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Abstract— We used a spiking neural network (SNN) to
decode neural data recorded from a 96-electrode array in
premotor/motor cortex while a rhesus monkey performed a
point-to-point reaching arm movement task. We mapped a
Kalman-filter neural prosthetic decode algorithm developed to
predict the arm’s velocity on to the SNN using the Neural
Engineering Framework and simulated it using Nengo, a freely
available software package. A 20,000-neuron network matched
the standard decoder’s prediction to within 0.03% (normalized
by maximum arm velocity). A 1,600-neuron version of this
network was within 0.27%, and run in real-time on a 3GHz
PC. These results demonstrate that a SNN can implement
a statistical signal processing algorithm widely used as the
decoder in high-performance neural prostheses (Kalman filter),
and achieve similar results with just a few thousand neurons.
Hardware SNN implementations—neuromorphic chips—may
offer power savings, essential for realizing fully-implantable
cortically controlled prostheses.

I. CORTICALLY-CONTROLLED MOTOR PROSTHESES

Neural prostheses aim to restore functions lost to neurolog-

ical disease and injury. Motor prostheses aim to help disabled

patients by translating neural signals from the brain into

control signals for prosthetic limbs or computer cursors. We

recently reported a closed-loop cortically-controlled motor

prosthesis capable of producing quick, accurate, and robust

computer cursor movements by decoding action potentials

from a 96-electrode array in rhesus macaque premotor/motor

cortex [1]-[4]. This design and previous high-performance

designs as well (e.g., [5]) employ versions of the Kalman

filter, ubiquitous in statistical signal processing.

While these recent advances are encouraging, true clini-

cal viability awaits fully-implanted systems which, in turn,

impose severe power dissipation constraints. For example,

to avoid heating the brain by more than 1◦C, which is

believed to be important for long term cell health, a 6×6mm2
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implant must dissipate less than 10mW [6]. Running the 96-

electrode to 2 degree-of-freedom Kalman-filter on a 3.06GHz

Core Duo Intel processor took 0.985µs/update, or 6,030

flops/update, which, at 66.3Mflops/watt, consumes 1.82mW

for 20 updates/sec. This lack of low-power circuits for neural

decoding is a major obstacle to the successful translation of

this new class of motor prostheses.

We focus here on a new approach to implementing

the Kalman filter that is capable of meeting these power

constraints: the neuromorphic approach. The neuromorphic

approach combines digital’s and analog’s best features—

programmability and efficiency—offering potentially greater

robustness than either [7], [8]. At 50nW per silicon neuron

[9], a neuromorphic chip with 1,600 spiking neurons would

consume 80µW. To exploit this energy-efficient approach to

build a fully implantable and programmable decoder chip, the

first step is to explore the feasibility of implementing existing

decoder algorithms with spiking neural networks (SNN) in

software. We did this for the Kalman-filter based decoder

[1]-[4] using Nengo, a freely available simulator [10].

II. KALMAN-FILTER DECODER

The concept behind the Kalman filter is to track the state

of a dynamical system throughout time using a model of its

dynamics as well as noisy measurements. The model gives

an estimate of the system’s state at the next time step. This

estimate is then corrected using the measurements at this time

step. The relative weights for these two pieces of information

are given by the Kalman gain, K [11], [12].

For neural applications, the cursor’s kinematics define the

system’s state vector, xt = [velx
t ,vel

y
t ,1]; the constant 1 allows

for a fixed offset compensation. The neural spike rate (spike

counts in each time step) of 96 channels of action-potential

threshold crossings defines the measurements vector, yt . And

the system’s dynamics are modeled by:

xt = Axt−1 + wt , (1)

yt = Cxt + qt , (2)

where A is the state matrix, C is the observation matrix, and

wt and qt are additive, Gaussian noise sources with wt ∼

N(0,W) and qt ∼ N(0,Q). The model parameters (A, C, W

and Q) are fit with training data.

