
Topology Discovery Using An Address Prefix
Based Stopping Rule

Benoit Donnet
Université Pierre & Marie Curie

Laboratoire LiP6/CNRS
Email: benoit.donnet@lip6.fr

Timur Friedman
Université Pierre & Marie Curie

Laboratoire LiP6/CNRS
Email: timur.friedman@lip6.fr

Abstract— Recently, a first step towards a highly distributed
IP-level topology discovery tool has been made with the intro-
duction of the Doubletree algorithm. Doubletree is an efficient
cooperative algorithm that allows the discovery of a large portion
of nodes and links in the network while strongly reducing probing
redundancy on nodes and destinations as well as the amount of
probes sent. In this paper, we propose to reduce more strongly
the load on destinations and, more essentially, the communication
cost required for the cooperation by introducing a probing
stopping rule based on CIDR address prefixes.

I. I NTRODUCTION

This is a time when highly distributed applications are in full
expansion. Among others, we can citeSETI@home[1] (prob-
ably the first one and the most famous),FOLDING@home[2]
and theHuman Proteome Folding Project[3].

The network measurement community is not an exception
to this fashion. Some measurement tools have already been
released as daemons or screen savers. In particular, in France,
we haveGrenouille [4], a monitoring tool for broadband net-
works. More recently, we saw the introduction ofNETI@home
[5], an application collecting network performance statistics
from end-systems.

Tools allowing for topology discovery at the IP level, based
on traceroute [6], are becoming more distributed. There is
a number of well known systems, such asskitter [7], RIPE
NCC TTM [8] or NLANR AMP[9], skitter being probably the
most extensive one as it considers a set of between 20 and
30 monitors tracing towards a million destinations. The two
others, TTM and AMP, consider a larger number of monitors
(on the order of one or two hundreds) but they trace in full
mesh, avoiding to probe outside their own network. However,
the need to increase the number of traceroute sources in order
to obtain more complete topology measurement is felt [10],
[11].

The idea of placing a tracerouting tool inside a screen saver,
an idea first suggested by Jörg Nonnenmacher as reported by
Cheswick et al. in [12] should allow one to quickly obtain a
structure of a considerable size. Following this idea, a publicly
downloadable measurement tool within a daemon, DIMES
[13], has been released in September 2004. At the time of
writing this paper, DIMES counts 639 agents distributed
across 49 countries.

Such a large structure has, however, inherent scaling prob-
lems. For instance, if all the monitors trace towards the same

destination, it could easily appear as a distributed denialof
service (DDoS) attack. Furthermore, such a system must avoid
consuming undue network resources. However, before the
development of theDoubletreealgorithm [14], little consider-
ation had been given to how to perform large-scale topology
discovery efficiently and in a network-friendly manner.

Based on the tree-like structure of routes in the internet,
Doubletree acts to avoid retracing the same routes through
these structures. The key to Doubletree is that monitors share
information regarding the paths that they have explored. If
one monitor has already probed a given path to a destination
then another monitor should avoid that path. We have found
that probing in this manner can significantly reduce load on
routers and destinations while maintaining high node and link
coverage.

In this paper, we aim to improve Doubletree in order to
more strongly reduce the impact on destinations. We propose
to replace a stopping rule based on destination addresses with
a stopping rule based on theCIDR address prefixes[15] of
destinations. The idea is to aggregate the destinations setinto
subnetworks, i.e. we filter each destination address and asso-
ciate them to a subnetwork with the use of the CIDR address
prefixes. Each monitor will probe all the destinations in each
subnetwork. Futher, this proposal should also allow to reduce
the amount of communication required by Doubletree. Indeed,
instead of shareing a set of(interface, destination) pairs,
monitors will share a set of(interface, prefix destination)
pairs.

The rest of the paper is organized as follow: in Sec. II,
we introduce our prior work on the Doubletree algorithm.
In Sec. III, we present our methodology and our results. In
Sec. IV, we present related work. Finally, in Sec. V, we
conclude and discuss further works.

