Sur les bandes d'oxyde de scandium
observées dans les spectres
des étoiles froides

PAR

P. SWINGS

Chargé de cours à l'Université de Liége.
Sur les bandes d'oxyde de scandium observées dans les spectres des étoiles froides

PAR

P. SWINGS

Chargé de cours à l'Université de Liége
Sur les bandes d’oxyde de scandium
observées dans les spectres des étoiles froides,

par P. SWINGS,
Chargé de cours à l’Université de Liège

1. La molécule ScO possède dans le spectre visible deux systèmes de bandes (1): l’un, qui s’étend de λ 4503 à λ 5436 Å, correspond à un passage électronique B^2Σ ← x^2Σ; l’autre, allant de λ 5737 à λ 7293 Å, résulte de la transition A^2Π ← x^2Σ.

 Certaines bandes du spectre de Mira Ceti avaient été attribuées par F. E. Baxandall (2) au système A^2Π ← x^2Σ de ScO. Comme l’a montré N. T. Bobrovnikoff (3), cette attribution telle que l’a faite Baxandall était très incertaine en raison des superpositions de nombreuses et fortes raies atomiques.

 N. T. Bobrovnikoff a tout récemment (4) fait une recherche systématique des bandes de ScO au sein de la branche principale F-G-K-M de la séquence spectrale; il a examiné, dans le système A^2Π ← x^2Σ, les têtes de bande

\[\lambda 5036,17 \text{ (branche O, passage } v' = 0 ← v'' = 0 \text{ de } \Pi_{1s} ← \Sigma_{1s}) \]

et

\[\lambda 6072,65 \text{ (branche O, passage } v' = 1 ← v'' = 1 \text{ de } \Pi_{1s} ← \Sigma_{1s}), \]

qui, seules, ne sont pas masquées par de fortes raies atomiques se présentant dans les taches solaires et les étoiles froides.

(2) Publ. of the Astr. Soc. of the Pacific, 41, 168, 1929
(4) Loc. cit.
Bobrovnikoff a montré de cette façon que les bandes de ScO apparaissent dans les spectres stellaires de la classe K5 et augmentent très fortement en intensité de K5 à M3. Remarquons d'ailleurs que ces bandes n'ont pas été observées dans le spectre des taches solaires, quoiqu'elles y aient été recherchées spécialement par Richardson (1). Bobrovnikoff ne donne aucune justification de l'apparition et de l'évolution des bandes de ScO; il signale simplement que, selon lui, l'accroissement considérable d'intensité de K5 à M3 (c'est-à-dire pour une variation relativement faible de la température) indique que la chaleur de dissociation de ScO est relativement faible, beaucoup plus faible que celle de TiO; il regrette de n'avoir pu trouver d'indication au sujet de cette chaleur de dissociation.

2. Le but de la présente note est d'essayer d'expliquer les faits observés par Bobrovnikoff.

Remarquons d'abord que les chaleurs de dissociation D de TiO et ZrO ont été déterminées par la méthode d'extrapolation de Birge-Sponer à partir des formules des bandes de ces molécules. Comme on a mesuré avec précision les bandes de ScO, on peut déterminer la chaleur de dissociation de ScO, et l'erreur que l'on fera de cette façon sera, selon toute vraisemblance, du même ordre que l'erreur faite dans la détermination des énergies de dissociation de TiO et ZrO (2). Comme nous voulons comparer l'évolution des bandes de ScO à celle des bandes de TiO, l'application de la méthode de Birge-Sponer à ScO semble bien justifiée.

On sait que la détermination des chaleurs de dissociation des molécules diatomiques dans leur état électronique normal ne peut être faite avec précision et d'une façon certaine, au

(1) Contributions from the Mt. Wilson Obs., No 422, 1931.
(2) Il s'agit uniquement de l'ordre de grandeur de la précision atteinte; les niveaux électroniques inférieurs des deux molécules Sc O et Ti O sont en effet différents.
moi
du spectre de bandes, que dans les deux conditions
suivantes :
1° Si l'on peut suivre un train $v' = \text{const.}$ jusqu'au conti-
nuum, ou si, au moins, on connaît un grand nombre de
niveaux de vibration v'' de telle sorte que l'extrapola-
tion jusqu'au continuum soit sûre ;
2° Si l'on connaît les états électroniques des deux atomes
résultant de la dissociation.

