Water vapor line parameters: Some feedback from atmospheric users

S. Fally A. C. Vandaele S. Trabelsi, E. Mahieu, P. Demoulin C. Frankenberg H. Vogelmann, T. Trickl

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Outline

gb-FTIR @ Junfraujoch, Swiss Alps \rightarrow Discrepancies between \neq H₂O µwindows Near-IR DIAL @ Zugspitze, Germany → HITRAN compared to Ponsardin & Browell Near-IR SCIAMACHY / ENVISAT \rightarrow Effect of H₂O parameters on CH₄ retrievals IR SOIR / Venus Express \rightarrow Spectroscopic needs for CO₂ broadened H₂O

gb-FTIR @ Jungfraujoch, Swiss Alps (46.5°N, 8°E, 3580 m a.s.l.)

gb-FTIR @ Jungfraujoch ...

- Numerous wv lines in the 700-4300 cm⁻¹ range
- Best retrieval strategy to retrieve H₂O vertical information?
- \rightarrow Find suitable lines in \neq spectral domains (T° insensitive, free of interferences, ...)
- \rightarrow Lot of µwindows investigated

Spectral domain	Nb H ₂ O lines	Selected µw
(cm ⁻¹)		(mainly $H_2^{16}O$)
700 - 1300	2130	16
1900 - 2200	1236	8
2500 - 3100	2348	10
3100 - 3500	2727	17
4000 - 4300	1837	12

gb-FTIR @ Jungfraujoch ...

vertical sensitivity ?

✓ Info close to the ground in the wings of strong line

 ✓ Info at high altitude at the center of weak & strong lines (but strong is saturated)

→ Combination of µwindows including strong & weak lines

Matrix of the contribution functions for O_3 profile inversion (from B. Barret, PhD thesis, 2003)

gb-FTIR @ Jungfraujoch ...Multi-µwindows fits:

ASA2008

Outline

gb-FTIR @ Jungfraujoch, Swiss Alps \rightarrow Discrepancies between \neq H₂O µwindows Near-IR DIAL @ Zugspitze, Germany → HITRAN compared to Ponsardin & Browell Near-IR SCIAMACHY / ENVISAT \rightarrow Effect of H₂O parameters on CH₄ retrievals IR SOIR / Venus Express \rightarrow Spectroscopic needs for CO₂ broadened H₂O

Near-IR DIAL @ Zugspitze, Germany (47.42 °N, 10.98 °E)

Zugspitze Summit 2964 m FTIR, GPS, in-situ

Schneefernerhaus 2675 m LIDAR

> Garmisch-Partenkirchen 734 m FTIR, GPS, in-situ

Near-IR DIAL @ Zugspitze ...

- Optimum line choice ?
- ✓ Simulations of the LIDAR performance in 3 spectral regions: 725, 817, 935 nm (13800, 12200, 10700 cm⁻¹) using mid-lat summer & winter H₂O profiles (LOWTRAN5 model)

✓ Error analysis:Minimize error at high altitude

- # Abs. cross-section
- = strong enough to get significant light loss
- = weak enough to avoid too much attenuation at low alt.
- # Error next to the tropopause
 < 5%</pre>
- → Both criteria# met by the 817 nm range

Altitudinal profile of the relative meas. error (noise neglected) (from Vogelmann & Trickl, Appl. Optics47, 2116-2132, 2008)₉

ASA2008

Near-IR DIAL @ Zugspitze ...

Near-IR DIAL @ Zugspitze ...

- Dataset choice for line parameters ?
- \checkmark Comparison of strengths for 1 line @ 12236.56 cm⁻¹

✓ Toth & Mérienne / Ponsardin: Avg 7 lines around 12200cm⁻¹ = 0.897 & 0.899 (±0.015 & 0.011)
 → ~ 10% systematic diff. (although high internal precision)
 → linked to meas. technique & lineshape ?

