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Abstract

This technical report proposes an approach for computing bounds on the finite-
time return of a policy using kernel-based approximators from a sample of trajec-
tories in a continuous state space and deterministic framework.

1 Introduction
This technical report proposes an approach for computing bounds on the finite-time
return of a policy using kernel-based approximators from a sample of trajectories in a
continuous state space and deterministic framework. The computation of the bounds
is detailed in two different settings. The first setting (Section 3) focuses on the case
of a finite action space where policies are open-loop sequences of actions. The sec-
ond setting (Section 4) considers a normed continuous action space with closed-loop
Lipschitz continuous policies.

2 Problem statement
We consider a deterministic discrete-time system whose dynamics over T stages is
described by a time-invariant equation:

xt+1 = f(xt, ut) t = 0, 1, . . . , T − 1, (1)

where for all t, the state xt is an element of the continuous normed state space (X , ‖.‖X )
and the action ut is an element of the finite action space U . T ∈ N0 is referred to as the
optimization horizon. The transition from t to t+ 1 is associated with an instantaneous
reward

rt = ρ(xt, ut) ∈ R (2)

where ρ : X × U → R is the reward function. We assume in this technical report that
the reward function is bounded by a constant Aρ > 0:
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Assumption 2.1

∃Aρ > 0 : ∀(x, u) ∈ X × U , |ρ(x, u))| ≤ Aρ . (3)

The system dynamics f and the reward function ρ are unknown. An arbitrary set of
one-step system transitions

F = {(xl, ul, rl, yl)}nl=1 (4)

is known, where each transition is such that

yl = f(xl, ul) (5)

and

rl = ρ(xl, ul) (6)

Given an initial state x0 ∈ X and a sequence of actions (u0, . . . , uT−1) ∈ UT , the
T−stage return Ju0,...,uT−1(x0) of the sequence (u0, . . . , uT−1) is defined as follows.

Definition 2.2 (T−stage return of the sequence (u0, . . . , uT−1))
∀x0 ∈ X ,∀(u0, . . . , uT−1) ∈ UT ,

Ju0,...,uT−1(x0) =

T−1∑
t=0

ρ(xt, ut) .

In this technical report, the goal is to compute bounds on Ju0,...,uT−1(x0) using kernel-
based approximators. We first consider a finite action space with open-loop sequences
of actions in Section 3. In Section 4, we consider a continuous normed action space
where the sequences of actions are chosen according to a closed-loop control policy.

3 Finite action space and open-loop control policy
In this section, we assume a finite action space U . We consider open-loop sequences of
actions (u0, . . . , uT−1) ∈ UT , ut being the action taken at time t ∈ {0, . . . , T − 1} .
We assume that the dynamics f and the reward function ρ are Lipschitz continuous:

Assumption 3.1 (Lipschitz continuity of f and ρ)
∃Lf , Lρ ∈ R : ∀(x, x′) ∈ X 2,∀u ∈ U ,∀t ∈ {0, . . . , T − 1},

‖f(x, u)− f(x′, u)‖X ≤ Lf‖x− x′‖X , (7)
|ρ(x, u)− ρ(x′, u)| ≤ Lρ‖x− x′‖X , (8)

We further assume that two constants Lf and Lρ satisfying the above-written inequal-
ities are known.

Under these assumptions, we want to compute for an arbitrary initial state x0 ∈ X of
the system some bounds on the T−stage return of any sequence of actions (u0, . . . , uT−1) ∈
UT .
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3.1 Kernel-based policy evaluation
Given a state x ∈ X , we introduce the (T − t)−stage return of a sequence of actions
(u0, . . . , uT−1) ∈ UT as follows:

Definition 3.2 ((T − t)−stage return of a sequence of actions (u0, . . . , uT−1))
Let x ∈ X . For t′ ∈ {T − t, . . . , T − 1}, we denote by xt′+1 the state

xt′+1 = f(xt′ , ut′) (9)

with xT−t = x. The (T − t)−stage return of the sequence (u0, . . . , uT−1) ∈ UT when
starting from x ∈ X is defined as

J
u0,...,uT−1

T−t (x) =

T−1∑
t′=T−t

ρ(xt′ , ut′) . (10)

The T−stage return of the sequence (u0, . . . , uT−1) is thus given by

Ju0,...,uT−1(x) = J
u0,...,uT−1

T (x) . (11)

