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Example: M = T*M with coordinates (x', p;), kinetic
energy: ﬁ > PP

m Quantum observables: operators on a Hilbert space H.

Example: H = L2(T*M).

Dirac problem: find a bijection Q : C*°(T*M) — L(H).

First answer to the Dirac problem: prequantization Q.

Reduction of H, L2(T*M) is replaced by L2(M).

The observable f is quantizable if Q(f) preserves

L2(M).

m The set of quantizable observables: Pol<(T*M).
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Geometric quantization Qg: Q6 = Qlpol_,(T+Mm),

Qg(Xi(x)p; + A(x)) = ?X"(X)a,' + A(x).

Is it possible to extend the geometric quantization to
Pol(T*M) =2 S(M)?

Is this prolongation unique?

Is it possible to reestablish the uniqueness?



Equivariant m There is no natural quantization: there is no linear

quantization in

supergeometry bijection Q : S(M) — D(M) such that
Fabian Radoux
o*(Q(S)) = Q(*S)

for all local diffeomorphism ®.



Equivariant

B e m There is no natural quantization: there is no linear
supergeometry bijection Q : S(M) — D(M) such that

P et d*(Q(S)) = Q((D*S)

for all local diffeomorphism ®.
m For example: Q. defined by

Qaff(silmikah VeV 8,-[() = Sil"'i"&'l s aik

is not well-defined: if J denotes the Jacobian of the
change of variables x(x),



iz m There is no natural quantization: there is no linear

quantization in

supergeometry bijection Q : S(M) — 'D(M) such that
Fabian Radoux
*(Q(5)) = Q(75)

for all local diffeomorphism ®.
m For example: Q. defined by

Qaff(silmikah VeV 8,-[() = Sil"'i"&'l s aik

is not well-defined: if J denotes the Jacobian of the
change of variables x(x),

Siieg v O = 5j1~--ijJ{'11 "‘Jj,fgh Vv,
Sil“'ikail .. 8 = Sjljk./jll tee Jj‘féll o 'gik T+

ik




Equivariant

quantization in m Equivariant quantization: action of a Lie group G on M:
supergeometr
PEESEE d:GxM— M.

Fabian R



Equivariant

quantization in m Equivariant quantization: action of a Lie group G on M:
supergeometr
PEESEE d:GxM— M.

m Equivariant quantization Q: linear bijection Q:
S(M) - D(M) s.t. 0(Q(S)) =S and s.t.
Q(P;S) = P,Q(S) Vg € G.

Fabian Radoux



Equivariant

quantization in m Equivariant quantization: action of a Lie group G on M:
supergeometr
PEESEE d:GxM— M.

m Equivariant quantization Q: linear bijection Q:
S(M) - D(M) s.t. 0(Q(S)) =S and s.t.
Q(P;S) = P,Q(S) Vg € G.

B Q(LpS)=Lp-Q(S)Vhe g, h} = % exp(—th)x|¢=o

Fabian Radoux



Equivariant

quantization in m Equivariant quantization: action of a Lie group G on M:
supergeometr
PEESEE d:GxM— M.

m Equivariant quantization Q: linear bijection Q:
S(M) - D(M) s.t. 0(Q(S)) =S and s.t.
Q(P;S) = P,Q(S) Vg € G.

m Q(LpS) = Lp-Q(S) Vh € g, hy := <L exp(—th)x|¢—o

m |dea: to take G sufficiently small to have a quantization
and sufficiently big to have the uniqueness.

Fabian Radoux



Equivariant

quantization in Equivariant quantization: action of a Lie group G on M:
supergeometry q) : G « M _) M
m Equivariant quantization Q: linear bijection Q:
S(M) - D(M) s.t. 0(Q(S)) =S and s.t.
Q(P;S) = P,Q(S) Vg € G.
B Q(LpS)=Lp-Q(S)Vhe g, h} = % exp(—th)x|¢=o
m |dea: to take G sufficiently small to have a quantization
and sufficiently big to have the uniqueness.

Fabian Radoux

m Projective case (P. Lecomte, V. Ovsienko):
m PGL(m + 1,R) acts on RP™



Equivariant

quantization in Equivariant quantization: action of a Lie group G on M:
supergeometr
PEESEE d:GxM— M.

m Equivariant quantization Q: linear bijection Q:
S(M) - D(M) s.t. 0(Q(S)) =S and s.t.
Q(P;S) = P,Q(S) Vg € G.

m Q(LpS) = Lp-Q(S) Vh € g, hy := <L exp(—th)x|¢—o

m |dea: to take G sufficiently small to have a quantization
and sufficiently big to have the uniqueness.

