A drop of spectroscopy
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The phenomenon Bouncing threshold

Droplet coalescence in a bath can be delayed by oscillating the bath The bouncing of the droplet only occurs when 102 | | | | | lfi@ 2
vertically with an amplitude A and a frequency f between 20 Hz to the reduced acceleration I is higher than a - o 1.5 cSt E
400 Hz : the droplet bounces on the interface [1,2]. The droplet threshold value I'sn which depends among : 185%& . Y-
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Resonant modes

Specific modes are observed at minima of the I'vy(f) curve. They are
analogous to the natural modes of deformation expressed by Rayleigh

in terms of spherical harmonics Y|m. Modes m =0 and ( = 2, 3 and 4
are observed (Fig. 3).

The droplet may be considered as a damped driven harmonic oscillator 100
- surface tension is the restoring force, :
- viscosity is the damping process.

Natural frequencies scale as the capillary frequency f.

fe = \/U/m with M = 47T/3,0R3

More precisely, the dispersion relation specifies the natural “ Rayleigh” cﬁ, 101 |
frequency frrelated to a (-mode: < '
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Usually, fresonance(!) = afe(l); a being a multiplication factor which 102

depends on the geometry of the excitation [4, 5].
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When f = afz(/), the droplet stores the whole energy provided by the oscillating bath in deformation and

Spherical harmonic solution superposed dissipates it due to enhanced internal motion : the droplet resonates. It is impossible to make the
to the experimental pictures. droplet bouncing in the mode (/,m=0), I'yy should diverge. Experimentally, a maximum is found at f= afg(()
Fig. 5 as m # O modes are excited.

Displacement mode : The Roller
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~ droplet), the droplet moves along a linear trajectory. The mode of 3.0 |

deformation, related to / = 2 and m = 1, induces the internal 55

~ rotation of the liquid.
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The initial horizontal speed v of the droplet has been measured for
various frequencies and amplitudes of the bath. The phenomenon 1.0 |
only occurs above a cut-off frequency fo = 103 Hz and an amplitude

threshold Ao. 05+
The speed v scales with (A-Ag)(f-fp), the reduced maximum speed of ) | | | |
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Conclusion

1. Extrema of the bouncing threshold curve of low viscosity droplets are related to a resonance phenomenon.
2. A model which explains the first minima for the mode of deformation (/ = 2, m = O) has been developed in [3].

3. A new mode of displacement for low viscosity droplets has been discovered that can be generalised to a wide range of droplet sizes, the Roller. This self-
propelled mode allows manipulation without contact.
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