Assuming the system is stationary, we estimate the current

system state by combining the estimate at the previous time

step with the noisy measurements using the Kalman gain

K = (I+ WCQ−1C)−1 W C Q−1. This yields:

x̂t = (I−KC)Ax̂t−1 + Kyt . (3)
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III. NEURAL ENGINEERING FRAMEWORK

Neural engineers have developed a formal methodology

for mapping control-theory algorithms onto a computational

fabric consisting of a highly heterogeneous population of

spiking neurons simply by programming the strengths of

their connections [10]. These artificial neurons are char-

acterized by a nonlinear multi-dimensional-vector-to-spike-

rate function—ai(x(t)) for the ith neuron—with parameters

(preferred direction, gain, and threshold) drawn randomly

from a wide distribution (standard deviation ≈ mean).

The neural engineering approach to configuring SNNs

to perform arbitrary computations involves representation,

transformation, and dynamics [10], [13]-[15]:

• Representation is defined by nonlinear encoding of

x(t) as a spike rate, ai(x(t)), combined with weighted

linear decoding of ai(x(t)) to recover an estimate of

x(t), x̂(t) = ∑i ai(x(t))φx
i . The decoding weights, φx

i ,

are obtained by minimizing the mean squared error.

• Transformation is performed by using alternate decod-

ing weights in the decoding operation to map transfor-

mations of x(t) directly into transformations of ai(x(t)).
For example, y(t) = Ax(t) is represented by the spike

rates b j(Ax̂(t)), where unit j’s input is computed di-

rectly from unit i’s output using Ax̂(t) = ∑i ai(x(t))Aφx
i ,

an alternative linear weighting.

• Dynamics are realized by using the synapses’ spike

response, h(t), (aka, impulse response) to capture the

system’s dynamics. For example, for h(t) = τ−1e−t/τ ,

ẋ = Ax(t) is realized by replacing A with A′ = τA +
I. This so-called neurally plausible matrix yields an

equivalent dynamical system: x(t) = h(t)∗A′x(t), where

convolution replaces integration.

The nonlinear encoding process—from a multi-

dimensional stimulus, x(t), to a one-dimensional soma

current, Ji, to a firing rate, ai(x(t))—is specified as:

ai(x(t)) = G(Ji(x(t))). (4)

Here G() is the neurons’ nonlinear current-to-spike-rate

function, which is given by

G(Ji(x)) =
{

τ ref
− τRC ln(1− Jth/Ji(x))

}

−1

, (5)

for the leaky integrate-and-fire model (LIF). This model’s

subthreshold behavior is described by an RC circuit with time

constant τRC. When the voltage reaches the threshold, Vth, the

neuron emits a spike δ (t − tn). After this spike, the neuron is

reset and rests for τ ref seconds (absolute refractory period)

before it resumes integrating. Jth = Vth/R is the minimum

input current that produces spiking. Ignoring the soma’s

RC time-constant when specifying the SNN’s dynamics is

reasonable because the neurons cross threshold at a rate that

is proportional to their input current, which thus sets the

spike rate instantaneously, without any filtering [10].

The conversion from a multi-dimensional stimulus, x(t),
to a one-dimensional soma current, Ji, is performed by
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Fig. 1. a. 1D tuning curves of a population of 50 leaky integrate-and-fire
neurons. The maximum firing rate and x-intercept are chosen from uniform
distributions with range 200Hz to 400Hz and −1 to +1, respectively. b.

The neurons’ spike responses to a stimulus x = 0.5 (same color code).

assigning to the neuron a preferred direction, φ̃x
i , in the

stimulus space and taking the dot-product:

Ji(x(t)) = αi

〈

φ̃x
i ·x(t)

〉

+ Jbias
i , (6)

where αi is a gain or conversion factor, and Jbias
i is a bias

current that accounts for background activity. For a 1D space,

φ̃x
i is either 1 or −1 (drawn randomly). For a 2D space,

φ̃x
i is uniformly distributed on the unit circle. The resulting

tuning curves and spike responses are illustrated in Fig. 1

for 1D. The information lost by decoding this nonlinear

representation using simple linear weighting is not severe,

and can be alleviated by increasing the population size [10].