II. PRIOR WORK

Our prior work [14] described the inefficiency of the classic
topology probing technique of tracing routes hop by hop
outwards from a set of monitors towards a set of destinations.
It also introduced Doubletree, an improved probing algorithm.

Data for our prior work, and also for this paper, were
produced by 24 skitter monitors on August 1st through 3rd,
2004. Of the 971,080 destinations towards which all of these

monitors traced routes on those days, we randomly selected a
manageable 50,000 for each of our experiments.

Considering first the inefficiency, we note that only 10.4% of
the probes from a typical monitor serve to discover an interface
that the monitor has not previously seen. An additional 2.0%
of the probes return invalid addresses or do not result in
a response. The remaining 87.6% of probes are redundant,
visiting interfaces that the monitor has already discovered.
Such redundancy for a single monitor, termedintra-monitor
redundancy, is much higher close to the monitor, as can be
expected given the tree-like structure of routes emanating
from a single source. In addition, most interfaces, especially
those close to destinations, are visited by all monitors. This
redundancy from multiple monitors is termedinter-monitor
redundancy.

While this inefficiency is of little consequence to skitter
itself, it poses an obstacle to scaling far beyond skitter’scurrent
24 monitors. In particular, inter-monitor redundancy, which
grows in proportion to the number of monitors, is the greater
threat. Reducing it requires coordination among monitors.

Doubletree is the key component of a coordinated probing
system that significantly reduces both kinds of redundancy
while discovering nearly the same set of nodes and links.
It takes advantage of the tree-like structure of routes in the
internet. Routes leading out from a monitor towards multiple
destinations form a tree-like structure rooted at the moni-
tor. Similarly, routes converging towards a destination from
multiple monitors form a tree-like structure, but rooted at
the destination. A monitor probes hop by hop so long as it
encounters previously unknown interfaces. However, once it
encounters a known interface, it stops, assuming that it has
touched a tree and the rest of the path to the root is also
known.

Both backwards and forwards probing use stop sets. The one
for backwards probing, called thelocal stop set, consists of
all interfaces already seen by that monitor. Forwards probing
uses theglobal stop setof (interface, destination) pairs
accumulated from all monitors. A pair enters the stop set if
a monitor visited the interface while sending probes with the
corresponding destination address.

A monitor that implements Doubletree starts probing for a
destination at some number of hopsh from itself. It will probe
forwards ath + 1, h + 2, etc., adding to the global stop set at
each hop, until it encounters either the destination or a member
of the global stop set. It will then probe backwards ath − 1,
h − 2, etc., adding to both the local and global stop sets at
each hop, until it either has reached a distance of one hop or it
encounters a member of the local stop set. It then proceeds to
probe for the next destination. When it has completed probing
for all destinations, the global stop set is communicated tothe
next monitor.

The choice of initial probing distanceh is crucial. Too close,
and intra-monitor redundancy will approach the high levels
seen by classic forward probing techniques. Too far, and there
will be high inter-monitor redundancy on destinations. The
choice must be guided primarily by this latter consideration

 0.00

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

 0 5 10 15 20 25 30 35 40

cu
m

ul
at

iv
e

m
as

s

path length

Fig. 1. Cumulative mass plot of path lengths from skitter monitor apan-jp

to avoid having probing look like a DDoS attack.
While Doubletree largely limits redundancy on destinations

once hop-by-hop probing is underway, its global stop set
cannot prevent the initial probe from reaching a destination if
h is set too high. Therefore, we recommend that each monitor
set its own value forh in terms of the probabilityp that a
probe senth hops towards a randomly selected destination will
actually hit that destination. Fig. 1 shows the cumulative mass
function for this probability for skitter monitorapan-jp. For
example, in order to restrict hits on destinations to just 10%
of initial probes, this monitor should start probing ath = 10
hops. This distance can easily be estimated by sending a small
number of probes to randomly chosen destinations.

