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Introduction

Classical observables: functions on a symplectic

manifold (M, ω).

Example: M = T ∗M with coordinates (x i , pi ), kinetic
energy: 1

2m

∑
i p

2

i .

Quantum observables: operators on a Hilbert space H.
Example: H = L

2(T ∗M).

Dirac problem: �nd a bijection Q : C∞(T ∗M)→ L(H).

First answer to the Dirac problem: prequantization Q.

Reduction of H, L2(T ∗M) is replaced by L
2(M).

The observable f is quantizable if Q(f ) preserves

L
2(M).

The set of quantizable observables: Pol61(T ∗M).
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Geometric quantization QG : QG = Q|Pol61(T∗M),

QG (X i (x)pi + A(x)) =
~
i
X i (x)∂i + A(x).

Is it possible to extend the geometric quantization to

Pol(T ∗M) ∼= S(M)?

Is this prolongation unique?

Is it possible to reestablish the uniqueness?
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There is no natural quantization: there is no linear

bijection Q : S(M)→ D(M) such that

Φ∗(Q(S)) = Q(Φ∗S)

for all local di�eomorphism Φ.

For example: Qa� de�ned by

Qa�(S i1···ik∂i1 ∨ · · · ∨ ∂ik ) = S i1···ik∂i1 · · · ∂ik

is not well-de�ned: if J denotes the Jacobian of the

change of variables x̄(x),

S i1···ik∂i1 ∨ · · · ∨ ∂ik = S j1···jkJ i1j1 · · · J
ik
jk
∂̄i1 ∨ · · · ∨ ∂̄ik

S i1···ik∂i1 · · · ∂ik = S j1···jkJ i1j1 · · · J
ik
jk
∂̄i1 · · · ∂̄ik + · · ·
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Equivariant quantization: action of a Lie group G on M:

Φ : G ×M → M.

Equivariant quantization Q: linear bijection Q:

S(M)→ D(M) s.t. σ(Q(S)) = S and s.t.

Q(Φ∗gS) = Φ∗gQ(S) ∀g ∈ G .

Q(Lh∗S) = Lh∗Q(S) ∀h ∈ g, h∗x := d

dt
exp(−th)x |t=0

Idea: to take G su�ciently small to have a quantization

and su�ciently big to have the uniqueness.

Projective case (P. Lecomte, V. Ovsienko):

PGL(m + 1,R) acts on RPm

RPm is locally di�eomorphic to Rm

X ∈ sl(m + 1,R) 7→ X ∗ vector �eld on Rm.

∃Q : LXQ(S) = Q(LXS) ∀X ∈ sl(m + 1,R).
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Conformal case (C. Duval, P. Lecomte, V. Ovsienko):

SO(p + 1, q + 1) acts on Sp × Sq.

Sp × Sq is locally di�eomorphic to Rp+q

X ∈ so(p + 1, q + 1) 7→ X ∗ vector �eld on Rp+q.

∃Q : LXQ(S) = Q(LXS) ∀X ∈ so(p + 1, q + 1).

Casimir operator method:

l: Semi-simple Lie algebra endowed with a non

degenerate Killing form K .

(V , β): representation of l.

(ui : i 6 n): basis of l; (u′i : i 6 n): Killing-dual basis
(K (ui , u

′
j) = δi ,j).

Casimir operator corresponding to (V , β):

n∑
i=1

β(u′i )β(ui ).
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(S(Rm), L) and (D(Rm),L) are representations of g.

C and C: Casimir operators of g on S(M) and D(M).

If C (S) = αS and L ◦ Q = Q ◦ L, then
C(Q(S)) = αQ(S).

In non-critical situations: if C (S) = αS , then ∃! Q(S)
s.t. C(Q(S)) = αQ(S), σ(Q(S)) = S .

