

Equivariant
quantization in
supergeometry

Fabian Radoux

Equivariant quantization in supergeometry

Fabian Radoux

8 December 2011

Introduction

Equivariant
quantization in
supergeometry

Fabian Radoux

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω) .

Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω) .
Example: $\mathcal{M} = T^*M$ with coordinates (x^i, p_i) , kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.

Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω) .
Example: $\mathcal{M} = T^*M$ with coordinates (x^i, p_i) , kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.
- Quantum observables: operators on a Hilbert space \mathcal{H} .

Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω) .
Example: $\mathcal{M} = T^*M$ with coordinates (x^i, p_i) , kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.
- Quantum observables: operators on a Hilbert space \mathcal{H} .
Example: $\mathcal{H} = L^2(T^*M)$.

Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω) .
Example: $\mathcal{M} = T^*M$ with coordinates (x^i, p_i) , kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.
- Quantum observables: operators on a Hilbert space \mathcal{H} .
Example: $\mathcal{H} = L^2(T^*M)$.
- Dirac problem: find a bijection $Q : \mathcal{C}^\infty(T^*M) \rightarrow \mathcal{L}(\mathcal{H})$.

Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω) .
Example: $\mathcal{M} = T^*M$ with coordinates (x^i, p_i) , kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.
- Quantum observables: operators on a Hilbert space \mathcal{H} .
Example: $\mathcal{H} = L^2(T^*M)$.
- Dirac problem: find a bijection $Q : \mathcal{C}^\infty(T^*M) \rightarrow \mathcal{L}(\mathcal{H})$.
- First answer to the Dirac problem: prequantization Q .

Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω) .
Example: $\mathcal{M} = T^*M$ with coordinates (x^i, p_i) , kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.
- Quantum observables: operators on a Hilbert space \mathcal{H} .
Example: $\mathcal{H} = L^2(T^*M)$.
- Dirac problem: find a bijection $Q : \mathcal{C}^\infty(T^*M) \rightarrow \mathcal{L}(\mathcal{H})$.
- First answer to the Dirac problem: prequantization Q .
- Reduction of \mathcal{H} , $L^2(T^*M)$ is replaced by $L^2(M)$.

Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω) .
Example: $\mathcal{M} = T^*M$ with coordinates (x^i, p_i) , kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.
- Quantum observables: operators on a Hilbert space \mathcal{H} .
Example: $\mathcal{H} = L^2(T^*M)$.
- Dirac problem: find a bijection $Q : \mathcal{C}^\infty(T^*M) \rightarrow \mathcal{L}(\mathcal{H})$.
- First answer to the Dirac problem: prequantization Q .
- Reduction of \mathcal{H} , $L^2(T^*M)$ is replaced by $L^2(M)$.
- The observable f is quantizable if $Q(f)$ preserves $L^2(M)$.

Introduction

- Classical observables: functions on a symplectic manifold (\mathcal{M}, ω) .
Example: $\mathcal{M} = T^*M$ with coordinates (x^i, p_i) , kinetic energy: $\frac{1}{2m} \sum_i p_i^2$.
- Quantum observables: operators on a Hilbert space \mathcal{H} .
Example: $\mathcal{H} = L^2(T^*M)$.
- Dirac problem: find a bijection $Q : \mathcal{C}^\infty(T^*M) \rightarrow \mathcal{L}(\mathcal{H})$.
- First answer to the Dirac problem: prequantization Q .
- Reduction of \mathcal{H} , $L^2(T^*M)$ is replaced by $L^2(M)$.
- The observable f is quantizable if $Q(f)$ preserves $L^2(M)$.
- The set of quantizable observables: $\text{Pol}_{\leq 1}(T^*M)$.

- Geometric quantization Q_G : $Q_G = Q|_{\text{Pol}_{\leq 1}(T^*M)}$,

$$Q_G(X^i(x)p_i + A(x)) = \frac{\hbar}{i} X^i(x)\partial_i + A(x).$$

- Geometric quantization Q_G : $Q_G = Q|_{\text{Pol}_{\leq 1}(T^*M)}$,

$$Q_G(X^i(x)p_i + A(x)) = \frac{\hbar}{i} X^i(x)\partial_i + A(x).$$

- Is it possible to extend the geometric quantization to $\text{Pol}(T^*M) \cong \mathcal{S}(M)$?

- Geometric quantization Q_G : $Q_G = Q|_{\text{Pol}_{\leq 1}(T^*M)}$,

$$Q_G(X^i(x)p_i + A(x)) = \frac{\hbar}{i} X^i(x)\partial_i + A(x).$$

- Is it possible to extend the geometric quantization to $\text{Pol}(T^*M) \cong \mathcal{S}(M)$?
- Is this prolongation unique?

- Geometric quantization Q_G : $Q_G = Q|_{\text{Pol}_{\leq 1}(T^*M)}$,

$$Q_G(X^i(x)p_i + A(x)) = \frac{\hbar}{i} X^i(x)\partial_i + A(x).$$

- Is it possible to extend the geometric quantization to $\text{Pol}(T^*M) \cong \mathcal{S}(M)$?
- Is this prolongation unique?
- Is it possible to reestablish the uniqueness?

- There is no natural quantization: there is no linear bijection $Q : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$ such that

$$\Phi^*(Q(S)) = Q(\Phi^* S)$$

for all local diffeomorphism Φ .

- There is no natural quantization: there is no linear bijection $Q : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$ such that

$$\Phi^*(Q(S)) = Q(\Phi^* S)$$

for all local diffeomorphism Φ .

- For example: Q_{aff} defined by

$$Q_{\text{aff}}(S^{i_1 \cdots i_k} \partial_{i_1} \vee \cdots \vee \partial_{i_k}) = S^{i_1 \cdots i_k} \partial_{i_1} \cdots \partial_{i_k}$$

is not well-defined: if J denotes the Jacobian of the change of variables $\bar{x}(x)$,

- There is no natural quantization: there is no linear bijection $Q : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$ such that

$$\Phi^*(Q(S)) = Q(\Phi^* S)$$

for all local diffeomorphism Φ .

- For example: Q_{aff} defined by

$$Q_{\text{aff}}(S^{i_1 \dots i_k} \partial_{i_1} \wedge \dots \wedge \partial_{i_k}) = S^{i_1 \dots i_k} \partial_{i_1} \dots \partial_{i_k}$$

is not well-defined: if J denotes the Jacobian of the change of variables $\bar{x}(x)$,

$$\begin{aligned} S^{i_1 \dots i_k} \partial_{i_1} \wedge \dots \wedge \partial_{i_k} &= S^{j_1 \dots j_k} J_{j_1}^{i_1} \dots J_{j_k}^{i_k} \bar{\partial}_{i_1} \wedge \dots \wedge \bar{\partial}_{i_k} \\ S^{i_1 \dots i_k} \partial_{i_1} \dots \partial_{i_k} &= S^{j_1 \dots j_k} J_{j_1}^{i_1} \dots J_{j_k}^{i_k} \bar{\partial}_{i_1} \dots \bar{\partial}_{i_k} + \dots \end{aligned}$$

- Equivariant quantization: action of a Lie group G on M :
 $\Phi : G \times M \rightarrow M$.

- Equivariant quantization: action of a Lie group G on M :
 $\Phi : G \times M \rightarrow M$.
- Equivariant quantization Q : linear bijection Q :
 $\mathcal{S}(M) \rightarrow \mathcal{D}(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
 $Q(\Phi_g^* S) = \Phi_g^* Q(S) \quad \forall g \in G$.

- Equivariant quantization: action of a Lie group G on M :
 $\Phi : G \times M \rightarrow M$.
- Equivariant quantization Q : linear bijection Q :
 $\mathcal{S}(M) \rightarrow \mathcal{D}(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
 $Q(\Phi_g^* S) = \Phi_g^* Q(S) \quad \forall g \in G$.
- $Q(L_{h^*} S) = L_{h^*} Q(S) \quad \forall h \in \mathfrak{g}$, $h_x^* := \frac{d}{dt} \exp(-th)x|_{t=0}$

- Equivariant quantization: action of a Lie group G on M :
 $\Phi : G \times M \rightarrow M$.
- Equivariant quantization Q : linear bijection Q :
 $\mathcal{S}(M) \rightarrow \mathcal{D}(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
 $Q(\Phi_g^* S) = \Phi_g^* Q(S) \quad \forall g \in G$.
- $Q(L_{h^*} S) = L_{h^*} Q(S) \quad \forall h \in \mathfrak{g}$, $h_x^* := \frac{d}{dt} \exp(-th)x|_{t=0}$
- Idea: to take G sufficiently small to have a quantization and sufficiently big to have the uniqueness.

