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Abstract

We study the min max optimization problem introduced in [6] for computing
policies for batch mode reinforcement learning in a deterministic setting. This
problem is NP-hard. We focus on the two-stage case for which we provide two
relaxation schemes. The first relaxation scheme works by dropping some con-
straints in order to obtain a problem that is solvable in polynomial time. The
second relaxation scheme, based on a Lagrangian relaxation where all constraints
are dualized, leads to a conic quadratic programming problem. Both relaxation
schemes are shown to provide better results than those given in [6].

1 Introduction

Research in Reinforcement Learning (RL) ([12]) aims at designing computational agents able to
learn by themselves how to interact with their environment to maximize a numerical reward signal.
The techniques developed in this field have appealed researchers trying to solve sequential decision
making problems in many fields such as finance, medicine or engineering. Since the end of the
nineties, several researchers have focused on the resolution of a subproblem of RL: computing a
high-performance policy when the only information available on the environment is contained in a
batch collection of trajectories of the agent ([2, 9, 10, 11]). This subfield of RL is known as “batch
mode RL” [3].

Batch mode RL (BMRL) algorithms are challenged when dealing with large or continuous state
spaces. Indeed, in such cases they have to generalize the information contained in a generally
sparse sample of trajectories. The dominant approach for generalizing this information is to com-
bine BMRL algorithms with function approximators ([1]). Usually, these approximators generalize
the information contained in the sample to areas poorly covered by the sample by implicitly assum-
ing that the properties of the system in those areas are similar to the properties of the system in the
nearby areas well covered by the sample. This in turn often leads to low performance guarantees
on the inferred policy. To overcome this problem, reference [6] proposes a min max-type strategy
for generalizing in deterministic, Lipschitz continuous environments with continuous state spaces,
finite action spaces, and finite time-horizon. The min max approach works by determining a se-
quence of actions that maximizes the worst return that could possibly be obtained considering any
system compatible with the sample of trajectories, and a weak prior knowledge given in the form
of upper bounds on the Lipschitz constants related to the environment (dynamics, reward function).
This problem is NP-hard, and reference [6] proposes an algorithm (called the CGRL algorithm - the
acronym stands for “Cautious approach to Generalization in Reinforcement Learning”) for comput-
ing an approximate solution in polynomial time. In this paper, we mainly focus on the 2-stage case



for which we provide two relaxation schemes that are solvable in polynomial time and that provide
better results than the CGRL algorithm.

2 Problem Formalization

Elements of Batch Mode Reinforcement Learning. We consider a deterministic discrete-time
system whose dynamics over 7 stages is described by a time-invariant equation

Tip1 = [(xpuy) t=0,...,T—1,

where for all ¢, the state x; is an element of the state space X' C R? and w, is an element of the
finite (discrete) action space U = {u(l), e ,u(m)} that we abusively identify with {1,... ,m}.
T € N\ {0} is referred to as the (finite) optimization horizon. An instantaneous reward

re = p(x,u) €R

is associated with the action u; taken while being in state ;. For a given initial state o € X and
for every sequence of actions (ug, ..., ur—_1) € U7, the T—stage return is defined as follows:

T—1
Jz(“uoyqu_l) = Z P(l’t,ut) s
t=0

where 411 = f (24,us) V6 €{0,..., T —1}.

We further make the following assumptions: (i) the system dynamics f and the reward function p
are unknown, (ii) for each action u € U, a set of n® e N one-step system transitions

()
Flw) — {(xw),k 0.k y<u>,k>}
) 9 k=1
is known where each one-step transition is such that y(* = f(2(W:* o) and r(k =

p (x(“)’k, u) and (iii) we assume that every set F(*) contains at least one element. In the following,
we denote by F the collection of all system transitions: F = F() U ... U Fm),

Min Max Generalization under Lipschitz Continuity Assumptions. The system dynamics f
and the reward function p are assumed to be Lipschitz continuous:
Ly, L, e RY :V(z,2') € X2 Vu e U,

If (@, u) = f"u)| < Lgllz =2
p(z,u) —p(a’u)] < L,z -2

where ||.|| denotes the Euclidean norm over the space X'. We also assume that two such constants
Ly and L, are known.