In these conditions: L(Q(S)) = Q(L(S)) because:

σ(L(Q(S))) = σ(Q(L(S)) = L(S);
C(Q(L(S))) = αQ(L(S)), C(L(Q(S))) = αL(Q(S)).
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1 Natural: Φ∗(Q(∇)(S)) = Q(Φ∗∇)(Φ∗S) for all local

di�eomorphism Φ
2 Projectively invariant: Q(∇) = Q(∇′) if

∇′ = ∇+ α ∨ id
ϕ∗tQ(∇0)(S) = Q(ϕ∗t∇0)(ϕ∗tS), ∇0 �at connection of

Rm, ϕt �ow of X ∈ sl(m + 1,R)

ϕ∗tQ(∇0)(S) = Q(∇0)(ϕ∗tS) because ϕ∗t∇0 ∼ ∇0 and

Q projectively invariant

LXQ(∇0)(S) = Q(∇0)(LXS) for all X ∈ sl(m + 1,R)
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Projective case, di�erential operators acting between

densities: M. Bordemann method:

M 7→ M̃ : �ber bundle of rank one over M (Thomas

�ber bundle)

Connection ∇ on M 7→ Connection ∇̃ on M̃ associated

with ∇ in a natural and projectively invariant way

(Thomas connection)

Symbol S and density f on M 7→ Symbol S̃ and density

f̃ on M̃ associated with S and f in a natural and

projectively invariant way

˜Q(∇)(S)(f ) = τ(∇̃)(S̃)(f̃ ) with τ a canonical natural

quantization
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Aims of the talk

Show how to superize and to solve in the super setting the

following problems:

Projectively equivariant quantization on Rm

Conformally equivariant quantization on Rm

Natural and projectively invariant quantization
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Projectively equivariant quantization on Rn|m (P.
Mathonet, R.)

Superfunction f on a supermanifold of dimension (n|m):
locally, f (x1, . . . , xn) =

∑
I⊆{1,...,m} fI (x

1, . . . , xn)θI ,

θiθj = −θjθi .

Super vector �eld: superderivation of the superalgebra

of superfunctions.

Locally, a λ-density is expressed formally as f |Dx |λ.
Under a change of coordinates x̄(x), |Dx |λ is multiplied

by |BerA|λ, with Ai
j = ∂x̄ j

∂x i
.

Moreover,

LX (f |Dx |λ) = (X (f ) + λ div(X )f )|Dx |λ,

where

div(X ) =
n+m∑
i=1

(−1)ỹi X̃
i
∂y iX

i .



Equivariant
quantization in
supergeometry

Fabian Radoux

Projectively equivariant quantization on Rn|m (P.
Mathonet, R.)

Superfunction f on a supermanifold of dimension (n|m):
locally, f (x1, . . . , xn) =

∑
I⊆{1,...,m} fI (x

1, . . . , xn)θI ,

θiθj = −θjθi .
Super vector �eld: superderivation of the superalgebra

of superfunctions.

Locally, a λ-density is expressed formally as f |Dx |λ.
Under a change of coordinates x̄(x), |Dx |λ is multiplied

by |BerA|λ, with Ai
j = ∂x̄ j

∂x i
.

Moreover,

LX (f |Dx |λ) = (X (f ) + λ div(X )f )|Dx |λ,

where

div(X ) =
n+m∑
i=1

(−1)ỹi X̃
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Di�erential operator D ∈ Dk
λ,µ:

D =
∑
|α|6k

Dα∂
α1
x1
· · · ∂αnxn ∂

αn+1

θ1
· · · ∂αn+m

θm ,

where Dα are local δ-densities (δ = µ− λ).

LXD = LX ◦ D − (−1)X̃ D̃D ◦ LX .
Space of symbols isomorphic to the graded space

associated with Dλ,µ, isomorphism induced by:

σk : Dk → Sk : D 7→
∑
|α|=k

Dα ⊗ ∂α11 ∨ · · · ∨ ∂
αn+m

n+m .

The Lie derivative of a symbol is obtained by extending

the Lie derivative of super vector �elds.

Quantization: linear bijection Q : Sδ → Dλ,µ s.t.

σk(Q(S)) = S for all S ∈ Skδ .
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Projective superalgebra of vector �elds on Rn|m

pgl(n + 1|m) = gl(n + 1|m)/RId←→ subalgebra of

vector �elds over Rn|m.

Ω subset of Rn+1 equal to {(x0, . . . , xn) : x0 > 0}.
H(Ω): space of restrictions of homogeneous functions

over Rn+1|m to Ω.

Bijective correspondence i : C∞n|m → H(Ω).