Les travaux de R. T. Birge ont bien montré que lorsqu'on
ne possède qu'un nombre restreint de niveaux de vibration,
le contrôle peut parfois causer des erreurs appréciables;
heureusement pour les molécules non polaires à l'état électro-
nique inférieur, l'approximation est d'habitude bonne (1) et en
tout cas suffisante pour l'étude du problème qui nous intéresse.

D'autre part, on ne connaît rien des états électroniques des
atomes produits par la décomposition de la molécule ScO à
l'état électronique normal. Nous supposerons que la molécule
normale ScO se scinde en deux atomes normaux Sc et O, tout
comme on l'a supposé pour TiO et ZrO. Ce mode de dissocia-
tion est de loin le plus habituel.

Ces indications suffiront pour montrer combien il serait
désirable que le spectre de ScO fasse l'objet de nouvelles
recherches de laboratoire (tous comme d'ailleurs ceux de TiO
et ZrO), afin qu'on ait quelque certitude sur la valeur de la
chaleur de dissociation.

Nous trouvons immédiatement, en employant les notations
internationales (2),

$$D(\text{ScO}) \sim \frac{\hbar e \omega_{e}^{2}}{4 \alpha_{e} \omega_{e}} = 7,37 \text{ volts} = 170,000 \text{ cal. mol}^{-1}.$$

(2) P. Swings, Molécules diatomiques. — Etude des termes spectaux,
p. 37, Hermann, Paris 1933.
observées dans les spectres des étoiles froides.

Remarquons que la détermination par la même formule des chaleurs de dissociation de TiO et ZrO donne

\[D(\text{TiO}) = 6.7 \text{ volts}; \quad D(\text{ZrO}) = 7.67 \text{ volts}. \]

La chaleur de dissociation est donc intermédiaire entre celle de TiO et celle de ZrO. La fréquence fondamentale de vibration \(\omega'' \) de ScO dans l'état normal \(^2\Sigma \) a la valeur 972 cm\(^{-1} \) également intermédiaire entre les fréquences de TiO (1008 cm\(^{-1} \)) et de ZrO (937 cm\(^{-1} \)).

3. Lorsqu'on veut examiner l'évolution, au sein de la séquence spectrale, de l'intensité des bandes d'une molécule déterminée, par exemple TiO, il faut examiner la variation en fonction de la température \(T \) et de la gravité \(g \) de l'atmosphère stellaire \(^{(1)}\), du nombre total de molécules contenues dans une colonne de surface unitaire de la couche renversante. L'intensité des bandes varie alors proportionnellement à la racine carrée de ce nombre de molécules.

Si l'on veut comparer les intensités relatives des bandes de deux molécules, par exemple TiO et ScO, il faudra, pour chacune d'elles, non seulement examiner l'évolution dans la séquence spectrale et tenir compte des différences d'abondances en Ti et Sc, mais encore introduire un facteur « rapport des probabilités d'absorption dans les bandes examinées ». Ce facteur correspondrait au rapport des intensités d'absorption, dans les bandes considérées expérimentalement, d'un nombre égal de molécules TiO et ScO.

La résolution du problème implique donc trois stades :

1\(^{o} \) examen de l'évolution, en fonction de \(T \) et \(g \), du nombre total \(N \) de molécules ScO et TiO contenues dans une colonne de surface unitaire de la couche renversante ;

2\(^{o} \) considération des abondances relatives en Ti et Sc dans les atmosphères stellaires ;

\(^{(1)}\) Pour la signification précise de \(T \) et \(g \), voir H. N. Russell, Astroph. J., 70, 41, 1929.
P. Swings. — Sur les bandes d’oxyde de scandium

3° introduction d’un facteur « rapport des probabilités d’absorption » des deux molécules dans les bandes considérées expérimentalement.