We propose to approximate the sequence of mappings
(
J
u0,...,uT−1

T−t (.)
)T−1
t=0

using

kernels (see [1]) by a sequence
(
J̃
u0,...,uT−1

T−t (.)
)T−1
t=0

computed as follows:

∀x ∈ X , J̃u0,...,uT−1

0 (x) = J
u0,...,uT−1

0 (x) = 0 , (12)

and, ∀x ∈ X , ∀t ∈ {0, . . . , T − 1}

J̃
u0,...,uT−1

T−t (x) =

n∑
l=1

I{ul=ut}kl(x)
(
rl + Ĵ

u0,...,uT−1

T−t−1 (yl)
)
, (13)

with

kl(x) =
Φ
(
‖x−xl‖X

b

)
∑n
i=1 I{ui=ut}Φ

(
‖x−xi‖X

b

) , (14)

where Φ : R+ → R+ is a univariate non-negative “mother kernel” function, and b > 0
is the bandwidth parameter. We also assume that

∀x > 1,Φ(x) = 0 . (15)

We suppose that the functions {kl}nl=1 are Lipschitz continuous:

Assumption 3.3 (Lipschitz continuity of {kl}nl=1)
∀l ∈ {1, . . . , n} ,∃Lkl > 0 :

∀(x′, x′′) ∈ X 2,
∣∣kl(x′)− kl(x′′))∣∣ ≤ Lkl ‖x′ − x′′‖X . (16)

Then, we define Lk such that Lk = max
l∈{1,...,n}

Lkl . The kernel-based estimator (KBE),

denoted by Ku0,...,uT−1(x), is defined as follows:
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Definition 3.4 (Kernel-based estimator)
∀x0 ∈ X ,

Ku0,...,uT−1(x0) = J̃
u0,...,uT−1

T (x0) . (17)

We introduce the family of kernel operators
(
K
u0,...,uT−1

T−t
)T−1
t=0

such that

Definition 3.5 (Finite action space kernel operators)
Let g : X → R. ∀t ∈ {0, . . . , T − 1},∀x ∈ X ,

(
K
u0,...,uT−1

T−t ◦ g
)

(x) =

n∑
l=1

I{ul=ut}kl(x)
(
rl + g(yl)

)
. (18)

One has

J̃
u0,...,uT−1

T−t (x) =
(
K
u0,...,uT−1

T−t ◦ J̃u0,...,uT−1

T−t−1

)
(x) . (19)

We also introduce the family of finite-horizon Bellman operators
(
B
u0,...,uT−1

T−t
)T−1
t=0

as
follows:

Definition 3.6 (Bellman operators)
Let g : X → R. ∀t ∈ {1, . . . , T},∀x ∈ X ,(

B
u0,...,uT−1

T−t ◦ g
)

(x) = ρ(x, ut) + g(f(x, ut)) . (20)

One has

J
u0,...,uT−1

T−t (x) =
(
B
u0,...,uT−1

T−t ◦ Ju0,...,uT−1

T−t−1
)

(x) . (21)

We propose a first lemma that bounds the difference between the two operatorsKu0,...,uT−1

T−t
and Bu0,...,uT−1

T−t when applied to the approximated (T − t− 1)− return J̃u0,...,uT−1

T−t−1 .

Lemma 3.7
∀t ∈ {0, . . . , T − 1},∀x ∈ X ,∣∣∣(Ku0,...,uT−1

T−t ◦ J̃u0,...,uT−1

T−t−1

)
(x)−

(
B
u0,...,uT−1

T−t ◦ J̃u0,...,uT−1

T−t−1

)
(x)
∣∣∣

≤ CT−tb (22)

with

CT−t = Lρ + LkLfAρ(T − t− 1) . (23)

Proof Let x ∈ X .

• Let t ∈ {0, . . . , T − 2}. Since

n∑
l=1

I{ul=ut}kl(x) = 1, (24)
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one can write∣∣∣(Ku0,...,uT−1

T−t ◦ J̃u0,...,uT−1

T−t−1

)
(x)−

(
B
u0,...,uT−1

T−t ◦ J̃u0,...,uT−1

T−t−1

)
(x)
∣∣∣

=

∣∣∣∣∣
n∑
l=1

I{ul=ut}kl(x)

[
rl − ρ(x, ut)

+J̃
u0,...,uT−1

T−t−1 (yl)− J̃u0,...,uT−1

T−t−1 (f(x, ut))

]∣∣∣∣∣ (25)