Homomorphism hn+1,m: gl(n + 1|m)→ Vect(Rn+1|m).

If A ∈ gl(n + 1|m),

H(Ω)
hn+1,m(A) // H(Ω)

i−1

��
C∞n|m

π(hn+1,m(A)) //

i

OO

C∞n|m
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π ◦ hn+1,m(Id) = 0, thus π ◦ hn+1,m induces a

homomorphism from pgl(n + 1|m) to Vect(Rn|m).

Projectively equivariant quantization on Rn|m:
quantization Q s.t. LXh ◦ Q = Q ◦ LXh for every

h ∈ pgl(n + 1|m).
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Construction of the quantization

Casimir operators:

l: Lie superalgebra endowed with a nondegenerate even

supersymmetric bilinear form K .

(V , β): representation of l.

(ui : i 6 n): homogeneous basis of l; (u′i : i 6 n):
K -dual basis (K (ui , u

′
j) = δi ,j).

Casimir operator of (V , β):

n∑
i=1

(−1)ũiβ(ui )β(u′i ) =
n∑

i=1

β(u′i )β(ui ).
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Killing form of sl(n + 1|m):

K (A,B) = str(ad(A)ad(B)) = 2(n + 1−m) str(AB).

K allows to de�ne C and C corresponding resp. to

(S, L) and (D,L).

The Casimir operator C of pgl(n + 1|m) ∼= sl(n + 1|m)
on (Skδ , L) is equal to α(k , δ)Id.
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If δ is not critical, then there exists a unique projectively

equivariant quantization.

Proof:

1 For every S ∈ Skδ , ∃! Ŝ s.t. C(Ŝ) = α(k, δ)Ŝ and s.t.

σ(Ŝ) = S .

2 Q(S) := Ŝ .

3 If S ∈ Skδ , Q(L
XhS) = L

Xh (Q(S)) because they are

eigenvectors of C of eigenvalue α(k, δ) and because

their symbol is L
XhS .
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Divergence operator:

div : Skδ → Sk−1δ : S 7→
n+m∑
j=1

(−1)ỹ
j
i(dx j)∂y jS .

Theorem

If δ is not critical, then the map Q : Sδ → Dλ,µ de�ned by

Q(S)(f ) =
k∑

r=0

Ck,rQA�(divrS)(f ), for all S ∈ Skδ

is the unique sl(n + 1|m)-equivariant quantization if

Ck,r =

∏r
j=1

((n −m + 1)λ+ k − j)

r !
∏r

j=1
(n −m + 2k − j − (n −m + 1)δ)

∀r > 1.
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Case m = n + 1: pgl(n + 1|n + 1) not endowed with a

non degenerate bilinear symmetric invariant form.

pgl(n + 1|n + 1) = psl(n + 1|n + 1)⊕ RE .
Killing form of psl(n + 1|n + 1) vanishes, but K de�ned

by

K ([A], [B]) = strAB

is a nondegenerate invariant supersymmetric even form,

we can then apply the Casimir operator method to

psl(n + 1|n + 1).

If k 6= 1, Q is given by the same formula as in the case

m 6= n + 1.



Equivariant
quantization in
supergeometry

Fabian Radoux
Case m = n + 1: pgl(n + 1|n + 1) not endowed with a

non degenerate bilinear symmetric invariant form.

pgl(n + 1|n + 1) = psl(n + 1|n + 1)⊕ RE .

Killing form of psl(n + 1|n + 1) vanishes, but K de�ned

by

K ([A], [B]) = strAB

is a nondegenerate invariant supersymmetric even form,

we can then apply the Casimir operator method to

psl(n + 1|n + 1).

If k 6= 1, Q is given by the same formula as in the case

m 6= n + 1.



Equivariant
quantization in
supergeometry

Fabian Radoux
Case m = n + 1: pgl(n + 1|n + 1) not endowed with a

non degenerate bilinear symmetric invariant form.

pgl(n + 1|n + 1) = psl(n + 1|n + 1)⊕ RE .
Killing form of psl(n + 1|n + 1) vanishes, but K de�ned

by

K ([A], [B]) = strAB

is a nondegenerate invariant supersymmetric even form,

we can then apply the Casimir operator method to

psl(n + 1|n + 1).

