Equivariant quantization in supergeometry

Fabian Radoux

8 December 2011
Introduction

- Classical observables: functions on a symplectic manifold \((\mathcal{M}, \omega)\).
Classical observables: functions on a symplectic manifold \((\mathcal{M}, \omega)\).

Example: \(\mathcal{M} = T^*M\) with coordinates \((x^i, p_i)\), kinetic energy: \(\frac{1}{2m} \sum_i p_i^2\).
Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω).
 Example: $\mathcal{M} = T^* M$ with coordinates (x^i, p_i), kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.
- Quantum observables: operators on a Hilbert space \mathcal{H}.
Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω). Example: $\mathcal{M} = T^*M$ with coordinates (x^i, p_i), kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.

- Quantum observables: operators on a Hilbert space \mathcal{H}. Example: $\mathcal{H} = L^2(T^*M)$.

Dirac problem: find a bijection $Q: \mathcal{C}^\infty(T^*M) \to L(\mathcal{H})$. First answer to the Dirac problem: prequantization Q. Reduction of \mathcal{H}, $L^2(T^*M)$ is replaced by $L^2(M)$. The observable f is quantizable if $Q(f)$ preserves $L^2(M)$. The set of quantizable observables: $\text{Pol} \leq 1(T^*M)$.

Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω).
 Example: $\mathcal{M} = T^*M$ with coordinates (x^i, p_i), kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.
- Quantum observables: operators on a Hilbert space \mathcal{H}.
 Example: $\mathcal{H} = \mathbb{L}^2(T^*M)$.
- Dirac problem: find a bijection $Q : C^\infty(T^*M) \rightarrow \mathcal{L}(\mathcal{H})$.
Introduction

- Classical observables: functions on a symplectic manifold \((\mathcal{M}, \omega)\).
 Example: \(\mathcal{M} = T^*M\) with coordinates \((x^i, p_i)\), kinetic energy: \(\frac{1}{2m} \sum_i p_i^2\).
- Quantum observables: operators on a Hilbert space \(\mathcal{H}\).
 Example: \(\mathcal{H} = L^2(T^*M)\).
- Dirac problem: find a bijection \(Q : C^\infty(T^*M) \rightarrow \mathcal{L}(\mathcal{H})\).
- First answer to the Dirac problem: prequantization \(Q\).
Introduction

- Classical observables: functions on a symplectic manifold \((\mathcal{M}, \omega)\).
 Example: \(\mathcal{M} = T^* M\) with coordinates \((x^i, p_i)\), kinetic energy: \(\frac{1}{2m} \sum_i p_i^2\).
- Quantum observables: operators on a Hilbert space \(\mathcal{H}\).
 Example: \(\mathcal{H} = L^2(T^* M)\).
- Dirac problem: find a bijection \(Q : C^\infty(T^* M) \rightarrow \mathcal{L}(\mathcal{H})\).
- First answer to the Dirac problem: prequantization \(Q\).
- Reduction of \(\mathcal{H}\), \(L^2(T^* M)\) is replaced by \(L^2(M)\).
Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω).
 Example: $\mathcal{M} = T^* M$ with coordinates (x^i, p_i), kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.

- Quantum observables: operators on a Hilbert space \mathcal{H}.
 Example: $\mathcal{H} = L^2(T^* M)$.

- Dirac problem: find a bijection $Q : C^\infty(T^* M) \to \mathcal{L}(\mathcal{H})$.

- First answer to the Dirac problem: prequantization Q.

- Reduction of \mathcal{H}, $L^2(T^* M)$ is replaced by $L^2(M)$.

- The observable f is quantizable if $Q(f)$ preserves $L^2(M)$.

Introduction

- Classical observables: functions on a symplectic manifold \((M, \omega)\).
 Example: \(M = T^*M\) with coordinates \((x^i, p_i)\), kinetic energy: \(\frac{1}{2m} \sum_i p_i^2\).

- Quantum observables: operators on a Hilbert space \(\mathcal{H}\).
 Example: \(\mathcal{H} = L^2(T^*M)\).

- Dirac problem: find a bijection \(Q : C^\infty(T^*M) \rightarrow \mathcal{L}(\mathcal{H})\).

- First answer to the Dirac problem: prequantization \(Q\).

- Reduction of \(\mathcal{H}\), \(L^2(T^*M)\) is replaced by \(L^2(M)\).

- The observable \(f\) is quantizable if \(Q(f)\) preserves \(L^2(M)\).

- The set of quantizable observables: \(\text{Pol}_{\leq 1}(T^*M)\).
Geometric quantization Q_G: $Q_G = Q|_{\text{Pol}_{\leq 1}(T^*M)}$,

$$Q_G(X^i(x)p_i + A(x)) = \frac{\hbar}{i} X^i(x) \partial_i + A(x).$$
Geometric quantization Q_G: $Q_G = Q|_{\text{Pol}_{\leq 1}(T^*M)}$,

$$Q_G(X^i(x)p_i + A(x)) = \frac{\hbar}{i} X^i(x)\partial_i + A(x).$$

Is it possible to extend the geometric quantization to $\text{Pol}(T^*M) \cong S(M)$?
Geometric quantization Q_G: $Q_G = Q|_{\text{Pol}_{\leq 1}(T^*M)}$,

$$Q_G(X^i(x)p_i + A(x)) = \frac{i}{\hbar} X^i(x)\partial_i + A(x).$$

Is it possible to extend the geometric quantization to $\text{Pol}(T^*M) \cong S(M)$?

Is this prolongation unique?
Equivariant quantization in supergeometry

Fabian Radoux

- **Geometric quantization** Q_G: $Q_G = Q|_{\text{Pol}_{\leq 1}(T^*M)}$,

$$Q_G(X^i(x)p_i + A(x)) = \frac{\hbar}{i}X^i(x)\partial_i + A(x).$$

- Is it possible to extend the geometric quantization to $\text{Pol}(T^*M) \cong S(M)$?
- Is this prolongation unique?
- Is it possible to reestablish the uniqueness?
There is no natural quantization: there is no linear bijection $Q : S(M) \rightarrow D(M)$ such that

$$\Phi^*(Q(S)) = Q(\Phi^*S)$$

for all local diffeomorphism Φ.
There is no natural quantization: there is no linear bijection $Q : S(M) \rightarrow D(M)$ such that

$$\Phi^*(Q(S)) = Q(\Phi^* S)$$

for all local diffeomorphism Φ.

For example: Q_{aff} defined by

$$Q_{\text{aff}}(S^{i_1 \cdots i_k} \partial_{i_1} \vee \cdots \vee \partial_{i_k}) = S^{i_1 \cdots i_k} \partial_{i_1} \cdots \partial_{i_k}$$

is not well-defined: if J denotes the Jacobian of the change of variables $\bar{x}(x)$,
There is no natural quantization: there is no linear bijection $Q : S(M) \rightarrow D(M)$ such that

$$\Phi^*(Q(S)) = Q(\Phi^* S)$$

for all local diffeomorphism Φ.

For example: Q_{aff} defined by

$$Q_{\text{aff}}(S^{i_1\cdots i_k} \partial_{i_1} \vee \cdots \vee \partial_{i_k}) = S^{i_1\cdots i_k} \partial_{i_1} \cdots \partial_{i_k}$$

is not well-defined: if J denotes the Jacobian of the change of variables $\bar{x}(x)$,

$$S^{i_1\cdots i_k} \partial_{i_1} \vee \cdots \vee \partial_{i_k} = S^{j_1\cdots j_k} J_{j_1}^{i_1} \cdots J_{j_k}^{i_k} \bar{\partial}_{i_1} \vee \cdots \vee \bar{\partial}_{i_k}$$

$$S^{i_1\cdots i_k} \partial_{i_1} \cdots \partial_{i_k} = S^{j_1\cdots j_k} J_{j_1}^{i_1} \cdots J_{j_k}^{i_k} \bar{\partial}_{i_1} \cdots \bar{\partial}_{i_k} + \cdots$$
Equivariant quantization: action of a Lie group G on M:
$\Phi : G \times M \to M$.

Projective case (P. Lecomte, V. Ovsienko):
$PGL(m+1, \mathbb{R})$ acts on $\mathbb{R}P^m$ locally diffeomorphic to \mathbb{R}^m.
$X \in sl(m+1, \mathbb{R}) \mapsto \text{vector field on } \mathbb{R}^m$.