Fabian Radoux

m Projective case (P. Lecomte, V. Ovsienko):
m PGL(m + 1,R) acts on RP™
m RP™ is locally diffeomorphic to R™



Equivariant

quantization in Equivariant quantization: action of a Lie group G on M:
supergeometry q) : G « M _) M
m Equivariant quantization Q: linear bijection Q:
S(M) - D(M) s.t. 0(Q(S)) =S and s.t.
Q(P;S) = P,Q(S) Vg € G.
B Q(LpS)=Lp-Q(S)Vhe g, h} = % exp(—th)x|¢=o
m |dea: to take G sufficiently small to have a quantization
and sufficiently big to have the uniqueness.

Fabian Radoux

Projective case (P. Lecomte, V. Ovsienko):
PGL(m + 1,R) acts on RP™

RP™ is locally diffeomorphic to R™

X € sl(m+1,R) — X* vector field on R™.



Equivariant
quantization in
supergeometry

Fabian Radoux

Equivariant quantization: action of a Lie group G on M:
S:GxM— M.

Equivariant quantization Q: linear bijection Q:

S(M) - D(M) s.t. 0(Q(S)) =S and s.t.

Q(P;S) = P,Q(S) Vg € G.

Q(Lp<S) = Lp-Q(S) Vh e g, hf = % exp(—th)x|i=o
Idea: to take G sufficiently small to have a quantization
and sufficiently big to have the uniqueness.

Projective case (P. Lecomte, V. Ovsienko):
PGL(m + 1,R) acts on RP™

RP™ is locally diffeomorphic to R™

X € sl(m+1,R) — X* vector field on R™.
AQ : LxQ(S) = Q(LxS) VX € sl(m+1,R).
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Conformal case (C. Duval, P. Lecomte, V. Ovsienko):

SO(p+1,9+1) acts on SP x 59.

SP x S§9 is locally diffeomorphic to RPTY

X €so(p+1,g+1)+— X* vector field on RPTY,

3Q : LxQ(S) = Q(LxS) VX €so(p+1,9+1).

Casimir operator method:

[: Semi-simple Lie algebra endowed with a non

degenerate Killing form K.

m (V,3): representation of I.

m (uj: i< n): basis of [; (v} : i < n): Killing-dual basis
(K(ui, u}) = dij)-

m Casimir operator corresponding to (V/, 3):

> Bu)B(ui).
i=1
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m (S(R™),L) and (D(R™), L) are representations of g.
m C and C: Casimir operators of g on S(M) and D(M).
mIf C(S)=aS and Lo Q = QolL, then
C(Q(S)) = aQ(S).
® In non-critical situations: if C(S ): S, then 3! Q(S)
st. C(Q(S)) = aQ(S), o(Q(S)) =
m In these conditions: L(Q(S)) =

Q(L
m 0(L£(Q(S))) = a(Q(L(S)) = L(S);
m C(Q(L(S))) = aQ(L(S)). C(£L(Q(S

( )) because:

))) = aL(Q(S))-
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Natural: ®*(Q(V)(S)) = Q(®*V)(d*S) for all local
diffeomorphism ¢
Projectively invariant: Q(V) = Q(V’) if
V'=V+aVid
B i Q(Vo)(S) = Q(¢¥iVo)(piS), Vo flat connection of
R™, ¢ flow of X € sl(m+ 1,R)
m i Q(Vo)(S) = Q(Vo)(p;S) because piVg ~ Vg and
@ projectively invariant

u LxQ(VO)(S) = Q(Vo)(LXs) for all X € 5[(m + 1,R)
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m M — M : fiber bundle of rank one over M (Thomas
fiber bundle)

m Connection V on M — Connection V on M associated
with V in a natural and projectively invariant way
(Thomas connection)

m Symbol S and density f on M — Symbol S and density
f on M associated with S and f in a natural and
projectively invariant way

(] Q(V/)\/(S)(f) = 7(V)(5)(f) with 7 a canonical natural
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Show how to superize and to solve in the super setting the
following problems:

m Projectively equivariant quantization on R™
m Conformally equivariant quantization on R™

m Natural and projectively invariant quantization
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Projectively equivariant quantization on R”™ (P.