- Equivariant quantization: action of a Lie group G on M :
 $\Phi : G \times M \rightarrow M$.
- Equivariant quantization Q : linear bijection Q :
 $\mathcal{S}(M) \rightarrow \mathcal{D}(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
 $Q(\Phi_g^* S) = \Phi_g^* Q(S) \quad \forall g \in G$.
- $Q(L_{h^*} S) = L_{h^*} Q(S) \quad \forall h \in \mathfrak{g}, \quad h_x^* := \frac{d}{dt} \exp(-th)x|_{t=0}$
- Idea: to take G sufficiently small to have a quantization and sufficiently big to have the uniqueness.
- Projective case (P. Lecomte, V. Ovsienko):
- $PGL(m+1, \mathbb{R})$ acts on $\mathbb{R}P^m$

- Equivariant quantization: action of a Lie group G on M :
 $\Phi : G \times M \rightarrow M$.
- Equivariant quantization Q : linear bijection Q :
 $\mathcal{S}(M) \rightarrow \mathcal{D}(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
 $Q(\Phi_g^* S) = \Phi_g^* Q(S) \forall g \in G$.
- $Q(L_{h^*} S) = L_{h^*} Q(S) \forall h \in \mathfrak{g}$, $h_x^* := \frac{d}{dt} \exp(-th)x|_{t=0}$
- Idea: to take G sufficiently small to have a quantization and sufficiently big to have the uniqueness.
- Projective case (P. Lecomte, V. Ovsienko):
- $PGL(m+1, \mathbb{R})$ acts on $\mathbb{R}P^m$
- $\mathbb{R}P^m$ is locally diffeomorphic to \mathbb{R}^m

- Equivariant quantization: action of a Lie group G on M :
 $\Phi : G \times M \rightarrow M$.
- Equivariant quantization Q : linear bijection Q :
 $\mathcal{S}(M) \rightarrow \mathcal{D}(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
 $Q(\Phi_g^* S) = \Phi_g^* Q(S) \forall g \in G$.
- $Q(L_{h^*} S) = L_{h^*} Q(S) \forall h \in \mathfrak{g}$, $h_x^* := \frac{d}{dt} \exp(-th)x|_{t=0}$
- Idea: to take G sufficiently small to have a quantization and sufficiently big to have the uniqueness.
- Projective case (P. Lecomte, V. Ovsienko):
- $PGL(m+1, \mathbb{R})$ acts on $\mathbb{R}P^m$
- $\mathbb{R}P^m$ is locally diffeomorphic to \mathbb{R}^m
- $X \in \mathfrak{sl}(m+1, \mathbb{R}) \mapsto X^*$ vector field on \mathbb{R}^m .

- Equivariant quantization: action of a Lie group G on M :
 $\Phi : G \times M \rightarrow M$.
- Equivariant quantization Q : linear bijection Q :
 $S(M) \rightarrow \mathcal{D}(M)$ s.t. $\sigma(Q(S)) = S$ and s.t.
 $Q(\Phi_g^* S) = \Phi_g^* Q(S) \quad \forall g \in G$.
- $Q(L_{h^*} S) = L_{h^*} Q(S) \quad \forall h \in \mathfrak{g}, \quad h_x^* := \frac{d}{dt} \exp(-th)x|_{t=0}$
- Idea: to take G sufficiently small to have a quantization and sufficiently big to have the uniqueness.
- Projective case (P. Lecomte, V. Ovsienko):
- $PGL(m+1, \mathbb{R})$ acts on $\mathbb{R}P^m$
- $\mathbb{R}P^m$ is locally diffeomorphic to \mathbb{R}^m
- $X \in \mathfrak{sl}(m+1, \mathbb{R}) \mapsto X^*$ vector field on \mathbb{R}^m .
- $\exists Q : L_X Q(S) = Q(L_X S) \quad \forall X \in \mathfrak{sl}(m+1, \mathbb{R})$.

- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
- $SO(p+1, q+1)$ acts on $S^p \times S^q$.

- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
- $SO(p+1, q+1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q}

- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
- $SO(p+1, q+1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q}
- $X \in \mathfrak{so}(p+1, q+1) \mapsto X^*$ vector field on \mathbb{R}^{p+q} .

- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
- $SO(p+1, q+1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q}
- $X \in \mathfrak{so}(p+1, q+1) \mapsto X^*$ vector field on \mathbb{R}^{p+q} .
- $\exists Q : L_X Q(S) = Q(L_X S) \quad \forall X \in \mathfrak{so}(p+1, q+1)$.

- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
- $SO(p+1, q+1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q} .
- $X \in \mathfrak{so}(p+1, q+1) \mapsto X^*$ vector field on \mathbb{R}^{p+q} .
- $\exists Q : L_X Q(S) = Q(L_X S) \quad \forall X \in \mathfrak{so}(p+1, q+1)$.
- Casimir operator method:
 \mathfrak{l} : Semi-simple Lie algebra endowed with a non degenerate Killing form K .

- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
- $SO(p+1, q+1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q} .
- $X \in \mathfrak{so}(p+1, q+1) \mapsto X^*$ vector field on \mathbb{R}^{p+q} .
- $\exists Q : L_X Q(S) = Q(L_X S) \forall X \in \mathfrak{so}(p+1, q+1)$.
- Casimir operator method:
 - \mathfrak{l} : Semi-simple Lie algebra endowed with a non degenerate Killing form K .
 - (V, β) : representation of \mathfrak{l} .

- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
- $SO(p+1, q+1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q} .
- $X \in \mathfrak{so}(p+1, q+1) \mapsto X^*$ vector field on \mathbb{R}^{p+q} .
- $\exists Q : L_X Q(S) = Q(L_X S) \forall X \in \mathfrak{so}(p+1, q+1)$.
- Casimir operator method:
 - \mathfrak{l} : Semi-simple Lie algebra endowed with a non degenerate Killing form K .
 - (V, β) : representation of \mathfrak{l} .
 - $(u_i : i \leq n)$: basis of \mathfrak{l} ; $(u'_i : i \leq n)$: Killing-dual basis $(K(u_i, u'_j) = \delta_{i,j})$.

- Conformal case (C. Duval, P. Lecomte, V. Ovsienko):
- $SO(p+1, q+1)$ acts on $S^p \times S^q$.
- $S^p \times S^q$ is locally diffeomorphic to \mathbb{R}^{p+q} .
- $X \in \mathfrak{so}(p+1, q+1) \mapsto X^*$ vector field on \mathbb{R}^{p+q} .
- $\exists Q : L_X Q(S) = Q(L_X S) \forall X \in \mathfrak{so}(p+1, q+1)$.
- Casimir operator method:
 - \mathfrak{l} : Semi-simple Lie algebra endowed with a non degenerate Killing form K .
 - (V, β) : representation of \mathfrak{l} .
 - $(u_i : i \leq n)$: basis of \mathfrak{l} ; $(u'_i : i \leq n)$: Killing-dual basis $(K(u_i, u'_j) = \delta_{i,j})$.
 - Casimir operator corresponding to (V, β) :

$$\sum_{i=1}^n \beta(u'_i) \beta(u_i).$$

Equivariant quantization in supergeometry

Fabian Radoux

- $(\mathcal{S}(\mathbb{R}^m), L)$ and $(\mathcal{D}(\mathbb{R}^m), \mathcal{L})$ are representations of \mathfrak{g} .

- $(\mathcal{S}(\mathbb{R}^m), L)$ and $(\mathcal{D}(\mathbb{R}^m), \mathcal{L})$ are representations of \mathfrak{g} .
- C and \mathcal{C} : Casimir operators of \mathfrak{g} on $\mathcal{S}(M)$ and $\mathcal{D}(M)$.

