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Abstract

This technical report proposes an approach for computing bounds on the finite-
time return of a policy using kernel-based approximators from a sample of trajec-
tories in a continuous state space and deterministic framework.

1 Introduction

This technical report proposes an approach for computing bounds on the finite-time
return of a policy using kernel-based approximators from a sample of trajectories in a
continuous state space and deterministic framework. The computation of the bounds
is detailed in two different settings. The first setting (Section 3) focuses on the case
of a finite action space where policies are open-loop sequences of actions. The sec-
ond setting (Section 4) considers a normed continuous action space with closed-loop
Lipschitz continuous policies.

2 Problem statement

We consider a deterministic discrete-time system whose dynamics over T’ stages is
described by a time-invariant equation:

xt-‘rl:f(xtaut) t:Oala"-aT_la (1)

where for all ¢, the state x; is an element of the continuous normed state space (X, ||.||x)
and the action u; is an element of the finite action space U. T' € Ny is referred to as the
optimization horizon. The transition from ¢ to ¢ + 1 is associated with an instantaneous
reward

re = p(,u) € R 2)

where p : X X U — R is the reward function. We assume in this technical report that
the reward function is bounded by a constant A, > 0:



Assumption 2.1
JA, > 0:V(z,u) € X xU, |p(z,u))| < A,. 3)

The system dynamics f and the reward function p are unknown. An arbitrary set of
one-step system transitions

]:: {(wl’ul77,,l’yl) ;Lzl (4)

is known, where each transition is such that

y' = [ ) ()
and

rh = p(a!, ) (©)
Given an initial state 2o € X and a sequence of actions (ug, ...,ur_1) € U7, the
T —stage return J“0»~%T-1(z) of the sequence (ug, ..., ur_1) is defined as follows.
Definition 2.2 (T'—stage return of the sequence (ug, ..., ur—1))

Vg € X,V(Uo, . ,’LLTfl) € Z/[T,

T-1
JUO¢~.<,UT—1(3;-O) = Z p(.’bt,ut) .
t=0

In this technical report, the goal is to compute bounds on J“0»-%T-1(z) using kernel-
based approximators. We first consider a finite action space with open-loop sequences
of actions in Section 3. In Section 4, we consider a continuous normed action space
where the sequences of actions are chosen according to a closed-loop control policy.

3 Finite action space and open-loop control policy

In this section, we assume a finite action space /. We consider open-loop sequences of
actions (ug, . ..,ur_1) € UT, u; being the action taken at time ¢ € {0,...,T — 1} .
We assume that the dynamics f and the reward function p are Lipschitz continuous:

Assumption 3.1 (Lipschitz continuity of f and p)
L¢, L, € R:V(z,2') € X2 Vu e UVt € {0,...,T — 1},

If(@,u) = f@ w)llx < Lyl —a'llx, Q)
lp(z,u) = p(a’,u)] < Lylle—2'|x, ®)

We further assume that two constants Ly and L, satisfying the above-written inequal-
ities are known.

Under these assumptions, we want to compute for an arbitrary initial state x9 € X of
the system some bounds on the T'—stage return of any sequence of actions (uq, ..., ur—_1) €
ur.



3.1 Kernel-based policy evaluation

Given a state x € X, we introduce the (7' — ¢)—stage return of a sequence of actions
(ug,...,ur_1) € UT as follows:

Definition 3.2 (T — t)—stage return of a sequence of actions (ug, ..., u7r_1))
Letx € X. Fort' € {T —t,...,T — 1}, we denote by x 11 the state

Tt 41 = f(xt’>ut’) )

with x7_y = x. The (T —t)—stage return of the sequence (ug, . . . ,ur_1) € UT when
starting from x € X is defined as

T-1
Tro M @)y = Y plwe, ) - (10)
t'=T—t
The T'—stage return of the sequence (uo, . . ., ur—1) is thus given by
JUor T () = J0 T () (11

.....

Vo € X, Jy* T (@) = Jy T (7)) = 0, (12)

Tyt @) = 3 Ly la@) (7 + J1207 0 () | (13)
=1
with

z—x|x
i) = ®(|b|>_ — . (14)
Z?:l H{ui:ut}q) (%)

where ® : Rt — R is a univariate non-negative “mother kernel” function, and b > 0
is the bandwidth parameter. We also assume that

Ve > 1,8(x) =0. (15)
We suppose that the functions {k;}}* ; are Lipschitz continuous:

Assumption 3.3 (Lipschitz continuity of {k;}}" ;)
vie{l,...,n},3L, >0:

V(a',2") € X2 |ki(2) — ky(a"))| < L, 2" — 2" || » - (16)
Then, we define L. such that L;, = l Enax }Lkl. The kernel-based estimator (KBE),
e{1,...,n

denoted by g"0~4T-1(z), is defined as follows:



Definition 3.4 (Kernel-based estimator)
Vxg € X,

R0 UT 1 () = j;o ..... YT (1) 17

T—1
0 such that

We introduce the family of kernel operators (K7, """ ~*),

Definition 3.5 (Finite action space kernel operators)
Letg: X - R.Vt€{0,..., T —1},Vz € X,

(K30 o g) (2) = Z]I{ulzut}kl(x) (r'+9@h) . (18)
=1
One has
Jry T w) = (Kéf‘i{"“” ° j%‘i;'_’i”’l) (). (19)

We also introduce the family of finite-horizon Bellman operators (B;_t
follows:

Definition 3.6 (Bellman operators)
Letg: X - R.Vte{l,..., T}, Ve € X,

(B o g) (x) = pla, ue) + g(f (@, ur)) - (20)
One has
Tt @) = (BT o BT (). @n

We propose a first lemma that bounds the difference between the two operators K, ;‘ﬂ;"“T’l

and B}, """ when applied to the approximated (7' — ¢ — 1)— return J,-*; "7~

Lemma 3.7
vt e {0,..., T —1},Vz € X,

with

Cr=Ly+ LyLyA(T —t—1). (23)

Proof Letx e X .
o Lett €{0,...,T — 2}. Since

D Tty ka(z) =1, (24)
=1



one can write

UQ,ee UT —1 JUOs - UT —1 UQ -+ UT —1 JUOse - UT —1
‘(KTft oJri )(x) - (BT*t °Jrli )(m)’

Z H{ul=u1}kl(x) |:rl - ,D(IZ’, ut)
=1

2T () —j§‘~°_’;‘l?Tl(f($v“t))]‘ >

n
< LpZH{uL:ut}kl(x)”xl - J}”X
=1

+ Z Lt —u,y

bal) (337 ) — T () |

(26)
On the one hand, since
Vz > 1,9(z) =0, (27)
one has
lz! — z||x > b = ki(x) =0. (28)
Thus,
pZH{uz wki(@)]et —z)x < Lpb. (29)
On the other hand, one has
T ) = T )
Z Lz [F5(0) = ks (f s w))| (7 + TR (7))
. (30)
Since the reward function p is bounded by A, one can write
(49 + TR ) S (T =t = 1)4, . 31)
and according to the Lipschitz continuity of £; and f, one has
ki (y) = k(@ )| < Lilly' = fz,u)x (32)
< Lilly' = fla,u)llx (33)
< LyLyglla’' — 2|x (34)
Equations (30), (31) and (34) allow to write
(Tt ) = o ()|
SLLy(T —t — 1A, ||z" — 2| x . (35)



Equations (28) and (35) give

(T ) = Ty (flaw)) ) | < L (T == 1) Agb

(36)
and since
> Ty kulz) =1, (37)
=1
one has
> L, [ @ ) = T ()|
=1
< LpLgb(T—t—-1)A,
(38)
Using Equations (26), (29) and (38), we can finally write
V(z,t) € X x {0,...,T — 2},
g1 0 JR ) = B L o)
< (Lp+ LiLy(T—t—-1)A,), (39)

which proves the lemma for ¢ € {0,...,T — 2}.
e Lett =T — 1. One has
‘(Kitoym,uqul ° ~(1)10,~~,qu1) (.’E) o (Bito,m,qul o jouo,u-,qul) (1’)’

S Zﬂ{ulzquﬂkl(x) |’I”l — p(x,ut)| (40)
1=1
n
< Lwicur_ k(@) Lyllw — 2'| < Lyb, @1)
1=1
since
|z -2 >b = k(z)=0 (42)
and
> Ty kulx) = 1. (43)
1=1

This shows that Equation (39) is also valid for ¢ = T" — 1, and ends the proof. B

Then, we have the following theorem.

Theorem 3.8 (Bounds on the actual return of a sequence (ug, ..., ur—1))
Let xo € X be a given initial state. Then,
|ﬁu0""’uT71 (-%‘0) _ JU(Jv--qu—l ({Eo)l S Bb , (44)
with
T—1
=2 Cr. (45)
t=0



Proof We use the notation x; 1 = f(x¢,u;), Vt € {0,...,T — 1}. One has

_ U0 UT—1 UQ5--es ur—1 UQ5-es ur—1 JUO,- -, UT —1
=By oJp’y (zo) — Ky oJp’y (zo)