For a range ofp values, compared to classic probing, Dou-
bletree is able to reduce measurement load by approximately
70% while maintaining interface and link coverage above 90%.

One possible obstacle to successful deployment of Double-
tree concerns the communication overhead from sharing the
global stop set among monitors. Tracing from 24 monitors
to just 50,000 destinations withp = 0.05 produces a set of
2.7 million (interface, destination) pairs. As pairs of IPv4
addresses are 64 bits long, an uncompressed stop set based on
these parameters requires 20.6MB.

A way to reduce this communication overhead is to use
Bloom filters[16] to implement the global stop set. A Bloom
filter summarizes information concerning a set in a bit vector
that can then be tested for set membership. An empty Bloom
filter is a vector of all zeroes. A key is registered in the filter
by hashing it to a position in the vector and setting the bit
at that position to one. Multiple hash functions may be used,
setting several bits set to one. Membership of a key in the
filter is tested by checking if all hash positions are set to one.
A Bloom filter will never falsely return a negative result for
set membership. It might, however, return a false positive.For
a given number of keys, the larger the Bloom filter, the less
likely is a false positive. The number of hash functions also
plays a role.

In [17], we show that, whenp = 0.05, using a bit vector
of size 107 and five hash functions allow nearly the same
coverage level as a list implementation of the global stop
set while reducing only slightly the redundancy on both
destinations and internal interfaces and yielding a compression
factor of 17.3.

To reduce the load on destinations, we already investigated
the concepts ofcapping and clustering [17]. The capping
aims to impose an explicit limit on the number of monitors
that target a destination. The clustering may be seen as a
specialization of the capping by dividing the monitors into
clusters, each cluster focusing on a different destinationlist.
The real problem in theses mechanisms is how to assign
monitors to destinations. In [17], we chose to work randomly
but future work might reveal that a topologically informed
approach provides better yield.

III. D OUBLETREE WITH CIDR

A. Methodology

Skitter data from the beginning of August 2004 serves as
the basis of our work. This data set is composed of traceroutes
gathered from 24 monitors scattered around the world: United
States, Canada, the United Kingdom, France, Sweden, the
Netherlands, Japan and New Zealand. All the monitors share
a common destination list of 971,080 IPv4 addresses. Each
destination is probed in turn by each monitor. To cycle through
the destination list, it can takes a few days, usually three.For
our studies, in order to reduce computing time and hard disk
space to a manageable level, we decided to work on a limited
destination subset of 50,000 items randomly chosen amongst
the whole set.

We conduct simulations based on the skitter data, applying
Doubletree, as described in [14]. A single experiment uses
traceroutes from all 24 monitors to a common set of 50,000
destinations chosen at random. Each data point represents the
average value over fifteen runs of the experiment, each run
using a different set of 50,000 destinations. No destination is
used more than once over the fifteen runs. We determine 95%
confidence intervals for the mean based, since the sample size
is relatively small, on the Studentt distribution. These intervals
are typically, though not in all cases, too tight to appear on
the plots.

We usep = 0.05, which is a value that belongs to the range
of p values that our previous work identified as providing a
good compromise between coverage accuracy and redundancy
reduction. We test all prefixes length from /8 to /24, as well
as lengths /28 and /32 (i.e. full IPv4 addresses).

Each monitor probes each destination and records in the
global stop set(interface, destination prefix) pairs instead of
(interface, destination) pairs. Compared to classic Double-
tree, we only change the global stop set stop rule. Each result
considered is compared, in Sec. III-B, with classic Doubletree
and skitter.