- $(\mathcal{S}(\mathbb{R}^m), L)$ and $(\mathcal{D}(\mathbb{R}^m), \mathcal{L})$ are representations of \mathfrak{g} .
- C and \mathcal{C} : Casimir operators of \mathfrak{g} on $\mathcal{S}(M)$ and $\mathcal{D}(M)$.
- If $C(S) = \alpha S$ and $\mathcal{L} \circ Q = Q \circ L$, then
 $\mathcal{C}(Q(S)) = \alpha Q(S)$.

- $(\mathcal{S}(\mathbb{R}^m), L)$ and $(\mathcal{D}(\mathbb{R}^m), \mathcal{L})$ are representations of \mathfrak{g} .
- C and \mathcal{C} : Casimir operators of \mathfrak{g} on $\mathcal{S}(M)$ and $\mathcal{D}(M)$.
- If $C(S) = \alpha S$ and $\mathcal{L} \circ Q = Q \circ L$, then
 $\mathcal{C}(Q(S)) = \alpha Q(S)$.
- In non-critical situations: if $C(S) = \alpha S$, then $\exists! Q(S)$
s.t. $\mathcal{C}(Q(S)) = \alpha Q(S)$, $\sigma(Q(S)) = S$.

- $(\mathcal{S}(\mathbb{R}^m), L)$ and $(\mathcal{D}(\mathbb{R}^m), \mathcal{L})$ are representations of \mathfrak{g} .
- C and \mathcal{C} : Casimir operators of \mathfrak{g} on $\mathcal{S}(M)$ and $\mathcal{D}(M)$.
- If $C(S) = \alpha S$ and $\mathcal{L} \circ Q = Q \circ L$, then
 $\mathcal{C}(Q(S)) = \alpha Q(S)$.
- In non-critical situations: if $C(S) = \alpha S$, then $\exists!$ $Q(S)$
s.t. $\mathcal{C}(Q(S)) = \alpha Q(S)$, $\sigma(Q(S)) = S$.
- In these conditions: $\mathcal{L}(Q(S)) = Q(L(S))$ because:

- $(\mathcal{S}(\mathbb{R}^m), L)$ and $(\mathcal{D}(\mathbb{R}^m), \mathcal{L})$ are representations of \mathfrak{g} .
- C and \mathcal{C} : Casimir operators of \mathfrak{g} on $\mathcal{S}(M)$ and $\mathcal{D}(M)$.
- If $C(S) = \alpha S$ and $\mathcal{L} \circ Q = Q \circ L$, then
 $\mathcal{C}(Q(S)) = \alpha Q(S)$.
- In non-critical situations: if $C(S) = \alpha S$, then $\exists!$ $Q(S)$
s.t. $\mathcal{C}(Q(S)) = \alpha Q(S)$, $\sigma(Q(S)) = S$.
- In these conditions: $\mathcal{L}(Q(S)) = Q(L(S))$ because:
 - $\sigma(\mathcal{L}(Q(S))) = \sigma(Q(L(S))) = L(S)$;

- $(\mathcal{S}(\mathbb{R}^m), L)$ and $(\mathcal{D}(\mathbb{R}^m), \mathcal{L})$ are representations of \mathfrak{g} .
- C and \mathcal{C} : Casimir operators of \mathfrak{g} on $\mathcal{S}(M)$ and $\mathcal{D}(M)$.
- If $C(S) = \alpha S$ and $\mathcal{L} \circ Q = Q \circ L$, then
 $\mathcal{C}(Q(S)) = \alpha Q(S)$.
- In non-critical situations: if $C(S) = \alpha S$, then $\exists!$ $Q(S)$
s.t. $\mathcal{C}(Q(S)) = \alpha Q(S)$, $\sigma(Q(S)) = S$.
- In these conditions: $\mathcal{L}(Q(S)) = Q(L(S))$ because:
 - $\sigma(\mathcal{L}(Q(S))) = \sigma(Q(L(S))) = L(S)$;
 - $\mathcal{C}(Q(L(S))) = \alpha Q(L(S))$, $\mathcal{C}(\mathcal{L}(Q(S))) = \alpha \mathcal{L}(Q(S))$.

■ Conjecture (P. Lecomte): $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$:

- **Conjecture (P. Lecomte):** $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$:
 - 1 Natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ

■ **Conjecture (P. Lecomte):** $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$:

- 1 Natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ
- 2 Projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla' = \nabla + \alpha \vee id$

- **Conjecture (P. Lecomte):** $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$:
 - 1 Natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ
 - 2 Projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla' = \nabla + \alpha \vee id$
- $\varphi_t^* Q(\nabla_0)(S) = Q(\varphi_t^*\nabla_0)(\varphi_t^*S)$, ∇_0 flat connection of \mathbb{R}^m , φ_t flow of $X \in \mathfrak{sl}(m+1, \mathbb{R})$

- **Conjecture (P. Lecomte):** $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$:
 - 1 Natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ
 - 2 Projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla' = \nabla + \alpha \vee id$
- $\varphi_t^* Q(\nabla_0)(S) = Q(\varphi_t^*\nabla_0)(\varphi_t^*S)$, ∇_0 flat connection of \mathbb{R}^m , φ_t flow of $X \in \mathfrak{sl}(m+1, \mathbb{R})$
- $\varphi_t^* Q(\nabla_0)(S) = Q(\nabla_0)(\varphi_t^*S)$ because $\varphi_t^*\nabla_0 \sim \nabla_0$ and Q projectively invariant

- **Conjecture (P. Lecomte):** $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$:
 - 1 Natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ
 - 2 Projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla' = \nabla + \alpha \vee id$
- $\varphi_t^* Q(\nabla_0)(S) = Q(\varphi_t^*\nabla_0)(\varphi_t^*S)$, ∇_0 flat connection of \mathbb{R}^m , φ_t flow of $X \in \mathfrak{sl}(m+1, \mathbb{R})$
- $\varphi_t^* Q(\nabla_0)(S) = Q(\nabla_0)(\varphi_t^*S)$ because $\varphi_t^*\nabla_0 \sim \nabla_0$ and Q projectively invariant
- $L_X Q(\nabla_0)(S) = Q(\nabla_0)(L_X S)$ for all $X \in \mathfrak{sl}(m+1, \mathbb{R})$

Projective case, differential operators acting between
densities: M. Bordemann method:

Projective case, differential operators acting between
densities: M. Bordemann method:

- $M \mapsto \tilde{M}$: fiber bundle of rank one over M (Thomas
fiber bundle)

Projective case, differential operators acting between
densities: M. Bordemann method:

- $M \mapsto \tilde{M}$: fiber bundle of rank one over M (Thomas
fiber bundle)
- Connection ∇ on $M \mapsto$ Connection $\tilde{\nabla}$ on \tilde{M} associated
with ∇ in a natural and projectively invariant way
(Thomas connection)

Projective case, differential operators acting between densities: M. Bordemann method:

- $M \mapsto \tilde{M}$: fiber bundle of rank one over M (Thomas fiber bundle)
- Connection ∇ on $M \mapsto$ Connection $\tilde{\nabla}$ on \tilde{M} associated with ∇ in a natural and projectively invariant way (Thomas connection)
- Symbol S and density f on $M \mapsto$ Symbol \tilde{S} and density \tilde{f} on \tilde{M} associated with S and f in a natural and projectively invariant way

Projective case, differential operators acting between densities: M. Bordemann method:

- $M \mapsto \tilde{M}$: fiber bundle of rank one over M (Thomas fiber bundle)
- Connection ∇ on $M \mapsto$ Connection $\tilde{\nabla}$ on \tilde{M} associated with ∇ in a natural and projectively invariant way (Thomas connection)
- Symbol S and density f on $M \mapsto$ Symbol \tilde{S} and density \tilde{f} on \tilde{M} associated with S and f in a natural and projectively invariant way
- $\widetilde{Q(\nabla)(S)(f)} = \tau(\tilde{\nabla})(\tilde{S})(\tilde{f})$ with τ a canonical natural quantization

Aims of the talk

Equivariant
quantization in
supergeometry

Fabian Radoux

Show how to superize and to solve in the super setting the following problems:

- Projectively equivariant quantization on \mathbb{R}^m
- Conformally equivariant quantization on \mathbb{R}^m
- Natural and projectively invariant quantization

Projectively equivariant quantization on $\mathbb{R}^{n|m}$ (P. Mathonet, R.)