$\exists Q : L_X Q(S) = Q(L_X S)$ for all $X \in sl(m+1, \mathbb{R})$.

Idea: to take G sufficiently small to have a quantization and sufficiently big to have the uniqueness.
Equivariant quantization: action of a Lie group G on M:
$\Phi : G \times M \rightarrow M$.

Equivariant quantization Q: linear bijection Q:
$S(M) \rightarrow D(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
$Q(\Phi^*_g S) = \Phi^*_g Q(S) \forall g \in G$.
Equivariant quantization: action of a Lie group G on M:
$\Phi : G \times M \to M$.

Equivariant quantization Q: linear bijection Q:
$S(M) \to D(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
$Q(\Phi_g^* S) = \Phi_g^* Q(S) \forall g \in G$.

$Q(L_h^* S) = L_h^* Q(S) \forall h \in \mathfrak{g}$, $h^*_x := \frac{d}{dt} \exp(-th)x|_{t=0}$
- **Equivariant quantization**: action of a Lie group G on M: $\Phi : G \times M \to M$.

- Equivariant quantization Q: linear bijection $Q : S(M) \to \mathcal{D}(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.

 $Q(\Phi^*_g S) = \Phi^*_g Q(S) \forall g \in G$.

- $Q(L_{h^*} S) = L_{h^*} Q(S) \forall h \in \mathfrak{g}$, $h^*_x := \frac{d}{dt} \exp(-th)x|_{t=0}$

- Idea: to take G sufficiently small to have a quantization and sufficiently big to have the uniqueness.
Equivariant quantization: action of a Lie group G on M:
$\Phi : G \times M \rightarrow M$.

Equivariant quantization Q: linear bijection Q: $S(M) \rightarrow D(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
$Q(\Phi^*_g S) = \Phi^*_g Q(S) \forall g \in G$.

$Q(L_{h^*} S) = L_{h^*} Q(S) \forall h \in \mathfrak{g}$, $h^*_x := \frac{d}{dt} \exp(-th)x|_{t=0}$

Idea: to take G sufficiently small to have a quantization and sufficiently big to have the uniqueness.

Projective case (P. Lecomte, V. Ovsienko):

$PGL(m + 1, \mathbb{R})$ acts on $\mathbb{R}P^m$
Equivariant quantization: action of a Lie group G on M:
$\Phi : G \times M \to M$.

Equivariant quantization Q: linear bijection Q:
$S(M) \to \mathcal{D}(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
$Q(\Phi^*_g S) = \Phi^*_g Q(S) \forall g \in G$.

$Q(L_{h^*} S) = L_{h^*} Q(S) \forall h \in \mathfrak{g}$, $h^*_x := \frac{d}{dt} \exp(-th)x|_{t=0}$

Idea: to take G sufficiently small to have a quantization and sufficiently big to have the uniqueness.

Projective case (P. Lecomte, V. Ovsienko):

$PGL(m+1, \mathbb{R})$ acts on \mathbb{RP}^m

\mathbb{RP}^m is locally diffeomorphic to \mathbb{R}^m
Equivariant quantization: action of a Lie group G on M:
$\Phi : G \times M \to M$.

Equivariant quantization Q: linear bijection Q: $S(M) \to D(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
$Q(\Phi^*_g S) = \Phi^*_g Q(S) \forall g \in G$.

$Q(L_h^* S) = L_h^* Q(S) \forall h \in g$, $h_x^* := \frac{d}{dt} \exp(-th)x|_{t=0}$

Idea: to take G sufficiently small to have a quantization and sufficiently big to have the uniqueness.

Projective case (P. Lecomte, V. Ovsienko):
$PGL(m + 1, \mathbb{R})$ acts on $\mathbb{R}P^m$
$\mathbb{R}P^m$ is locally diffeomorphic to \mathbb{R}^m
$X \in \mathfrak{sl}(m + 1, \mathbb{R}) \mapsto X^*$ vector field on \mathbb{R}^m.
- **Equivariant quantization**: action of a Lie group \(G \) on \(M \):
 \[\Phi : G \times M \to M. \]

- **Equivariant quantization** \(Q \): linear bijection \(Q : \mathcal{S}(M) \to \mathcal{D}(M) \) s.t. \(\sigma(Q(S)) = S \) and s.t.
 \[Q(\Phi_g^* S) = \Phi_g^* Q(S) \quad \forall g \in G. \]

- \(Q(L_h^* S) = L_h^* Q(S) \quad \forall h \in g, \quad h_x^* := \frac{d}{dt} \exp(-th)x|_{t=0} \)

- **Idea**: to take \(G \) sufficiently small to have a quantization and sufficiently big to have the uniqueness.

- **Projective case (P. Lecomte, V. Ovsienko)**:
 - \(PGL(m+1, \mathbb{R}) \) acts on \(\mathbb{R}P^m \)
 - \(\mathbb{R}P^m \) is locally diffeomorphic to \(\mathbb{R}^m \)
 - \(X \in \mathfrak{sl}(m+1, \mathbb{R}) \leftrightarrow X^* \) vector field on \(\mathbb{R}^m \).
 - \(\exists Q : L_X Q(S) = Q(L_X S) \quad \forall X \in \mathfrak{sl}(m+1, \mathbb{R}). \)
- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
- $SO(p + 1, q + 1)$ acts on $S^p \times S^q$.
Equivariant quantization in supergeometry

Conformal case (C. Duval, P. Lecomte, V. Ovsienko):

- $SO(p + 1, q + 1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q}.
- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
 - $SO(p + 1, q + 1)$ acts on $S^p \times S^q$.
 - $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q}.
 - $X \in so(p + 1, q + 1) \mapsto X^*$ vector field on \mathbb{R}^{p+q}.
Conformal case (C. Duval, P. Lecomte, V. Ovsienko):

- $SO(p + 1, q + 1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q}.
- $X \in \mathfrak{so}(p + 1, q + 1) \mapsto X^*$ vector field on \mathbb{R}^{p+q}.
- $\exists Q : L_X Q(S) = Q(L_X S) \forall X \in \mathfrak{so}(p + 1, q + 1)$.
- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
 - $SO(p + 1, q + 1)$ acts on $S^p \times S^q$.
 - $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q}.
 - $X \in \mathfrak{so}(p + 1, q + 1) \mapsto X^*$ vector field on \mathbb{R}^{p+q}.
 - $\exists Q : L_X Q(S) = Q(L_X S) \ \forall X \in \mathfrak{so}(p + 1, q + 1)$.
- Casimir operator method:
 - l: Semi-simple Lie algebra endowed with a non degenerate Killing form K.
Equivariant quantization in supergeometry
Fabian Radoux

- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
 - $SO(p + 1, q + 1)$ acts on $S^p \times S^q$.
 - $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q}.
 - $X \in so(p + 1, q + 1) \mapsto X^*$ vector field on \mathbb{R}^{p+q}.
 - $\exists Q : L_X Q(S) = Q(L_X S) \ \forall X \in so(p + 1, q + 1)$.
- Casimir operator method:
 - \mathfrak{l}: Semi-simple Lie algebra endowed with a non degenerate Killing form K.
 - (V, β): representation of \mathfrak{l}.
Conformal case (C. Duval, P. Lecomte, V. Ovsienko):

- $SO(p + 1, q + 1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q}.
- $X \in so(p + 1, q + 1) \mapsto X^*$ vector field on \mathbb{R}^{p+q}.
- $\exists Q : L_X Q(S) = Q(L_X S) \forall X \in so(p + 1, q + 1)$.

Casimir operator method:

- (V, β): representation of L.
- $(u_i : i \leq n)$: basis of L; $(u'_i : i \leq n)$: Killing-dual basis $(K(u_i, u'_j) = \delta_{i,j})$.
Conformal case (C. Duval, P. Lecomte, V. Ovsienko):

- $SO(p + 1, q + 1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q}.
- $X \in so(p + 1, q + 1) \mapsto X^*$ vector field on \mathbb{R}^{p+q}.
- $\exists Q : L_X Q(S) = Q(L_X S) \forall X \in so(p + 1, q + 1)$.

