

Avec le soutien de la DGO6

Design Space ou Espace de Conception

29 novembre 2011

B. Boulanger - P. Lebrun - E. Rozet - Ph. Hubert

Facts

THE WALL STREET JOURNAL.

© 2003 Dow Jones & Company. All Rights Reserved

WEDNESDAY, SEPTEMBER 3, 2003 • VOL. CXLII NO. 45 • **** \$1.00

Factory Shift

New Prescription For Drug Makers: Update the Plants

After Years of Neglect, Industry
Focuses on Manufacturing;
FDA Acts as a Catalyst

The Three-Story Blender

By LEILA ABBoud
And SCOTT HENSLEY

BusinessWeek

MAY 3, 2004

SPECIAL REPORT -- QUALITY MANUFACTURING

Making Pills The Smart Way

Drugmakers are revamping factories to save money and avoid production mishaps

Desired state

- Product quality and performance achieved and **assured by design** of effective and efficient manufacturing processes
- Product specifications based on mechanistic **understanding** of how formulation and process factors impact product performance
- Ability for **continuous improvement** and **assurance of quality**

Regulatory Framework

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL
REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE

ICH HARMONISED TRIPARTITE GUIDELINE

PHARMACEUTICAL DEVELOPMENT

Q8(R2)

Current Step 4 version
dated August 2009

Regulatory Framework

- ICH Q8: Design Space (DS):
- "*the multidimensional combination and interaction of input variables and process parameters that have been demonstrated to provide assurance of quality*"
- "*working within the DS is not considered as a change*"
- "*Understand and gain knowledge about a process to find a parametric region of reliable robustness for future performance of this process*"

- How to build DS for Analytical methods ?
- Objective:
 - Define a robust region of input factors that guarantees obtaining future appropriate separation of complex mixture components

- Multivariate:
 - Key input factors: pH, temperature, Gradient time, etc
 - Key responses: retention times

→ Designs of Experiments (DOEs):

- Critical Quality Attribute: Separation (**S**)

Design of experiments

- Mean Response Surface ?

- Generally, mean responses are used for optimization
- ✗ do not provide any clue about process reliability
- ✗ fail to give any information on how the process will perform in the future
- ✗ will certainly give disappointing and unexplained results for the future use of the method

With parameters $pH > 0$ and $\%ACN > -0.8$, will my separation really be at least 1 minutes?

Guarantee ??

Design Space

Optimized Robust assay : Take into account the uncertainty about future run for defining a Design Space. Think risk, instead of mean. Here, probability to have a Separation > 1 minutes.

Mean based

$S>1$ minutes

mean responses = there is about 50% of chance that my response is, say, 1 minutes.

DS Risk based

$P(S>1 \text{ min.})$

Example

Separation of 9 AINS by HPLC

Design Space

Example

Legend : A. Paracetamol - B. Benzoate - C. Nipagine - D. Nipasol – E. Nimesulide – F. BHA - G. Ibuprofen; H. Mefenamic acid - I. BHT

Birth of the project

- Limitations of the classical statistical methodologies
 - to provide risk-based solutions
 - even for simple statistical models
- Opportunity to develop new ways of thinking
 - integrate predictive uncertainty in the results

→ Creation of the PPP

- between University of Liège, Arlenda and RW

Organization

- University (Lab. analytical chemistry)
 - Wide expertise in analytical method development
- Industry (Arlenda)
 - Wide expertise in biostatistics, design of experiments and Bayesian statistics

Organization

- How to build the bulldozer ?
- University
 - 1 chemist
 - 1 statistician
 - 1 pharmacist
- Arlenda
 - Several PhD in statistics
 - 1 I.T. manager

Example for process

- A very general Process

Critical Process Parameters (X) :

- Quantitative
- Qualitative
- In-process

Spray-drying process

- Spray-drying is intended to create a powder with small and controlled particle's size for pulmonary delivery of a drug substance
- Several Critical Process Parameters (CPP) have an influence on several Critical Quality Attributes (CQA)
 - CPP: inlet temperature, spray flow-rate, feed rate (other process parameters are kept constant)
 - CQA: yield, moisture, inhalable fraction, flowability
- Specifications on CQA defined as minimal satisfactory quality
 - yield $> 80\%$
 - moisture $< 1\%$
 - Inhalable fraction $> 60\%$
 - ...