4. La méthode à suivre pour résoudre la première partie a été développée tout récemment par L. Rosenfeld et Y. Cambresier (1); elle conduit à la formule suivante, que nous avons écrite dans le cas de la molécule ScO (2):

\[
N(\text{ScO}) = \frac{3 \mu_{\text{Sc}}}{m \mu_0} \cdot \frac{1}{g} \cdot \left[\mu_0 p - K_p \cdot \log_{10} \left(1 + \frac{\mu_0 p}{K_p} \right) \right],
\]

(1)

les symboles ayant les significations suivantes:

\(\mu_{\text{Sc}} \) = abondance des atomes de Sc (rapport du nombre d’atomes Sc au nombre total d’atomes);

\(\mu_0 \) = abondance des atomes d’oxygène;

\(m \) = masse atomique moyenne \((m = \Sigma m_A \mu_A \text{ somme des produits des masses atomiques des différents atomes par leur abondance}) \);

\(g \) = gravité à la surface de l’étoile;

\(p \) = pression totale à la base de la couche renversante;

\(K_p \) = coefficient d’équilibre de dissociation \(K_p = \frac{p_{\text{Sc}} \cdot p_0}{p_{\text{ScO}}} \) \((p_{\text{Sc}}, p_0 \text{ et } p_{\text{ScO}} \text{ = pressions partielles respectives de Sc, de O et de ScO}) \).

La formule (2) est une première approximation que les applications faites par L. Rosenfeld et Y. Cambresier ont montrée satisfaisante; cette formule résulte simplement de l’équation d’équilibre hydrostatique associée à quelques hypothèses simplificatrices relatives à la pression totale \(p \) de l’étoile.

Les auteurs cités ont fait le calcul de \(K_p \) par la mécanique statistique et trouvé

\[
\log_{10} K_p = -D \cdot \frac{5041}{T} + \frac{3}{2} \cdot \log_{10} T + \log_{10} \left(1 - e^{-\frac{\Theta}{T}} \right) + A,
\]

(2)

\(^{(1)} \) M. N. R. A. S., 1933 (en cours de publication); Publ. Inst. Astronome, Liége, n° 109, 1933.

\(^{(2)} \) Pour Ti O ou Zr O, la formule est identique.
observées dans les spectres des étoiles froides.

avec

\[A = \frac{3}{2} \log_{10} \frac{m_1 m_2}{m_3} + \log_{10} \frac{\sigma_1 \sigma_2}{\sigma_3} + 6,017 - \log_{10} \text{I}.10^{10}, \quad (3) \]

les symboles ayant les significations suivantes :

- \(D \) = énergie de dissociation exprimée en électron-volts ;
- \(T \) = température absolue ;
- \(\Theta = \frac{h \omega_0}{k} \) (\(h = C_u \) de Planck ; \(k = C_u \) de Boltzmann) ;

\(m_1, m_2 \) = poids atomiques de Sc et O ; \(m_3 \) = poids moléculaire de ScO ;

\(\sigma_1, \sigma_2 \) et \(\sigma_3 \) = poids quantiques des atomes Sc et O (\(^1\)) et de la molécule ScO à l’état fondamental (état \(^2\)D pour Sc, \(^3\)P pour O, \(^2\)Σ pour ScO) ;

\(I \) = moment d’inertie de la molécule en unités C.G.S.

Dans le cas de ScO, on a

\[m_1 = 45, \quad m_2 = 16, \quad m_3 = 61, \quad \frac{m_1 m_2}{m_3} = 11,8 ; \]

\[\sigma_1 = 10, \quad \sigma_2 = 9, \quad \sigma_3 = 2, \quad \frac{\sigma_1 \sigma_2}{\sigma_3} = 48 ; \]

\(I = 60 . 10^{-6} \) (voir Appendice I) ;

d’où

\[A = 7,5 ; \]

\[\Theta = \frac{h \omega_0}{k} = 1394. \]

Le coefficient d’équilibre de ScO sera donc donné par la relation suivante, où intervient seulement la température \(T \) et non la gravité \(g \) :

\[\log K_\nu(\text{ScO}) = -\frac{31532,2}{T} + \frac{3}{2} \log T + \log \left(1 - e^{-\frac{\text{signe}}{T}} \right) + 7,5. \quad (4) \]

(\(^1\)) \(\sum (2 J+1) \) pour toutes les composantes du niveau.
P. Swings. — Sur les bandes d’oxyde de scandium