For a given sequence of actions, one can define the worst possible return that can be obtained by any
system whose dynamics f’ and p’ would satisfy the Lipschitz inequalities and that would coincide
with the values of the functions f and p given by the sample of system transitions F. As shown in
[6], this worst possible return can be computed by solving the following optimization problem:

T-1
(Pr(F, Ly, Ly, xo,ug, . .., up—1)) : A min Zf‘t,
tg ... Tt 1€R =0

X ... Xp_1€X

subject to

| — rluhe | < L& —alvrk I° Mt k) €0 T = 1) x {10},
[Rer =y ||” < LF [|&e — a0k |7 W(E ki) € {0,..., T =1} x {1,...,n()},
By — Bp|? < L2 [|%e — %o ||” V8,8 € {0,...,T — Ljug = up},

[%es1 — e l|? < L3 % — %o ||* Vet €{0,..., T — 2Juy = up},

)A(() = Xo -




Note that optimization variables are written in bold. The min max approach to generalization aims
at identifying which sequence of actions maximizes its worst possible return, that is which sequence

of actions leads to the highest value of (Pr(F, Ly, L,, xo, uo, ..., ur—1)). Since U is finite, we
focus in this paper on a resolution scheme for solving this min max problem that computes for each
(ug, . ..,ur—_1) € UT the value of its worst possible return.

3 The Two-stage Case

We now restrict ourselves to the case where 1" = 2, which is an important particular case of

(PT(]-", Ly, L,, xo,ug,. .., uT_l)). Given a two-stage sequence of actions (ug,u;) € U?, the
two-stage version of the problem (PT (F,Ly, Ly, x0,u0, ..., uT_l)) reads as follows:
(PQ(.F,Lf7Lp7$Q,UO,U1)) : min ro + 1,
ro, T €R
Xg, X1 € X
2 2
subjectto  |fg — r(0) kol < [2 on — guo)ko |7 vk e {1, o ,n<"o>} ,

2 2
[#2 = O < L2 [ = 2t m |7 vk e {1, 0}
2 2
%2 =yt ||” < 23 [k — 2t |7 whg € {1, )}
[fo —F1/* < L %o — Ra” if uo = ur ()
)A(o =Xxo -

For a matter of simplicity, we will refer (Pa(F, Ly, L, zo, up, u1)) as (772(”"’”1)). We denote by
Béuo’ul ) (F) the lower bound associated with an optimal solution of (PQ(uU"ul)).
Let (P)"0"*)) and (P} “*"")) be the two following subproblems:

(Pl(uo’ul)) : min fo
? £ € R
Xo € X
2 2
subject to fo — pluolbol < 12 H)‘co — gwodko|l" o € {17 o 7n(uo)} 7
),.(0 = X0 .
(PQ’("O’“I)) : min T
rieR
X1 €X
2 2
subject to ]fl — (i< 2 & — 2Rk € {1,...,n(u1>}, ©)
2 2
H)A(l —y(uO)’kO S L?c HZC()—LC(UO)’IW ,Vko S {1,...,n("0)}. (3)

We give hereafter a theorem that shows that an optimal solution to (Pz(uo’ul) ) can be obtained by

solving the two subproblems (77;(“0’“1)) and (Pg(uo’ul)). Indeed, one can see that the stages t = 0

and t = 1 are theoretically coupled by constraint (1), except in the case where the two actions ug and

u; are different for which (772(1“”"1 )) is trivially decoupled. The following theorem shows that, even

in the case 1o = 1, optimal solutions to the two decoupled problems (P4 """} and (P}>"))
also satisfy constraint (1).



Theorem 1 Let (ug,u;) € U2 If (25, %) is an optimal solution to (’Pé(uo’ul)) and (t5,%3) is an

optimal solution to (P;/(uo’ul)), then (T4, 15, %4, X3) is an optimal solution to (PQ(uo’ul)).

The proof of this result is given in [4]. We now focus on (73;("0’“1)) and (P;’(““’“”), for which we
have the two following propositions (proofs in [4]):

Proposition 2 The solution of (P} """ is

fp = max p(uo)ko _ L, on — g(u0):ko
koe{l,“.,n(“(ﬁ}

Proposition 3 In the general case, (P;/(uo’ul)) is NP-hard.

4 Relaxation Schemes for the Two-stage Case
We propose two relaxation schemes for (P;““‘““l)) that are solvable in polynomial time and that
are still leading to lower bounds on the actual return of the sequences of actions. The first relax-
ation scheme works by dropping some constraints. The second relaxation scheme is based on a
Lagrangian relaxation where all constraints are dualized. Solving the Lagrangian dual is shown to
be a conic quadratic problem that can be solved using interior-point methods.