Casimir operator method:

- (V, β): representation of l.
- $(u_i : i \leq n)$: basis of l; $(u'_i : i \leq n)$: Killing-dual basis ($K(u_i, u'_j) = \delta_{i,j}$).

Casimir operator corresponding to (V, β):

$$\sum_{i=1}^{n} \beta(u'_i)\beta(u_i).$$
(\mathcal{S}(\mathbb{R}^m), L) and (\mathcal{D}(\mathbb{R}^m), \mathcal{L}) are representations of \mathfrak{g}.
(\mathcal{S}(\mathbb{R}^m), L) and (\mathcal{D}(\mathbb{R}^m), \mathcal{L}) are representations of \mathfrak{g}.

\(C\) and \(\check{C}\): Casimir operators of \(\mathfrak{g}\) on \(\mathcal{S}(M)\) and \(\mathcal{D}(M)\).

- $(S(\mathbb{R}^m), L)$ and $(D(\mathbb{R}^m), \mathcal{L})$ are representations of \mathfrak{g}.
- \mathcal{C} and \mathcal{C}: Casimir operators of \mathfrak{g} on $S(M)$ and $D(M)$.
- If $\mathcal{C}(S) = \alpha S$ and $\mathcal{L} \circ Q = Q \circ L$, then $\mathcal{C}(Q(S)) = \alpha Q(S)$.

(\mathcal{S}(\mathbb{R}^m), L) and (\mathcal{D}(\mathbb{R}^m), \mathcal{L}) are representations of \mathfrak{g}.

\(C \) and \(\mathcal{C} \): Casimir operators of \(\mathfrak{g} \) on \(\mathcal{S}(M) \) and \(\mathcal{D}(M) \).

If \(C(S) = \alpha S \) and \(\mathcal{L} \circ Q = Q \circ L \), then
\[
C(Q(S)) = \alpha Q(S).
\]

In non-critical situations: if \(C(S) = \alpha S \), then \(\exists! \) \(Q(S) \) s.t. \(C(Q(S)) = \alpha Q(S), \sigma(Q(S)) = S \).
(S(\mathbb{R}^m), L) and (D(\mathbb{R}^m), \mathcal{L}) are representations of \mathfrak{g}.

C and \mathcal{C}: Casimir operators of \mathfrak{g} on S(M) and D(M).

If \(C(S) = \alpha S\) and \(\mathcal{L} \circ Q = Q \circ \mathcal{L}\), then
\[C(Q(S)) = \alpha Q(S).\]

In non-critical situations: if \(C(S) = \alpha S\), then \(\exists! Q(S)\) s.t. \(C(Q(S)) = \alpha Q(S), \sigma(Q(S)) = S\).

In these conditions: \(\mathcal{L}(Q(S)) = Q(L(S))\) because:
\begin{itemize}
\item \((S(\mathbb{R}^m), L)\) and \((D(\mathbb{R}^m), \mathcal{L})\) are representations of \(\mathfrak{g}\).
\item \(C\) and \(\mathcal{C}\): Casimir operators of \(\mathfrak{g}\) on \(S(M)\) and \(D(M)\).
\item If \(C(S) = \alpha S\) and \(L \circ Q = Q \circ L\), then \(C(Q(S)) = \alpha Q(S)\).
\item In non-critical situations: if \(C(S) = \alpha S\), then \(\exists!\ Q(S)\) s.t. \(C(Q(S)) = \alpha Q(S), \sigma(Q(S)) = S\).
\item In these conditions: \(L(Q(S)) = Q(L(S))\) because:
 \item \(\sigma(L(Q(S))) = \sigma(Q(L(S))) = L(S)\);
\end{itemize}
(\(S(\mathbb{R}^m), L\)) and (\(D(\mathbb{R}^m), L\)) are representations of \(\mathfrak{g}\).

- \(C\) and \(\mathcal{C}\): Casimir operators of \(\mathfrak{g}\) on \(S(M)\) and \(D(M)\).

- If \(C(S) = \alpha S\) and \(L \circ Q = Q \circ L\), then \(C(Q(S)) = \alpha Q(S)\).

- In non-critical situations: if \(C(S) = \alpha S\), then \(\exists!\ Q(S)\) s.t. \(C(Q(S)) = \alpha Q(S),\ \sigma(Q(S)) = S\).

- In these conditions: \(L(Q(S)) = Q(L(S))\) because:
 - \(\sigma(L(Q(S))) = \sigma(Q(L(S))) = L(S)\);
 - \(C(Q(L(S))) = \alpha Q(L(S)),\ \mathcal{C}(L(Q(S))) = \alpha \mathcal{L}(Q(S))\).
Conjecture (P. Lecomte): $Q(\nabla) : S(M) \rightarrow \mathcal{D}(M)$:
Conjecture (P. Lecomte): \(Q(\nabla) : S(M) \to \mathcal{D}(M) \):

1. Natural: \(\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S) \) for all local diffeomorphism \(\Phi \)
Conjecture (P. Lecomte): \(Q(\nabla) : S(M) \rightarrow \mathcal{D}(M) : \)

1. **Natural:** \(\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S) \) for all local diffeomorphism \(\Phi \)

2. **Projectively invariant:** \(Q(\nabla) = Q(\nabla') \) if \(\nabla' = \nabla + \alpha \lor \text{id} \)
Conjecture (P. Lecomte): $Q(\nabla): S(M) \to D(M)$:

1. Natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ

2. Projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla' = \nabla + \alpha \nabla id$

$\varphi_t^* Q(\nabla_0)(S) = Q(\varphi_t^*\nabla_0)(\varphi_t^*S)$, ∇_0 flat connection of \mathbb{R}^m, φ_t flow of $X \in \mathfrak{sl}(m + 1, \mathbb{R})$
- **Conjecture (P. Lecomte)**: \(Q(\nabla) : \mathcal{S}(\mathcal{M}) \to \mathcal{D}(\mathcal{M}):\)
 1. **Natural**: \(\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S) \) for all local diffeomorphism \(\Phi \)
 2. **Projectively invariant**: \(Q(\nabla) = Q(\nabla') \) if \(\nabla' = \nabla + \alpha \vee id \)

- \(\varphi_t^* Q(\nabla_0)(S) = Q(\varphi_t^*\nabla_0)(\varphi_t^*S) \), \(\nabla_0 \) flat connection of \(\mathbb{R}^m \), \(\varphi_t \) flow of \(X \in \mathfrak{sl}(m+1, \mathbb{R}) \)

- \(\varphi_t^* Q(\nabla_0)(S) = Q(\nabla_0)(\varphi_t^*S) \) because \(\varphi_t^*\nabla_0 \sim \nabla_0 \) and \(Q \) projectively invariant
Conjecture (P. Lecomte): \(Q(\nabla) : S(M) \to \mathcal{D}(M) \):

1. Natural: \(\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S) \) for all local diffeomorphism \(\Phi \)

2. Projectively invariant: \(Q(\nabla) = Q(\nabla') \) if \(\nabla' = \nabla + \alpha \land id \)

- \(\varphi^*_t Q(\nabla_0)(S) = Q(\varphi^*_t \nabla_0)(\varphi^*_t S) \), \(\nabla_0 \) flat connection of \(\mathbb{R}^m \), \(\varphi_t \) flow of \(X \in \mathfrak{sl}(m+1, \mathbb{R}) \)

- \(\varphi^*_t Q(\nabla_0)(S) = Q(\nabla_0)(\varphi^*_t S) \) because \(\varphi^*_t \nabla_0 \sim \nabla_0 \) and \(Q \) projectively invariant

- \(L_X Q(\nabla_0)(S) = Q(\nabla_0)(L_X S) \) for all \(X \in \mathfrak{sl}(m+1, \mathbb{R}) \)
Projective case, differential operators acting between densities: M. Bordemann method:
Projective case, differential operators acting between densities: M. Bordemann method:

- $M \mapsto \tilde{M}$: fiber bundle of rank one over M (Thomas fiber bundle)
Projective case, differential operators acting between densities: M. Bordemann method:

- $M \mapsto \tilde{M}$: fiber bundle of rank one over M (Thomas fiber bundle)

- Connection ∇ on $M \mapsto$ Connection $\tilde{\nabla}$ on \tilde{M} associated with ∇ in a natural and projectively invariant way (Thomas connection)
Projective case, differential operators acting between densities: M. Bordemann method:

- $M \mapsto \tilde{M}$: fiber bundle of rank one over M (Thomas fiber bundle)
- Connection ∇ on $M \mapsto$ Connection $\tilde{\nabla}$ on \tilde{M} associated with ∇ in a natural and projectively invariant way (Thomas connection)
- Symbol S and density f on $M \mapsto$ Symbol \tilde{S} and density \tilde{f} on \tilde{M} associated with S and f in a natural and projectively invariant way
Projective case, differential operators acting between densities: M. Bordemann method:

- $M \mapsto \tilde{M}$: fiber bundle of rank one over M (Thomas fiber bundle)
- Connection ∇ on $M \mapsto$ Connection $\tilde{\nabla}$ on \tilde{M} associated with ∇ in a natural and projectively invariant way (Thomas connection)
- Symbol S and density f on $M \mapsto$ Symbol \tilde{S} and density \tilde{f} on \tilde{M} associated with S and f in a natural and projectively invariant way
- $\tilde{Q}(\tilde{\nabla})(\tilde{S})(\tilde{f}) = \tau(\tilde{\nabla})(\tilde{S})(\tilde{f})$ with τ a canonical natural quantization
Aims of the talk

Show how to superize and to solve in the super setting the following problems:

- Projectively equivariant quantization on \mathbb{R}^m
- Conformally equivariant quantization on \mathbb{R}^m
- Natural and projectively invariant quantization
Superfunction f on a supermanifold of dimension $(n|m)$:
locally, $f(x^1, \ldots, x^n) = \sum_{I \subseteq \{1, \ldots, m\}} f_I(x^1, \ldots, x^n) \theta^I$, $\theta^i \theta^j = -\theta^j \theta^i$.
Projectively equivariant quantization on $\mathbb{R}^{n|m}$ (P. Mathonet, R.)

- Superfunction f on a supermanifold of dimension $(n|m)$: locally, $f(x^1, \ldots, x^n) = \sum_{I \subseteq \{1, \ldots, m\}} f_I(x^1, \ldots, x^n) \theta^I$, $\theta^i \theta^i = -\theta^i \theta^i$.

- Super vector field: superderivation of the superalgebra of superfunctions.
Superfunction f on a supermanifold of dimension $(n|m)$:
locally, $f(x^1, \ldots, x^n) = \sum_{I \subseteq \{1, \ldots, m\}} f_I(x^1, \ldots, x^n) \theta^I$, $\theta^i \theta^j = -\theta^j \theta^i$.

Super vector field: superderivation of the superalgebra of superfunctions.

Locally, a λ-density is expressed formally as $f |Dx|^\lambda$. Under a change of coordinates $\bar{x}(x)$, $|Dx|^\lambda$ is multiplied by $|\text{Ber}A|^\lambda$, with $A^i_j = \frac{\partial \bar{x}^j}{\partial x^i}$.
Projectively equivariant quantization on $\mathbb{R}^{n|m}$ (P. Mathonet, R.)

- Superfunction f on a supermanifold of dimension $(n|m)$: locally, $f(x^1, \ldots, x^n) = \sum_{I \subseteq \{1, \ldots, m\}} f_I(x^1, \ldots, x^n) \theta^I$, $\theta^i \theta^j = -\theta^j \theta^i$.

- Super vector field: superderivation of the superalgebra of superfunctions.

- Locally, a λ-density is expressed formally as $f|Dx|^\lambda$. Under a change of coordinates $\tilde{x}(x)$, $|Dx|^\lambda$ is multiplied by $|\text{Ber}A|^\lambda$, with $A^i_j = \frac{\partial \tilde{x}^j}{\partial x^i}$. Moreover,

$$L_X(f|Dx|^\lambda) = (X(f) + \lambda \text{div}(X)f)|Dx|^\lambda,$$

where

$$\text{div}(X) = \sum_{i=1}^{n+m} (-1)^{\tilde{y}_i} X_i \partial_{y_i} X^i.$$
Differential operator $D \in \mathcal{D}^k_{\lambda, \mu}$:

$$D = \sum_{|\alpha| \leq k} D_\alpha \partial_{\chi^1}^{\alpha_1} \cdots \partial_{\chi^n}^{\alpha_n} \partial_{\theta^1}^{\alpha_{n+1}} \cdots \partial_{\theta^m}^{\alpha_{n+m}},$$

where D_α are local δ-densities ($\delta = \mu - \lambda$).
Differential operator $D \in \mathcal{D}^k_{\lambda,\mu}$:

$$D = \sum_{|\alpha| \leq k} D_{\alpha} \partial^{\alpha_1}_{x^1} \ldots \partial^{\alpha_n}_{x^n} \partial^{\alpha_{n+1}}_{\theta^1} \ldots \partial^{\alpha_{n+m}}_{\theta^m},$$

where D_{α} are local δ-densities ($\delta = \mu - \lambda$).

$L_X D = L_X \circ D - (-1)^{\bar{X} \bar{D}} D \circ L_X.$
- Differential operator $D \in \mathcal{D}_{\lambda, \mu}^k$:

$$D = \sum_{|\alpha| \leq k} D_\alpha \partial_{x^1}^{\alpha_1} \ldots \partial_{x^n}^{\alpha_n} \partial_{\theta^1}^{\alpha_{n+1}} \ldots \partial_{\theta^m}^{\alpha_{n+m}},$$

where D_α are local δ-densities $(\delta = \mu - \lambda)$.

- $\mathcal{L}_X D = \mathcal{L}_X \circ D - (-1)^{\bar{X} \bar{D}} D \circ \mathcal{L}_X$.

- Space of symbols isomorphic to the graded space associated with $\mathcal{D}_{\lambda, \mu}$, isomorphism induced by:

$$\sigma_k : \mathcal{D}^k \rightarrow S^k : D \mapsto \sum_{|\alpha| = k} D_\alpha \otimes \partial_1^{\alpha_1} \vee \ldots \vee \partial_{n+m}^{\alpha_{n+m}}.$$
■ **Differential operator** $D \in \mathcal{D}^k_{\lambda, \mu}$:

$$D = \sum_{|\alpha| \leq k} D_\alpha \partial_{x^1}^{\alpha_1} \ldots \partial_{x^n}^{\alpha_n} \partial_{\theta^1}^{\alpha_{n+1}} \ldots \partial_{\theta^m}^{\alpha_{n+m}},$$

where D_α are local δ-densities ($\delta = \mu - \lambda$).

■ $\mathcal{L}_X D = \mathcal{L}_X \circ D - (-1)^{\bar{X} \bar{D}} D \circ \mathcal{L}_X$.

■ **Space of symbols isomorphic to the graded space associated with** $\mathcal{D}_{\lambda, \mu}$, isomorphism induced by:

$$\sigma_k : \mathcal{D}^k \to S^k : D \mapsto \sum_{|\alpha| = k} D_\alpha \otimes \partial_1^{\alpha_1} \vee \ldots \vee \partial_{n+m}^{\alpha_{n+m}}.$$

■ The Lie derivative of a symbol is obtained by extending the Lie derivative of super vector fields.
Differential operator $D \in \mathcal{D}_{\lambda,\mu}^k$:

$$D = \sum_{|\alpha| \leq k} D_\alpha \partial^{\alpha_1}_{x^1} \cdots \partial^{\alpha_n}_{x^n} \partial^{\alpha_{n+1}}_{\theta_1} \cdots \partial^{\alpha_{n+m}}_{\theta_m},$$

where D_α are local δ-densities ($\delta = \mu - \lambda$).

- $\mathcal{L}_X D = \mathcal{L}_X \circ D - (-1)^\mathcal{D} D \circ \mathcal{L}_X$.

- Space of symbols isomorphic to the graded space associated with $\mathcal{D}_{\lambda,\mu}$, isomorphism induced by:

$$\sigma_k : \mathcal{D}^k \to S^k : D \mapsto \sum_{|\alpha| = k} D_\alpha \otimes \partial^{\alpha_1}_{1} \vee \cdots \vee \partial^{\alpha_{n+m}}_{n+m}.$$

- The Lie derivative of a symbol is obtained by extending the Lie derivative of super vector fields.