A titre de comparaison, les formules des coefficients d’équilibre pour TiO et ZrO sont les suivantes (1):

\[
\log K_p (\text{TiO}) = - \frac{33973.6}{T} + \frac{3}{2} \log T + \log \left(1 - e^{-\frac{4480}{T}}\right) + 7.9;
\]
\[
\log K_p (\text{ZrO}) = - \frac{38664.5}{T} + \frac{3}{2} \log T + \log \left(1 - e^{-\frac{4480}{T}}\right) + 7.9.
\]

Dans la formule (1), il reste à déterminer la pression totale \(p\) à la base de la couche renversante; L. Rosenfeld et Y. Cambresier ont employé la formule semi-empirique trouvée par Milne et S. Chandrasekhar (2):

\[
p = \sqrt{\frac{2}{3}} \cdot \frac{g}{5.62 \times 10^8} \cdot \frac{1}{10},
\]

où \(p\) est exprimé en unités C.G.S.

Remarquons d’abord, comme l’on fait les auteurs cités, que:

1° lorsque \(\frac{\mu_o p}{K_p}\) est petit vis-à-vis de l’unité (c’est-à-dire à haute température), la formule (1) se ramène (en développant le \(\log_e\) en série et négligeant les termes de degré supérieur au second) à la forme

\[
\log N (\text{ScO}) = \log \frac{3 \mu_{\text{sc}}}{m} \cdot \mu_o + \frac{11}{2} \log T - \log K_p - 25.29262; \quad (1')
\]

2° lorsque \(\frac{\mu_o p}{K_p}\) est grand vis-à-vis de l’unité (c’est-à-dire à basse température), la formule (1), où l’on néglige \(\log_e \left(1 + \frac{\mu_o p}{K_p}\right)\) vis-à-vis de \(\frac{\mu_o p}{K_p}\), se ramène à

\[
\log N (\text{ScO}) = \log \frac{3 \mu_{\text{sc}}}{m} \cdot \mu_o + \log \frac{\mu_o p}{K_p} - \log g. \quad (1'')
\]

Dans la formule (1''), \(g\) est disparu; à haute température, le nombre de molécules ne dépendra donc plus de la grandeur absolue de l’étoile, mais seulement de sa température.

(1) L. ROSENFELD et Y. CAMBRESIER, loc. cit.
(2) M.N.R.A.S., 92, 150, 1932.
La méthode que nous venons d'esquisser a été appliquée avec grand succès par Rosenfeld et Cambresier pour interpréter l'évolution des bandes de TiO et ZrO et pour expliquer la classe S; ils ont expliqué le comportement des bandes de TiO dans Mira Ceti, etc.

5. Nous avons appliqué la formule (1) pour une gamme de températures de 200 en 200 degrés, de 1400 à 3200°, puis de 300 en 300, jusqu'à 4400°. Comme valeurs de la gravité \(g \), nous avons pris deux extrêmes, entre lesquelles sont comprises la plupart des gravités connues : celle de \(\alpha \) Orionis (géante MO ou M2) :

\[
\log g = 0,6890,
\]

et celle de l'étoile de Barnard (naine M4) :

\[
\log g = 5,2848.
\]

Nous avons donc d'abord déterminé \(p \) au moyen de la formule (5) pour toute la gamme de températures et pour les deux gravités \(g \) considérées. Les résultats sont indiqués dans le tableau I.

Tableau I. — \(\log p \).

<table>
<thead>
<tr>
<th>(T)</th>
<th>(\log g)</th>
<th>0,6890</th>
<th>5,2848</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>2,04</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>2,49</td>
<td>0,49</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>2,33</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>2,46</td>
<td>0,76</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td>2,56</td>
<td>0,86</td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td>2,67</td>
<td>0,97</td>
<td></td>
</tr>
<tr>
<td>2600</td>
<td>2,77</td>
<td>1,07</td>
<td></td>
</tr>
<tr>
<td>2800</td>
<td>2,88</td>
<td>1,18</td>
<td></td>
</tr>
</tbody>
</table>

--- 1085 ---
Les valeurs de \(\log K_p \) sont indiquées dans le tableau II.

Tableau II. — \(\log K_p \).