Equivariant
quantization in
supergeometry

Fabian Radoux

- Superfunction f on a supermanifold of dimension $(n|m)$: locally, $f(x^1, \dots, x^n) = \sum_{I \subseteq \{1, \dots, m\}} f_I(x^1, \dots, x^n) \theta^I$, $\theta^i \theta^j = -\theta^j \theta^i$.

Projectively equivariant quantization on $\mathbb{R}^{n|m}$ (P. Mathonet, R.)

Equivariant
quantization in
supergeometry

Fabian Radoux

- Superfunction f on a supermanifold of dimension $(n|m)$: locally, $f(x^1, \dots, x^n) = \sum_{I \subseteq \{1, \dots, m\}} f_I(x^1, \dots, x^n) \theta^I$, $\theta^i \theta^j = -\theta^j \theta^i$.
- Super vector field: superderivation of the superalgebra of superfunctions.

Projectively equivariant quantization on $\mathbb{R}^{n|m}$ (P. Mathonet, R.)

- Superfunction f on a supermanifold of dimension $(n|m)$: locally, $f(x^1, \dots, x^n) = \sum_{I \subseteq \{1, \dots, m\}} f_I(x^1, \dots, x^n) \theta^I$, $\theta^i \theta^j = -\theta^j \theta^i$.
- Super vector field: superderivation of the superalgebra of superfunctions.
- Locally, a λ -density is expressed formally as $f|Dx|^\lambda$. Under a change of coordinates $\bar{x}(x)$, $|Dx|^\lambda$ is multiplied by $|\text{Ber}A|^\lambda$, with $A_j^i = \frac{\partial \bar{x}^i}{\partial x^j}$.

Projectively equivariant quantization on $\mathbb{R}^{n|m}$ (P. Mathonet, R.)

Equivariant
quantization in
supergeometry

Fabian Radoux

- Superfunction f on a supermanifold of dimension $(n|m)$: locally, $f(x^1, \dots, x^n) = \sum_{I \subseteq \{1, \dots, m\}} f_I(x^1, \dots, x^n) \theta^I$, $\theta^i \theta^j = -\theta^j \theta^i$.
- Super vector field: superderivation of the superalgebra of superfunctions.
- Locally, a λ -density is expressed formally as $f|Dx|^\lambda$. Under a change of coordinates $\bar{x}(x)$, $|Dx|^\lambda$ is multiplied by $|\text{Ber}A|^\lambda$, with $A_j^i = \frac{\partial \bar{x}^i}{\partial x^j}$. Moreover,

$$L_X(f|Dx|^\lambda) = (X(f) + \lambda \text{div}(X)f)|Dx|^\lambda,$$

where

$$\text{div}(X) = \sum_{i=1}^{n+m} (-1)^{\tilde{y}_i} \widetilde{X^i} \partial_{y^i} X^i.$$

- Differential operator $D \in \mathcal{D}_{\lambda, \mu}^k$:

$$D = \sum_{|\alpha| \leq k} D_\alpha \partial_{x^1}^{\alpha_1} \cdots \partial_{x^n}^{\alpha_n} \partial_{\theta^1}^{\alpha_{n+1}} \cdots \partial_{\theta^m}^{\alpha_{n+m}},$$

where D_α are local δ -densities ($\delta = \mu - \lambda$).

- Differential operator $D \in \mathcal{D}_{\lambda, \mu}^k$:

$$D = \sum_{|\alpha| \leq k} D_\alpha \partial_{x^1}^{\alpha_1} \cdots \partial_{x^n}^{\alpha_n} \partial_{\theta^1}^{\alpha_{n+1}} \cdots \partial_{\theta^m}^{\alpha_{n+m}},$$

where D_α are local δ -densities ($\delta = \mu - \lambda$).

- $\mathcal{L}_X D = L_X \circ D - (-1)^{\tilde{X} \tilde{D}} D \circ L_X$.

- Differential operator $D \in \mathcal{D}_{\lambda, \mu}^k$:

$$D = \sum_{|\alpha| \leq k} D_\alpha \partial_{x^1}^{\alpha_1} \cdots \partial_{x^n}^{\alpha_n} \partial_{\theta^1}^{\alpha_{n+1}} \cdots \partial_{\theta^m}^{\alpha_{n+m}},$$

where D_α are local δ -densities ($\delta = \mu - \lambda$).

- $\mathcal{L}_X D = L_X \circ D - (-1)^{\tilde{X} \tilde{D}} D \circ L_X$.
- Space of symbols isomorphic to the graded space associated with $\mathcal{D}_{\lambda, \mu}$, isomorphism induced by:

$$\sigma_k : \mathcal{D}^k \rightarrow \mathcal{S}^k : D \mapsto \sum_{|\alpha|=k} D_\alpha \otimes \partial_1^{\alpha_1} \vee \cdots \vee \partial_{n+m}^{\alpha_{n+m}}.$$

- Differential operator $D \in \mathcal{D}_{\lambda, \mu}^k$:

$$D = \sum_{|\alpha| \leq k} D_\alpha \partial_{x^1}^{\alpha_1} \cdots \partial_{x^n}^{\alpha_n} \partial_{\theta^1}^{\alpha_{n+1}} \cdots \partial_{\theta^m}^{\alpha_{n+m}},$$

where D_α are local δ -densities ($\delta = \mu - \lambda$).

- $\mathcal{L}_X D = L_X \circ D - (-1)^{\tilde{X} \tilde{D}} D \circ L_X$.
- Space of symbols isomorphic to the graded space associated with $\mathcal{D}_{\lambda, \mu}$, isomorphism induced by:

$$\sigma_k : \mathcal{D}^k \rightarrow \mathcal{S}^k : D \mapsto \sum_{|\alpha|=k} D_\alpha \otimes \partial_1^{\alpha_1} \vee \cdots \vee \partial_{n+m}^{\alpha_{n+m}}.$$

- The Lie derivative of a symbol is obtained by extending the Lie derivative of super vector fields.

- Differential operator $D \in \mathcal{D}_{\lambda,\mu}^k$:

$$D = \sum_{|\alpha| \leq k} D_\alpha \partial_{x^1}^{\alpha_1} \cdots \partial_{x^n}^{\alpha_n} \partial_{\theta^1}^{\alpha_{n+1}} \cdots \partial_{\theta^m}^{\alpha_{n+m}},$$

where D_α are local δ -densities ($\delta = \mu - \lambda$).

- $\mathcal{L}_X D = L_X \circ D - (-1)^{\tilde{X} \tilde{D}} D \circ L_X$.
- Space of symbols isomorphic to the graded space associated with $\mathcal{D}_{\lambda,\mu}$, isomorphism induced by:

$$\sigma_k : \mathcal{D}^k \rightarrow \mathcal{S}^k : D \mapsto \sum_{|\alpha|=k} D_\alpha \otimes \partial_1^{\alpha_1} \vee \cdots \vee \partial_{n+m}^{\alpha_{n+m}}.$$

- The Lie derivative of a symbol is obtained by extending the Lie derivative of super vector fields.
- Quantization: linear bijection $Q : \mathcal{S}_\delta \rightarrow \mathcal{D}_{\lambda,\mu}$ s.t. $\sigma_k(Q(S)) = S$ for all $S \in \mathcal{S}_\delta^k$.

Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

Equivariant
quantization in
supergeometry

Fabian Radoux

- $\mathfrak{pgl}(n+1|m) = \mathfrak{gl}(n+1|m)/\mathbb{R}\text{Id} \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.

Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

Equivariant
quantization in
supergeometry

Fabian Radoux

- $\mathfrak{pgl}(n+1|m) = \mathfrak{gl}(n+1|m)/\mathbb{R}\text{Id} \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.
- Ω subset of \mathbb{R}^{n+1} equal to $\{(x^0, \dots, x^n) : x^0 > 0\}$.

Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

- $\mathfrak{pgl}(n+1|m) = \mathfrak{gl}(n+1|m)/\mathbb{R}\text{Id} \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.
- Ω subset of \mathbb{R}^{n+1} equal to $\{(x^0, \dots, x^n) : x^0 > 0\}$.
- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{n+1|m}$ to Ω .

Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

- $\mathfrak{pgl}(n+1|m) = \mathfrak{gl}(n+1|m)/\mathbb{R}\text{Id} \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.
- Ω subset of \mathbb{R}^{n+1} equal to $\{(x^0, \dots, x^n) : x^0 > 0\}$.
- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{n+1|m}$ to Ω .
- Bijective correspondence $i : C^{\infty n|m} \rightarrow H(\Omega)$.

Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

- $\mathfrak{pgl}(n+1|m) = \mathfrak{gl}(n+1|m)/\mathbb{R}\text{Id} \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.
- Ω subset of \mathbb{R}^{n+1} equal to $\{(x^0, \dots, x^n) : x^0 > 0\}$.
- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{n+1|m}$ to Ω .
- Bijective correspondence $i : C^{\infty n|m} \rightarrow H(\Omega)$.
- Homomorphism $h_{n+1,m} : \mathfrak{gl}(n+1|m) \rightarrow \text{Vect}(\mathbb{R}^{n+1|m})$.

Projective superalgebra of vector fields on $\mathbb{R}^{n|m}$

Equivariant
quantization in
supergeometry

Fabian Radoux

- $\mathfrak{pgl}(n+1|m) = \mathfrak{gl}(n+1|m)/\mathbb{R}\text{Id} \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{n|m}$.
- Ω subset of \mathbb{R}^{n+1} equal to $\{(x^0, \dots, x^n) : x^0 > 0\}$.
- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{n+1|m}$ to Ω .
- Bijective correspondence $i : C^{\infty n|m} \rightarrow H(\Omega)$.
- Homomorphism $h_{n+1,m} : \mathfrak{gl}(n+1|m) \rightarrow \text{Vect}(\mathbb{R}^{n+1|m})$.
- If $A \in \mathfrak{gl}(n+1|m)$,

$$\begin{array}{ccc} H(\Omega) & \xrightarrow{h_{n+1,m}(A)} & H(\Omega) \\ \uparrow i & & \downarrow i^{-1} \\ C^{\infty n|m} & \xrightarrow{\pi(h_{n+1,m}(A))} & C^{\infty n|m} \end{array}$$

Equivariant
quantization in
supergeometry

Fabian Radoux

- $\pi \circ h_{n+1,m}(\text{Id}) = 0$, thus $\pi \circ h_{n+1,m}$ induces a homomorphism from $\mathfrak{pgl}(n+1|m)$ to $\text{Vect}(\mathbb{R}^{n|m})$.

- $\pi \circ h_{n+1,m}(\text{Id}) = 0$, thus $\pi \circ h_{n+1,m}$ induces a homomorphism from $\mathfrak{pgl}(n+1|m)$ to $\text{Vect}(\mathbb{R}^{n|m})$.
- Projectively equivariant quantization on $\mathbb{R}^{n|m}$: quantization Q s.t. $\mathcal{L}_{X^h} \circ Q = Q \circ L_{X^h}$ for every $h \in \mathfrak{pgl}(n+1|m)$.

Construction of the quantization

Equivariant
quantization in
supergeometry

Fabian Radoux

- Casimir operators:

Construction of the quantization

- Casimir operators:
- \mathfrak{l} : Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form K .

Construction of the quantization

- **Casimir operators:**
- \mathfrak{l} : Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form K .
- (V, β) : representation of \mathfrak{l} .

Construction of the quantization

■ Casimir operators:

- \mathfrak{l} : Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form K .
- (V, β) : representation of \mathfrak{l} .
- $(u_i : i \leq n)$: homogeneous basis of \mathfrak{l} ; $(u'_i : i \leq n)$: K -dual basis ($K(u_i, u'_j) = \delta_{i,j}$).

Construction of the quantization

■ Casimir operators:

- \mathfrak{l} : Lie superalgebra endowed with a nondegenerate even supersymmetric bilinear form K .
- (V, β) : representation of \mathfrak{l} .
- $(u_i : i \leq n)$: homogeneous basis of \mathfrak{l} ; $(u'_i : i \leq n)$: K -dual basis ($K(u_i, u'_j) = \delta_{i,j}$).
- Casimir operator of (V, β) :

$$\sum_{i=1}^n (-1)^{\tilde{u}_i} \beta(u_i) \beta(u'_i) = \sum_{i=1}^n \beta(u'_i) \beta(u_i).$$

- If $m \neq n + 1$, $\mathfrak{pgl}(n+1|m) \cong \mathfrak{sl}(n+1|m)$.

- If $m \neq n + 1$, $\mathfrak{pgl}(n + 1|m) \cong \mathfrak{sl}(n + 1|m)$.
- Killing form of $\mathfrak{sl}(n + 1|m)$:

$$K(A, B) = \text{str}(ad(A)ad(B)) = 2(n + 1 - m) \text{str}(AB).$$

- If $m \neq n + 1$, $\mathfrak{pgl}(n+1|m) \cong \mathfrak{sl}(n+1|m)$.
- Killing form of $\mathfrak{sl}(n+1|m)$:

$$K(A, B) = \text{str}(ad(A)ad(B)) = 2(n+1-m) \text{str}(AB).$$

- K allows to define C and \mathcal{C} corresponding resp. to (\mathcal{S}, L) and $(\mathcal{D}, \mathcal{L})$.

- If $m \neq n + 1$, $\mathfrak{pgl}(n + 1|m) \cong \mathfrak{sl}(n + 1|m)$.
- Killing form of $\mathfrak{sl}(n + 1|m)$:

$$K(A, B) = \text{str}(ad(A)ad(B)) = 2(n + 1 - m) \text{str}(AB).$$

- K allows to define C and \mathcal{C} corresponding resp. to (\mathcal{S}, L) and $(\mathcal{D}, \mathcal{L})$.
- The Casimir operator C of $\mathfrak{pgl}(n + 1|m) \cong \mathfrak{sl}(n + 1|m)$ on $(\mathcal{S}_\delta^k, L)$ is equal to $\alpha(k, \delta)\text{Id}$.

Equivariant quantization in supergeometry

Fabian Radoux

- If δ is not critical, then there exists a unique projectively equivariant quantization.

- If δ is not critical, then there exists a unique projectively equivariant quantization.
- Proof:
 - 1 For every $S \in \mathcal{S}_\delta^k$, $\exists!$ \hat{S} s.t. $\mathcal{C}(\hat{S}) = \alpha(k, \delta)\hat{S}$ and s.t. $\sigma(\hat{S}) = S$.

- If δ is not critical, then there exists a unique projectively equivariant quantization.
- Proof:
 - 1 For every $S \in \mathcal{S}_\delta^k$, $\exists!$ \hat{S} s.t. $\mathcal{C}(\hat{S}) = \alpha(k, \delta)\hat{S}$ and s.t. $\sigma(\hat{S}) = S$.
 - 2 $Q(S) := \hat{S}$.

- If δ is not critical, then there exists a unique projectively equivariant quantization.
- Proof:
 - 1 For every $S \in \mathcal{S}_\delta^k$, $\exists!$ \hat{S} s.t. $\mathcal{C}(\hat{S}) = \alpha(k, \delta)\hat{S}$ and s.t. $\sigma(\hat{S}) = S$.
 - 2 $Q(S) := \hat{S}$.
 - 3 If $S \in \mathcal{S}_\delta^k$, $Q(L_{X^h} S) = \mathcal{L}_{X^h}(Q(S))$ because they are eigenvectors of \mathcal{C} of eigenvalue $\alpha(k, \delta)$ and because their symbol is $L_{X^h} S$.

Divergence operator:

$$\text{div} : \mathcal{S}_\delta^k \rightarrow \mathcal{S}_\delta^{k-1} : S \mapsto \sum_{j=1}^{n+m} (-1)^{\tilde{y}^j} i(dx^j) \partial_{y^j} S.$$

Divergence operator:

$$\operatorname{div} : \mathcal{S}_\delta^k \rightarrow \mathcal{S}_\delta^{k-1} : S \mapsto \sum_{j=1}^{n+m} (-1)^{\tilde{y}^j} i(dx^j) \partial_{y^j} S.$$

Theorem

If δ is not critical, then the map $Q : \mathcal{S}_\delta \rightarrow \mathcal{D}_{\lambda, \mu}$ defined by

$$Q(S)(f) = \sum_{r=0}^k C_{k,r} Q_{\operatorname{Aff}}(\operatorname{div}^r S)(f), \quad \text{for all } S \in \mathcal{S}_\delta^k$$

is the unique $\mathfrak{sl}(n+1|m)$ -equivariant quantization if

$$C_{k,r} = \frac{\prod_{j=1}^r ((n-m+1)\lambda + k - j)}{r! \prod_{j=1}^r (n-m+2k-j - (n-m+1)\delta)} \quad \forall r \geq 1.$$

- Case $m = n + 1$: $\mathfrak{pgl}(n+1|n+1)$ not endowed with a non degenerate bilinear symmetric invariant form.