IV. KALMAN FILTER WITH SPIKING NEURONS

To implement the Kalman filter with a SNN by applying

the Neural Engineering Framework (NEF), we first convert

(3) from discrete time (DT) to continuous time (CT), then

we replace the CT matrices with neurally plausible ones, and

use them to specify the SNN’s weights (Fig. 2). This yields:

x(t) = h(t)∗
(

A′x(t)+ B′y(t)
)

, (7)

where

A′ = τMCT
x + I =

τ

∆t
(MDT

x − I)+ I, (8)

B′ = τMCT
y =

τ

∆t
MDT

y . (9)

MDT
x = (I−KC)A and MDT

y = K are the Kalman matrices,

∆t is the discrete time step (50ms), and τ is the synaptic

time constant.

The jth neuron’s input current (see (6)) is computed from

the system’s current state, x(t), which is computed from

estimates of the system’s previous state (x̂(t) = ∑i ai(t)φ
x
i )

and current input (ŷ(t) = ∑k bk(t)φ
y
k ) using (7). This yields:

α j

〈

φ̃x
j ·x(t)

〉

+ Jbias
j

= α j

〈

φ̃x
j ·h(t)∗

(

A′x̂(t)+ B′ŷ(t)
)〉

+ Jbias
j

= α j

〈

φ̃x
j ·h(t)∗

(

A′∑
i

ai(t)φ
x
i + B′∑

k

bk(t)φ
y
k

)〉

+ . . .

= h(t)∗

(

∑
i

ω jiai(t)+∑
k

ω jkbk(t)

)

+ Jbias
j (10)

where ω ji = α j

〈

φ̃x
j A′φx

i

〉

and ω jk = α j

〈

φ̃x
j B′φ

y
k

〉

are the

recurrent and feedforward weights, respectively.
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Fig. 2. Implementing a Kalman filter with spiking neurons. a. Original
Kalman filter (top) and neurally plausible version (bottom). The integrator
is replaced with the synapses’ spike response, h(t), and the matrices are
replaced with A′ = τA + I and B′ = τB to compensate. b. Spiking neural
network implementation with populations bk(t) and a j(t) representing
y(t) and x(t), respectively, and with feedforward and recurrent weights
determined by B′ and A′, respectively.

V. RESULTS

An adult male rhesus macaque (monkey L) was trained

to perform variants of a point-to-point arm movement task

in a 3D experimental apparatus for juice reward [1].1 A 96-

electrode silicon array (Blackrock Microsystems) was then

implanted in premotor/motor cortex. Array recordings (-4.5

RMS threshold crossing applied to each electrode’s signal)

yielded tuned activity for the direction and speed of arm

movements. As detailed in [1], a standard Kalman filter

model was fit by correlating the observed hand kinematics

with the simultaneously measured neural signals, while the

monkey was performing the point-to-point reaching task

(Fig. 3). The resulting model was used online to control an

on-screen cursor in real time. This model and 500 of these

trials (2010-03-08) serves as the standard against which the

SNN implementation’s performance is compared.

Starting with the matrices obtained by correlating the

observed hand kinematics with the simultaneously measured

neural signals, we built a SNN using the NEF methodology

and simulated it in Nengo using the parameter values listed in

Table I. We ensured that the time constants τRC
i ,τ ref

i , and τPSC
i

were smaller than the implementation’s time step (50ms).

1Animal protocols were approved by the Stanford IACUC.

TABLE I

MODEL PARAMETERS

Symbol Range Description

max G(J j(x)) 200-400 Hz Maximum firing rate
G(J j(x)) = 0 −1 to 1 Normalized x-axis intercept

Jbias
j Satisfies first two Bias current

α j Satisfies first two Gain factor

φ̃ x
j

∥

∥

∥
φ̃ x

j

∥

∥

∥
= 1 Preferred-direction vector

τRC
j 20 ms RC time constant

τ ref
j 1 ms Refractory period

τPSC
j 20 ms PSC time constant
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Fig. 3. Neural and kinematic measurements for one trial. a. The ninety-
six cortical recordings that were fed as input to the Kalman filter and the
spiking neural network (spike counts in 50ms bins). b. Arm x- and y-velocity
measurements that were correlated with the neural data to obtain the Kalman
filter’s matrices, which were also used to engineer the neural network.

