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ABSTRACT

Using quality-of-service (QoS) metrics for Internet traf-
fic is expected to improve greatly the performance of many
network enabled applications, such as Voice-over-IP(VoIP)
and video conferencing. However, it is not possible to con-
stantly measure path performance metrics (PPMs) such as
delay and throughput without interfering with the network.

In this work, we focus on PPMs measurement scalabil-
ity by considering machine learning techniques to estimate
predictive models from past PPMs observations. Using real
data collected from PlanetLab, we provide a comparison be-
tween three different predictors: AR(MA) models, Kalman
filters and support vector machines (SVMs). Some predic-
tors use delay and throughput jointly to take advantage of
the possible relationship between PPMs, while other pre-
dictors consider PPMs individually. Our current results
illustrate that the best performing model is an individual
SVM specific to each time series. Overall, delay can be pre-
dicted with very good accuracy while accurate forecasting
of throughput remains an open problem.

1. INTRODUCTION

Since the early 90’s, the Internet continues to grow quickly
and this evolution is a matter of concern that can lead to
new methodological opportunities. Our evaluation of the
situation is based on two elements: the quality of service

demand and the multiconnectivity.
The Internet behavior was originally quite simple. The

content (or the service) was located at a single place and each
client willing to access it used a unique path. Most appli-
cations used at that time were not quality-of-service (QoS)
consuming. Nowadays, the situation is strongly different.
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Indeed, the content and services are now replicated among
a set of servers and, sometimes, directly among clients. The
perfect example of such a situation is peer-to-peer (P2P). In
addition, current and future applications, such as telephony
and video-over-IP (VoIP), content servers, or online games,
require more QoS. Various techniques have been proposed
in order to add QoS to the network [1, 2]. Unfortunately,
while these techniques might work at very small scales, each
attempt to include them in the global Internet (and, thus,
make them scalable) has failed so far.

In parallel to this QoS demand, we are seeing an increasing
fragmentation of the Internet, composed of roughly 20,000
corporate networks and different operators. An increas-
ing number of corporate networks and operators are con-
nected simultaneously to several Internet service providers
(i.e., multihoming) or share several connections to a given
provider (i.e., multiconnectivity) in order to benefit from
redundancy in case of network failures and from a better
QoS [3, 4, 5].

As a result, an application has currently several paths at
its disposal for reaching a given content. Allowing any ap-
plication to select the best possible path is a crucial question
that follows the current discussions on the future Internet
among working groups in the European Commission [6] or
in the United States [7, 8]. A potential approach for path
selection would be to allow each end-host to continuously
measure the network (candidate metrics could be the delay,
the throughput, the loss rate, the jitter, or the number of
hops) and to select a path based on the end-host require-
ments and measurement results.

However, it is not reasonable to develop an approach that
would require each end-host to perform its own set of mea-
surements each time an application needs to select a path.
The traffic generated by those measurements could be huge
and can potentially be redundant, leading to scalability is-
sues. In addition, one can encounter a security risk. In-
deed, the measurement traffic might be quickly seen by a
third party as a kind of intrusion. A way to fix those is-
sues would be to aggregate measurements from well known
vantage points, allowing those vantage points to collabo-
rate in order to exchange information, and sample measure-
ments [9]. The cost associated to such a solution is a pre-
cision loss. In the current state of the art, we are able to
sample, for instance, the throughput between two isolated
points of the network (see, for instance, [10]). However, ap-
plying sampling techniques to the scale of the Internet is a
totally open and very complex question due to the size of
the network. A better solution would be to provide a service
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Figure 1: Details of the times series for PPMs mea-
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for application that centralizes measurements and, based on
those measurements and an application requirements, per-
form the path selection. However, such a solution still needs
to carefully measure the network.