→ Inconsistencies between different databases

Near-IR DIAL @ Zugspitze ... Dataset choice for line parameters? ✓ Comparison between lab. FTS & simulated spectra

→ Inconsistencies both within each database (strong><weak) between different databases

Outline

gb-FTIR @ Jungfraujoch, Swiss Alps \rightarrow Discrepancies between \neq H₂O µwindows Near-IR DIAL @ Zugspitze, Germany \rightarrow HITRAN compared to Ponsardin & Browell Near-IR SCIAMACHY / ENVISAT \rightarrow Effect of H₂O parameters on CH₄ retrievals IR SOIR / Venus Express \rightarrow Spectroscopic needs for CO₂ broadened H₂O

- SCIAMACHY / ENVISAT :
 - ✓ 8 channel grating spectrometer
 - \checkmark UV \rightarrow VIS \rightarrow IR (240-2380 nm)
 - http://envisat.esa.int/instruments/sciamachy/
- CH₄ retrievals :
 - ✓ Nadir spectra
 - ✓ 1630-1670 nm (5990-6130 cm⁻¹) → Interfering spe= $CO_2 \& H_2O$
 - ✓ See Frankenberg *et al.*, ACP, 2005; JGR, 2006; ACPD, 2008
- Context :

✓ Unresolved seasonal bias in the SH
 → Impact of wv spectroscopy on CH₄ retrievals ?
 ✓ See Frankenberg *et al.*, GRL35, L15811, 2008 (Aug. 12)

Comparison of HITRAN & BR (Bxl-Reims) databases

Retrievals from 2 g-b high resolution FTIR solar absorption spectra (Paramaribo, Suriname & Bremen, Germany) (from Frankenberg *et al.*, GRL35, 2008)
 → Systematic residuals with HITRAN mostly vanish with modified BR = up to 6% @ Paramaribo; < @ Bremen due to < wv
 → Very strong residuals for few strong lines with BR, esp. 5975-5998 cm⁻¹ (γ_{air} << or unprovided) + same for 4200-4350cm⁻¹
 → Proposed modifications to BR list
 → Overall, substantial reduction of systematic errors with BR as compared to HITRAN

Impact of wv spectroscopy on SCIAMACHY CH₄ recreases

 \checkmark Retrieved CH₄ vs total wv column over Sahara:

Exclude latitudinal bias# Exclude true correlationCH₄ emissions/specific humidity

 \rightarrow + correlation if HITRAN

 \rightarrow No correlation if modified BR list

→ Retrieval bias caused by erroneous wv HITRAN database

- Impact of wv spectroscopy on SCIAMACHY CH₄ retrievals
- \checkmark BR HITRAN for column yearly averaged mixing ratio:

= 3% overestimation with HITRAN over tropics

 \rightarrow Significant -& surprisingly big !- impact of wv on CH₄ retrievals in the 5990-6150 cm⁻¹ range

(from

2008)

Frankenberg

et al., GRL35,

gb-FTIR @ Jungfraujoch, Swiss Alps \rightarrow Discrepancies between \neq H₂O µwindows Near-IR DIAL @ Zugspitze, Germany \rightarrow HITRAN compared to Ponsardin & Browell Near-IR SCIAMACHY / ENVISAT \rightarrow Effect of H₂O parameters on CH₄ retrievals IR SOIR / Venus Express \rightarrow Spectroscopic needs for H₂O

- SPICAV = Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus
 - = 3 UV-IR spectrometers ground \rightarrow H corona (> 40000km alt)
 - = SPICAV-UV (SUV), SPICAV-IR (SIR), SOIR (Solar Occultat^o at InfraRed)

Key questions:

 \checkmark Why such a \neq evolution compared to Earth ?