≤ Lρ
n∑
l=1

I{ul=ut}kl(x)‖xl − x‖X

+

n∑
l=1

I{ul=ut}

∣∣∣kl(x)
(
J̃
u0,...,uT−1

T−t−1 (yl)− J̃u0,...,uT−1

T−t−1 (f(x, ut))
)∣∣∣

(26)

On the one hand, since

∀z > 1,Φ(z) = 0, (27)

one has

‖xl − x‖X ≥ b =⇒ kl(x) = 0. (28)

Thus,

Lρ

n∑
l=1

I{ul=ut}kl(x)‖xl − x‖X ≤ Lρb . (29)

On the other hand, one has

J̃
u0,...,uT−1

T−t−1 (yl)− J̃u0,...,uT−1

T−t−1 (f(x, ut))

=
n∑
j=1

I{uj=ut+1}

[
kj(y

l)− kj(f(x, ut))
]
(rj + J̃

u0,...,uT−1

T−t−2 (yj))

(30)

Since the reward function ρ is bounded by Aρ, one can write∣∣∣(rj + J̃
u0,...,uT−1

T−t−2 (yj))
∣∣∣ ≤ (T − t− 1)Aρ . (31)

and according to the Lipschitz continuity of kj and f , one has∣∣kj(yl)− kj(f(x, ut))
∣∣ ≤ Lkj‖yl − f(x, ut)‖X (32)

≤ Lk‖yl − f(x, ut)‖X (33)
≤ LkLf‖xl − x‖X . (34)

Equations (30), (31) and (34) allow to write∣∣∣(J̃u0,...,uT−1

T−t−1 (yl)− J̃u0,...,uT−1

T−t−1 (f(x, ut))
)∣∣∣

≤ LkLf (T − t− 1)Aρ‖xl − x‖X . (35)
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Equations (28) and (35) give∣∣∣(J̃u0,...,uT−1

T−t−1 (yl)− J̃u0,...,uT−1

T−t−1 (f(x, ut))
)∣∣∣ ≤ LkLf (T − t− 1)Aρb

(36)

and since
n∑
l=1

Iul=ut
kl(x) = 1 , (37)

one has
n∑
l=1

Iul=ut

∥∥∥kl(x)(J̃
u0,...,uT−1

T−t−1 (yl)− J̃u0,...,uT−1

T−t−1 (f(x, ut)))
∥∥∥

≤ LkLfb(T − t− 1)Aρ

(38)

Using Equations (26), (29) and (38), we can finally write
∀(x, t) ∈ X × {0, . . . , T − 2},∣∣∣Ku0,...,uT−1

T−t ◦ J̃u0,...,uT−1

T−t−1 (x)−Bu0,...,uT−1

T−t ◦ J̃u0,...,uT−1

T−t−1 (x)
∣∣∣

≤ (Lρ + LkLf (T − t− 1)Aρ)b , (39)

which proves the lemma for t ∈ {0, . . . , T − 2}.

• Let t = T − 1. One has∣∣∣(Ku0,...,uT−1

1 ◦ J̃u0,...,uT−1

0

)
(x)−

(
B
u0,...,uT−1

1 ◦ J̃u0,...,uT−1

0

)
(x)
∣∣∣

≤
n∑
l=1

I{ul=uT−1}kl(x)
∣∣rl − ρ(x, ut)

∣∣ (40)

≤
n∑
l=1

I{ul=uT−1}kl(x)Lρ‖x− xl‖ ≤ Lρb , (41)

since

‖x− xl‖ ≥ b =⇒ kl(x) = 0 (42)

and
n∑
l=1

Iul=ut
kl(x) = 1. (43)

This shows that Equation (39) is also valid for t = T − 1, and ends the proof.

Then, we have the following theorem.

Theorem 3.8 (Bounds on the actual return of a sequence (u0, . . . , uT−1))
Let x0 ∈ X be a given initial state. Then,

|Ku0,...,uT−1(x0)− Ju0,...,uT−1(x0)| ≤ βb , (44)

with

β =

T−1∑
t=0

CT−t . (45)
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Proof We use the notation xt+1 = f(xt, ut), ∀t ∈ {0, . . . , T − 1}. One has

J
u0,...,uT−1

T (x0)− J̃u0,...,uT−1

T (x0)

= B
u0,...,uT−1

T ◦ Ju0,...,uT−1

T−1 (x0)−Ku0,...,uT−1

T ◦ J̃u0,...,uT−1

T−1 (x0)