B. Results

Fig. 2 shows the main performance metric for a probing
system: its coverage of the nodes and links in the network. It
illustrates how the nodes and links coverage vary in function of
the prefix length. A value of 1.0 (not shown here) would mean
that application of Doubletree with the given prefix length
had discovered exactly the same set of nodes and links as
skitter. As already pointed out in our previous work, the use

 0.88

 0.89

 0.90

 0.91

 0.92

 0.93

 0.94

 8 12 16 20 24 28 32

co
ve

ra
ge

 in
 c

om
pa

ris
on

 to
 s

ki
tte

r

length prefix

classic DT
prefix DT

(a) Nodes

 0.70

 0.72

 0.74

 0.76

 0.78

 0.80

 0.82

 0.84

 0.86

 8 12 16 20 24 28 32

co
ve

ra
ge

 in
 c

om
pa

ris
on

 to
 s

ki
tte

r

length prefix

classic DT
prefix DT

(b) Links

Fig. 2. Coverage when using prefixes

of Doubletree implies a small accuracy loss in the link and
node coverage compared to skitter.

The lowest level of performance is reached for the /8 prefix.
In our data set, on average, there are thirteen /8 subnetworks.
As these subnetworks are quite large, monitors are stopped
early in their probing. The loss of accuracy, however, is not
so dramatic. The link coverage is 0,742 instead of 0,823 and
node coverage is 0,897 instead of 0,924. We believe that the
coverage level is still high due to the way exploration is
performed by the first monitor to probe the network. Indeed,
this first monitor uses an empty stop set (by definition of
Doubletree) and is thus never stopped in its exploration. We
further note that performance improves with prefix length until
reaching nearly the same accuracy as classic Doubletree with
/24 prefixes.

We believe that the loss of accuracy, compared to classic
Doubletree, is essentially located within the subnetworkscon-
taining destinations but also inside the core of the network,
where duplicated links (and the associated nodes) are missed
due to the prefix based stopping rule. Typically, probes reach
a very few number of destinations in each subnetwork but, in
general, they are stopped at the ingress routers. We miss thus
essentially the vast majority of destinations located in a given
subnetwork. However more nodes and links may be missed if
the network structure of the subnetwork is more complex, i.e.
the subnetwork is not only composed of an ingress router that
connects destinations with the rest of the network.

Doubletree aims also to reduce the load on routers. It

 360

 380

 400

 420

 440

 460

 480

 500

 8 12 16 20 24 28 32

gr
os

s
re

du
nd

an
cy

length prefix

classic DT
prefix DT

(a) Internal interfaces: gross

 7

 8

 9

 10

 11

 8 12 16 20 24 28 32

in
te

r-
m

on
ito

r
re

du
nd

an
cy

length prefix

classic DT
prefix DT

(b) Destinations: inter-monitor

Fig. 3. Redundancy on 95th percentile interfaces when using prefixes

would be a concern if the redundancy were to increase when
introducing a prefix based stopping rule. The ordinates in
Fig. 3(a) specify the gross redundancy on router interfaces,
i.e. the total number of visits. The ordinates in Fig. 3(b) rep-
resent the inter-monitor redundancy. Inter-monitor redundancy,
as defined in [14], is the number of monitors that visit a
given interface. The maximum inter-monitor redundancy on
destinations, not shown here, is 24. As the extreme values
are the most worrisome, we consider redundancy on the 95th

percentile interface.
As shown by Fig. 3, the redundancy is not increased

when using prefix based stopping rule. Further, for low prefix
lengths, the redundancy is reduced for both destinations and
routers.

Fig. 4 compares global stop set size. Fig. 4(a) shows the
number of keys recorded in the global stop set (in log-scale)
as a function of CIDR block prefixes. Fig. 4(b) shows the
global stop set size in megabytes.

We can see that there is a strong reduction for low prefixes.
For instance, if we consider a /8 prefix, the global stop set
will only contain, in average, 302,854 keys. As each key is
recorded as a 64 bit value, it corresponds to a stop set of
around 2.31MB. Compared to the classic Doubletree, there is
a compression factor of 8.9.

In addition to the mechanism presented in this paper, we
could also implement the global stop set as a Bloom filter
without losing much coverage accuracy [17, Sec. 3].