- **Case $m = n + 1$:** $\mathfrak{pgl}(n+1|n+1)$ not endowed with a non degenerate bilinear symmetric invariant form.
- $\mathfrak{pgl}(n+1|n+1) = \mathfrak{psl}(n+1|n+1) \oplus \mathbb{R}\mathcal{E}$.

- **Case $m = n + 1$:** $\mathfrak{pgl}(n+1|n+1)$ not endowed with a non degenerate bilinear symmetric invariant form.
- $\mathfrak{pgl}(n+1|n+1) = \mathfrak{psl}(n+1|n+1) \oplus \mathbb{R}\mathcal{E}$.
- Killing form of $\mathfrak{psl}(n+1|n+1)$ vanishes, but K defined by

$$K([A], [B]) = \text{str}AB$$

is a nondegenerate invariant supersymmetric even form, we can then apply the Casimir operator method to $\mathfrak{psl}(n+1|n+1)$.

- **Case $m = n + 1$:** $\mathfrak{pgl}(n+1|n+1)$ not endowed with a non degenerate bilinear symmetric invariant form.
- $\mathfrak{pgl}(n+1|n+1) = \mathfrak{psl}(n+1|n+1) \oplus \mathbb{R}\mathcal{E}$.
- Killing form of $\mathfrak{psl}(n+1|n+1)$ vanishes, but K defined by

$$K([A], [B]) = \text{str}AB$$

is a nondegenerate invariant supersymmetric even form, we can then apply the Casimir operator method to $\mathfrak{psl}(n+1|n+1)$.

- If $k \neq 1$, Q is given by the same formula as in the case $m \neq n + 1$.

- If $k = 1$,

$$Q_1 : S \mapsto Q(S) = Q_{\text{Aff}}(S + t \operatorname{div}(S))$$

defines a $\mathfrak{psl}(n+1|n+1)$ -equivariant quantization for every $t \in \mathbb{R}$ (vector fields in $\mathfrak{psl}(n+1|n+1)$ are divergence-free).

- If $k = 1$,

$$Q_1 : S \mapsto Q(S) = Q_{\text{Aff}}(S + t \operatorname{div}(S))$$

defines a $\mathfrak{psl}(n+1|n+1)$ -equivariant quantization for every $t \in \mathbb{R}$ (vector fields in $\mathfrak{psl}(n+1|n+1)$ are divergence-free).

- The $\mathfrak{psl}(n+1, n+1)$ -equivariant quantizations are $\mathfrak{pgl}(n+1, n+1)$ -equivariant (equivariance with respect to the Euler vector field).

- If $k = 1$,

$$Q_1 : S \mapsto Q(S) = Q_{\text{Aff}}(S + t \operatorname{div}(S))$$

defines a $\mathfrak{psl}(n+1|n+1)$ -equivariant quantization for every $t \in \mathbb{R}$ (vector fields in $\mathfrak{psl}(n+1|n+1)$ are divergence-free).

- The $\mathfrak{psl}(n+1, n+1)$ -equivariant quantizations are $\mathfrak{pgl}(n+1, n+1)$ -equivariant (equivariance with respect to the Euler vector field).
- Q does not depend on δ and λ .

Orthosymplectically equivariant quantizations on $\mathbb{R}^{n|2r}$ (T. Leuther, P. Mathonet, R.)

- $\mathfrak{osp}(p+1, q+1|2r)$:

$$\{A \in \mathfrak{gl}(p+q+2|2r) : \omega(AU, V) + (-1)^{\tilde{A}\tilde{U}}\omega(U, AV) = 0 \text{ for all } U, V \in \mathbb{R}^{p+q+2|2r}\},$$

where ω is represented by the following matrix G :

$$G = \begin{pmatrix} S & 0 \\ 0 & J \end{pmatrix}, \quad S = \begin{pmatrix} 0 & 0 & -1 \\ 0 & \text{Id}_{p,q} & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

$$J = \begin{pmatrix} 0 & \text{Id}_r \\ -\text{Id}_r & 0 \end{pmatrix}, \quad \text{Id}_{p,q} = \begin{pmatrix} \text{Id}_p & 0 \\ 0 & -\text{Id}_q \end{pmatrix}.$$

Orthosymplectic superalgebra of vector fields

Equivariant
quantization in
supergeometry

Fabian Radoux

- $\mathfrak{osp}(p+1, q+1|2r) \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{p+q|2r}$.

Orthosymplectic superalgebra of vector fields

- $\mathfrak{osp}(p+1, q+1|2r) \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{p+q|2r}$.
- Ω subset of \mathbb{R}^{p+q+2} equal to $\{(x^1, \dots, x^{p+q+2}) : x^{p+q+2} \neq 0\}$.

Orthosymplectic superalgebra of vector fields

- $\mathfrak{osp}(p+1, q+1|2r) \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{p+q|2r}$.
- Ω subset of \mathbb{R}^{p+q+2} equal to $\{(x^1, \dots, x^{p+q+2}) : x^{p+q+2} \neq 0\}$.
- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{p+q+2|2r}$ to Ω .

Orthosymplectic superalgebra of vector fields

- $\mathfrak{osp}(p+1, q+1|2r) \longleftrightarrow$ subalgebra of vector fields over $\mathbb{R}^{p+q|2r}$.
- Ω subset of \mathbb{R}^{p+q+2} equal to $\{(x^1, \dots, x^{p+q+2}) : x^{p+q+2} \neq 0\}$.
- $H(\Omega)$: space of restrictions of homogeneous functions over $\mathbb{R}^{p+q+2|2r}$ to Ω .
- Bijective correspondence
 $i : C^{\infty p+q|2r} \rightarrow H(\Omega)/H(\Omega) \cap I_F$, where I_F is the ideal generated by the equation F of the supercone, namely

$$F(x, \theta) = \sum_{i=2}^{p+1} (x^i)^2 - \sum_{i=p+2}^{p+q+1} (x^i)^2 - 2x^1 x^{p+q+2} + 2 \sum_{i=1}^r \theta^i \theta^{i+r}.$$

- Homomorphism $h_{p+q+2,2r} : \mathfrak{osp}(p+1, q+1|2r) \rightarrow \text{Vect}(\mathbb{R}^{p+q+2|2r})$.

- Homomorphism $h_{p+q+2,2r}$:
 $\mathfrak{osp}(p+1, q+1|2r) \rightarrow \text{Vect}(\mathbb{R}^{p+q+2|2r})$.
- If $A \in \mathfrak{osp}(p+1, q+1|2r)$,

$$\begin{array}{ccc} H(\Omega)/H(\Omega) \cap I_F & \xrightarrow{h_{p+q+2,2r}(A)} & H(\Omega)/H(\Omega) \cap I_F \\ \uparrow i & & \downarrow i^{-1} \\ C^{\infty p+q|2r} & \xrightarrow{\pi(h_{p+q+2,2r}(A))} & C^{\infty p+q|2r} \end{array}$$

- Homomorphism $h_{p+q+2,2r} : \mathfrak{osp}(p+1, q+1|2r) \rightarrow \text{Vect}(\mathbb{R}^{p+q+2|2r})$.
- If $A \in \mathfrak{osp}(p+1, q+1|2r)$,

$$\begin{array}{ccc}
 H(\Omega)/H(\Omega) \cap I_F & \xrightarrow{h_{p+q+2,2r}(A)} & H(\Omega)/H(\Omega) \cap I_F \\
 \uparrow i & & \downarrow i^{-1} \\
 C^{\infty p+q|2r} & \xrightarrow{\pi(h_{p+q+2,2r}(A))} & C^{\infty p+q|2r}
 \end{array}$$

- $\mathfrak{osp}(p+1, q+1|2r)$ -equivariant quantization on $\mathbb{R}^{p+q|2r}$: quantization Q s.t. $\mathcal{L}_{X^h} \circ Q = Q \circ L_{X^h}$ for every $h \in \mathfrak{osp}(p+1, q+1|2r)$.