Mathonet, R.)

Equivariant

quantization in m Superfunction f on a supermanifold of dimension (n|m):

supergeometry |Oca||y, f(X]', . ,Xn) — Z[g{]_,m,m} fl(xl7 . ’XH)QI,
o' = /g

m Super vector field: superderivation of the superalgebra
of superfunctions.

Fabian Radoux

m Locally, a A-density is expressed formally as f|Dx|*.
Under a change of coordinates x(x), |Dx|* is multiplied
by |BerA|*, with AJ’: = gil,

Moreover,

Ly (f|Dx|) = (X(f) + A div(X)f)|Dx|*,

where
n+m

div(X) = 3 (~1)"% 9, X',
i=1
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where D, are local d-densities (0 = 1 — A).
mLxD=1LxoD—(-1)*PDo L.
m Space of symbols isomorphic to the graded space
associated with D), ,, isomorphism induced by:

ok DK 585 D Y Do @AV -V OpT
|a|=k

m The Lie derivative of a symbol is obtained by extending
the Lie derivative of super vector fields.



Differential operator D € D’):M:

D= " Dy -0y - Opm™,
|| <k
where D, are local d-densities (0 = 1 — A).
LxD =1LxoD—(-1)XPDo L.
Space of symbols isomorphic to the graded space
associated with D), ,, isomorphism induced by:

ok DK 585 D Y Do @AV -V OpT
|a|=k

The Lie derivative of a symbol is obtained by extending
the Lie derivative of super vector fields.

Quantization: linear bijection @ : S5 — Dy st
ox(Q(S)) =S forall S € Sé‘.
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Equivariant
B pgl(n —i-.l]m) = gl(n+ 1|m)/RId <— subalgebra of
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Projective superalgebra of vector fields on R"I™

Equivariant

g;;g:i;;in:;tj; pgl(n+ 1|m) = gl(n + 1|m)/RId +— subalgebra of
vector fields over R”Im.

Q subset of R™"! equal to {(x°,...,x™) : x° > 0}.

H(Q): space of restrictions of homogeneous functions
over R™1M 1o Q.

Bijective correspondence i : C™"I™ — H(Q).
Homomorphism hpi1,m: gl(n+1/m) — Vect(RM+1m).
If A€ gl(n+1|m),

Fabian Radoux

H(Q) hn+1,m(A) H(Q)
i—1

T 7(hn+1,m(A)) i

Coon|m R Coon|m
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Fabian Radoux

m 70 hpp1m(Id) =0, thus 7o hyi1 m induces a

homomorphism from pgl(n + 1|m) to Vect(R"™).
m Projectively equivariant quantization on R"™:
quantization Q s.t. Lyn 0 Q = Q o Ly for every
h € pgl(n + 1|m).
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Fabian Radouix m Casimir operators:

m [: Lie superalgebra endowed with a nondegenerate even
supersymmetric bilinear form K.

m (V,3): representation of I.

m (uj: i < n): homogeneous basis of [; (u}: i < n):
K-dual basis (K(uj, uj) = ).

m Casimir operator of (V, 3):

n n

D (=15 B(u)B(uf) = B(u))B(ui).

i=1 i=1
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Fablan Radous mlf m#n+1, pgl(n+1m) = sl(n+ 1|m).
m Killing form of sl(n+ 1|m):

K(A,B) =str(ad(A)ad(B)) = 2(n+ 1 — m)str(AB).

m K allows to define C and C corresponding resp. to
(S,L) and (D, L).

m The Casimir operator C of pgl(n+ 1|m) = sl(n + 1|m)
on (SK, L) is equal to a(k,d)Id.
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Fabian Radoux
m If § is not critical, then there exists a unique projectively
equivariant quantization.

m Proof:
For every S € Sk, 31 § st. C(5) = a(k,8)S and s.t.
o(5)=S5.
Q(S)=S5.

If S €85 Q(LysS) = Lxs(Q(S)) because they are
eigenvectors of C of eigenvalue a(k, d) and because
their symbol is L,4S.



