A drop of spectroscopy

D. Terwagne, T. Gilet, N. Vandewalle & S. Dorbolo
University of Liège - Belgium

The Phenomenon

- Silicon oil (1.5, 10, 100 cSt)
- Silicon oil (1000 cSt)

\[\omega = 2\pi f \]

\[\Gamma = \frac{A\omega^2}{g} \]

\(\rightarrow \) Vibrate the liquid surface

Plan

1. Bouncing droplet mechanism
2. Resonant and rolling droplet

Bouncing Threshold

![Graph showing bouncing threshold for different viscosities](image)

Bouncing droplet mechanism

\[F_{app} = \frac{\Gamma d^2}{2x} \]

\[\Gamma = mg(\cos(2\pi ft) - 1) + F_{App} \]

NEW

Bouncing droplet

\[F \leftrightarrow F_{app} \]

Lubrication force

Dynamic of the air film

Droplet deformation
Bouncing droplet mechanism

- Bouncing droplet = Damped driven harmonic oscillator
- surface tension = restoring force
- viscosity = damping process

Threshold curve
- minimum: system resonance frequency ω_{res}
- divergence: droplet natural resonance ω_c

Rayleigh spherical harmonics Y_l^m

Threshold curve
- $f(\text{Hz})$
- ω_{res}, ω_c

 usually, $f\text{resonance}(\ell) = \alpha f_R(\ell)$ with $\alpha \rightarrow$ excitation geometry

Resonant Modes

Roller Mode

Divergence?
Bouncing droplet mechanism
- Bouncing droplet = damped driven harmonic oscillator
- Threshold curve extrema -> resonance

Self-propelled droplet
- Roller

Mayonnaise droplet

see GFM 2008