- Quantization: linear bijection $Q : S_\delta \to \mathcal{D}_{\lambda,\mu}$ s.t. $\sigma_k(Q(S)) = S$ for all $S \in S^k_\delta$.

Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

- $\mathfrak{pgl}(n + 1|m) = \mathfrak{gl}(n + 1|m)/\mathbb{R}\text{Id} \leftrightarrow \text{subalgebra of vector fields over } \mathbb{R}^{n|m}$.
Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

- $\mathfrak{pgl}(n+1|m) = \mathfrak{gl}(n+1|m)/\mathbb{R}\text{Id} \hookrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.
- Ω subset of \mathbb{R}^{n+1} equal to $\{(x^0, \ldots, x^n) : x^0 > 0\}$.
Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

- $\mathfrak{pgl}(n + 1|m) = \mathfrak{gl}(n + 1|m)/\mathbb{R}\text{Id} \leftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.
- Ω subset of \mathbb{R}^{n+1} equal to $\{(x^0, \ldots, x^n) : x^0 > 0\}$.
- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{n+1|m}$ to Ω.
Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

- $\mathfrak{pgl}(n + 1|m) = \mathfrak{gl}(n + 1|m)/\mathbb{R}\text{Id} \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.
- Ω subset of \mathbb{R}^{n+1} equal to $\{(x^0, \ldots, x^n) : x^0 > 0\}$.
- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{n+1|m}$ to Ω.
- Bijective correspondence $i : C^\infty n|m \rightarrow H(\Omega)$.
Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

- $\mathfrak{pgl}(n + 1|m) = \mathfrak{gl}(n + 1|m)/\mathbb{R}\text{Id} \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.
- Ω subset of \mathbb{R}^{n+1} equal to $\{(x^0, \ldots, x^n) : x^0 > 0\}$.
- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{n+1|m}$ to Ω.
- Bijective correspondence $i : C^\infty n|m \rightarrow H(\Omega)$.
- Homomorphism $h_{n+1,m} : \mathfrak{gl}(n + 1|m) \rightarrow \text{Vect}(\mathbb{R}^{n+1|m})$.
Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

- $\mathfrak{pgl}(n + 1|m) = \mathfrak{gl}(n + 1|m)/\mathbb{R}\text{Id} \leftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.
- Ω subset of \mathbb{R}^{n+1} equal to $\{(x^0, \ldots, x^n) : x^0 > 0\}$.
- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{n+1|m}$ to Ω.
- Bijective correspondence $i : C^\infty n|m \to H(\Omega)$.
- Homomorphism $h_{n+1,m} : \mathfrak{gl}(n + 1|m) \to \text{Vect}(\mathbb{R}^{n+1|m})$.
- If $A \in \mathfrak{gl}(n + 1|m)$,

\[
\begin{array}{ccc}
H(\Omega) & \xrightarrow{h_{n+1,m}(A)} & H(\Omega) \\
\uparrow i & & \downarrow i^{-1} \\
C^\infty n|m & \xrightarrow{\pi(h_{n+1,m}(A))} & C^\infty n|m
\end{array}
\]
\(\pi \circ h_{n+1,m}(\text{Id}) = 0, \) thus \(\pi \circ h_{n+1,m} \) induces a homomorphism from \(\mathfrak{pgl}(n+1|m) \) to \(\text{Vect}(\mathbb{R}^{n|m}) \).
\[\pi \circ h_{n+1,m}(\text{Id}) = 0, \text{ thus } \pi \circ h_{n+1,m} \text{ induces a homomorphism from } \mathfrak{pgl}(n+1|m) \text{ to } \text{Vect}(\mathbb{R}^{n|m}). \]

\textbf{Projectively equivariant quantization on } \mathbb{R}^{n|m}:

quantization \(Q \) s.t. \(\mathcal{L}_{X_h} \circ Q = Q \circ \mathcal{L}_{X_h} \) for every \(h \in \mathfrak{pgl}(n+1|m) \).
Construction of the quantization

- Casimir operators:
Casimir operators:

\(\mathfrak{l} \): Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form \(K \).
Construction of the quantization

- **Casimir operators:**
- \(\mathfrak{l} \): Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form \(K \).
- \((V, \beta)\): representation of \(\mathfrak{l} \).
Construction of the quantization

- **Casimir operators:**
- \(\mathfrak{l} \): Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form \(K \).
- \((V, \beta)\): representation of \(\mathfrak{l} \).
- \((u_i : i \leq n)\): homogeneous basis of \(\mathfrak{l} \); \((u'_i : i \leq n)\): \(K \)-dual basis \((K(u_i, u'_j) = \delta_{i,j}) \).
Construction of the quantization

- **Casimir operators:**

- **\(\mathfrak{l} \):** Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form \(K \).

- **\((\mathcal{V}, \beta)\):** representation of \(\mathfrak{l} \).

- **\((u_i : i \leq n)\):** homogeneous basis of \(\mathfrak{l} \); **\((u'_i : i \leq n)\):** \(K \)-dual basis \((K(u_i, u'_j) = \delta_{i,j}) \).

- **Casimir operator of \((\mathcal{V}, \beta)\):**

\[
\sum_{i=1}^{n} (-1)^{\bar{u}_i} \beta(u_i) \beta(u'_i) = \sum_{i=1}^{n} \beta(u'_i) \beta(u_i).
\]
If $m \neq n + 1$, $\text{pgl}(n + 1|m) \cong \text{sl}(n + 1|m)$.
If $m \neq n + 1$, \(\mathfrak{pgl}(n + 1|m) \cong \mathfrak{sl}(n + 1|m) \).

Killing form of \(\mathfrak{sl}(n + 1|m) \):

\[
K(A, B) = \text{str}(\text{ad}(A)\text{ad}(B)) = 2(n + 1 - m)\text{str}(AB).
\]
If \(m \neq n + 1 \), \(\mathfrak{pgl}(n + 1|m) \cong \mathfrak{sl}(n + 1|m) \).

Killing form of \(\mathfrak{sl}(n + 1|m) \):

\[
K(A, B) = \text{str}(\text{ad}(A)\text{ad}(B)) = 2(n + 1 - m)\text{str}(AB).
\]

\(K \) allows to define \(C \) and \(\mathcal{C} \) corresponding resp. to \((S, L)\) and \((\mathcal{D}, \mathcal{L})\).
If \(m \neq n + 1 \), \(\mathfrak{pgl}(n + 1|m) \cong \mathfrak{sl}(n + 1|m) \).

Killing form of \(\mathfrak{sl}(n + 1|m) \):

\[
K(A, B) = \text{str}(\text{ad}(A)\text{ad}(B)) = 2(n + 1 - m) \text{str}(AB).
\]

\(K \) allows to define \(C \) and \(\mathcal{C} \) corresponding resp. to \((S, L)\) and \((\mathcal{D}, \mathcal{L})\).

The Casimir operator \(C \) of \(\mathfrak{pgl}(n + 1|m) \cong \mathfrak{sl}(n + 1|m) \) on \((S^k_\delta, L)\) is equal to \(\alpha(k, \delta)\text{Id} \).
If δ is not critical, then there exists a unique projectively equivariant quantization.
- If δ is not critical, then there exists a unique projectively equivariant quantization.

Proof:

1. For every $S \in S^k_\delta$, $\exists \hat{S}$ s.t. $C(\hat{S}) = \alpha(k, \delta)\hat{S}$ and s.t. $\sigma(\hat{S}) = S$.
If δ is not critical, then there exists a unique projectively equivariant quantization.

Proof:

1. For every $S \in S^k_\delta$, $\exists! \; \hat{S}$ s.t. $C(\hat{S}) = \alpha(k, \delta)\hat{S}$ and s.t. $\sigma(\hat{S}) = S$.

2. $Q(S) := \hat{S}$.
If δ is not critical, then there exists a unique projectively equivariant quantization.