1

y(t)

vel
y

vel
x

1000 neurons

1000 neurons

b

y(t) [vel
y
,vel

x
,1]

1000 neuronsa

Fig. 4. Spiking neural network architectures. a. 3D integrator: A single pop-
ulation represents three scalar quantities—x and y-velocity and a constant.
b. 1D integrators: A separate population represents each scalar quantity—x

or y-velocity in this case.

We had the choice of two network architectures for the

a j(t) units: a single 3D integrator or two 1D integrators (Fig.

4). The latter were more stable, as reported previously [14],

and yielded better results given the available computer re-

sources. We also had the choice of representing the 96 neural

measurements with the bk(t) units (see Fig. 2b) or simply

replacing these units’ spike rates with the measurements

(spike counts in 50ms bins). The latter was more straight

forward, avoided error in estimating the measurements, and

conserved computer resources. Replacing bk(t) with y(t)’s
kth component is equivalent to choosing φ

y
k

from a standard

basis (i.e., a unit vector with 1 at the kth position and 0

everywhere else), which is what we did.

The SNN performed better as we increased the number

of neurons (Fig. 5a,b). For 20,000 neurons, the x and y-

velocity decoded from its two 10,000-neuron populations

matched the standard decoder’s prediction to within 0.03%

(RMS error normalized by maximum velocity).2 As reported

in [10], the RMS error was roughly inversely proportional to

the square-root of the number of neurons (Fig. 5c,d). There

2The SNN’s estimates were smoothed with a filter identical to h(t), but
with τ set to 5ms instead of 20ms to avoid introducing significant delay.
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Fig. 5. Comparing the x and y-velocity estimates decoded from 96 recorded
cortical spike trains (10s of data) by the standard Kalman filter (blue) and
the SNN (red). a,b. Networks with 2,000 and 20,000 spiking neurons. c.

Dependence of RMS error (between SNN and Kalman filter) on network
size (note log scale). d. Product of RMS error and neuron count’s (NC)
square root is roughly constant (for NC > 200), implying that they are
inversely proportional.

is a tradeoff between accuracy and computational time. For

real-time operation—on a 3GHz PC with a 1ms simulation

time-step—the network size is limited to 1,600 neurons.

Encouragingly, this small network’s error was only 0.27%.

VI. CONCLUSIONS AND FUTURE WORK

The Nengo simulations reported here demonstrate offline

output that is virtually ident ical to that produced by a

standard Kalman filter implementation. A 1,600-neuron net-

work’s output is within 0.3% of the standard implemen-

tation, and Nengo can simulate this network in real-time.

Which means we can now proceed to testing our new SNN

on-line. This more challenging setting will enable us to

further advance the SNN implementation by incorporating

recently proposed variants of the Kalman filter that have

been demonstrated to further increase performance and ro-

bustness during closed-loop, real-time operation [2], [3].

As such a filter and its variants have demonstrated the

highest levels of brain-machine interface performance in

both human [5] and monkey users [2], these simulations

provide confidence that similar levels of performance can

be attained with a neuromorphic architecture. Having refined

the SNN architecture, we will proceed to our final validation

step: implementing the network on Neurogrid, a hardware

platform with sixteen programmable neuromorphic chips that

can simulate a million spiking neurons in real-time [8].

The ultimate goal of this work is to build a fully im-

plantable and programmable decoder chip using the neuro-

morphic approach. Variability among the silicon neurons and

the large number of synaptic connections required present

challenges. A distribution of spike-rates with a CV of 15%

(sigma/mean) is typical, due to pronounced transistor mis-

match in the subthreshold region where these nanopower

circuits operate [9]. We have shown, however, that the NEF

can effectively exploit even higher degrees of variability.

Thus, the only real remaining challenge is achieving a

high degree of connectivity. This one can be addressed by

adopting a columnar organization, whereby nearby neurons

share the same inputs, just like they do in the cortex—and

in Neurogrid. This solution requires extending the NEF to a

columnar architecture, a subject of ongoing research.
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