- ✓ High D/H (150 x terresrial) → dramatic H_2O escape
 - \rightarrow Which scenario? Dry from the beginning OR H₂O lost?
- New measurements are necessary
- → SOIR: simult. meas. $H_2O \otimes HDO \rightarrow H_2O$, HDO, H/D vertical profiles retrievals

Best candidates:

✓ H ₂ O	3830 cm ⁻¹	v1 & v3 fund. bands	70-110 kn
✓ HDO	2715 cm ⁻¹	v1 fund. band	70- 95 km

- More info:
 - ✓ Friday talk by A. C. Vandaele
 - \checkmark H₂O, HDO, CO₂: Fedorova *et al.*, JGR, in press, 2008
 - ✓ CO, CO₂, HCl, HF: Vandaele *et al.*, JGR, in press, 2008
 - ✓ Venus Express: http://sci.esa.int & http://www.venus.wisc.edu

Evolution of 1 occultation at sunset Aug. 20th 2007: Transmittance spectra in specific ranges of H_2O (left) & HDO (right) absorptions (from Vandaele *et al.*, 2008)

Examples of best fit on July 27th 2007 (from Fedorova *et al.*, 2008) \Box = chosen region because lines=higher intensity, lower sensitivity to T°, poor CO₂ contamination

→ Broader lines in the model: # uncertainties in the T° profile # instrument function width & resolut° # lineshape

• Literature data for γ_{CO2} ?

✓ Howard *et al.*, J.Opt.Soc.Am, '56 → $\gamma_{CO2}/\gamma_{air}$ = 1.3

✓ Gamache *et al.*, JMS, '95 1.0-2.5µm $\rightarrow \gamma_{CO2}/\gamma_{air} = 1.3 \rightarrow 2.0$

✓ Brown *et al.*, JMS, '07 5.0-7.7µm $\rightarrow \gamma_{CO2}/\gamma_{air} = 1.67(.95 \rightarrow 3.07)$

 \rightarrow NO experimental / calculated values in our region

→ Chosen value: γ_{air} (HITRAN) x 1.7

 \rightarrow BUT accurate γ_{CO2} needed to reduce uncertainties

 $\rightarrow \gamma_{CO2}$ for wv 2.3-4.2 µm (2250-4360 cm⁻¹) required

"Spectroscopic" conclusions

- H₂O spectroscopic problems Improvements Needs
 ✓ Discrepancies between µwindows in HITRAN for 700-4300 cm⁻¹ (FTS spectra @ Jungfraujoch)
 → Tuned HITRAN line parameters proposed
 - \rightarrow More consistent parameters
- ✓ Discrepancies between literature data @ ~12300 cm⁻¹ (DIAL measurements @ Zugspitze)

→ More consistent parameters

- ✓ Inaccuracies in wv parameters for 5990-6130 cm⁻¹ (CH₄ retrievals with SCIAMACHY)
 - BR list better than HITRAN + update for spurious lines proposed

 No γ_{CO2} in 2250-4360 cm⁻¹ (SOIR/SPICAV/VENUS Express)

General conclusions

Importance of :

- inter-comparisons, cross-validations
- feedback from users
- close collaborations between experimentalists & atmospherists
- new dedicated measurements

→ Importance of high quality water spectroscopy & lab-work, both for wv retrieval itself & for other species

Acknowledgments

Colleagues

- ✓ A. C. Vandaele & SPICAV/SOIR team,
- ✓ S. Trabelsi, E. Mahieu, P. Demoulin,
- ✓ C. Frankenberg,
- ✓ H. Vogelmann, T. Trickl

Funding

- ✓ Belgian Federal Science Policy Office (SSD program/AGACC project, ESA-PRODEX program/C90268, C90113, C17645 contracts)
- European Space Agency ESA (ESA-PRODEX program)
- National Fund for Scientific Research, Belgium (FRFC program)
- Communauté Française de Belgique (Actions de Recherche Concertées)
- ✓ GAW-CH Programme, MeteoSwiss, Zurich

Thank YOU for ...

your attention !