The measurement scalability is exactly the problem we
tackle in this paper. Indeed, we investigate how machine
learning techniques might be used for inferring Path Perfor-

mance Metrics (PPMs). In particular, we are interested in
predicting delay or throughput. Using a large dataset we
collected on PlanetLab, we discuss several time series tech-
niques for predicting PPMs. We are also interested in using
the possible statistical dependence between throughput and
delay to improve the prediction of each of them. This is
a step towards the joint prediction, i.e., from a joint time
series of throughput and delay, predict those quantities to-
gether. Machine learning approaches to PPMs prediction
has already been studied in the networking research com-
munity (see for instance [11, 12, 13]) but these works rely
on limited datasets based either on RTT measurements or
on a controlled environment.

The remainder of this paper is organized as follows: Sec. 2
explains how machine learning techniques can be used for in-
ferring Internet path performance; Sec. 3 discusses how we
collect and process data for our experiments; Sec. 4 pro-
vides a comparison between different Internet path perfor-
mance metric predictors; finally, Sec. 5 concludes this paper
by summarizing its main contributions and discussing future
directions.

2. LEARNING PATH PERFORMANCE

METRICS

Predicting future path performance metrics from past
measurements can be stated, in machine learning terms, as
a time series regression problem. The training dataset D

consists of measurements from the previous time step t − 1
back to some index t − k in the past:

D = {yt−1, yt−2, . . . , yt−k} (1)

A model of this time series aims at predicting the next
metric value yt and, possibly, additional values in the fu-
ture yt+1, yt+2, . . . This problem is a time series prediction
problem.

It is necessary to state the statistical properties of the
time series to be predicted. The most important feature of
PPMs time series is its non-stationarity and non-linearity
[14]. This imposes conditions over the possible models that
can be used. However, as can be seen from Fig. 1 in the

case of delay (Fig. 1(a)), non-stationarity is mostly due to
the presence of jump discontinuities (called interventions

in time series literature). Once the interventions are left
out, the behavior, although not stationary in a strict sense,
presents little variation in most cases, specially in measure-
ments taken from well connected vantage points.

Throughput time series present a bigger challenge.
Throughput, as it can be seen from Fig. 1(b), is quite non-
linear and nonstationary. Throughput also presents wide
variations and little stability within a given range. Since the
delay and throughput measurements were taken jointly, we
explore some preliminary ideas to make use of both PPMs
to improve the prediction of each of them.

In this work, we compare the predictive accuracy of some
linear versus non-linear time series models. The models
we compared are Auto-regressive Moving Average Models

(ARMA) [15], Kalman Filters [16], and Support Vector Ma-

chines [17] for time series.
An ARMA model uses samples from the past (i.e., dataset

D) in order to construct a model for forecasting. A general
ARMA(p, q) model is described by the following equation:

yt = α1yt−1 + · · ·+ αpyt−p + φ1ǫt−1 + · · ·+ φ1ǫt−q + et (2)

where ǫi ∼ N(0, σ2), et ∼ N(0, σ2), p indicates the order
of the auto-regression, and q the order of the moving aver-
age. Preliminary experiments have shown that the moving
average components do not offer improved results over sim-
ple AR models. Hence, q = 0 is assumed for the rest of
this paper and the actual auto-regressive order was chosen
according to the Akaike Information Criterion (AIC) [18].

A Kalman filter models a linear dynamic system (LDS)
as an evolution of nonobservable variables ~x and observable
variables ~y, whose evolution is linked linearly through ma-
trices A,B. The LDS, is expressed as:

~yt = A~xt + Vt (3)

~xt = B~xt−1 + Wt (4)

where Vt ∼ N(0, R) and Wt ∼ N(0, Q). The parame-
ters A,B, R, Q were estimated from the dataset we col-
lected, using an expectation maximization (EM) algorithm
for LDS [19]. Both delay and throughput are here modeled
jointly, since state space representation supports multidi-
mensional time series.

