development to allow the classification of more complicated experimental data sets, such as
examining the content of mind wandering or detecting the state of consciousness of a patient
showing no response to a command.

Methodology

Multivariate pattern analysis derives from the fields of pattern recognition and machine learning,
which are concerned with the automatic discovery of regularities in data. Those regularities then
serve as the basis for the classification of new data. A classical example of pattern recognition is the
automatic classification of handwritten digits (illustrated in fig.1): each digit is represented by a grey
scale image of 28x28 pixels and the goal is to build an algorithm capable of classifying each image
into the correct category (i.e. 0, 1,..., 9). We therefore need to build an “algorithmic machine” which
will take images as inputs and produce their corresponding digit as outputs. Due to the large
variability in handwritings, this operation is not trivial and the use of machine learning is necessary.
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Figure 1. Examples of handwritten digits and their corresponding categories (0, 1,..., 9). Each digit is

discretised as a 28x28 pixel grey scale image. Practically speaking many more than those 6 examples
of handwritten digits would be necessary to build an efficient classifier.

This means that the computer has to learn which pattern in the images corresponds to which digit.
This learning is achieved providing a “learning set”, which is a set comprising both images (inputs)
and corresponding digit (outputs). This is called “supervised learning”. The machine can then build
the required function using this learning set and finally assign outputs to new inputs. Similarly,
instead of classifying data into discrete categories or outputs, a machine can be taught to regress out
a continuous scalar from a series of inputs: after learning, the trained function can then predict the
(continuous) outcome from a new input. For the rest of this chapter, we only focus on the discrete
classification problem, typically into two categories.

The learning set is generally in the form of a matrix (illustrated in fig.2): each “data point” is
represented by a vector, which is the collection of variables to feed in the machine, and a label, the
output of the function. Usually, the data set comprises n observations or objects to classify, based on



the values of m variables. The ratio between the number of objects and the number of variables that
describe it plays an important role in the building of the function: if m is large (many variables)
compared to n (few observations), then there is a risk of “over-fitting” (Pitt & Myung, 2002). If this
dimensionality issue, also known as the “curse of dimensionality” (Bishop, 2006), is not accounted
for properly, the optimized machine can achieve perfect classification on the training data but will
classify poorly any new data point: the resulting classifier does not generalizes to similar but slightly
different data points.
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Figure 2. Graphical representation of the data set, split in training and test sets, and of the cross-
validation procedure. Each of the n objects or data points is represented by a vector of m variables
and its label. The training set, variables and label, is used to train the classifier. The trained classifier
is then applied on the test set data and the predicted labels are compared to the true labels to
assess the classifier.

To validate and assess the generalizability of the trained classifier, the data set is usually divided into
two parts: the “learning set”, on which the classifier is trained, and the “testing set”, used to
compute the accuracy of the classifier. Depending on the size of the data set available, this training-
then-testing procedure can be repeated multiple times with different split of the data set. The final
accuracy of the model is computed as the mean of the model accuracy at each division. This is
referred to as a “cross-validation procedure”.

The accuracy of the model is generally computed in terms of correct or mis-classifications for each
category (see table | and equation 1). For example with the handwritten digits, 80% classification
accuracy for 1’s means that four times out of five the trained machine correctly recognizes the
handwritten digit, and is incorrect in one case out of five, i.e. a ‘1’ is not recognized or another digit
is recognized as a ‘1’. More specific parameters can also be derived, such as the sensitivity and
specificity of the model (equations 2-3), which allows more insight into the characteristics of the



classification algorithm. Still with the handwritten digits to classify, for example, a sensibility of 90%
and specificity of 60% mean that: if a ‘1’ is actually handwritten, then he’s correctly recognized 9
times out of 10 (1 “false negative”) but for any 10 other handwritten digits except a ‘1’, 4 of them
are erroneously classified as a’1’ (4 “false positive”).

This can be very important, for example, in the case of pathology classification: it is crucial to
correctly detect all diseased patients and limit to a minimum the number of false negatives, i.e.
maximize the sensitivity even if it reduces a bit the specificity.

Class 1 (true label: -1) Class 2 (true label: +1)

Class 1 (predicted label: -1) | True Negative (TN) False Negative (FN)

Class 2 (predicted label: +1) | False Positive (FP) True Positive (TP)

Table I: Different types of classification errors for the case of two classes. The ‘-1’ and ‘+1’ labels
correspond to class 1 and class 2 respectively, for example the absence (-1) or presence (+1) of a
disease for a test subject.