4.1 The Trust-region Subproblem Relaxation Scheme

An easy way to obtain a relaxation from an optimization problem is to drop some constraints. We
therefore suggest to drop all constraints (2) but one, indexed by k;. Similarly we drop all constraints

(3) but one, indexed by kq. The following problem is therefore a relaxation of (73;(““’“1));
(7’¥§$”°’“1)(ko, k1)) : _min 1
1 eR
X1 € X
2 2
subject to ‘fl — plu)k” < L;Q) Hfh — glw) k|
2 2
Hgl — ywokol|” < 2 HIO _ g (uo)ko

We then have the following theorem:
1

Theorem 4 The bound Bg(g“ul)’ko’kl (F) given by the resolution of (PT;;OM) (ko, k1)) is

B;gg,ul),ko,kl (J—_-) _ T’(ul)"kl _ Lp &i(k_o, kl) _ x(ul),kl

where

Jzo a0
(u0),ko — g(u1),ka ||

%5 (o, ky) = y(0)ko 4 [, m <y(uo>,ko _ x(un,kl) if y(uo)ko £ p(un)kn

and, if y(uohko = g(w)k1 g% (ko k) can be any point of the sphere centered in y(“0)-ko = z(u):k1
with radius Ly ||z — 2(uo);ko .

The proof of this result is given in [4] and relies on the fact that (P;.5y*""* ) (ko, k1)) is equivalent to

the max of a distance with a ball constraint. Solving (P;.5y 0.u1) (ko, k1)) provides us with a family

of relaxations for our initial problem by considering any combination (kg, k1) of two non-relaxed
constraints. Taking the maximum out of these lower bounds yields the best possible bound out
of this family of relaxations. The sum of the maximal Trust-region relaxation and the solution of

(,Pé(uoﬂil)) leads to the Trust-region bound:



Definition 5 (Trust-region Bound)

Y(ug,ur) €U?,  BYSUY(F) =15+ max By ok (),
ke {L,...,nm)
ko € {1,... ,n(“o)}

Notice that in the case where n(“0) and n(*1) are both equal to 1, then the trust-region relaxation
scheme provides an exact solution of the original optimization problem (Péuo’ul)).

4.2 The Lagrangian Relaxation

Another way to obtain a lower bound on the value of a minimization problem is to consider a La-

grangian relaxation. If we multiply the constraints (2) by dual variables fi1, ..., ftgy ;.- 5 i) > 0
and the constraints (3) by dual variables A1,..., Ag,,..., A\, > 0, we obtain the Lagrangian
dual:

(ngo’ul)) : max min £1

)\17...7>\n(u0) €R+ r1 eR
Piso sy ERy X3 € X

n(v1)
2
+ 5 ((rl =l )T 2|5 gl
k1=1

n(vwo)

(e
k(]:l

)

)
Observe that the optimal value of (P/L/%LO’“)) is known to provide a lower bound on the optimal

value of (73;(“0’“1)) ([8]). We have the following result (proof in [4]):

(u0),ko

2
— L?» on —x

Theorem 6 (P'L'%m’ul)) is a conic quadratic program.

The sum of the bound given by solution of (P4“*"**)) and the bound B}, “*""*)(F) given by the
resolution of the Lagrangian relaxation (P/L/%‘O’ul)) leads to the Lagrangian relaxation bound:

Definition 7 (Lagrangian Relaxation Bound)

V(UO,ul) c Z/{Q’ Béu]g,zn)(]_-) _ f'O + B/It(go,ul)(}.)

4.3 Comparing the bounds

The CGRL algorithm proposed in [6] (initially introduced in [7]) for addressing the min max prob-
lem uses the procedure described in [5] for computing a lower bound on the return of a policy
given a sample of trajectories. More specifically, for a given sequence (ug,u;) € U?, the program

(Pr(F,Ly, Ly, xo,uo, - .., ur—1)) is replaced by a lower bound nglgi) (F). The following theo-
rem (proof in [4]) shows how this bound compares in the two-stage case with the trust-region bound
and the Lagrangian relaxation bound:

Theorem 8

V(uo,w) €U, BEgRp (F) < BEg™ (F) < Biip™)(F) < B ™ (F) < o)
Note that thanks to Theorem 8, the convergence properties of the CGRL bound (detailed in [7]) when
the sparsity of F decreases towards zero also hold for the Trust-region and Lagrangian relaxation
bounds.



5 Future Works

A natural extension of this work would be to investigate how the proposed relaxation schemes could
be extended to the T-stage (1" > 3) framework. Lipschitz continuity assumptions are common in a
batch mode reinforcement learning setting, but one could imagine developing min max strategies in
other types of environments that are not necessarily Lipschitzian, or even not continuous. Addition-
ally, it would also be interesting to extend the resolution schemes proposed in this paper to problems
with very large/continuous action spaces.
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