Organ failure is a common complication associated with increased mortality in intensive care unit (ICU) patients. Increased mortality is also associated with hyperglycemia and glycemic variability. This research evaluates the impact of an intensive vs. a conventional insulin therapy (IIT vs. CIT) on organ failures.

Objective

Method

- **Patients:**
 - N = 704 (Glucontrol study)
 - Randomized in IIT (blood glucose (BG) target: 4.4–6.1 mmol/L) or CIT (BG target: 7.8–10.0 mmol/L)
 - Matched for age, sex, diagnosis and severity of illness (APACHE II score)

- **Daily assessment:**
 - Organ failure: SOFA score
 - Glycemic outcome: cumulative time in a band (cTIB) in 4.0–7.0 mmol/L
 - Glycemic variability: lability index $\sum n \frac{(BG_{n+1} - BG_n)^2}{h_{n+1} - h_n}$

Results

- **Similar SOFA scores**
- **Different BG levels for IIT and CIT.**
- **More BG < 2.2 mmol/L for IIT (54 vs. 15 for CIT)**
- **Higher glycemic variability for IIT but also higher measurement frequency**
- **CIT associated with better $P(SOFA \leq 5)$ and IIT is associated with better $P(cTIB \geq 0.5)$**
- **Both ITs associated with better SOFA results when good glycemic outcome compared with bad glycemic outcome**

Conclusion

IIT was unable to mitigate organ failure in two cohorts randomized to different glycemic targets. IIT provided better but not tighter control, with higher variability and more hypoglycemia than CIT.