Equivariant Divergence operator:
quantization in
supergeometry n+m

Fabian Radoux le . S(é( — Sg(_l : S — Z(_l)ﬁl(dxj)ayjs
j=1




Equivariant Divergence operator:

quantization in

supergeometry n+m - .
Fabian Radoux le : Sg — Sé(—l . S — Z (_1)_)/1 I(dX’l )8)/]5
j=1

Theorem
If 6 is not critical, then the map Q : Ss — Dy, defined by

k
Q(S)(F) =" Cu, Quir(div'S)(F), forall S € Sk

r=0
is the unique sI(n + 1|m)-equivariant quantization if

H}Zl((n—m+1))\+k—j)
(n—m+2k—j—(n—m+1)d)

Ckr

)

Vr

WV

1.

r

= | .
r ] i
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Case m = n+ 1: pgl(n+ 1|n 4+ 1) not endowed with a
non degenerate bilinear symmetric invariant form.

m pgl(n+1jn+1)=psl(n+1n+1) ¢ RE.

m Killing form of psl(n+ 1|n+ 1) vanishes, but K defined
by

Fabian Radoux

K([A],[B]) = strAB

is a nondegenerate invariant supersymmetric even form,
we can then apply the Casimir operator method to
psl(n+1|n+1).

m If k#1, Q is given by the same formula as in the case
m%#n+1.
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Fabian Radoux | | H: k == 1,

@ : S = Q(S) = Qar(S + tdiv(S))

defines a psl(n + 1|n + 1)-equivariant quantization for
every t € R (vector fields in psl(n +1|n+ 1) are
divergence-free).

m The psl(n+ 1, n 4 1)-equivariant quantizations are
pgl(n + 1, n + 1)-equivariant (equivariance with respect
to the Euler vector field).

m @ does not depend on ¢ and \.



Orthosymplectically equivariant quantizations on
R"I2r (T. Leuther, P. Mathonet, R.)

Equivariant
quantization in

supergeometry u 05p(p+ 17q+ 1|2r)

Fabian Radoux

{A € gl(p+g+2]2r) : w(AU, V)+(~1)AVu(U, AV) = 0
for all U, vV € RPHa+22ry

where w is represented by the following matrix G:
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Orthosymplectic superalgebra of vector fields

Equivariant
quantization in

LA osp(p + 1, g + 1|2r) <— subalgebra of vector fields over

Fabian Radoux Rp+q‘2r )
m Q subset of RPT9+2 equal to
1 2y . 2
{(X ’.._’XPJqur ) Xp+q+ #O}

m H(Q): space of restrictions of homogeneous functions
over RPTIT212 o Q.

m Bijective correspondence
i CooPtal2r  H(Q)/H(Q) N Ik, where IF is the ideal
generated by the equation F of the supercone, namely

p+1 p+q+1

F(x,0) = Z Z (x')2—2x1xPta+242 29 o+

i=2 i=p+2
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supergeometry ] Homomorphism hp+q+2’2r:
Fabian Radoux Usp(p + 1, q + 1’2r) — Vect(Rp+q+2|2r)

mIf Acosp(p+1,q+1|2r),

p+a+2,2r(A)

H(Q)/H(Q) N I H(Q)/H(Q) N I

w(h (A
Coop+al2r (Poq+2.2:(4)) Coop+ql2r

m osp(p + 1, g + 1|2r)-equivariant quantization on
RPHal2r. quantization Q s.t. Lyno Q@ = Q o Ly for
every h € osp(p+ 1,9 + 1|2r).
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Construction of the quantization

Equivariant

quantization in m Killing-form of osp(p + 1, g + 1|2r): K given by

supergeometry

Fabian Radoux

-1
K: (A B)— TStr(AB).

m Corresponding Casimir operator C on Sé‘:
C= 5/(751(1 +RoT,

R:Sw— i(wo)S, T:S»—)wg\/s,

wo bilinear form on RP1412" represented by

Id,q O
o J )
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Eigenvalues of C on Sg‘: Ok 0 <5< LgJ

m If the superdimension p+ g — 2r is even and less than or
equal to 0, C is not diagonalizable !
m Multiplicity of ay s s as root of the minimal polynomial

of C is at most two.
m Quantization is defined on generalized eigenvectors of C.
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Fabian Radoux | | Case p + q — 2I’ # O:

m If § is not resonant, then there exists a unique
osp(p + 1, g + 1|2r)-equivariant quantization.

m Proof:
If C denotes the Casimir operator on D’/{,u, for every
Se ker(C — Ozk7,')51d)2, 3! g s.t. 3 S ker(C — ak,;,gld)2

and s.t. 04(5) = S.
Q(S) =S.
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Fabian Radoux m Case p+qg—2r #0:
m If § is not resonant, then there exists a unique

osp(p + 1, g + 1|2r)-equivariant quantization.
m Proof:

If C denotes the Casimir operator on D’/{,u, for every
Se ker(C — Ozk7,')51d)2, 3! g s.t. 3 S ker(C — ak,;,gld)2

and s.t. aAk(g) =S.