<table>
<thead>
<tr>
<th>T</th>
<th>(\log K_p)</th>
<th>T</th>
<th>(\log K_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4400</td>
<td>15,48</td>
<td>3000</td>
<td>7,90</td>
</tr>
<tr>
<td>4600</td>
<td>12,85</td>
<td>3200</td>
<td>0,70</td>
</tr>
<tr>
<td>4800</td>
<td>5,47</td>
<td>3500</td>
<td>1,72</td>
</tr>
<tr>
<td>2000</td>
<td>7,58</td>
<td>3800</td>
<td>2,58</td>
</tr>
<tr>
<td>2200</td>
<td>5,30</td>
<td>4100</td>
<td>3,33</td>
</tr>
<tr>
<td>2400</td>
<td>4,73</td>
<td>4400</td>
<td>3,99</td>
</tr>
<tr>
<td>2600</td>
<td>3,95</td>
<td>6000</td>
<td>6,29</td>
</tr>
<tr>
<td>2800</td>
<td>4,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nous poserons

\[
M = \log_{10} \frac{3}{m \cdot \mu_0};
\]

\(M \) est identique pour les équations d'équilibre de tous les oxydes et en particulier de TiO et ZrO.

Les valeurs finales obtenues pour \(\log N(\text{ScO}) - M - \log \mu_{\text{Sc}} \) sont indiquées dans le tableau III. Les valeurs indiquées concernent donc une étoile supergéante (\(\alpha \) Orionis) et une étoile ultra-naine (Barnard's Star); pour les étoiles intermédiaires entre ces valeurs extrêmes, on aura des valeurs intermédiaires de \(\log N(\text{ScO}) - M - \log \mu_{\text{Sc}} \).

On remarque immédiatement que la densité maximum en molécules ScO se présente vers \(T = 2200^\circ \) pour l'étoile géante et vers \(T = 2600^\circ \) pour l'étoile naine. En particulier, si l'on examine la variation de \(\log N(\text{ScO}) \) depuis \(K5 \) (environ \(3500^\circ \)) jusque \(T = 2200^\circ \) et si l'on se rappelle que l'intensité des bandes d'absorption est proportionnelle à \(\sqrt{N} \), on comprend...
la remarque expérimentale faite par Bobrovnikoff relativement à la forte variation à partir de K5.

On constate aussi que, à abondances égales en Sc, les étoiles à faible gravité (géantes) présenteront des bandes plus intenses que les étoiles à grande gravité (naines). Cette remarque s'applique aussi à TiO et ZrO.

6. Pour comparer la concentration en molécules ScO à la concentration en TiO dans les atmosphères stellaires, nous devons introduire les abondances relatives en Sc et Ti. Les seules estimations qui aient été faites à ce sujet sont celles de H. N. Russell relatives à l'atmosphère solaire (2). Comme le signale H. N. Russell, les valeurs qu'il donne — basées sur une calibration de l'échelle de Rowland, combinée avec l'étude de quelques raies importantes faite par Unsöld (3) — consti-

(1) A partir de T=3500°, les valeurs sont les mêmes pour la naine et la géante (formule 1').

(3) Zeitschr. für Ph., 46, 765, 1928.
P. Swings. — Sur les bandes d’oxyde de scandium

tuent seulement une première approximation (1) qu’il y aura lieu de revoir par la méthode de mesure précise des profils des raies d’absorption. Les valeurs indiquées par H. N. Russell sont en bon accord avec certaines déterminations de Miss C. H. Payne (2) et Unsöld (3). Pour Sc et Ti, Russell trouve dans l’atmosphère solaire

$$(\log \mu_{\text{Ti}} - \log \mu_{\text{Sc}})_{\odot} = 1.6.$$

Des déterminations récentes faites par S. A. Mitchell et E. T. R. Williams pour la basse chromosphère (4) et par Menrel pour la chromosphère (5) donnent pour $\log \mu_{\text{Ti}} - \log \mu_{\text{Sc}}$ des valeurs qui concordent sensiblement avec celles de H. N. Russell.

Remarquons que dans les 15 kilomètres extérieurs de la croûte terrestre (en incluant les océans) on a (6)

$$(\log \mu_{\text{Ti}} - \log \mu_{\text{Sc}})_{\oplus} = 5.$$

D’ailleurs le scandium ne semble pas avoir été trouvé dans les météorites (7), alors que le Ti y est relativement abondant (sensiblement autant que K, Cr, Mn, Co, C, P et Cl, environ 250 fois moins que Fe).