Proof:

1. For every $S \in S_{\delta}^{k}$, $\exists! \hat{S}$ s.t. $C(\hat{S}) = \alpha(k, \delta)\hat{S}$ and s.t. $\sigma(\hat{S}) = S$.
2. $Q(S) := \hat{S}$.
3. If $S \in S_{\delta}^{k}$, $Q(L_{Xh}S) = L_{Xh}(Q(S))$ because they are eigenvectors of C of eigenvalue $\alpha(k, \delta)$ and because their symbol is $L_{Xh}S$.
Divergence operator:

\[
\text{div} : S_\delta^k \to S_\delta^{k-1} : S \mapsto \sum_{j=1}^{n+m} (-1)^{\tilde{y}^j} i(dx^j) \partial_{y^j} S.
\]
Divergence operator:

$$\text{div} : \mathcal{S}_\delta^k \to \mathcal{S}_\delta^{k-1} : S \mapsto \sum_{j=1}^{n+m} (-1)^{\tilde{y}^j} i(dx^j) \partial_{\tilde{y}^j} S.$$

Theorem

If δ is not critical, then the map $Q : \mathcal{S}_\delta \to \mathcal{D}_{\lambda,\mu}$ defined by

$$Q(S)(f) = \sum_{r=0}^{k} C_{k,r} Q_{\text{Aff}}(\text{div}^r S)(f), \quad \text{for all } S \in \mathcal{S}_\delta^k$$

is the unique $\mathfrak{sl}(n+1|m)$-equivariant quantization if

$$C_{k,r} = \frac{\prod_{j=1}^{r}((n-m+1)\lambda + k-j)}{r! \prod_{j=1}^{r}(n-m+2k-j-(n-m+1)\delta)} \quad \forall r \geq 1.$$
Case $m = n + 1$: $\text{pgl}(n + 1|n + 1)$ not endowed with a non-degenerate bilinear symmetric invariant form.
Case $m = n + 1$: $\mathfrak{pgl}(n + 1|n + 1)$ not endowed with a non degenerate bilinear symmetric invariant form.

$\mathfrak{pgl}(n + 1|n + 1) = \mathfrak{psl}(n + 1|n + 1) \oplus \mathbb{R}E$.
Case $m = n + 1$: $\mathfrak{pgl}(n + 1|n + 1)$ not endowed with a non-degenerate bilinear symmetric invariant form.

$\mathfrak{pgl}(n + 1|n + 1) = \mathfrak{psl}(n + 1|n + 1) \oplus \mathbb{R} \mathcal{E}$.

Killing form of $\mathfrak{psl}(n + 1|n + 1)$ vanishes, but K defined by

$$K([A], [B]) = \text{str} AB$$

is a nondegenerate invariant supersymmetric even form, we can then apply the Casimir operator method to $\mathfrak{psl}(n + 1|n + 1)$.
Case $m = n + 1$: $\mathfrak{pgl}(n + 1|n + 1)$ not endowed with a non degenerate bilinear symmetric invariant form.

$\mathfrak{pgl}(n + 1|n + 1) = \mathfrak{psl}(n + 1|n + 1) \oplus \mathbb{RE}$.

Killing form of $\mathfrak{psl}(n + 1|n + 1)$ vanishes, but K defined by

$$K([A], [B]) = \text{str}AB$$

is a nondegenerate invariant supersymmetric even form, we can then apply the Casimir operator method to $\mathfrak{psl}(n + 1|n + 1)$.

If $k \neq 1$, Q is given by the same formula as in the case $m \neq n + 1$.
If $k = 1$,

$$Q_1 : S \mapsto Q(S) = Q_{\text{Aff}}(S + t \text{div}(S))$$

defines a $\mathfrak{psl}(n + 1|n + 1)$-equivariant quantization for every $t \in \mathbb{R}$ (vector fields in $\mathfrak{psl}(n + 1|n + 1)$ are divergence-free).
If $k = 1$,

$$Q_1 : S \mapsto Q(S) = Q_{\text{Aff}}(S + t \operatorname{div}(S))$$

defines a $\mathfrak{psl}(n + 1|n + 1)$-equivariant quantization for every $t \in \mathbb{R}$ (vector fields in $\mathfrak{psl}(n + 1|n + 1)$ are divergence-free).

The $\mathfrak{psl}(n + 1, n + 1)$-equivariant quantizations are $\mathfrak{pgl}(n + 1, n + 1)$-equivariant (equivariance with respect to the Euler vector field).
If \(k = 1 \),

\[
Q_1 : S \mapsto Q(S) = Q_{\text{Aff}}(S + t \text{div}(S))
\]

defines a \(\mathfrak{psl}(n + 1|n + 1) \)-equivariant quantization for every \(t \in \mathbb{R} \) (vector fields in \(\mathfrak{psl}(n + 1|n + 1) \) are divergence-free).

The \(\mathfrak{psl}(n + 1, n + 1) \)-equivariant quantizations are \(\mathfrak{pgl}(n + 1, n + 1) \)-equivariant (equivariance with respect to the Euler vector field).

\(Q \) does not depend on \(\delta \) and \(\lambda \).
Orthosymplectically equivariant quantizations on $\mathbb{R}^{n|2r}$ (T. Leuther, P. Mathonet, R.)

- $\mathfrak{osp}(p + 1, q + 1|2r)$:

$$\{ A \in \mathfrak{gl}(p+q+2|2r) : \omega(AU, V) + (-1)^{\tilde{A}\tilde{U}} \omega(U, AV) = 0 \text{ for all } U, V \in \mathbb{R}^{p+q+2|2r} \},$$

where ω is represented by the following matrix G:

$$G = \begin{pmatrix} S & 0 \\ 0 & J \end{pmatrix}, \quad S = \begin{pmatrix} 0 & 0 & -1 \\ 0 & \text{Id}_{p,q} & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & \text{Id}_r \\ -\text{Id}_r & 0 \end{pmatrix}, \quad \text{Id}_{p,q} = \begin{pmatrix} \text{Id}_p & 0 \\ 0 & -\text{Id}_q \end{pmatrix}.$$
Equivariant quantization in supergeometry

Fabian Radoux

Orthosymplectic superalgebra of vector fields

\[\text{osp}(p + 1, q + 1|2r) \leftrightarrow \text{subalgebra of vector fields over } \mathbb{R}^{p+q|2r}. \]
Orthosymplectic superalgebra of vector fields

- $\mathfrak{osp}(p + 1, q + 1|2r) \longleftrightarrow$ subalgebra of vector fields over \mathbb{R}^{p+q+2r}.

- Ω subset of \mathbb{R}^{p+q+2} equal to
 $\{(x^1, \ldots, x^{p+q+2}) : x^{p+q+2} \neq 0\}$.
Orthosymplectic superalgebra of vector fields

- $\mathfrak{osp}(p + 1, q + 1|2r) \leftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{p+q+2|r}$.

- Ω subset of \mathbb{R}^{p+q+2} equal to
 \[
 \{(x^1, \ldots, x^{p+q+2}) : x^{p+q+2} \neq 0\}.
 \]

- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{p+q+2|2r}$ to Ω.
Orthosymplectic superalgebra of vector fields

- $\mathfrak{osp}(p+1, q+1|2r) \leftrightarrow$ subalgebra of vector fields over \mathbb{R}^{p+q+2r}.

- Ω subset of \mathbb{R}^{p+q+2} equal to
 \[\{(x^1, \ldots, x^{p+q+2}) : x^{p+q+2} \neq 0\} \].

- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{p+q+2|2r}$ to Ω.