Accuracy= TP + TN / (TP+FP+FN+TN) (eq.1)
Sensitivity= TP/(TP+FN) (eq.2)
Specificity= TN/ (TN+FP) (eq.3)

There are many ways of building the input-output function, depending on how the data are
mathematically modeled. Among the various existing techniques, common ones are the kernel-
based approaches (Miiller, Mika, Ratsch, Tsuda, & Scholkopf, 2001) such as Support Vector
Machines (SVM, (Burges, 1998)), Relevant Vector Machine (RVM, (Tipping, 2001)) and Gaussian
Processes (GP, (Rasmussen & Williams, 2006)), as well as other approaches like Linear Discriminant
Analysis (Bishop, 2006) or Gaussian Naive Bayes (Mitchell, et al., 2004; Friston, Ashburner, Kiebel,
Nichols, & Penny, 2007).

When it comes to applying data mining tools to brain imaging data, SVM is one of the most
widespread methods. This technique is based on a simple and logical idea: when discriminating
between objects from different categories, the larger the distance between objects from different
categories, the better the classification. SVM is mostly a binary classifier, i.e. it discriminates
between only two categories of patterns, and thus aims at finding the best hyper-plane separating
the data of the two categories: the margin between data points from each category and the hyper-
plane is maximized (as illustrated in fig.3 for the case of 2 dimension data points). In practice, the
data points located on the margin are the only ones defining the hyper-plane and are called “support
vectors”, hence the name “support vector machine”. SVM (like RVM) is a sparse technique relying on
a form of “automatic relevance determination” (Neal, 1996), i.e. the automatic selection of relevant
or representative data points among the whole data set.
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Figure 3. “Support Vector Machine” principle: The objects considered have two variables, their value
being represented by both axes, and come from two categories (x and o here). The object families
are separated by a hyper-plane. Among all the possible hyper-planes (3 are shown in the left image),
the one that maximizes the margin (right image) is picked up by SVM. The data points on the margin
are called “support vectors”.

Applications

Data mining tools can be applied to a large variety of data sets, from classification of handwritten
digits to classification of brain activity induced by visualized images. The simple form of the required
inputs, a vector of variables, leads to this large spectrum of applicability: all objects which can be
characterized by a set of variables stacked in a vector can be classified. For example, an fMRI data
set consists of a series of three-dimensional images. Each volume can therefore be considered as an
observation and vectorized according to its voxels values. Volumes corresponding to different
mental conditions, for example watching images of faces versus those of buildings, can then be
classified. In a similar way, grey matter density extracted from structural MR images of patients and
controls subjects can be classified (Vemuri, et al., 2008). Positron Emission Tomography (PET) images
(Phillips, et al., 2011) and Electro- or Magneto-EncephaloGraphic (EEG or MEG) data (Chan, Halgren,
Marinkovic, & Cash, 2011) have also been classified using this perspective.

Multivariate decoding of neuroimaging data can be used to achieve two different objectives: firstly
and obviously predict the perceptual, cognitive or medical state of one or many subjects but also,
secondly, reveal the pattern of voxels leading to the discrimination of these states. With a linear
SVM (and other linear kernel machines), these two goals can be reached simultaneously: the
estimated weight associated to each voxel reveals the patterns of voxels considered as important by
the model to perform the classification. Or else, the trained machine can be treated as a ‘black box’
that predicts the category of any new data fed in. This last application can be viewed as a diagnostic
tool in the case of a disease-versus-healthy classification (or any variation).

Diagnostic tool



The application of multivariate analysis as a diagnostic tool could become particularly useful,
especially when the concerned disease is difficult to diagnose using classical clinical exams.
Alzheimer’s disease (AD), one of the commonest causes of dementia, is a good example: a definitive
diagnosis of AD can only be obtained using post-mortem histopathological analysis. Currently, AD is
diagnosed using clinical exams, neuropsychological testing and manual measurements on brain
images (MRI or PET), leading to time-consuming criteria and accuracies of the diagnosis around 80%
at best (Knopman, et al., 2001). AD is therefore often misdiagnosed, although an early treatment
would be more effective. Multivariate analyses performed on structural MR images of patients and
controls allowed the construction of SVM, able to automatically distinguish between healthy
subjects and AD patients with accuracies between 86% (Vemuri, et al., 2008) and 96% (Kloppel, et
al., 2008), depending on the sample size and information used. Moreover, in Kloppel et al., 2008,
data from different scanners were used, suggesting that a trained classifier could be applied across
centers.

