

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

www.patent-dfmm.org 31 May Slide

Micro-technology for Space Mission Packaging M(o)ems Reliability

Plan

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

- Introduction
- Space environment
 - Definition
 - Problems evaluation
 - Reliable materials for space
 - Solution from space heritage
 - Space design guidelines
- Space qualification for Micro technology
 - Downscaling
 - James Webb Space Telescope
 - Test-sequences and CSL facilities
- Conclusions

Introduction

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

- Why space mission can be interested with micro-technology?
 - Size, mass, power consumption are constrained in S.M.
 - Launching (10 000 to 100 000\$/kg)
 - Increase interest to "nano-satellite" » Network of very small satellites

Space environment requirements

Network of Excellence«Design for Micro & Nano Manufacture (NoE PATENT-DfMM)»www.patent-dfmm.orgMicro-technology for Space mission - Jérôme Loicq31 MaySlide

- **Thermal environment** (-150°C to 150°C)
- Vacuum conditions induce outgassing and contamination
- Energetic charged particles and plasma
- Atomic oxygen
- Micrometeoroid and Space debris
- Vibration

in space environment

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

www.patent-dfmm.org 31 May Slide

• Temperature cycling (between -150 to +150°C)

- Fatigue
 - decreases the performance of lubricant
 - decreases the life-time of thermal control fluids
 - induces vibration of solar panel and destabilization of spacecraft
- Internal stress
 - poor **Thermal Expansion** matching => internal stress
- Metal packaging
 - CTE 10 times greater than silicon =>fracturing of the substrate
- Semiconductors
 - modification of mechanical, charge transport properties

in space environment

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

www.patent-dfmm.org 31 May Slide

• Vacuum effects

- mechanical trouble
 - especially for movable sections
 - cold welding: pieces manufactured in the same metal are joined together
- contamination by outgassing (release of a gas trapped or frozen in some materials)
 - diminishing performance of optical elements
 - off-axis radiation scattering
 - increasing mirror scattering

– contamination by sublimation or vaporization

• loss of structural material

Contamination

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

- Contamination understanding:
 - Outgassing from warm surface
 - Condensation on colder surface
 - Contaminant layer is fixed with UV radiation
 - Otherwise, not permanently attached
 - Contaminant darkens with UV (optical loss is cumulating absorptivity and layer thickness increases)
 - Heating the surface vaporizes the contaminant (only when not permanently attached by UV)

in space environment

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

www.patent-dfmm.org 31 May Slide

- Vibration (launch process)
 - surface adhesion
 - fracturing

Cracks in single crystal silicon support beams caused by vibrations induced by a launch simulation

in space environment

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

www.patent-dfmm.org 31 May Slide

• Shock (during launch or transient mission phase)

- high stress
 - buckling of long and slender structure
 - plastic deformation of structures
 - fracture in brittle components
- high acceleration
 - vibration of relays
 - slip of the potentiometers
 - loss of bolts
- excessive displacement
 - broken solder joints
 - cracked PC boards and wave guides
- shock environment
 - electrical malfunctions in capacitors, crystal oscillators...

in space environment

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

- Atomic oxygen
 - formation of insulation compound at surfaces
 =>increase of power loss
- Charged particles
 - electrostatic discharge with catastrophic effects on electronics circuits
- Space debris
 - the impact of fast moving particles can vaporize of fragments pieces

in space environment

Outer Electron Belt

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

www.patent-dfmm.org 31 May Slide

Proton Belt

Radiation

– Ionization

creation of electron hole pairs within dielectric
 =>flatband threshold voltage shift, surface leakageAnomaly current,...

Displacement

 atom in crystal lattice are displaced by energetic particles => thermal dark current, loss in charge transfer efficiency, increased current in reverse biased junction...

- Single event effect

 interaction of single particle (p+, e-,...) with semi conductor => dark current generation centers

Radiation

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

www.patent-dfmm.org 31 May Slide

• Experience of Space Solar cell

- The best semiconductors materials:SiC, GaAs, InP and combinations
 - » lowest reactivity with high energy radiation
- Solar cell packaging
 - Borosilicate glass with a nominal
 5% of cerium dioxide. This ceria stabilizes
 the glass preventing the formation of
 color centers under electron and
 proton irradiation.