If k 6= 1, Q is given by the same formula as in the case

m 6= n + 1.



Equivariant
quantization in
supergeometry

Fabian Radoux
Case m = n + 1: pgl(n + 1|n + 1) not endowed with a

non degenerate bilinear symmetric invariant form.

pgl(n + 1|n + 1) = psl(n + 1|n + 1)⊕ RE .
Killing form of psl(n + 1|n + 1) vanishes, but K de�ned

by

K ([A], [B]) = strAB

is a nondegenerate invariant supersymmetric even form,

we can then apply the Casimir operator method to

psl(n + 1|n + 1).

If k 6= 1, Q is given by the same formula as in the case

m 6= n + 1.



Equivariant
quantization in
supergeometry

Fabian Radoux If k = 1,

Q1 : S 7→ Q(S) = QA�(S + t div(S))

de�nes a psl(n + 1|n + 1)-equivariant quantization for

every t ∈ R (vector �elds in psl(n + 1|n + 1) are

divergence-free).

The psl(n + 1, n + 1)-equivariant quantizations are
pgl(n + 1, n + 1)-equivariant (equivariance with respect

to the Euler vector �eld).

Q does not depend on δ and λ.
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Orthosymplectically equivariant quantizations on
Rn|2r (T. Leuther, P. Mathonet, R.)

osp(p + 1, q + 1|2r):

{A ∈ gl(p+q+2|2r) : ω(AU,V )+(−1)ÃŨω(U,AV ) = 0

for all U,V ∈ Rp+q+2|2r},

where ω is represented by the following matrix G :

G =

(
S 0

0 J

)
, S =

 0 0 −1
0 Idp,q 0

−1 0 0

 ,

J =

(
0 Idr

−Idr 0

)
, Idp,q =

(
Idp 0

0 −Idq

)
.
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Orthosymplectic superalgebra of vector �elds

osp(p + 1, q + 1|2r)←→ subalgebra of vector �elds over

Rp+q|2r .

Ω subset of Rp+q+2 equal to

{(x1, . . . , xp+q+2) : xp+q+2 6= 0}.
H(Ω): space of restrictions of homogeneous functions

over Rp+q+2|2r to Ω.

Bijective correspondence

i : C∞p+q|2r → H(Ω)/H(Ω) ∩ IF , where IF is the ideal

generated by the equation F of the supercone, namely

F (x , θ) =

p+1∑
i=2

(x i )2−
p+q+1∑
i=p+2

(x i )2−2x1xp+q+2+2

r∑
i=1

θiθi+r .
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Homomorphism hp+q+2,2r :

osp(p + 1, q + 1|2r)→ Vect(Rp+q+2|2r ).

If A ∈ osp(p + 1, q + 1|2r),

H(Ω)/H(Ω) ∩ IF
hp+q+2,2r (A) // H(Ω)/H(Ω) ∩ IF

i−1

��
C∞p+q|2r

π(hp+q+2,2r (A)) //

i

OO

C∞p+q|2r

osp(p + 1, q + 1|2r)-equivariant quantization on

Rp+q|2r : quantization Q s.t. LXh ◦ Q = Q ◦ LXh for

every h ∈ osp(p + 1, q + 1|2r).
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Construction of the quantization

Killing-form of osp(p + 1, q + 1|2r): K given by

K : (A,B) 7→ −1
2

str(AB).

Corresponding Casimir operator C on Skδ :

C = βk,δId + R ◦ T ,

R : S 7→ i(ω0)S , T : S 7→ ω]
0
∨ S ,

ω0 bilinear form on Rp+q|2r represented by(
Idp,q 0

0 J

)
.
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Eigenvalues of C on Skδ : αk,s,δ, 0 6 s 6 bk
2
c

If the superdimension p + q − 2r is even and less than or

equal to 0, C is not diagonalizable !

Multiplicity of αk,s,δ as root of the minimal polynomial

of C is at most two.

Quantization is de�ned on generalized eigenvectors of C .
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Fabian Radoux Case p + q − 2r 6= 0:

If δ is not resonant, then there exists a unique

osp(p + 1, q + 1|2r)-equivariant quantization.