The third type of models rely on Support Vector Machines
(SVMs) applied to time series prediction. The input data y

used for the prediction at a given time t is a vector represent-
ing the current context: y = [yt−1 . . . yt−p]′ of the p previous
measurements. By analogy with an AR model, we will refer
to p as the SVM model order. Such a vector y is projected
to a higher dimensional space through a non-linear mapping
Φ(y). Linear modeling in such a higher dimensional space
equals non-linear modeling in the original low dimensional
space [17]. After defining a Lagrangian and solving for the
dual variables α’s, the regression function is defined as:

ŷt = f(y) =

l
X

i=1

(αi − α
∗

i )k(yi, y) + b (5)

In all our SVM experiments, the radial basis function
kernel was used. This kernel, is described by k(yi, y) =
γ exp(||yi − y||2), where yi is the input vector used to rep-
resent some past measurements in the training, y represents
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Figure 2: Data with gaps and with gaps filled

the current context as above, and γ is a meta-parameter
known as the kernel width.

3. METHODOLOGY

Data was collected between March 27th 2009 and April
13th 2009. We used five PlanetLab machines as vantage
points. The machines were mostly located in Europe: two in
England (London and Cambridge), one in Norway (Tromsø),
one in Turkey (Istanbul), and one in USA (Pasadena).

We collected jointly delay and throughput information
by monitoring (i.e., with tcpdump) a large file down-
loaded from FTP Linux servers. We considered 25 servers
scattered around the world: Sweden, Portugal, Germany,
France, Spain, Belgium, England, Luxembourg, Israel, Rus-
sia, Japan, Taiwan, USA, Brazil, and Chile.

Each vantage point downloaded the file from each FTP
server every 20 minutes. The total amount of data collected
was around 16GB. Five pings were made to each destina-
tion from the PlanetLab nodes. Simultaneously, an FTP
file was downloaded from an FTP server, and the through-
put was measured passively via tcpdump, to obtain 100 in-
stantaneous throughput measurements. In both cases, these
measurements where averaged to obtain a single data point
each 20 minutes, one for delay and one for throughput.

Before applying any of the methodologies described in
Sec. 2, it was necessary to correct the obtained measure-
ments. Due to network and server conditions, some of
the measurements were unavailable. Indeed, if a particu-
lar server did not respond at the time of downloading the
file, the measurement towards this server was given up. As a
result, there were some gaps in the resulting measurements.
If the amount of total missing data was superior to 35%,
the trace was not used in the experiments. After filtering
out this data, 41 time series, both for delay and through-
put, form our actual data. Each such time series contains
roughly 1480 measurements.

In order to fill the gaps, we used the K-nearest neighbors

algorithm, with a window of six samples. The closest six
neighbors, three in the past of the current missing data yt

and three towards the future of the missing data, were used.
The missing data estimate ỹt is computed as the average of
its neighbors:

ỹt =
1

6

3
X

k=−3

yk (6)

This procedure filled the gaps satisfactorily as can be seen
on a typical example reported in Fig. 2.

A specific AR model was fit for each time series and each
PPM. The model order selected according to AIC and av-

(a) Delay

(b) Throughput

Figure 3: Percentage absolute mean deviation

eraged over the 41 time series was 8.8 for delay and 7.5 for
throughput. Kalman filters jointly model delay and through-
put, thus taking advantage of linear relationships between
them, if any. The individual SVM approach refers to a spe-
cific SVM for each PPM time series with an input vector of
7 or 4 past measurements, respectively for delay or through-
put. A joint SVM refers here to a simple extension with
an additional coefficient in the input vector being the other
PPM (a throughput measurement for delay prediction, or
conversely) measured at the previous time step t − 1. This
extension aims at assessing whether such an additional fea-
ture may help the prediction by taking advantage of some
relationships between both PPMs.