- The process must provide, in its future use, **quality outputs**
 - e.g. during routine
- According to specifications derived from safety, efficacy, economical reasons
 - Whatever future conditions of use, that are not always perfectly controlled
 - Then, outputs should be **not sensitive** to minor changes
- **This is Quality by Design**
 - The way the process is developed leads to the product quality
 - This quality and the associated risks are assessed
 - Achieved using Design Space methodologies

- Design Space, Risk and ICH Q8
 - ICH Q8 proposes to use the Design Space (DS) risk-based methodology to fulfil these objectives

Target : “Understand and gain knowledge about a process to find a parametric region of **reliable robustness** for future performance of this process”

- Assurance of quality
- Assessment of the risk not to achieve quality

Spray-drying process

The big picture...

What we do:

Computation

- This implies to know the behavior of the CQAs in the future
 - How they change when CPPs change
 - How they are statistically *distributed*
 - How they are dependent
- Fortunately, solutions exist in the Bayesian statistical framework for every problem !

Spray-drying process

- Risk-based design space: predicted $P(CQAs \in \lambda)$

- In the Design Space, there is 45% of chance to observe each CQA within specification, jointly
- There is also $100-45\% = 55\%$ of risk not to observe the CQAs within specification (jointly) !

Spray-drying process

- Validation
 - Experiments have been repeated 3 times independently at optimal condition, i.e.
 - Inlet Temperature: 123.75° C
 - Spray Flow Rate: 1744 L/h
 - Feed Rate: 4.69 ml/min

Batches	Yield (%)	Moisture content (%)	Inhalable fraction (%)	Compressibility index	Hausner ratio
1	88	<0.2	63	11.6	1.13
2	89	<0.2	62	12	1.14
3	88	<0.2	59	11.5	1.13
Mean	88.7	<0.2	61.18	11.76	1.13
Standard deviation	0.61	NA	1.82	0.22	0.01

- Jointly, 2 out of the 3 runs within specification

Spray-drying process

- Post-analysis (« How they are statistically *distributed* »)
 - Marginal predictive densities of the CQAs

Compared with validation SD,
these uncertainties seems huge !

In fact, the model does not fit
well the data

Predictive uncertainty =
data uncertainty + model uncertainty

- Conclusion
 - Effective Design Space is the ultimate tool to optimize a process or a method while concurrently assessed its robustness
 - To provide guarantee that future runs will be on specifications
 - Even in presence of poor model fit...
 - Here, due to a poorly designed set of experiments
 - ... it allows providing risk-based results
 - But guarantee is kept low (45%)

- What are the benefits for industry ?
 - Classical benefits due to DOE
 - The time to run experiments before obtaining results is controlled
 - This time is generally reduced in comparison to “handmade” optimization. Costs are reduced as well
 - Benefits due to risk-based Design Space
 - Guarantee and risk to be on specification are controlled
 - Process/method knowledge leads to quality product and robustness
 - Robustness generally eases transfer between manufacturing sites, for instance
 - Better quality products also allows reducing costs
 - Less batches out-of-specification
 - Improvement of process reliability

Role of the partners

- Before PPP, University and Arlenda had a recognized expertise in Statistics for (Bio)Analytical methods
- Now, growing expertise in Quality by Design and Design Space computations
- Arlenda is extending its activity
 - Opening new offices in the US
 - Hiring a major QbD and non-clinical statistics expert from the US

- For a research implying academic developments and publications
 - Contact:
 - ph.hubert@ulg.ac.be
 - eric.rozet@ulg.ac.be
- For a research for commercial purposes
 - Contact:
 - bruno@arlenda.com
 - pierre@arlenda.com

- Merci pour votre attention !

