

Reliability of Analytical Methods' Results: a Bayesian Approach to Analytical Method Validation

<u>E. Rozet</u>¹, B. Govaerts², P. Lebrun¹, B. Boulanger³, E. Ziemons¹, Ph. Hubert¹

Agrostat 2012

Paris, March 1, 2012

Analytical Method Life Cycle

- What is the final aim of quantitative analytical methods?
 - Start with the end!
 - Objective: provide results used to make decisions
 - Release of a batch
 - · Stability/Shelf life
 - Patient health
 - PK/PD studies. ...
- What matters are the results produced by the method.

-

¹ Laboratory of Analytical Chemistry, ULg, Liège, Belgium

² Institut de Statistique, UCL, Louvain-la-Neuve, Belgium.

³ Arlenda SA, Liège, Belgium.

Analytical Method Life Cycle

- Need to demonstrate/guarantee that the analytical method will provide, in its future routine use, quality results
- This is the key aim of Analytical Method Validation!

How?

Typical Statistical Model

- By concentration level i:
 - One Way Random ANOVA model

$$X_{i,jk} = \mu_i + \alpha_{i,j} + \varepsilon_{i,jk}$$
$$\alpha_{i,j} \sim N(0, \sigma_{\alpha,i}^2)$$
$$\varepsilon_{i,jk} \sim N(0, \sigma_{\varepsilon,i}^2)$$

- Intermediate Precision variance

$$\sigma_{I.P..i}^2 = \sigma_{\alpha,i}^2 + \sigma_{\varepsilon,i}^2$$

9

Reliability Probability Estimator 1 – π^{Beti}

 Based on β-expectation tolerance intervals:

Allows to predict where each future result will fall (*Wald*, 1942).

 \rightarrow If the β -expectation tolerance interval is included inside the acceptance limits, then the probability that each future result will be within the acceptance limits is at least β (ex. 80%).

B. Boulanger et al., J. Chromatogr. B, 877 (2009) 2235

Reliability Probability Estimator 1 – π^{Beti}

 Based on β-expectation tolerance intervals:

11

Reliability Probability Estimator 1 $-\pi^{\text{Beti}}$

Based on β-expectation tolerance intervals:

intervals:

$$\pi_i^{Beti} = P[X_i > \mu_{T,i} - \lambda] + P[X_i < \mu_{T,i} + \lambda]$$

$$= P \left[t(f) > \frac{(\mu_{T,i} - \lambda) - \overline{X}_{i}}{\hat{\sigma}_{I.P.,i} \sqrt{1 + \frac{K\hat{R}_{i} + 1}{N(\hat{R}_{i} + 1)}}} \right] + P \left[t(f) < \frac{(\mu_{T,i} + \lambda) - \overline{X}_{i}}{\hat{\sigma}_{I.P.,i} \sqrt{1 + \frac{K\hat{R}_{i} + 1}{N(\hat{R}_{i} + 1)}}} \right]$$

- N=JK.
- \overline{X}_i is the mean results
- *t(f)*: Student distribution with *f* degrees of freedom using Satterthwaite approximation
- $\hat{R}_i = \frac{\hat{\sigma}_{\alpha}^2}{\hat{\sigma}_{\alpha}^2}$

W. Dewé et al., Chemometr. Intell. Lab. Syst. 85 (2007) 262-268.

Reliability Probability Estimator $2 - \pi^{ML}$

· Maximum likelihood estimator

$$\pi_{i}^{ML} = P \left[Z > \frac{\left(\mu_{T,i} - \lambda\right) - \overline{X}_{i}}{\hat{\sigma}_{I.P.,i}} \right] + P \left[Z < \frac{\left(\mu_{T,i} + \lambda\right) - \overline{X}_{i}}{\hat{\sigma}_{I.P.,i}} \right]$$

where Z is a standard normal variable.

B. Govaerts et al., Qual. Reliab. Engng. Int. 24 (2008) 667-680.

Bayesian Reliability Estimator - π

- Aims: modeling the reliability probability over the whole concentration range
- Model: Linear model with random slopes and intercepts

$$X_{ijk} = \boxed{\beta_0} + \boxed{\beta_1} u_{T,i} + \boxed{u_{0,j}} + \boxed{u_{1,j}} u_{T,i} + \boxed{\varepsilon_{ijk}}$$

$$\theta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$$
 are the fixed effects

$$\theta \sim N\left(\begin{bmatrix} 0\\1 \end{bmatrix}, \Gamma\right)$$

$$\mathbf{\theta} = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} \text{ are the fixed effects} \qquad \qquad \mathbf{\theta} \sim N \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \Gamma \end{pmatrix} \qquad \Gamma^{-1} = \mathbf{0}$$

$$\mathbf{U}_j = \begin{pmatrix} u_{0,j} \\ u_{1,j} \end{pmatrix} \text{ are the random effects of the } j^{th} \text{ runs} \qquad \mathbf{U}_j \sim iN(\mathbf{0}, \sigma_u^2, \Sigma) \qquad \qquad \Sigma \sim \text{Wis}$$

$$U_j \sim iN(\mathbf{0}, \sigma_u^2 \sum_{2 \times 2})$$
 $\Sigma \sim \text{Wishart}(0.0001I_2, 2)$

$$\varepsilon_{ijk} \sim N(0, \sigma_i^2)$$
 $\sigma_i = \sigma(\mu_{T,i})^{\gamma}$

$$\sigma_i = \sigma(\mu_{T,i})^{\gamma}$$

$$\gamma \sim N(0, 0.0001)$$

$$\tau = \frac{1}{\sigma} \sim Gamma(0.0001, 0.0001)$$

Simulations

· 4 scenarios:

Conditions

- Analytical Method relative bias: 0% and 10%
- Analytical Method I.P. RSD: 6.5% and 16%
- Known concentrations ($\mu_{\tau,i}$):60%, 80%, 100% and 120%
- Acceptance limits: λ=±20%
- Nb Series: *J*=4
- Nb Repetitions: K=4

Criteria

- Compare median estimated reliability probabilities to true probability
- Compare ranges (min to max) of estimated reliability probabilites

Example of application

- Validation of a bioanalytical method:
 - SPE-HPLC-UV method for the quantification of ketoglutaric acid (KG) and hydroxymethylfurfural (HMF) in human plasma
 - Known concentrations ($\mu_{\text{T,i}}$): 0.13, 0.67, 3.33, 66.67 and 133.33 µg/ml
 - Nb Series: *J*=3
 - Nb Repetitions: K=4
 - Acceptance limits: λ=±20%
 - Minimum reliability probability: π_{min} =0.90

Conclusions

- Switch from the traditional check list validation to a rewarding, useful and predictive method validation
- The quality of future results (π) must be the objective of method validation and not the past performances of the method.
- The Bayesian reliability probability estimator is less biased and more precise.
- In such a way, the risks are known at the end of the validation.
- This decision methodology is fully compliant with actual regulatory requirements

23

Thanks for your attention

Check our publications at:

http://orbi.ulg.ac.be/

· Contact:

Eric.Rozet@ulg.ac.be

24

UNIVERSITY of LIEGE