Université de Liège

A drop of spectroscopy D. Terwagne, T. Gilet, N. Vandewalle and S. Dorbolo GRASP, Physics Department, Université of Liège, B-4000, Belgium

The phenomenon

Droplet coalescence in a bath can be delayed by oscillating the bath vertically with an amplitude A and a frequency f between 20 Hz to 400 Hz : the droplet bounces on the interface [1,2]. The droplet deformation is enhanced by considering a low viscosity droplet on a high viscosity bath.

Bouncing threshold

The bouncing of the droplet only occurs when the reduced acceleration Γ is higher than a threshold value Γ_{th} which depends among other on the forcing frequency f, the droplet radius R, and the viscosity v. In Fig. 2, the threshold Γ_{th} is represented as a function of the forcing frequency for various droplets L^{\pm} viscosities. For high viscosity droplets, Γ_{th} increases monotonically and scales as f^2 [1]. For low viscosity droplets, $\Gamma_{th}(f)$ presents

$\omega = 2\pi f$ Fig. 1 Resonant modes

extrema that suggest a resonance phenomenon.

f (Hz)

Specific modes are observed at minima of the $\Gamma_{th}(f)$ curve. They are analogous to the natural modes of deformation expressed by Rayleigh in terms of spherical harmonics $Y_{l,m}$. Modes m = 0 and $\ell = 2$, 3 and 4 are observed (Fig. 3).

The droplet may be considered as a damped driven harmonic oscillator : - surface tension is the restoring force, - viscosity is the damping process.

Natural frequencies scale as the capillary frequency f_c :

$$f_c = \sqrt{\sigma/m}$$
 with $m = 4\pi/3
ho R^3$

More precisely, the dispersion relation specifies the natural "Rayleigh" $\frac{9}{40}$ 10-1 frequency f_R related to a ℓ -mode :

$$\left(\frac{f_R(\ell)}{f_c}\right)^2 = \frac{1}{3\pi}\ell(\ell-1)(\ell+2)$$

ally
$$f_{\alpha}$$
 (l) - $\alpha f_{\alpha}(l)$, α being a multiplication factor which

Spherical harmonic solution superposed to the experimental pictures. Fig. 3

Usually, $f_{Resonance}(\ell) = \alpha f_R(\ell)$; α being a multiplication tactor which depends on the geometry of the excitation [4, 5].

> When $f = \alpha f_R(\ell)$, the droplet stores the whole energy provided by the oscillating bath in deformation and dissipates it due to enhanced internal motion : the droplet resonates. It is impossible to make the droplet bouncing in the mode (ℓ ,m=O), Γ_{th} should diverge. Experimentally, a maximum is found at $f = \alpha f_R(\ell)$ as $m \neq 0$ modes are excited.

> > $\langle s \rangle$

Displacement mode : The Roller

Fig. 5

 $(\ell = 2, m = 1)$

Snapshots of a Roller

At the first maximum of the $\Gamma_{th}(f)$ curve (115 Hz for 1.5 cSt droplet), the droplet moves along a linear trajectory. The mode of deformation, related to $\ell = 2$ and m = 1, induces the internal rotation of the liquid.

> The initial horizontal speed v of the droplet has been measured for various frequencies and amplitudes of the bath. The phenomenon only occurs above a cut-off frequency $f_0 = 103$ Hz and an amplitude threshold A_{O} .

The speed v scales with $(A-A_0)(f-f_0)$, the reduced maximum speed of the bath.

Conclusion

1. Extrema of the bouncing threshold curve of low viscosity droplets are related to a resonance phenomenon. 2. A model which explains the first minima for the mode of deformation ($\ell = 2, m = 0$) has been developed in [3].

3. A new mode of displacement for low viscosity droplets has been discovered that can be generalised to a wide range of droplet sizes, the Roller. This selfpropelled mode allows manipulation without contact.

References

[1] Y. Couder, E. Fort, C. H. Cautier and A. Boudaoud, Phys. Rev. Lett. 94, 177801 (2005). [2] N. Vandewalle, D. Terwagne, K. Mulleners, T. Gilet and S. Dorbolo, Phys. Fluids 18, 091106 (2006). [3] T. Gilet, D. Terwagne, N. Vandewalle and S. Dorbolo, Phys. Rev. Lett. 100, 167802 (2008). [4] S. Courty, G.Lagubeau and T. Tixier, Phys. Rev. E 73, 045301(R) (2006). [5] X. Noblin, A. Buguin and F. Brochard-Wyart, Eur. Phys. J. E 14, 395-40 (2004).

SD/TG thanks FNRS/FRIA for financial support