These studies relied on SVM and therefore led to binary 0/1 classifications: the input image is
classified in one category or the other without further information about the classification reliability.
Nevertheless, when using a multivariate technique as a diagnostic tool, knowing the probability
associated with the prediction would be very valuable. Consider 2 new images, from 2 patients A
and B, classified as “healthy” but the one from patient A has a probability of 99% of being so and the
one from B only 51%. In both cases, under a binary classification scheme, the corresponding subjects
could be considered as “healthy” but the classification probability of the B image is very close to the
“50% chance threshold”, which might suggest further exams are needed to confirm or infirm the
diagnostic of patient B.

“Relevance Vector Machine” (RVM), akin to SVM, provides such probabilistic prediction by returning
the posterior probability of being in one category versus the other, thanks to its Bayesian
formulation. RVM was recently applied on fluorodeoxyglucose PET (FDG-PET) data, i.e. images of
cerebral glucose metabolism, of patients (Vegetative State, VS, and Locked-In Syndrome, LIS) and
healthy controls (Phillips, et al., 2011).

First, an RVM was trained to discriminate VS patients (13 patients) from healthy subjects (37) using
their FDG-PET images. With these well defined and separate categories, i.e. unconscious versus
conscious subjects, cross-validation of this “consciousness classifier” showed 100% accuracy. Then
the trained RVM was applied on the FDG-PET images of 8 LIS patients: the probabilities returned
ranged between 61% and 100% to be in the “conscious” category. This suggests that LIS patients
could be automatically and correctly classified as conscious, contrary to VS patients, based only on
the patterns of their cerebral metabolism.

Relevant patterns of voxels

In the case of a linear kernel classifier, the relevance of each voxel can be estimated as a weighted
linear combination of the same voxel values of the images used for training. This “voxel relevance” is
not a statistical value per se but simply reflects how much any voxel contributes to the classification
of the input image in to one output category or the other: a large (respectively small) value (in
absolute value) indicates that this voxel has relatively much (respectively little) influence on the
classification. Since there is a value per voxel, it is possible to present a “relevance map” as an image



in brain space (see fig. 4 for the relevance maps of the control versus VS classification, Phillips et al.,
2011). Such a map can bring insight on the location of the discriminating areas and therefore help
neuroscientists build more efficient criteria of diagnosis but also orient them during the elaboration

of new hypotheses concerning the origins or evolution of a certain disease or disorder.

Figure 4. (Adapted from Phillips et al., 2011). Distribution over the brain volume of the voxel
relevance for a « Relevance Vector Machine » trained to discriminate between FDG-PET images of
VS patients and healthy subjects. A positive value (yellow-red) indicates that relatively large
metabolic activity in those voxels will drive the classification towards the “healthy subject” category.
Conversely, negative values (blue-purple) pushes towards the “VS patient” category. The voxels with
little relevance (green) hardly contribute to the classification of data.

Perspectives

In view of the recent advances in multivariate pattern analysis, these techniques certainly will
become more common to study consciousness. Their application as a diagnostic tool to differentiate
patients presents obvious advantages such as objectiveness, automation and the fact that a
posterior probability can be provided with the final prediction, compared to current time-consuming
and subjective criteria.

Other applications could also be envisaged, for example, classification techniques could be applied
to ‘response to command’ experiences in fMRI (Monti, et al., 2010), leading to reproducible user-
independent and possibly more accurate results than the current “General Linear Model” analysis
used. Furthermore, multivariate analysis could be applied on-line as the data are acquired, i.e.
during the recording, the model is updated in real time with each new image. On-line processing of
‘response to command’ fMRI experiments offers a new communication channel relying solely on
brain activation (Sorger, et al., 2009). Such “Brain Computer Interface” schemes could certainly
benefit, in term of accuracy and speed, from more advanced “brain decoding” tools.



Finally, “brain reading” could maybe one day offer a partial view on the mental content of patients
in altered states of consciousness. First a model would be trained with data acquired from healthy
subjects thinking about different semantic categories of pictures and words, for example faces,
buildings, animals or emotions (Mitchell, et al., 2008). Then this model would be applied on data
from Minimally Conscious State or VS patients.
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