The initial 80% fraction of each time series (roughly 1, 180
samples) was used as training data to fit the predictive mod-
els. The remaining 20% fraction (roughly 300 samples) of
each time series was used for evaluating the forecasting ac-
curacy of the predictive models. Predictive accuracy is as-
sessed as the Percent Mean Absolute Deviation (PMAD),
defined as:

PMAD =

PN

t=1 |et|
PN

t=1 |yt|
(7)

where et = yt − ŷt is the error, yt is the actual value of the
time series at time t and ŷt is the forecasted value. The
PMAD shows on average the percentual difference between
the actual value and the forecasted value.

4. PRELIMINARY RESULTS

Fig. 3 reports how well on average the 20% test fraction
of the 41 time series for delay or throughput are predicted.
Fig. 3(a) shows very good forecasting accuracy for delay,
with most of the predictions falling within the PMAD range
from 0% to 5%. SVMs models are the best predictors with
equivalent performances for the individual or joint version.
Hence adding the measured throughput at the previous time
step neither improves nor degrades delay forecasting. SVMs
were used with a RBF kernel while AR models offer slightly



worse performances. This result shows the benefit of using
non-linear predictors rather than linear ones. Kalman filters
underperform here, hence showing that assuming a linear de-
pendence (with Gaussian innovations) between both PPMs
is not, as expected, the best modeling. Overall, the fore-
casting of delay is easy and individual SVMs are very good
predictors.

The AR predictor is also well known to converge to the
mean of the data for a long-term forecasting. The mean of
the delay is actually an adequate predictor, since the varia-
tion is very small for most delay time series. However, this
mean predictor must be adaptable. Fig. 1(a) shows abrupt
jumps of the delay data. Most of the accuracy loss was due
to predictors that were not able to adapt to a jump discon-
tinuity in the data. This suggests that, for delay prediction,
it is necessary to update the model frequently in order to
detect and deal correctly with abrupt changes in the PPM
value. This is an intrinsic property of the delay due to events
on the network, such as switching the original route of the
packets to a different one. The input vector provided to
SVMs naturally adapt in such situations but the model or-
der is fixed while it should ideally be adaptive as well.

Accurate forecasting of throughput is clearly a signifi-
cantly more challenging problem. The individual SVM is
again the best predictor. In contrast, the joint SVM de-
grades predictive performance of throughput but Kalman
filters are even worse. Overall, those results call for better
approaches to accurately model throughput.

5. CONCLUSION AND FUTURE WORK

Different time series prediction techniques can be used to
predict PPMs, thus diminishing the need for actively prob-
ing the network. Depending on the PPMs under study, the
problem can be more or less difficult. Delay can be predicted
with very good accuracy, in particular with support vector
machines (SVMs). However, the model must be constantly
adapted in order to deal with jump discontinuities. Our fu-
ture work includes an explicit modeling of those jumps. For
instance, some simple statistics can be computed from the
observed lengths between consecutive jumps in the training
data. The probability of a jump is expected to increase with
the time interval since the last observed jumps. A rough es-
timate of such probability could serve, for instance, as an
additional input feature to SVM models.

Throughput is much more difficult to predict due to its
strongly nonlinear behavior. In this preliminary work, a
very standard RBF kernel was used within SVM models.
Improvements could be obtained by considering dedicated
kernels for time series such as those proposed by Rüping [20].
Alternative representations of these time series will also be
further studied.

It is expected that there are statistical relationships be-
tween delay and throughput, although possibly fairly com-
plex ones. Our preliminary results show that measuring
throughput at the previous time step does not help the delay
forecasting, and conversely. Additional experiments (not de-
tailed here) have shown that increasing the number of time
steps for which throughput is measured before predicting de-
lay is even worse. Those results call for more sophisticated
ways to model dependencies between PPMs. It is worth
noting than Kalman Filters form a special case of Gaussian
Processes (GPs) [21]. GPs, being kernel methods, can look
for dependencies modeled through a non-linear mapping of

the data to a higher dimensional space. This could offer an
interesting alternative to the simplistic assumption of linear
dependencies in Kalman filters.
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