(46)
_ B;0,~~,UT71 o J;Cl'l.‘7uT71($0) _K;O:“qufl OJ;TI',UTfl(xO)
_|_B,711;01-~~7UT—1 J;(zf_,iLT—l (xo) _ B;O7~»-uT—1 j;(lt_ﬂfT—l (170) (47)
_ B;o7u~,uT71 o J;«T{”upl(ﬂfo) _K;O;nqu—l OJ;TI',UTfl(xO)
HIPL () = TR () (48)
Using the recursive form of Equation (48), one has
JU0se s UT—1 (:,C) _ ﬁUOw'qu—l(x) — J;owqu—l(x) o j;o,m,uTA(x)
49)
T—1 B .
= 3 B o BT ) — KT o B ()
t=0
(50)
Equation (50) and Lemma 3.7 allow to write
T-1
‘J;07~..,1LT71(1_0) o R’MO,...7UT—1(Z=O)’ < Z Cr_ib, (51)
t=0
which ends the proof. ]

4 Continuous action space and closed-loop control pol-
icy

In this section, the action space (U, ||.|j/) is assumed to be continuous and normed. We
consider a deterministic time-varying control policy

h:{0,1,....,T—1}x X U (52)

that selects at time ¢ the action u; based on the current time and the current state (u; =
h(t,x:)). The T'—stage return of the policy h when starting from z( is defined as
follows.

Definition 4.1 (T'—stage return of the policy h)

Vg € X,
T-1
J"(20) = p(xe, h(t, x4)). (53)
t=0
where
Tiy1 = f(It,h(t,iEt)) Vit € {O,,T* 1} . (54)



We assume that the dynamics f, the reward function p and the policy h are Lipschitz
continuous:

Assumption 4.2 (Lipschitz continuity of f, p and h)
L¢, L, Ly € R:V(z,2") € X2, V(u,u') € U2Vt € {0,...,T — 1},

1f(z,u) = fa' 0 )lx < Li(llz —2l|x + lu—ullu) , (55)
p(z,u) — p(’,w')| < Ly(|lz—a'||x+ |lu—ullu), (56)
[h(t,z) = h(t, 2" )u < Lpllz—2'|x. (57)

The dynamics and the reward function are unknown, but we assume that three con-
stants Ly, L,, Ly satisfying the above-written inequalities are known. Under those
assumptions, we want to compute bounds on the T'—stage return of a given policy h.

4.1 Kernel-based policy evaluation

Given a state € X, we also introduce the (T — ¢)—stage return of a policy h when
starting from = € & as follows:

Definition 4.3 ((T' — t)—stage return of a policy h)
Letx € X. Fort' € {t,...,T — 1}, we denote by x 1 the state

Tyy1 = f(we, up) (58)
with
upy = h(t',xy) (59)
and xy = x. The (T — t)—stage return of the policy h when starting from x is defined
as follows:

T-1

Jp—o(x) =Y plae,up) .

=t
The stage return of the policy h is thus given by

" (o) = Jf (o). (60)

T-1
"’h T-1 =0
quence (J}_,(.)) +—o computed as follows

The sequence of functions (J%:_,(.)),_, is approximated using kernels ([1]) by a se-

Vo e X, Jh(x) = Jhz) =0, (61)

and,Vz € X, vt € {0,...,T — 1},

n

Tho@) = Y ke b)) (v + T, 1) (©2)

=1
where k; : X x U — R is defined as follows:
@ (uz—zﬂlxﬂu—uluu)

kl(m7u) = i i
PO (Hz—z Ll Hu))

) (63)



where b > 0 is the bandwidth parameter and ® : R™ — R™ is a univariate non-
negative “mother kernel” function. We also assume that

Ve >1,®(x) =0, (64)
and we suppose that each function &; is Lipschitz continuous.

Assumption 4.4 (Lipschitz continuity of {k;}" ,)
Vie{l,...,n},3Ly, >0:

V(' 2" ' u") € X2 x U?,
k(2 u') = ky(2”, ") < L, (|2 — 2”2 + [ = u"[lu) . (65)
We define L, such that

Lk = max Lkz . (66)
le{1,...n}

The kernel-based estimator KBE, denoted by &” (z9), is defined as follows:

Definition 4.5 (Kernel-based estimator)
Vxg € X,

R (wo) = J(x0) - (67)
We introduce the family of kernel operators (K. 524)?:_01 such that

Definition 4.6 (Continuous action space kernel operators)
Letg: X - R vVt €{0,..., T —1},Vz € X,

(K} y0g) (x) = ki(a,h(t,x)) (r' + g(y")) - (68)
=1

One has

Jo@) = (Kpoodp) (@), (©9)
We also introduce the family of finite-horizon Bellman operators (B%ft)th_O1 as fol-
lows:

Definition 4.7 (Continuous Bellman operator)
Letg: X >R Vte{l,...,T},Ve e X,

(B}_;09) (&) = p(z, h(t, x)) + g(f(x, h(t, x))) . (70)
One has
Ji_y(x) = (Bf_oJi_ 1) (@) (1)

We propose a second lemma that bounds the distance between the two operators K7,
and B}, when applied to the approximated (7' — t — 1)— return J2 _, ;.