A titre de simple approximation, nous prendrons pour l'ensemble de la séquence spectrale la valeur donnée par Russell pour le soleil :

$$\log \mu_{\text{Ti}} - \log \mu_{\text{Sc}} = 1.6.$$

7. Dans la suite, nous raisonnons toujours dans le cas de $\log g = 0.689$ (supergéante). Il est évident que le cas des autres étoiles se traite de la même façon.

(1) « A reconnaissance of new territory », RUSSLLE, loc. cit., p. 69.
(2) Harvard Ctrc., no 334, 1928.
(3) Loc. cit.
(7) G. P. MERRILL, Idem, 1, 429, 1915.
Dans la figure 1, les courbes I et II représentent la variation de $\log N(TiO)$ et $\log N(ScO)$, compte tenu de la formule (6). Pour $T \geq 2000^0$, la différence entre $\log N(TiO)$ et $\log N(ScO)$ est égale à $\log \mu_{Ti} - \log M_{Sc}$, ce qui résulte d’ailleurs immédiatement de ce que l’approximation (1′′) est alors applicable.

Pour $T \geq 3000^0$, le nombre des molécules ScO est sensiblement égal à celui des molécules TiO; l’application de la formule (1′) montre que pour T suffisamment grand on a

$$\frac{N(ScO)}{N(TiO)} = \frac{\mu_{Sc}}{\mu_{Ti}} \cdot \frac{K_{TiO}}{K_{ScO}}.$$

Pour obtenir le rapport des intensités d’une bande déterminée de ScO et d’une bande déterminée de TiO observées dans la séquence spectrale, il faut, comme il a été dit au début, multiplier

$$\sqrt{\frac{N(ScO)}{N(TiO)}}$$

par un facteur qui uniquement fonction des deux molécules ScO et TiO et qui correspond aux probabilités des passages.
quantiques (électroniques et vibratoires) donnant lieu aux bandes qu'on examine expérimentalement. Nous n'avons aucune connaissance précise de ce facteur δ. Pour se faire une idée de son ordre de grandeur, nous remarquerons que dans les taches solaires les molécules Ti O et Sc O (fig. 1) sont en nombre sensiblement égal; or les bandes de Ti O apparaissent, alors qu'on n'observe pas celles de Sc O; le facteur δ doit donc être nettement inférieur à l'unité.

Supposons qu'en K5 (T~3500° K) l'intensité des bandes de Sc O observées par Bobrovinoff soit sensiblement égale à celle des bandes de comparaison de Ti O pour T = 5000° (à gravité égale). Les diagrammes I et II de la figure 1 peuvent évidemment représenter log V(N(Ti O)) et log V(N(Sc O)) moyennant une modification de l'échelle des ordonnées. La supposition indiquée donnerait pour la valeur du facteur de probabilité δ environ 1/10 et les courbes représentant les logarithmes des intensités des bandes observées de Sc O et Ti O seraient III et I. Ces courbes paraissent rendre compte, en gros, des phénomènes observés.

8. Pour des étoiles de même type spectral et à peu près de même magnitude absolue, Bobrovinoff a observé des différences notables dans les intensités des bandes de ScO; ainsi ces bandes sont notablement plus intenses pour δ Ophiuchi (MO, magn. abs. 0,3) que pour δ Andromedae (MO, magn. abs. 0,5) (1). Ces différences sont vraisemblablement dues à des différences de concentration en scandium. Remarquons pourtant que les intensités des bandes sont très sensibles, même à une faible variation de pression ou de température; de sorte que, même à concentration égale en scandium, la différence pourrait s'expliquer par un effet de gravité ou de température (légère erreur sur les types spectraux ou dans la détermination spectroscopique des parallaxes).

Bobrovnikoff a observé des variations d'intensité des bandes de ScO dans le spectre de α Orionis, les bandes étant beaucoup plus intenses les 27.11.32 et 14.1.33 que les 30.1.33 et 11.2.33. Dans un mémoire récent (1), Roscoe F. Sanford a montré que α Orionis est une étoile variable de période 5,781 années, dont le diamètre subit des modifications d'environ 30, la température pouvant osciller de plus de 200 degrés autour de la température moyenne, qui est, d'après lui, de 3190° K. D'après notre tableau III, les bandes de ScO ne sont guère sensibles à un effet de pression dans l'intervalle 3400-3000°; l'effet de magnitude absolue ne devient appréciable que pour T ≤ 2700°. Les variations d'intensité des bandes de ScO ne pourraient donc être dues qu'à des variations de la température de l'étoile; mais il paraît bizarre qu'en quelques jours la température ait pu varier suffisamment (voir tableau III) pour donner une variation appréciable des intensités.