• Optical material

• Radiation induce Color center 🏹 Reduction of optical transmission properties

Space design guidelines

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

www.patent-dfmm.org 31 May Slide

Material selection: CTE mismatch should be avoid, radiation shielding foreseen and contamination understanding

Venting holes: the outgassing products are guided through venting holes (ie Multi Layer Insulator). The outgassing is decreased by performing a prior bake out of by flushing with dry nitrogen during storage.

Cold traps: collect contaminants and depend on the sticking coefficient (ie at 120K 100% of water molecules stick

Chemical getters: trap particular molecules, especially water; zeolith getter are also successfully used

Heaters: if contamination is not fixed to the surface (by UV cross-linking), active heating may decontaminate (but require hit level of power consumption)

Example of contamination

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» www.pa Micro-technology for Space mission - Jérôme Loicq 3

www.patent-dfmm.org 31 May Slide

• Space Heritage: EIT (SOHO)

- Loss related to ice contamination on CCD surface

- Heating (~1 day) retrieves the sensitivity by sublimation
- No venting holes in the vicinity: ice re-condensing
- Periodic cleaning
- Partial recovering only (other aging effects)

Downscaling

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

- Package sealing: Hermetic or not hermetic?
 - Sealing protects from contamination and moisture from the outside world
 - During space mission, hermetic is not required (vacuum)
 - During AIT: hermetic is the best but flushing with dry nitrogen is a alternativ solution
 - Sealing confines potential contamination inside the MOEMS
 - Venting holes in the vicinity of outgassing surface reduces the inner contamination vapor
 - Heaters could help vaporization on contaminant (see EIT)

Downscaling

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

www.patent-dfmm.org 31 May Slide

 Example: James Webb Space Telescope (JWST)

 NIRSpec: IR spectrograph with MOEMMicro Mirro Array (MMA)
 Micro Shutter Array(MSA

MSA is finally selected for maturity reason...

Downscaling

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

- MMA Improvement exercise:
 - Mirror potential optical degradation:
 - Coating reflectivity loss (contamination)
 - scattering increase (contamination)
 - flatness degradation (thermo-mechanics)
 - Potential design solutions
 - Without protective window
 - » UV rejection forward in the light path
 - » Heater attached to the rear side of MMA
 - » Radiation shielding: no improvement
 - With Protective window (radiation resistant glass)
 - » UV rejection filter + AR
 - » Additional radiation shielding
 - » Contamination issue more complex but solutions

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq www.patent-dfmm.org 31 May Slide

Space qualification stress the equipment to get confidence that it will survive the rigorous launch and will operate correctly in severe space environment

Current (terrestrial) tests:

- physical measurements
- electromagnetic compatibility
- visual inspection

Space qualification additional tests

- structural tests (vibration-launch simulation)
- thermal cycling vacuum test
- radiation test

CSL facilities

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq www.patent-dfmm.org 31 May Slide

• Thermal cycling under Vacuum and outgassing qualification

Thermal vacuum testing

CSL facilities

Network of Excellence «Design for Micro & Nano Manufacture (NoE PATENT-DfMM)» Micro-technology for Space mission - Jérôme Loicq

www.patent-dfmm.org 31 May Slide

Simulation of radiation reaching spacecraft during the mission

Trapped Electron Fluxes in GEO

Irradiation and interpretation with partners:

Csl partners	Radiation-particles	Energy
ULG-IPNAS	Protons-Deuterons	100keV-15MeV
UCL	Protons-Neutrons-heavy ions	10-68MeV
SCK-CEN Mol	Gamma-Slow neutron	7-40 MeV
SCK-CEN VUB	Protons-gamma	8-40 MeV
	Deuterons	10-22 MeV
	alpha	22-42 MeV
TU Delft	Electrons	1 MeV