(46)
= B

u0,...,uT−1

T ◦ J̃u0,...,uT−1

T−1 (x0)−Ku0,...,uT−1

T ◦ J̃u0,...,uT−1

T−1 (x0)

+B
u0,...,uT−1

T J
u0,...,uT−1

T−t−1 (x0)−Bu0,...uT−1

T J̃
u0,...,uT−1

T−t−1 (x0) (47)

= B
u0,...,uT−1

T ◦ J̃u0,...,uT−1

T−1 (x0)−Ku0,...,uT−1

T ◦ J̃u0,...,uT−1

T−1 (x0)

+J
u0,...,uT−1

T−1 (x1)− J̃u0,...,uT−1

T−1 (x1) . (48)

Using the recursive form of Equation (48), one has

Ju0,...,uT−1(x)− Ku0,...,uT−1(x) = J
u0,...,uT−1

T (x)− J̃u0,...,uT−1

T (x)

(49)

=
T−1∑
t=0

B
u0,...,uT−1

T−t ◦ J̃u0,...,uT−1

T−t−1 (xt)−Ku0,...,uT−1

T−t ◦ J̃u0,...,uT−1

T−t−1 (xt)

(50)

Equation (50) and Lemma 3.7 allow to write

∣∣Ju0,...,uT−1

T (x0)− Ku0,...,uT−1(x0)
∣∣ ≤ T−1∑

t=0

CT−tb , (51)

which ends the proof.

4 Continuous action space and closed-loop control pol-
icy

In this section, the action space (U , ‖.‖U ) is assumed to be continuous and normed. We
consider a deterministic time-varying control policy

h : {0, 1, . . . , T − 1} ×X → U (52)

that selects at time t the action ut based on the current time and the current state (ut =
h(t, xt)). The T−stage return of the policy h when starting from x0 is defined as
follows.

Definition 4.1 (T−stage return of the policy h)
∀x0 ∈ X ,

Jh(x0) =

T−1∑
t=0

ρ(xt, h(t, xt)). (53)

where

xt+1 = f(xt, h(t, xt)) ∀t ∈ {0, . . . , T − 1} . (54)
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We assume that the dynamics f , the reward function ρ and the policy h are Lipschitz
continuous:

Assumption 4.2 (Lipschitz continuity of f , ρ and h)
∃Lf , Lρ, Lh ∈ R : ∀(x, x′) ∈ X2,∀(u, u′) ∈ U2,∀t ∈ {0, . . . , T − 1},

‖f(x, u)− f(x′, u′)‖X ≤ Lf
(
‖x− x′‖X + ‖u− u′‖U

)
, (55)

|ρ(x, u)− ρ(x′, u′)| ≤ Lρ
(
‖x− x′‖X + ‖u− u′‖U

)
, (56)

‖h(t, x)− h(t, x′)‖U ≤ Lh‖x− x′‖X . (57)

The dynamics and the reward function are unknown, but we assume that three con-
stants Lf , Lρ, Lh satisfying the above-written inequalities are known. Under those
assumptions, we want to compute bounds on the T−stage return of a given policy h.

4.1 Kernel-based policy evaluation
Given a state x ∈ X , we also introduce the (T − t)−stage return of a policy h when
starting from x ∈ X as follows:

Definition 4.3 ((T − t)−stage return of a policy h)
Let x ∈ X . For t′ ∈ {t, . . . , T − 1}, we denote by xt′+1 the state

xt′+1 = f(xt′ , ut′) (58)

with

ut′ = h(t′, xt′) (59)

and xt = x. The (T − t)−stage return of the policy h when starting from x is defined
as follows:

JhT−t(x) =

T−1∑
t′=t

ρ(xt′ , ut′) .

The stage return of the policy h is thus given by

Jh(x0) = JhT (x0). (60)

The sequence of functions
(
JhT−t(.)

)T−1
t=0

is approximated using kernels ([1]) by a se-

quence
(
J̃hT−t(.)

)T−1
t=0

computed as follows

∀x ∈ X , J̃h0 (x) = Jh0 (x) = 0 , (61)

and, ∀x ∈ X ,∀t ∈ {0, . . . , T − 1},

J̃hT−t(x) =

n∑
l=1

kl(x, h(t, x))
(
rl + J̃hT−t−1(yl)

)
, (62)

where kl : X × U → R is defined as follows:

kl(x, u) =
Φ
(
‖x−xl‖X+‖u−ul‖U

b

)
∑n

i=1 Φ
(
‖x−xi‖X+‖u−ui‖U )

b

) , (63)
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where b > 0 is the bandwidth parameter and Φ : R+ → R+ is a univariate non-
negative “mother kernel” function. We also assume that

∀x > 1,Φ(x) = 0 , (64)

and we suppose that each function kl is Lipschitz continuous.