Construction of the quantization

- Killing-form of $\mathfrak{osp}(p+1, q+1|2r)$: K given by

$$K : (A, B) \mapsto \frac{-1}{2} \text{str}(AB).$$

Construction of the quantization

- Killing-form of $\mathfrak{osp}(p+1, q+1|2r)$: K given by

$$K : (A, B) \mapsto \frac{-1}{2} \text{str}(AB).$$

- Corresponding Casimir operator C on \mathcal{S}_δ^k :

$$C = \beta_{k,\delta} \text{Id} + R \circ T,$$

$$R : S \mapsto i(\omega_0)S, \quad T : S \mapsto \omega_0^\sharp \vee S,$$

ω_0 bilinear form on $\mathbb{R}^{p+q|2r}$ represented by

$$\begin{pmatrix} \text{Id}_{p,q} & 0 \\ 0 & J \end{pmatrix}.$$

Equivariant quantization in supergeometry

Fabian Radoux

- Eigenvalues of C on \mathcal{S}_δ^k : $\alpha_{k,s,\delta}$, $0 \leq s \leq \lfloor \frac{k}{2} \rfloor$

- Eigenvalues of C on \mathcal{S}_δ^k : $\alpha_{k,s,\delta}$, $0 \leq s \leq \lfloor \frac{k}{2} \rfloor$
- If the superdimension $p + q - 2r$ is even and less than or equal to 0, C is not diagonalizable !

- Eigenvalues of C on \mathcal{S}_δ^k : $\alpha_{k,s,\delta}$, $0 \leq s \leq \lfloor \frac{k}{2} \rfloor$
- If the superdimension $p + q - 2r$ is even and less than or equal to 0, C is not diagonalizable !
- Multiplicity of $\alpha_{k,s,\delta}$ as root of the minimal polynomial of C is at most two.

- Eigenvalues of C on \mathcal{S}_δ^k : $\alpha_{k,s,\delta}$, $0 \leq s \leq \lfloor \frac{k}{2} \rfloor$
- If the superdimension $p + q - 2r$ is even and less than or equal to 0, C is not diagonalizable !
- Multiplicity of $\alpha_{k,s,\delta}$ as root of the minimal polynomial of C is at most two.
- Quantization is defined on *generalized eigenvectors of C .*

- Case $p + q - 2r \neq 0$:
- If δ is not resonant, then there exists a unique $\mathfrak{osp}(p+1, q+1|2r)$ -equivariant quantization.

- Case $p + q - 2r \neq 0$:
 - If δ is not resonant, then there exists a unique $\mathfrak{osp}(p+1, q+1|2r)$ -equivariant quantization.
 - Proof:
 - 1 If \mathcal{C} denotes the Casimir operator on $\mathcal{D}_{\lambda, \mu}^k$, for every $S \in \ker(C - \alpha_{k,i,\delta} \text{Id})^2$, $\exists! \hat{S}$ s.t. $\hat{S} \in \ker(\mathcal{C} - \alpha_{k,i,\delta} \text{Id})^2$ and s.t. $\sigma_k(\hat{S}) = S$.

- Case $p + q - 2r \neq 0$:
 - If δ is not resonant, then there exists a unique $\mathfrak{osp}(p+1, q+1|2r)$ -equivariant quantization.
 - Proof:
 - 1 If \mathcal{C} denotes the Casimir operator on $\mathcal{D}_{\lambda, \mu}^k$, for every $S \in \ker(C - \alpha_{k,i,\delta} \text{Id})^2$, $\exists! \hat{S}$ s.t. $\hat{S} \in \ker(\mathcal{C} - \alpha_{k,i,\delta} \text{Id})^2$ and s.t. $\sigma_k(\hat{S}) = S$.
 - 2 $Q(S) := \hat{S}$.

- **Case $p + q - 2r \neq 0$:**
- If δ is not resonant, then there exists a unique $\mathfrak{osp}(p+1, q+1|2r)$ -equivariant quantization.
- Proof:
 - 1 If \mathcal{C} denotes the Casimir operator on $\mathcal{D}_{\lambda, \mu}^k$, for every $S \in \ker(C - \alpha_{k,i,\delta} \text{Id})^2$, $\exists! \hat{S}$ s.t. $\hat{S} \in \ker(\mathcal{C} - \alpha_{k,i,\delta} \text{Id})^2$ and s.t. $\sigma_k(\hat{S}) = S$.
 - 2 $Q(S) := \hat{S}$.
 - 3 If $S \in \ker(C - \alpha_{k,i,\delta} \text{Id})^2$, $Q(L_{X^h} S) = \mathcal{L}_{X^h}(Q(S))$ because they belong to $\ker(\mathcal{C} - \alpha_{k,i,\delta} \text{Id})^2$ and because their symbol is $L_{X^h} S$.

■ At the order two:

$$Q = Q_{\text{Aff}} \circ (\text{Id} + a_1 G_0 + a_2 \text{div} + a_3 \Delta_0 + a_4 \text{div}^2),$$

$$G: \mathcal{S}_\delta^k \rightarrow \mathcal{S}_\delta^{k+1}: S \mapsto \sum_{j=1}^{p+q+2r} (-1)^j \varepsilon^{j\sharp} \vee \partial_{y^j} S,$$

$$\Delta: \mathcal{S}_\delta^k \rightarrow \mathcal{S}_\delta^k: S \mapsto \sum_{j=1}^{p+q+2r} \omega_0(e_i, e_j) \partial_{y^j} \partial_{y^i} S,$$

$$G_0 = G \circ T, \quad \Delta_0 = \Delta \circ T$$

- Case $p + q - 2r = 0$:
- Arbitrary order: We do not know if we have the existence but the problem does not depend on density weights

- Case $p + q - 2r = 0$:
- Arbitrary order: We do not know if we have the existence but the problem does not depend on density weights
- Order two:

$$Q_2 : S \mapsto Q(S) = Q_{\text{Aff}}(S + \frac{1}{2} \text{div}(S))$$

- Case $p + q - 2r = 0$:
- Arbitrary order: We do not know if we have the existence but the problem does not depend on density weights
- Order two:

$$Q_2 : S \mapsto Q(S) = Q_{\text{Aff}}(S + \frac{1}{2} \operatorname{div}(S))$$

- Order one:

$$Q_1 : S \mapsto Q(S) = Q_{\text{Aff}}(S + t \operatorname{div}(S))$$

defines an $\mathfrak{osp}(p+1, q+1|2r)$ -equivariant quantization for every $t \in \mathbb{R}$ (vector fields in $\mathfrak{osp}(p+1, q+1|2r)$ are divergence-free).

Natural and projectively invariant quantizations on supermanifolds (T. Leuther and R.)

Equivariant
quantization in
supergeometry

Fabian Radoux

- Problem setting: find $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$ such that

Natural and projectively invariant quantizations on supermanifolds (T. Leuther and R.)

- Problem setting: find $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$ such that
 - 1 Q is natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ

Natural and projectively invariant quantizations on supermanifolds (T. Leuther and R.)

- Problem setting: find $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$ such that
 - 1 Q is natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ
 - 2 Q is projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla'_X Y = \nabla_X Y + \alpha(X)Y + (-1)^{\tilde{X}\tilde{Y}}\alpha(Y)X$

Natural and projectively invariant quantizations on supermanifolds (T. Leuther and R.)

- Problem setting: find $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$ such that
 - 1 Q is natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ
 - 2 Q is projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla'_X Y = \nabla_X Y + \alpha(X)Y + (-1)^{\tilde{X}\tilde{Y}}\alpha(Y)X$
- $\nabla : \text{Vect}(M) \times \text{Vect}(M) \rightarrow \text{Vect}(M)$ bilinear map such that:

Natural and projectively invariant quantizations on supermanifolds (T. Leuther and R.)