Le phénomène semble très bizarre et il serait souhaitable qu'on eût de nouvelles observations plus précises et continues; quelques estimations quantitatives seraient désirables.

Appendice I. — Détermination d'une valeur approchée du moment d'inertie I de la molécule ScO.

Remarquons d'abord que I n'intervient que dans la constante A de la formule (2); une erreur sur I donnera donc simplement un léger décalage global de la courbe de ω₀ en fonction de T. On ne possède jusqu'ici aucune détermination expérimentale du moment d'inertie de la molécule ScO à l'état de vapeur. Pour en chercher une valeur approchée, nous avons employé deux méthodes :

Première méthode. — Le rapport des masses des atomes Sc et O étant sensiblement égal au rapport des masses de Ti et O, on pourra appliquer la relation de Morse et écrire

\[
(\omega_{\text{ScO}}^2) = (\omega_{\text{TiO}}^2)
\]

Pour TiO, \(\omega'' = 1008 \text{ cm}^{-1}, r'' = 1.617 \text{ Å} \); le second nombre vaut donc 4254. Pour ScO, \(\omega'' = 972 \); on en déduit donc

\(r'' = 1.635 \text{ Å} \).

La formule de Morse n'est pas applicable aux oxydes connus d'éléments de la 3e colonne, A1O et BO, les masses des atomes B, Al et Sc étant trop différentes. On trouve d'ailleurs

\((\omega''/r'')_{BO} = 3238 \) et \((\omega''/r'')_{AlO} = 4107 \).

La valeur du moment d'inertie de ScO déduite de \(r'' = 1.635 \text{ Å} \) est

\[I = 52.5 \cdot 10^{-40} \text{ C. G. S.} \]

Seconde méthode. — On peut rechercher la distance normale des atomes Sc et O dans un cristal, puis déterminer la distance des atomes dans la vapeur par comparaison avec des molécules analogues à ScO.

Le diamètre de l'atome normal d'oxygène dans les cristaux est

\[D(0) = 0.82 \text{ Å} \]

Pour Sc, de nombre atomique \(Z = 21 \), on ne possède pas de détermination expérimentale du diamètre dans les cristaux. On en aura une valeur approchée en traçant le diagramme des valeurs connues (1) des diamètres des atomes de nombres atomiques \(Z = 19, 20, 22, 23, 24 \) et en interpolant pour \(Z = 21 \). On trouve ainsi

\[D(\text{Sc}) = 3.44 \text{ Å} \]

On remarquera d'ailleurs que cette interpolation est justifiée, si l'on compare la 3e ligne horizontale du tableau périodique avec la 1e et la 2e, où les éléments B et Al (de la 3e colonne) ont des diamètres connus dans les cristaux.

On trouve donc ainsi pour la distance minimum des atomes Sc et O dans les cristaux

\[
r (\text{ScO}) = \frac{D (\text{Sc})}{2} + \frac{D (\text{O})}{2} = 2,13 \, \text{Å}.
\]

Il s'agit de déterminer dans quel rapport δ cette distance est réduite lorsqu'on passe du cristal à la vapeur. Pour cela, nous comparerons ScO, d'une part, aux molécules BO et AlO, ayant dans l'état normal le même symbole électronique \(x^2\Sigma\), mais dont les masses sont très différentes de ScO; et, d'autre part, à la molécule TiO de masse très voisine de ScO, mais de symbole électronique différent \(x^3\Pi\) (tableau IV).

Tableau IV.

