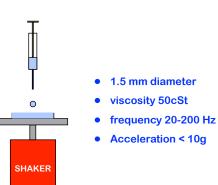


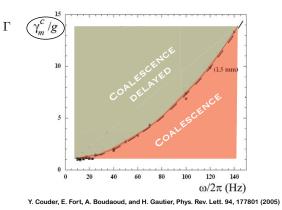
The lifetime of bouncing droplets


D. Terwagne, N. Vandewalle & S.Dorbolo

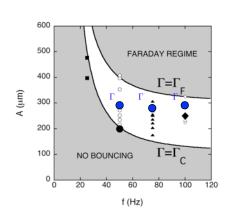
University of Liège, Belgium

Experimental setup



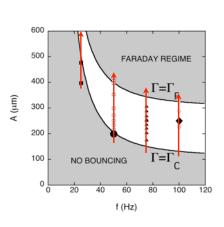

The bouncing droplet

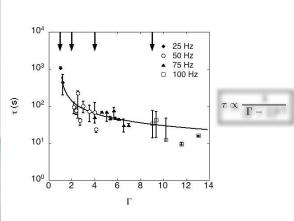
 Γ ω



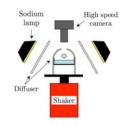
Bouncing threshold

Phase diagram



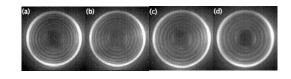

Experimental setup Bouncing threshold Lifetime distribution Lifetime Interference fringes Trajectories and deformations Conclusions

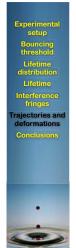
Phase diagram


Experimental setup Bouncing threshold Lifetime distribution Lifetime Interference fringes Trajectories and deformations Conclusions

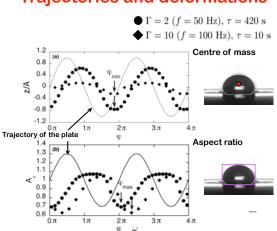
Lifetime

Interference fringes




setup Bouncing threshold Lifetime distribution Lifetime Interfence fringes Trajectories and deformations Conclusions

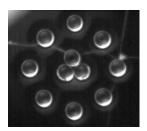
Interference fringes



Decrease of the thickness for the minimum air film when frequency is increasing

→ Arrhenius law

Trajectories and deformations



Conclusions

- Lifetime of bouncing droplets decreases with Γ and diverges for Γ=1 and f=25Hz.
 - Broad Weibull distribution for lifetimes
 - probabilistic mechanism
 - Interference fringes
 - > periodic motion during the whole life
 - thickness of the minimum for the air film layer decreases with the frequency increasing
 - → lifetime depends of thickness
 - Trajectory/deformation of the droplet
 - gives an explanation for the minimum of the air film

Thank you

D. Terwagne, N. Vandewalle & S. Dorbolo, Phys. Rev. E, in press (2007)