Table I compared the global stop set implemented as a set

105

106

107

 8 12 16 20 24 28 32

nb
 k

ey
s

re
co

rd
ed

length prefix

classic DT
prefix DT

(a) Number of keys

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 8 12 16 20 24 28 32

st
op

 s
et

 s
iz

e
(in

 M
B

)

length prefix

classic DT
prefix DT

(b) Megabytes

Fig. 4. Global stop set size when using prefixes

/8 /16 /24 /32
Prefix DT 2.31 7.40 19.87 20.61
Prefix DT with BF 0.361 0.689 1.192 1.192

Classic DT 20.61
Classic DT with BF 1.192

TABLE I

GLOBAL STOP SET SIZE COMPARISON(IN MB)

of pairs and as a Bloom filter. It also compares classic Double-
tree with the mechanism presented in this paper. Concerning
Bloom filters, we follow Fan et al’s suggestions [18, Sec. V.D]
for tuning the vector size and the number of hash functions to
use.

We see that coupling the prefix based stop rule with a Bloom
filter implementation of the global stop set introduces a very
strong reduction in the global stop set size. For instance, using
a /8 prefix stop rule gives, compared to classic Doubletree, a
compression factor of 57.1.

IV. RELATED WORK

Very little work has been conducted on efficient measure-
ment of the overall internet topology. This is in contrast tothe
number of papers on efficient monitoring of networks that are
in a single administrative domain (see for instance, Bejerano
and Rastogi’s work [19]). The two problems are extremely
different. An administrator knows their entire network topol-
ogy in advance, and can freely choose where to place their
monitors. Neither of these assumptions hold for monitoring

the internet with end-host based software. Since the existing
literature is based upon these assumptions, we need to look
elsewhere for solutions.

Govindan and Tangmunarunkit [20] have proposed the idea
of starting traceroutes far from the source. Using a probing
strategy based upon IP address prefixes, theMercator system
conducts a check before probing the path to a new address that
has a prefixP . If paths to an address inP already exist in
its database, Mercator starts probing at the highest hop count
for a responding router seen on those paths. No results have
been published on the performance of this heuristic, though
it seems to us an entirely reasonable approach in light of our
data.

The Mercator heuristic requires that a guess be made about
the relevant prefix length for an address. That guess is based
upon the class that the address would have had before the
advent of CIDR.

Finally, Some authors [21], [22] have already suggested
the idea of guiding topology discovery at IP level according
to BGP information. They use BGP backbone routing tables
in order to determine the destinations of traceroutes. For
each prefix in the tables, they repeatedly generate a random
IP address within that prefix. With the traceroute results to
these destinations, they build a router adjacency graph. By
probing only one destination per prefix, this technique may
miss several nodes and links.

V. CONCLUSION

In this paper, we present an improvement to the Doubletree
probing algorithm. By using stop rules based on address pre-
fixes, we show that we are able to reduce load on destinations
while maintaining an acceptable level of coverage accuracy.
Further, if we use this simple mechanism with a global stop
set implemented as a Bloom filter, we still reduce the global
stop set size to very low proportions.

The next prudent step for future work would be to test
the algorithms that we describe here on an infrastructure of
intermediate size, on the order of hundreds of monitors. We
have developed a tool calledtraceroute@homethat we plan
to deploy in this manner.

We also aim to improve Doubletree in order to guide
probing with a higher level information. We plan to develop
and experiment algorithms allowing Doubletree to realise more
accurate exploration through the use of AS level topology and
AS path information.

ACKNOWLEDGMENTS

The authors are member of the traceroute@home project.
This work was supported by: the RNRT’s Metropolis project,
NSF grants ANI-9986397 and CCR-0325701, the e-NEXT
European Network of Excellence, and LiP6 2004 project
funds. Mr. Donnet’s work is supported by a SATIN European
Doctoral Research Foundation grant.