Proof:

1 If C denotes the Casimir operator on Dk

λ,µ, for every

S ∈ ker(C − αk,i,δId)2, ∃! Ŝ s.t. Ŝ ∈ ker(C − αk,i,δId)2

and s.t. σk(Ŝ) = S .

2 Q(S) := Ŝ .

3 If S ∈ ker(C − αk,i,δId)2, Q(L
XhS) = L

Xh (Q(S))
because they belong to ker(C − αk,i,δId)2 and because

their symbol is L
XhS .
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Q = QA� ◦ (Id + a1G0 + a2div + a3∆0 + a4div
2),

G : Skδ → Sk+1

δ : S 7→
p+q+2r∑
j=1

(−1)j̃εj] ∨ ∂y jS ,

∆: Skδ → Skδ : S 7→
p+q+2r∑
j=1

ω0(ei , ej)∂y j∂y iS ,

G0 = G ◦ T , ∆0 = ∆ ◦ T
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Case p + q − 2r = 0:

Arbitrary order: We do not know if we have the

existence but the problem does not depend on density

weights

Order two:

Q2 : S 7→ Q(S) = QA�(S +
1

2
div(S))

Order one:

Q1 : S 7→ Q(S) = QA�(S + t div(S))

de�nes an osp(p + 1, q + 1|2r)-equivariant quantization
for every t ∈ R (vector �elds in osp(p + 1, q + 1|2r) are

divergence-free).
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Natural and projectively invariant quantizations on
supermanifolds (T. Leuther and R.)

Problem setting: �nd Q(∇) : S(M)→ D(M) such that

1 Q is natural: Φ∗(Q(∇)(S)) = Q(Φ∗∇)(Φ∗S) for all

local di�eomorphism Φ
2 Q is projectively invariant: Q(∇) = Q(∇′) if

∇′
X
Y = ∇XY + α(X )Y + (−1)X̃ Ỹα(Y )X

∇ : Vect(M)×Vect(M)→ Vect(M) bilinear map such

that:

∇fXY = f∇XY and ∇X fY = X (f )Y + (−1)X̃ f̃ f∇XY

for all superfunction f .

In a local basis (∂1, · · · , ∂n+m) of Vect(M) (M is of

superdimension (n|m)), Γkij∂k = ∇∂i∂j
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Thomas bundle (J. George)

Thomas �ber bundle M̃: one adds an even coordinate

x0 to each coordinate system (x1, · · · , xn+m) of M.

Under a change of coordinates x̄(x), x0 transforms into

x0 + log |BerA|, where

Ai
j =

∂x̄ j

∂x i
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Thomas connection (J. George)

∇ and ∇′ are projectively equivalent i� Πk
ij = Π

′k
ij , where

Πk
ij = Γkij −

1

n −m + 1
(Γsisδ

k
j (−1)s̃ + Γsjsδ

k
i (−1)ĩ j̃+s̃)

Thomas connection ∇̃ on M̃:

Γ̃kij = Πk
ij , Γ̃c

0a = Γ̃c
a0 =

−δca
n −m + 1

,

Γ̃0ij =
n −m + 1

n −m − 1

(
∂qΠq

ij − Πp
qiΠ

q
pj

)
(−1)q̃(q̃+ĩ+j̃)

∇̃ depends on ∇ in a natural and projectively invariant

way; moreover, LE∇̃ = 0 with E = ∂0
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Construction of the quantization

Bijective correspondance i between λ-densities on M

and λ-equivariant functions on M̃:

i : f 7→ f̃ , LE f̃ = λf̃

Natural and projectively invariant lift of symbols: S 7→ S̃

with LE S̃ = δS̃ .

Natural canonical quantization τ : if S is a symbol of

degree k , then

τ(∇)(S)(f ) := 〈S ,∇k f 〉
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τ(∇̃)(S̃) // τ(∇̃)(S̃)(f̃ )

i−1

��
f

Q(∇)(S)//

i

OO

Q(∇)(S)(f )

Case n-m=1: Thomas connection not de�ned. For

m = 0, there is no quantization

−→ Conjecture of the non-existence of the quantization

Case n-m=-1: Thomas connection not de�ned. But the

quantization exists at order two and

pgl(n + 1, n + 1)-equivariant quantization on Rn|n+1

exists

−→ Conjecture of the existence of the quantization
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