- Problem setting: find $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$ such that
 - 1 Q is natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ
 - 2 Q is projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla'_X Y = \nabla_X Y + \alpha(X)Y + (-1)^{\tilde{X}\tilde{Y}}\alpha(Y)X$
- $\nabla : \text{Vect}(M) \times \text{Vect}(M) \rightarrow \text{Vect}(M)$ bilinear map such that:

$$\nabla_{fX} Y = f\nabla_X Y \text{ and } \nabla_X fY = X(f)Y + (-1)^{\tilde{X}\tilde{f}}f\nabla_X Y$$

for all superfunction f .

Natural and projectively invariant quantizations on supermanifolds (T. Leuther and R.)

- Problem setting: find $Q(\nabla) : \mathcal{S}(M) \rightarrow \mathcal{D}(M)$ such that
 - 1 Q is natural: $\Phi^*(Q(\nabla)(S)) = Q(\Phi^*\nabla)(\Phi^*S)$ for all local diffeomorphism Φ
 - 2 Q is projectively invariant: $Q(\nabla) = Q(\nabla')$ if $\nabla'_X Y = \nabla_X Y + \alpha(X)Y + (-1)^{\tilde{X}\tilde{Y}}\alpha(Y)X$
- $\nabla : \text{Vect}(M) \times \text{Vect}(M) \rightarrow \text{Vect}(M)$ bilinear map such that:

$$\nabla_{fX} Y = f\nabla_X Y \text{ and } \nabla_X fY = X(f)Y + (-1)^{\tilde{X}\tilde{f}}f\nabla_X Y$$

for all superfunction f .

- In a local basis $(\partial_1, \dots, \partial_{n+m})$ of $\text{Vect}(M)$ (M is of superdimension $(n|m)$), $\Gamma_{ij}^k \partial_k = \nabla_{\partial_i} \partial_j$

Thomas bundle (J. George)

Equivariant
quantization in
supergeometry

Fabian Radoux

- Thomas fiber bundle \tilde{M} : one adds an even coordinate x^0 to each coordinate system (x^1, \dots, x^{n+m}) of M .

Thomas bundle (J. George)

Equivariant
quantization in
supergeometry

Fabian Radoux

- Thomas fiber bundle \tilde{M} : one adds an even coordinate x^0 to each coordinate system (x^1, \dots, x^{n+m}) of M .
- Under a change of coordinates $\bar{x}(x)$, x^0 transforms into $x^0 + \log |\text{Ber}A|$, where

$$A_j^i = \frac{\partial \bar{x}^j}{\partial x^i}$$

Thomas connection (J. George)

- ∇ and ∇' are projectively equivalent iff $\Pi_{ij}^k = \Pi'^k_{ij}$, where

$$\Pi_{ij}^k = \Gamma_{ij}^k - \frac{1}{n-m+1} (\Gamma_{is}^s \delta_j^k (-1)^{\tilde{s}} + \Gamma_{js}^s \delta_i^k (-1)^{\tilde{i}j + \tilde{s}})$$

Thomas connection (J. George)

Equivariant
quantization in
supergeometry

Fabian Radoux

- ∇ and ∇' are projectively equivalent iff $\Pi_{ij}^k = \Pi'_{ij}^k$, where

$$\Pi_{ij}^k = \Gamma_{ij}^k - \frac{1}{n-m+1} (\Gamma_{is}^s \delta_j^k (-1)^{\tilde{s}} + \Gamma_{js}^s \delta_i^k (-1)^{\tilde{j} + \tilde{s}})$$

- Thomas connection $\tilde{\nabla}$ on \tilde{M} :

$$\tilde{\Gamma}_{ij}^k = \Pi_{ij}^k, \quad \tilde{\Gamma}_{0a}^c = \tilde{\Gamma}_{a0}^c = \frac{-\delta_a^c}{n-m+1},$$

$$\tilde{\Gamma}_{ij}^0 = \frac{n-m+1}{n-m-1} \left(\partial_q \Pi_{ij}^q - \Pi_{qi}^p \Pi_{pj}^q \right) (-1)^{\tilde{q}(\tilde{q}+\tilde{i}+\tilde{j})}$$

Thomas connection (J. George)

- ∇ and ∇' are projectively equivalent iff $\Pi_{ij}^k = \Pi'_{ij}^k$, where

$$\Pi_{ij}^k = \Gamma_{ij}^k - \frac{1}{n-m+1} (\Gamma_{is}^s \delta_j^k (-1)^{\tilde{s}} + \Gamma_{js}^s \delta_i^k (-1)^{\tilde{j} + \tilde{s}})$$

- Thomas connection $\tilde{\nabla}$ on \tilde{M} :

$$\tilde{\Gamma}_{ij}^k = \Pi_{ij}^k, \quad \tilde{\Gamma}_{0a}^c = \tilde{\Gamma}_{a0}^c = \frac{-\delta_a^c}{n-m+1},$$

$$\tilde{\Gamma}_{ij}^0 = \frac{n-m+1}{n-m-1} \left(\partial_q \Pi_{ij}^q - \Pi_{qi}^p \Pi_{pj}^q \right) (-1)^{\tilde{q}(\tilde{q}+\tilde{i}+\tilde{j})}$$

- $\tilde{\nabla}$ depends on ∇ in a natural and projectively invariant way; moreover, $L_{\mathcal{E}} \tilde{\nabla} = 0$ with $\mathcal{E} = \partial_0$

Construction of the quantization

- Bijective correspondance i between λ -densities on M and λ -equivariant functions on \tilde{M} :

$$i : f \mapsto \tilde{f}, \quad L_{\mathcal{E}} \tilde{f} = \lambda \tilde{f}$$

Construction of the quantization

- Bijective correspondance i between λ -densities on M and λ -equivariant functions on \tilde{M} :

$$i : f \mapsto \tilde{f}, \quad L_{\mathcal{E}} \tilde{f} = \lambda \tilde{f}$$

- Natural and projectively invariant lift of symbols: $S \mapsto \tilde{S}$ with $L_{\mathcal{E}} \tilde{S} = \delta \tilde{S}$.

Construction of the quantization

- Bijective correspondance i between λ -densities on M and λ -equivariant functions on \tilde{M} :

$$i : f \mapsto \tilde{f}, \quad L_{\mathcal{E}} \tilde{f} = \lambda \tilde{f}$$

- Natural and projectively invariant lift of symbols: $S \mapsto \tilde{S}$ with $L_{\mathcal{E}} \tilde{S} = \delta \tilde{S}$.
- Natural canonical quantization τ : if S is a symbol of degree k , then

$$\tau(\nabla)(S)(f) := \langle S, \nabla^k f \rangle$$

Equivariant
quantization in
supergeometry

Fabian Radoux

$$\begin{array}{ccc} \tilde{f} & \xrightarrow{\tau(\tilde{\nabla})(\tilde{S})} & \tau(\tilde{\nabla})(\tilde{S})(\tilde{f}) \\ \uparrow i & & \downarrow i^{-1} \\ f & \xrightarrow{Q(\nabla)(S)} & Q(\nabla)(S)(f) \end{array}$$

$$\begin{array}{ccc} \tilde{f} & \xrightarrow{\tau(\tilde{\nabla})(\tilde{S})} & \tau(\tilde{\nabla})(\tilde{S})(\tilde{f}) \\ \uparrow i & & \downarrow i^{-1} \\ f & \xrightarrow{Q(\nabla)(S)} & Q(\nabla)(S)(f) \end{array}$$

- **Case $n-m=1$:** Thomas connection not defined. For $m = 0$, there is no quantization
→ Conjecture of the non-existence of the quantization

$$\begin{array}{ccc} \tilde{f} & \xrightarrow{\tau(\tilde{\nabla})(\tilde{S})} & \tau(\tilde{\nabla})(\tilde{S})(\tilde{f}) \\ \uparrow i & & \downarrow i^{-1} \\ f & \xrightarrow{Q(\nabla)(S)} & Q(\nabla)(S)(f) \end{array}$$

- **Case $n-m=1$:** Thomas connection not defined. For $m=0$, there is no quantization
→ Conjecture of the non-existence of the quantization
- **Case $n-m=-1$:** Thomas connection not defined. But the quantization exists at order two and $\mathfrak{pgl}(n+1, n+1)$ -equivariant quantization on $\mathbb{R}^{n|n+1}$ exists
→ Conjecture of the existence of the quantization