Without the skitter data provided by kc claffy and her team
at CAIDA, this research would not have been possible. They
also furnished much useful feedback. Marc Giusti and his

team at the Centre de Calcul MEDICIS, Laboratoire STIX,
Ecole Polytechnique, offered us access to their computing
cluster, allowing faster and easier simulations. Finally,we are
indebted to our colleagues in the Networks and Performance
Analysis group at LiP6, headed by Serge Fdida, and to
our partners in the traceroute@home project, Mark Crovella,
José Ignacio Alvarez-Hamelin, Alain Barrat, Matthieu Latapy,
Philippe Raoult and Alessandro Vespignani, for their support
and advice.

REFERENCES

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“SETI@home: An experiment in public-resource computing,”Commu-
nications of the ACM, vol. 45, no. 11, pp. 56–61, Nov. 2002.

[2] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande, “FOLD-
ING@home and GENOME@home: Using distributed computing to
tackle previously intractable problems in computational biology,” in
Computational Genomics, 2002.

[3] R. Bonneau, N. S. Baliga, E. W. Deutsch, P. Shannon, and L.Hood,
“Comprehensive de novo structure prediction in a systems-biology
context for the archaea halobacterium,”Genome Biology, Jul. 2004.

[4] A. Schmitt et al., “La météo du net,” ongoing service.
[5] C. R. Simpson, Jr. and G. F. Riley, “NETI@home: A distributed

approach to collecting end-to-end network performance measurements,”
in Proc. Passive and Active Measurement Workshop (PAM), Apr. 2004.

[6] V. Jacobsen, “traceroute,” 1989.
[7] B. Huffaker, D. Plummer, D. Moore, and k. Claffy, “Topology discovery

by active probing,” inSymposium on Applications and the Internet, Nara
City, Japan, Jan. 2002.

[8] F. Georgatos, F. Gruber, D. Karrenberg, M. Santcroos, A.Susanj,
H. Uijterwaal, and R. Wilhelm, “Providing active measurements as a
regular service for ISPs,” inProc. Passive and Active Measurement
Workshop (PAM), 2001.

[9] A. McGregor, H.-W. Braun, and J. Brown, “The NLANR network
analysis infrastructure,”IEEE Communications Magazine, vol. 38, no. 5,
pp. 122–128, May 2000.

[10] A. Clauset and C. Moore, “Traceroute sampling makes random graphs
appear to have power law degree distributions,” Universityof New
Mexico, Tech. Rep. arXiv:cond-mat/0312674 v3, Feb. 2004.

[11] A. Lakhina, J. Byers, M. Crovella, and P. Xie, “Samplingbiases in IP
topology measurements,” inProc. IEEE Infocom ’03, 2003.

[12] B. Cheswick, H. Burch, and S. Branigan, “Mapping and visualizing
the internet,” inProc. 2000 USENIX Annual Technical Conference, San
Diego, California, USA, Jun. 2000.

[13] Y. Shavitt et al., “DIMES,” ongoing project.
[14] B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Efficient algo-

rithms for large-scale topology discovery,” inProc. ACM SIGMETRICS
2005, Banff, Canada, Jun. 2005.

[15] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing
(CIDR): an address assignment and aggregation strategy,” Internet
Engineering Task Force, RFC 1519, Sept. 1993.

[16] B. H. Bloom, “Space/time trade-offs in hash coding withallowable
errors,”Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[17] B. Donnet, T. Friedman, and M. Crovella, “Improved algorithms for
network topology discovery,” inProc. PAM 2005, Boston, USA, Mar.
2005.

[18] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area web cache sharing protocol,” inProc. ACM
SIGCOMM, 1998.

[19] Y. Bejerano and R. Rastogi, “Robust monitoring of link delays and faults
in IP networks,” inProc. IEEE Infocom, 2003.

[20] R. Govindan and H. Tangmunarunkit, “Heuristics for internet map
discovery,” inProc. IEEE Infocom, 2000.

[21] R. Siamwalla, R. Sharma, and S. Keshav, “Discovering internet topol-
ogy,” Cornell University, Ithaca, NY 14853, Tech. Rep., Jul. 1998.

[22] H. Burch and B. Cheswick, “Mapping the internet,”IEEE Computer,
vol. 32(4):97-98, Apr. 1999.