Lemma 4.8
vte{l,...,T —1},Vax € X,

‘(K;Lt o ~%471) (z) — (B}Tlft © j%“ftfl) (55)‘ < Cr—¢b (72)
with

Cr_; = Lp+LkaAp(1+Lh)(T—t— 1) . (73)



Proof Letzc X .
o Lett € {0,...,T —2}. Since

> Twen(eayyhi(@) =1, (74)

one can write

‘ (K?Lt o jél’ftfl) (z) — (Bél’ft ° j%ftq) (m)’

Z x, h(t, x) [rl — p(x, h(t,x))

71 (y') = Jp_ e (f (2, A, 1’)))} |

(75)
<Ly ke, h(t,2)) (2! — alla + Il = At 2)lle)
=1
+ 3 e, bt @) (e ) = Thooea (Bl 2)) ) |
=1
(76)
Since
Vz > 1,9(z) =0, )
one has
(' = zllx + [lu' = h(t,2)u) 20 = ki(w,h(t,2)) =0. (78)
This gives
L,y Ka(w, h(t,z)) (|l = 2llx + Ju' = h(t,2)|ur) < Lob- (79)
On the other hand, one has
Tora ) = T a (@) = D [k b+ 1,91)
j=1
i (@ (@), A+ 1, f s il )] (7 + Ty o)
(80)
Since the reward function p is bounded by A,, one can write
(7 + Ji—ea(y))| < (T =t = 1A, (81)

10



and according to the Lipschitz continuity of k;, f and h, one has

ki (y' s (4 1,9") = ki (f (2u0), h(E+ 1, (2, h(t, 2))))|
< ij (Hy - (.T,h(t:);‘))”x + Hh( + 1ayl) - h(t + 1,f($,h(t,$)))||u)

(82)
< Ly (' = f bt 2))|lx + [|h(E+1,5") =kt + 1, f (2, h(t,2))) |u)
(83)
< LipL(1+ Ly) (J2* — 2la + |Jul = h(t,2)|J) - (84)
Equations (80), (81) and (84) allow to write
|(Fha ) = T () )|
< LiLy(L+ Lp)(T — t = DA, (o' = 2llx + [lu" = h(t, 2)|u)
(85)
Equations (78) and (85) give
|(Fhma ) = s bt 2)|
S LpLy(1+ Lp)(T —t = 1)Apb (86)
and since
Z x,h(t,z)) =1, 87)
> [t e o)) s () = T (Pl Bt )
1=1
< Lka(l + Lh)b(T —t— I)Ap (88)
Using Equations (76), (79) and (88), we can finally write
V(z,t) € X x {0,...,T — 2},
’(K%—t ° j%—t—l) (z) — (B:}F—t °© jjh“—t—l) (x)‘
< (L, + LyLy(1+ Lp)(T —t — 1)A,)b (89)
This proves the lemma for ¢t € {0,...,T — 2}.
e Lett =T — 1. One has
(K1 o dt) (@) = (Bl o ) (@)
SZkl(z,h(T—l,x)Hrl—p(:c,h(T—l,a:))| (90)
< Zk‘l(x,h(T —1,2))L, (lz — 2" + | (T — 1,z) — u'[])
) o1
< L,b, (92)

11



since
(Jlz — 2" + |MT = 1,2) — ul|j) > b = k(2,h(T —1,2)) =0 (93)

and
Zk:lxh —1,2) =1 (94)

This shows that Equation (89) is also valid for £ = T' — 1, and ends the proof.

| |
According to the previous lemma, we have the following theorem.
Theorem 4.9 (Bounds on the actual return of h)
Let xo € X be a given initial state. Then,
|8 (z0) — J"(x0)| < Bb, 95)
with
T
=) Cr. (96)
Proof We use the notation x;y1 = f(x¢, us) with uz = h(¢, z¢). One has
J%(xo) - j%(xo) = B%A o J7hu1(xo) - Kih“fl o j%q(xo) o7
= Bél“—l o jél“—1(330) - K%—l o jjh“—1(730) (98)
+ 3%71 o J1h“71(xo) - B%fl o J%fl o)
= Bé}“—l ° J:?“—l(xo) - K%—l ° Jih“—l(xO)
+ Jpoa(@) = I (2) (99)
Using the recursive form of Equation (99), one has
T (o) — 8M(xo) = JR(xo) — Jh(x0) (100)
T-1
= Z BC};—t © J%—t—l(mt) - Kél"—t ° J%—t—l(xt)
t=0
(101)
Then, according to Lemma 1, we can write
Jh (o) — &N (x0) ‘ Z Cr_ih (102)
which ends the proof. n

12
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