Assumption 4.4 (Lipschitz continuity of {kl}nl=1)
∀l ∈ {1, . . . , n},∃Lkl > 0 :

∀(x′, x′′, u′, u′′) ∈ X 2 × U2,

|kl(x′, u′)− kl(x′′, u′′)| ≤ Lkl (‖x′ − x′′‖X + ‖u′ − u′′‖U ) . (65)

We define Lk such that

Lk = max
l∈{1,...,n}

Lkl . (66)

The kernel-based estimator KBE, denoted by Kh(x0), is defined as follows:

Definition 4.5 (Kernel-based estimator)
∀x0 ∈ X ,

Kh(x0) = J̃hT (x0) . (67)

We introduce the family of kernel operators
(
Kh
T−t
)T−1
t=0

such that

Definition 4.6 (Continuous action space kernel operators)
Let g : X → R. ∀t ∈ {0, . . . , T − 1},∀x ∈ X ,(

Kh
T−t ◦ g

)
(x) =

n∑
l=1

kl(x, h(t, x))
(
rl + g(yl)

)
. (68)

One has

J̃hT−t(x) =
(
Kh
T−t ◦ J̃hT−t−1

)
(x) . (69)

We also introduce the family of finite-horizon Bellman operators
(
BhT−t

)T−1
t=0

as fol-
lows:

Definition 4.7 (Continuous Bellman operator)
Let g : X → R. ∀t ∈ {1, . . . , T},∀x ∈ X ,(

BhT−t ◦ g
)

(x) = ρ(x, h(t, x)) + g(f(x, h(t, x))) . (70)

One has

JhT−t(x) =
(
BhT−t ◦ JhT−t−1

)
(x) . (71)

We propose a second lemma that bounds the distance between the two operators Kh
T−t

and BhT−t when applied to the approximated (T − t− 1)− return J̃hT−t−1.

Lemma 4.8
∀t ∈ {1, . . . , T − 1},∀x ∈ X ,∣∣∣(Kh

T−t ◦ J̃hT−t−1
)

(x)−
(
BhT−t ◦ J̃hT−t−1

)
(x)
∣∣∣ ≤ CT−tb (72)

with

CT−t = Lρ + LkLfAρ(1 + Lh)(T − t− 1) . (73)
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Proof Let x ∈ X .

• Let t ∈ {0, . . . , T − 2}. Since

n∑
l=1

I{ul=h(t,x)}kl(x) = 1, (74)

one can write∣∣∣(Kh
T−t ◦ J̃hT−t−1

)
(x)−

(
BhT−t ◦ J̃hT−t−1

)
(x)
∣∣∣

=

∣∣∣∣∣
n∑
l=1

kl(x, h(t, x))

[
rl − ρ(x, h(t, x))

+J̃hT−t−1(yl)− J̃hT−t−1(f(x, h(t, x)))

]∣∣∣∣∣
(75)

≤ Lρ
n∑
l=1

kl(x, h(t, x))
(
‖xl − x‖X + ‖ul − h(t, x)‖U

)
+

n∑
l=1

∣∣∣kl(x, h(t, x))
(
J̃hT−t−1(yl)− J̃hT−t−1(f(x, h(t, x)))

)∣∣∣
(76)

Since

∀z > 1,Φ(z) = 0, (77)

one has(
‖xl − x‖X + ‖ul − h(t, x)‖U

)
≥ b =⇒ kl(x, h(t, x)) = 0 . (78)

This gives

Lρ

n∑
l=1

kl(x, h(t, x))
(
‖xl − x‖X + ‖ul − h(t, x)‖U

)
≤ Lρb . (79)

On the other hand, one has

J̃hT−t−1(yl)− J̃hT−t−1(f(x, h(t, x))) =

n∑
j=1

[
kj(y

l, h(t+ 1, yl))

−kj(f(x, h(t, x)), h(t+ 1, f(x, h(t, x))))
]
(rj + J̃hT−t−2(yj))

(80)