- Bijective correspondence
 \[i : C^\infty^{p+q|2r} \to H(\Omega)/H(\Omega) \cap I_F, \text{ where } I_F \text{ is the ideal} \]
 generated by the equation F of the supercone, namely

\[
F(x, \theta) = \sum_{i=2}^{p+1} (x^i)^2 - \sum_{i=p+2}^{p+q+1} (x^i)^2 - 2x^1 x^{p+q+2} + 2 \sum_{i=1}^{r} \theta^i \theta^{i+r}.
\]
Homomorphism $h_{p+q+2,2r}: \mathfrak{osp}(p + 1, q + 1|2r) \rightarrow \text{Vect}(\mathbb{R}^{p+q+2|2r})$.
Equivariant quantization in supergeometry

Fabian Radoux

- Homomorphism $h_{p+q+2,2r}$:
 $\text{osp}(p + 1, q + 1|2r) \rightarrow \text{Vect}(\mathbb{R}^{p+q+2|2r})$.
- If $A \in \text{osp}(p + 1, q + 1|2r)$,

\[
\begin{array}{ccc}
H(\Omega)/H(\Omega) \cap I_F & \xrightarrow{h_{p+q+2,2r}(A)} & H(\Omega)/H(\Omega) \cap I_F \\
\uparrow & & \downarrow i^{-1} \\
C^\infty p+q|2r & \xrightarrow{\pi(h_{p+q+2,2r}(A))} & C^\infty p+q|2r \\
\end{array}
\]
- Homomorphism $h_{p+q+2,2r}$:
 $\mathfrak{osp}(p+1, q+1|2r) \rightarrow \text{Vect}(\mathbb{R}^{p+q+2|2r})$.
- If $A \in \mathfrak{osp}(p+1, q+1|2r)$,

\[
\begin{array}{cccc}
 H(\Omega)/H(\Omega) \cap I_F & \xrightarrow{h_{p+q+2,2r}(A)} & H(\Omega)/H(\Omega) \cap I_F \\
 \uparrow i & & \downarrow i^{-1} \\
 C^\infty_{p+q|2r} & \xrightarrow{\pi(h_{p+q+2,2r}(A))} & C^\infty_{p+q|2r}
\end{array}
\]

- $\mathfrak{osp}(p+1, q+1|2r)$-equivariant quantization on $\mathbb{R}^{p+q|2r}$: quantization Q s.t. $\mathcal{L}_{X_h} \circ Q = Q \circ L_{X_h}$ for every $h \in \mathfrak{osp}(p+1, q+1|2r)$.

- Equivariant quantization in supergeometry
- Homomorphism
- $\mathfrak{osp}(p+1, q+1|2r) \rightarrow \text{Vect}(\mathbb{R}^{p+q+2|2r})$.
- If $A \in \mathfrak{osp}(p+1, q+1|2r)$,
Construction of the quantization

- Killing-form of $osp(p + 1, q + 1|2r)$: K given by

$$K : (A, B) \mapsto -\frac{1}{2} \text{str}(AB).$$
Construction of the quantization

- Killing-form of $\mathfrak{osp}(p + 1, q + 1|2r)$: K given by

$$K : (A, B) \mapsto -\frac{1}{2} \text{str}(AB).$$

- Corresponding Casimir operator C on S^k_{δ}:

$$C = \beta_{k,\delta} \text{Id} + R \circ T,$$

where

$$R : S \mapsto i(\omega_0)S, \quad T : S \mapsto \omega_0^\# \lor S,$$

ω_0 bilinear form on $\mathbb{R}^{p+q|2r}$ represented by

$$
\begin{pmatrix}
\text{Id}_{p,q} & 0 \\
0 & J
\end{pmatrix}.
$$
Equivariant quantization in supergeometry

Fabian Radoux

- Eigenvalues of C on S^k_δ: $\alpha_{k,s,\delta}$, $0 \leq s \leq \left\lfloor \frac{k}{2} \right\rfloor$
Equivariant quantization in supergeometry

Fabian Radoux

- Eigenvalues of C on S^k_δ: $\alpha_{k,s,\delta}$, $0 \leq s \leq \lfloor \frac{k}{2} \rfloor$
- If the superdimension $p + q - 2r$ is even and less than or equal to 0, C is not diagonalizable!
Equivariant quantization in supergeometry

Fabian Radoux

- Eigenvalues of C on S^k_δ: $\alpha_{k,s,\delta}$, $0 \leq s \leq \lfloor \frac{k}{2} \rfloor$
- If the superdimension $p + q - 2r$ is even and less than or equal to 0, C is not diagonalizable!
- Multiplicity of $\alpha_{k,s,\delta}$ as root of the minimal polynomial of C is at most two.
- Eigenvalues of C on S^k_δ: $\alpha_{k,s,\delta}$, $0 \leq s \leq \left\lfloor \frac{k}{2} \right\rfloor$
- If the superdimension $p + q - 2r$ is even and less than or equal to 0, C is not diagonalizable!
- Multiplicity of $\alpha_{k,s,\delta}$ as root of the minimal polynomial of C is at most two.
- Quantization is defined on generalized eigenvectors of C.
Case $p + q - 2r \neq 0$:

If δ is not resonant, then there exists a unique $osp(p + 1, q + 1|2r)$-equivariant quantization.
Case $p + q - 2r \neq 0$:

- If δ is not resonant, then there exists a unique $\mathfrak{osp}(p + 1, q + 1|2r)$-equivariant quantization.

Proof:

1. If C denotes the Casimir operator on $D_{\lambda, \mu}^k$, for every $S \in \ker(C - \alpha_{k,i,\delta}\text{Id})^2$, $\exists! \hat{S}$ s.t. $\hat{S} \in \ker(C - \alpha_{k,i,\delta}\text{Id})^2$ and s.t. $\sigma_k(\hat{S}) = S$.
- Case $p + q - 2r \neq 0$:

- If δ is not resonant, then there exists a unique $\mathfrak{osp}(p + 1, q + 1|2r)$-equivariant quantization.

Proof:

1. If C denotes the Casimir operator on $D^k_{\lambda, \mu}$, for every $S \in \ker(C - \alpha_{k,i}, \delta \text{Id})^2$, $\exists! \hat{S}$ s.t. $\hat{S} \in \ker(C - \alpha_{k,i}, \delta \text{Id})^2$ and s.t. $\sigma_k(\hat{S}) = S$.

2. $Q(S) := \hat{S}$.
Case $p + q - 2r \neq 0$:

- If δ is not resonant, then there exists a unique $osp(p + 1, q + 1|2r)$-equivariant quantization.

Proof:

1. If C denotes the Casimir operator on $D_{\lambda,\mu}^k$, for every $S \in \ker(C - \alpha_{k,i,\delta \Id})^2$, $\exists! \hat{\tilde{S}}$ s.t. $\hat{\tilde{S}} \in \ker(C - \alpha_{k,i,\delta \Id})^2$ and s.t. $\sigma_k(\hat{\tilde{S}}) = S$.
2. $Q(S) := \hat{\tilde{S}}$.
3. If $S \in \ker(C - \alpha_{k,i,\delta \Id})^2$, $Q(L_{X^h} S) = L_{X^h}(Q(S))$ because they belong to $\ker(C - \alpha_{k,i,\delta \Id})^2$ and because their symbol is $L_{X^h} S$.
At the order two:

\[Q = Q_{\text{Aff}} \circ (\text{Id} + a_1 G_0 + a_2 \text{div} + a_3 \Delta_0 + a_4 \text{div}^2), \]

\[G: S^k_\delta \to S^{k+1}_\delta : S \mapsto \sum_{j=1}^{p+q+2r} (-1)^j \varepsilon^{j\#} \vee \partial_{y_j} S, \]

\[\Delta: S^k_\delta \to S^k_\delta : S \mapsto \sum_{j=1}^{p+q+2r} \omega_0(e_i, e_j) \partial_{y_j} \partial_{y_i} S, \]

\[G_0 = G \circ T, \quad \Delta_0 = \Delta \circ T \]
Case $p + q - 2r = 0$:

Arbitrary order: We do not know if we have the existence but the problem does not depend on density weights.
- Case $p + q - 2r = 0$:
- Arbitrary order: We do not know if we have the existence but the problem does not depend on density weights
- Order two:

\[Q_2 : S \mapsto Q(S) = Q_{Aff}(S + \frac{1}{2} \text{div}(S)) \]
Case $p + q - 2r = 0$:

- Arbitrary order: We do not know if we have the existence but the problem does not depend on density weights

- Order two:

 $$Q_2 : S \mapsto Q(S) = Q_{\text{Aff}}(S + \frac{1}{2} \text{div}(S))$$

- Order one:

 $$Q_1 : S \mapsto Q(S) = Q_{\text{Aff}}(S + t \text{div}(S))$$

defines an $\mathfrak{osp}(p + 1, q + 1|2r)$-equivariant quantization for every $t \in \mathbb{R}$ (vector fields in $\mathfrak{osp}(p + 1, q + 1|2r)$ are divergence-free).
Problem setting: find $Q(\nabla) : S(M) \rightarrow D(M)$ such that
Natural and projectively invariant quantizations on supermanifolds (T. Leuther and R.)