<table>
<thead>
<tr>
<th></th>
<th>(r) (cristal)</th>
<th>(r) (vapeur)</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>BO</td>
<td>(\frac{1}{2} (1,94 + 0,82) = 1,38)</td>
<td>1,2</td>
<td>0,87</td>
</tr>
<tr>
<td>AlO</td>
<td>(\frac{1}{2} (2,86 + 0,82) = 1,86)</td>
<td>1,614</td>
<td>0,87</td>
</tr>
<tr>
<td>TiO</td>
<td>(\frac{1}{2} (2,95 + 0,82) = 1,88)</td>
<td>1,62</td>
<td>0,86</td>
</tr>
</tbody>
</table>

Nous admettrons donc que la distance des noyaux Sc et O dans la vapeur ScO est

\[
\delta \times 2,13 = 1,83 \, \text{Å}.
\]

La valeur correspondante du moment d'inertie est 67.10⁻⁴⁰ C. G. S. — Nous admettrons comme valeur approchée du moment d'inertie de ScO la moyenne de ces deux déterminations, soit 60.10⁻⁴⁰ C. G. S., et retiendrons que l'incertitude sur cette valeur est de l'ordre de 10 \(^\circ\)/\(^\circ\).

Il est donc possible qu'il y ait sur \(K_p\) une erreur analogue, résultant de I et de l'ordre de 10 \(^\circ\)/\(^\circ\), ce qui n'est pas grave dans le problème actuel.

Appendice II. — Cas des molécules AlO, CrO, VO et MnO.

Des bandes d'absorption de la molécule diatomique AlO ont
été observées dans le spectre de Mira Ceti (1). D’autre part, on peut s’étonner (2) que les bandes des oxydes de Cr, V et Mn — éléments relativement abondants dans les astres (3) — ne soient pas observées, alors que ces bandes tombent dans un domaine spectral commode pour l’observation astronomique.

Il n’est pas possible de déterminer avec quelque précision le comportement de ces molécules au sein de la séquence spectrale, parce que la documentation spectroscopique qu’on a à leur sujet est trop restreinte, sauf pourtant pour AlO, qui est mieux connu. Nous avons déterminé par la méthode de Birge-Sponer les chaleurs de dissociation de ces quatre molécules en admettant que l’extrapolation est valable et que les atomes résultant de la dissociation se trouvent à l’état électronique normal. On trouvera dans le tableau V les documents relatifs aux quatre molécules.

Tableau V.

<table>
<thead>
<tr>
<th>Molécule</th>
<th>Passage électronique</th>
<th>(\omega^e)</th>
<th>(\pi^e \omega^e)</th>
<th>D calculé (en volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlO</td>
<td>(a^3 \Sigma^+ \rightarrow b^3 \Sigma^+)</td>
<td>977</td>
<td>7</td>
<td>4.2</td>
</tr>
<tr>
<td>CrO</td>
<td>?</td>
<td>897</td>
<td>6</td>
<td>4.14</td>
</tr>
<tr>
<td>MnO</td>
<td>?</td>
<td>841.7</td>
<td>5.03</td>
<td>4.33</td>
</tr>
<tr>
<td>VO</td>
<td>?</td>
<td>1014</td>
<td>6</td>
<td>5.29</td>
</tr>
</tbody>
</table>

Remarquons d’abord qu’il n’est pas certain que le niveau électronique inférieur des bandes d’émission observées en laboratoire pour CrO, MnO, VO soit le niveau normal de la

(1) Il y a aussi des coïncidences remarquables entre certaines raies de AlO et des raies de taches solaires.
molécule; dans le cas contraire, l’absence de ces bandes dans les astres serait immédiatement justifiée.

Les moments d’inertie des quatre molécules peuvent être déterminés par les méthodes indiquées pour ScO (Appendice I); on trouve que les valeurs de $\log_{10} I \times 10^{46}$ sont peu différentes. Malheureusement, les états électroniques inférieurs n’étant pas connus, σ_3 n’est pas connu dans l’expression (3) de la constante A. On peut pourtant, en considérant des valeurs extrêmes pour les quatre molécules, constater que A doit être le même pour les quatre molécules, à une unité près.

D’ailleurs les valeurs de D, de Θ et des abondances étant peu différentes, il en résulte que les courbes représentant les logarithmes décimaux des nombres des quatre molécules seront sensiblement les mêmes.

Le fait que AlO apparaît dans Mira Ceti, alors que les trois autres molécules n’y sont pas observées, ne pourrait donc s’expliquer que par l’introduction du facteur de probabilité dont il a été question dans la présente note.

Institut d’Astrophysique de l’Université de Liège,

23 août 1933.

M. HAYEZ, imprimeur de l’Académie royale de Belgique, rue de Louvain, 112, Bruxelles