Since the reward function ρ is bounded by Aρ, one can write∣∣∣(rj + J̃hT−t−2(yj))
∣∣∣ ≤ (T − t− 1)Aρ . (81)
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and according to the Lipschitz continuity of kj ,f and h, one has∣∣kj(yl, h(t+ 1, yl))− kj(f(x, ut), h(t+ 1, f(x, h(t, x))))
∣∣

≤ Lkj
(
‖yl − f(x, h(t, x))‖X + ‖h(t+ 1, yl)− h(t+ 1, f(x, h(t, x)))‖U

)
(82)

≤ Lk
(
‖yl − f(x, h(t, x))‖X + ‖h(t+ 1, yl)− h(t+ 1, f(x, h(t, x)))‖U

)
(83)

≤ LkLf (1 + Lh)
(
‖xl − x‖X + ‖ul − h(t, x)‖U

)
. (84)

Equations (80), (81) and (84) allow to write∣∣∣(J̃hT−t−1(yl)− J̃hT−t−1(f(x, ut))
)∣∣∣

≤ LkLf (1 + Lh)(T − t− 1)Aρ
(
‖xl − x‖X + ‖ul − h(t, x)‖U

)
(85)

Equations (78) and (85) give∣∣∣(J̃hT−t−1(yl)− J̃hT−t−1(f(x, h(t, x)))
)∣∣∣

≤ LkLf (1 + Lh)(T − t− 1)Aρb (86)

and since
n∑
l=1

kl(x, h(t, x)) = 1 , (87)

n∑
l=1

∣∣∣kl(x, h(t, x))(J̃hT−t−1(yl)− J̃hT−t−1(f(x, h(t, x))))
∣∣∣

≤ LkLf (1 + Lh)b(T − t− 1)Aρ (88)

Using Equations (76), (79) and (88), we can finally write
∀(x, t) ∈ X × {0, . . . , T − 2},∣∣∣(Kh

T−t ◦ J̃hT−t−1
)

(x)−
(
BhT−t ◦ J̃hT−t−1

)
(x)
∣∣∣

≤ (Lρ + LkLf (1 + Lh)(T − t− 1)Aρ)b (89)

This proves the lemma for t ∈ {0, . . . , T − 2}.

• Let t = T − 1. One has∣∣∣(Kh
1 ◦ J̃h0

)
(x)−

(
Bh1 ◦ J̃h0

)
(x)
∣∣∣

≤
n∑
l=1

kl(x, h(T − 1, x))
∣∣rl − ρ(x, h(T − 1, x))

∣∣ (90)

≤
n∑
l=1

kl(x, h(T − 1, x))Lρ
(
‖x− xl‖+ ‖h(T − 1, x)− ul‖

)
(91)

≤ Lρb , (92)
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since(
‖x− xl‖+ ‖h(T − 1, x)− ul‖U

)
≥ b =⇒ kl(x, h(T − 1, x)) = 0 (93)

and

n∑
l=1

kl(x, h(T − 1, x)) = 1. (94)

This shows that Equation (89) is also valid for t = T − 1, and ends the proof.

According to the previous lemma, we have the following theorem.

Theorem 4.9 (Bounds on the actual return of h)
Let x0 ∈ X be a given initial state. Then,∣∣Kh(x0)− Jh(x0)

∣∣ ≤ βb , (95)

with

β =

T∑
t=1

CT−t . (96)

Proof We use the notation xt+1 = f(xt, ut) with ut = h(t, xt). One has

JhT (x0)− J̃hT (x0) = BhT−1 ◦ JhT−1(x0)−Kh
T−1 ◦ J̃hT−1(x0) (97)

= BhT−1 ◦ J̃hT−1(x0)−Kh
T−1 ◦ J̃hT−1(x0) (98)

+ BhT−1 ◦ JhT−1(x0)−BhT−1 ◦ J̃hT−1(x0)

= BhT−1 ◦ J̃hT−1(x0)−Kh
T−1 ◦ J̃hT−1(x0)

+ JhT−1(x1)− J̃hT−1(x1) (99)

Using the recursive form of Equation (99), one has

Jh(x0)− Kh(x0) = JhT (x0)− J̃hT (x0) (100)

=

T−1∑
t=0

BhT−t ◦ J̃hT−t−1(xt)−Kh
T−t ◦ J̃hT−t−1(xt)

(101)

Then, according to Lemma 1, we can write

∣∣∣JhT (x0)− Kh(x0)
∣∣∣ ≤ T−1∑

t=0

CT−tb , (102)

which ends the proof.
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