- Problem setting: find $Q(\nabla) : S(M) \to \mathcal{D}(M)$ such that
 1. Q is natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^* S)$ for all local diffeomorphism Φ
Problem setting: find $Q(\nabla) : S(M) \to \mathcal{D}(M)$ such that

1. Q is natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ
2. Q is projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla'_X Y = \nabla_X Y + \alpha(X)Y + (-1)^{\bar{x}\bar{y}} \alpha(Y)X$
Problem setting: find $Q(\nabla) : S(M) \to \mathcal{D}(M)$ such that

1. Q is natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^* S)$ for all local diffeomorphism Φ

2. Q is projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla'_\chi Y = \nabla_\chi Y + \alpha(X)Y + (-1)^{\bar{x}\bar{y}} \alpha(Y)X$

$\nabla : \text{Vect}(M) \times \text{Vect}(M) \to \text{Vect}(M)$ bilinear map such that:
Natural and projectively invariant quantizations on supermanifolds (T. Leuther and R.)

- Problem setting: find $Q(\nabla) : S(M) \to D(M)$ such that
 1. Q is natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ
 2. Q is projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla'_X Y = \nabla_X Y + \alpha(X)Y + (-1)^{\tilde{X}\tilde{Y}}\alpha(Y)X$

- $\nabla : \text{Vect}(M) \times \text{Vect}(M) \to \text{Vect}(M)$ bilinear map such that:

 $\nabla_{fX} Y = f\nabla_X Y$ and $\nabla_X fY = X(f)Y + (-1)^{\tilde{X}\tilde{f}}f\nabla_X Y$

for all superfunction f.
Problem setting: find $Q(\nabla) : S(M) \to D(M)$ such that

1. Q is natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^* S)$ for all local diffeomorphism Φ

2. Q is projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla'_X Y = \nabla_X Y + \alpha(X)Y + (-1)^{\tilde{X}\tilde{Y}} \alpha(Y)X$

$\nabla : \text{Vect}(M) \times \text{Vect}(M) \to \text{Vect}(M)$ bilinear map such that:

$$\nabla_{fX} Y = f \nabla_X Y \text{ and } \nabla_X fY = X(f)Y + (-1)^{\tilde{X}\tilde{f}} f \nabla_X Y$$

for all superfunction f.

In a local basis $(\partial_1, \cdots, \partial_{n+m})$ of $\text{Vect}(M)$ (M is of superdimension $(n|m)$), $\Gamma^k_{ij}\partial_k = \nabla_{\partial_i} \partial_j$
Thomas fiber bundle \tilde{M}: one adds an even coordinate x^0 to each coordinate system (x^1, \ldots, x^{n+m}) of M.
Thomas fiber bundle \tilde{M}: one adds an even coordinate x^0 to each coordinate system (x^1, \cdots, x^{n+m}) of M.

Under a change of coordinates $\tilde{x}(x)$, x^0 transforms into $x^0 + \log |\text{Ber}A|$, where

$$A^i_j = \frac{\partial \tilde{x}^j}{\partial x^i}$$
Thomas connection (J. George)

\[\nabla \text{ and } \nabla' \text{ are projectively equivalent iff } \Pi^k_{ij} = \Pi'^k_{ij}, \text{ where} \\
\Pi^k_{ij} = \Gamma^k_{ij} - \frac{1}{n - m + 1} (\Gamma^s_{is} \delta^k_j (-1)^{\tilde{s}} + \Gamma^s_{js} \delta^k_i (-1)^{\tilde{i}j + \tilde{s}}) \]
Thomas connection (J. George)

- ∇ and ∇' are projectively equivalent iff $\Pi_{ij}^k = \Pi'_{ij}^k$, where

$$\Pi_{ij}^k = \Gamma_{ij}^k - \frac{1}{n-m+1} (\Gamma_s^i \delta_j^k (-1)^\tilde{s} + \Gamma_s^j \delta_i^k (-1)^{\tilde{i} \tilde{j} + \tilde{s}})$$

- Thomas connection $\tilde{\nabla}$ on \tilde{M}:

$$\tilde{\Gamma}_{ij}^k = \Pi_{ij}^k, \quad \tilde{\Gamma}_c^0 = \tilde{\Gamma}_a^0 = \frac{-\delta_c^a}{n-m+1},$$

$$\tilde{\Gamma}_i^0 = \frac{n-m+1}{n-m-1} \left(\partial_q \Pi_{ij}^q - \Pi_{qi}^p \Pi_{pj}^q \right) (-1)^{\tilde{q}(\tilde{a} + \tilde{i} + \tilde{j})}$$
\[\nabla \text{ and } \nabla' \text{ are projectively equivalent iff } \Pi_{ij}^k = \Pi'_{ij}^k, \text{ where} \]

\[\Pi_{ij}^k = \Gamma_{ij}^k - \frac{1}{n-m+1} (\Gamma_{is}^s \delta_j^k (-1)^{\tilde{s}} + \Gamma_{js}^s \delta_i^k (-1)^{i+\tilde{j}+\tilde{s}}) \]

\[\text{Thomas connection } \tilde{\nabla} \text{ on } \tilde{M}: \]

\[\tilde{\Gamma}_{ij}^k = \Pi_{ij}^k, \quad \tilde{\Gamma}_{0a}^c = \tilde{\Gamma}_{a0}^c = \frac{-\delta_a^c}{n-m+1}, \]

\[\tilde{\Gamma}_{ij}^0 = \frac{n-m+1}{n-m-1} \left(\partial_q \Pi_{ij}^q - \Pi_{qi}^p \Pi_{pj}^q \right) (-1)^{q(\tilde{q}+\tilde{i}+\tilde{j})} \]

\[\tilde{\nabla} \text{ depends on } \nabla \text{ in a natural and projectively invariant way; moreover, } L_\mathcal{E} \tilde{\nabla} = 0 \text{ with } \mathcal{E} = \partial_0 \]
Construction of the quantization

- Bijective correspondence i between λ-densities on M and λ-equivariant functions on \tilde{M}:

 $$i : f \mapsto \tilde{f}, \quad L\mathcal{E}\tilde{f} = \lambda\tilde{f}$$
Construction of the quantization

- Bijective correspondence i between λ-densities on M and λ-equivariant functions on \tilde{M}:

 $$i : f \mapsto \tilde{f}, \quad L_\mathcal{E} \tilde{f} = \lambda \tilde{f}$$

- Natural and projectively invariant lift of symbols: $S \mapsto \tilde{S}$ with $L_\mathcal{E} \tilde{S} = \delta \tilde{S}$.
Construction of the quantization

- Bijective correspondance i between λ-densities on M and λ-equivariant functions on \tilde{M}:
 \[i : f \mapsto \tilde{f}, \quad L_\xi \tilde{f} = \lambda \tilde{f} \]

- Natural and projectively invariant lift of symbols: $S \mapsto \tilde{S}$ with $L_\xi \tilde{S} = \delta \tilde{S}$.

- Natural canonical quantization τ: if S is a symbol of degree k, then
 \[\tau(\nabla)(S)(f) := \langle S, \nabla^k f \rangle \]
Equivariant quantization in supergeometry

\[\tilde{f} \xrightarrow{\tau(\tilde{\nabla})(\tilde{S})} \tau(\tilde{\nabla})(\tilde{S})(\tilde{f}) \]

\[f \xrightarrow{Q(\nabla)(S)} Q(\nabla)(S)(f) \]

Case \(n-m=1 \): Thomas connection not defined. For \(m=0 \), there is no quantization.

\[\rightarrow \text{Conjecture of the non-existence of the quantization} \]

Case \(n-m=-1 \): Thomas connection not defined. But the quantization exists at order two and \(pgl(n+1,n+1) \)-equivariant quantization on \(\mathbb{R}^n|_{n+1} \) exists.

\[\rightarrow \text{Conjecture of the existence of the quantization} \]
Case $n-m=1$: Thomas connection not defined. For $m = 0$, there is no quantization

\longrightarrow Conjecture of the non-existence of the quantization
Equivariant quantization in supergeometry

Fabian Radoux

- Case $n-m=1$: Thomas connection not defined. For $m=0$, there is no quantization
 \longrightarrow Conjecture of the non-existence of the quantization

- Case $n-m=-1$: Thomas connection not defined. But the quantization exists at order two and $\mathfrak{pgl}(n+1, n+1)$-equivariant quantization on $\mathbb{R}^{n|n+1}$ exists
 \longrightarrow Conjecture of the existence of the quantization