Q(S) =5S.

If S e ker(C — Oék7,',51d)2, Q(LXI.S) = L:Xh(Q(S))
because they belong to ker(C — ax,; sId)? and because
their symbol is Ly S.
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Fabian Radoux | | At the Order two:

Q = Qag o (Id + a1 Gg + apdiv + a3 + a4diV2),
p+q+2r L
G:Sf = ST:Sm > (1Y va,s,
j=1
p+q+2r
A Sé( — Sg: S Z wo(e,-,ej)ay,-ay,-s,
j=1
Go=GoT, Ny=AoT
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mCasept+qg—2r=0:

m Arbitrary order: We do not know if we have the
existence but the problem does not depend on density
weights

m Order two:

Q: 5= Q(S) = Qar(S+ %div(S))



Equivariant Case p + q— 2r — O:

quantization in
supergeometry

m Arbitrary order: We do not know if we have the
existence but the problem does not depend on density
weights

Fabian Radoux

m Order two:

Q: 5= Q(S) = Qar(S+ %div(S))

m Order one:
Q1:S— Q(S) = Qan(S + tdiv(S))

defines an osp(p + 1, g + 1|2r)-equivariant quantization
for every t € R (vector fields in osp(p + 1, g + 1|2r) are
divergence-free).
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Natural and projectively invariant quantizations on
supermanifolds (T. Leuther and R.)

Equivariant
quantization in

supergeometry m Problem setting: find Q(V) : S(M) — D(M) such that

Febian Radous Q is natural: ®*(Q(V)(S)) = Q(*V)(¢*S) for all
local diffeomorphism ¢
Q is projectively invariant: Q(V) = Q(V') if
Vi Y = VxY +a(X)Y + (~1)XVa(Y)X
m V : Vect(M) x Vect(M) — Vect(M) bilinear map such
that:

VY = fVxY and VxfY = X(f)Y + (-1)X fux Y

for all superfunction f.

m In a local basis (01, -, Ontm) of Vect(M) (M is of
superdimension (n|m)), r,.kjak = Vy,0;
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Thomas bundle (J. George)

Equivariant
quantization in
supergeometry

Fabian Radoux

m Thomas fiber bundle M: one adds an even coordinate
x% to each coordinate system (x!,--- ,x"t™) of M.

m Under a change of coordinates x(x), x° transforms into
x% + log |BerA|, where
A ox
I X
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1

k _ rk
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Thomas connection (J. George)

Equivariant

quantization in m V and V' are projectively equivalent iff I'Ig- =1

supergeometry

'k
i where

Fabian Radoux

1

k _ rk
I_I’.j_r’.j_n—erl

(0K (—1)% + 156k (—1)7+9)

isYf

m Thomas connection V on M:

- . " _5¢
k k

rU:nW Bu:rfw:n_ma_i_l?
n—m+1

NO ~ o~ ~ ~
Fo — (aqng. - ngingj> (—1)d(@+i+))

n—m-—1

m V depends on V in a natural and projectively invariant
way; moreover, LgV = 0 with £ = 9y
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Construction of the quantization

Equivariant
quantization in
supergeometry

m Bijective correspondance i between \-densities on M

Fabian Radoux ~
and A-equivariant functions on M:

i frsf, Legf =\

m Natural and projectively invariant lift of symbols: S — S
with LgS = 4S.

m Natural canonical quantization 7: if S is a symbol of
degree k, then

T(V)(S)(f) := (S, V*f)
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Fabian Radoux f

m Case n-m=1: Thomas connection not defined. For
m = 0, there is no quantization
— Conjecture of the non-existence of the quantization
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T(V)(S)

7(V)()(7)

Fabian Radoux f
i i1

22 QES)(A)

m Case n-m=1: Thomas connection not defined. For
m = 0, there is no quantization
— Conjecture of the non-existence of the quantization
m Case n-m=-1: Thomas connection not defined. But the
quantization exists at order two and
pgl(n + 1, n 4 1)-equivariant quantization on R""+1
exists
— Conjecture of the existence of the quantization



